
Bulk Build on QNX (WIP)#

There's various pages out there describing bulk builds on various platforms, all slightly different. Here's one
more.

Base install separation#

If you look around you'll see that most people try to do their build in a sandbox of some sort. There's various
ways to to this on each platform. I actually did a bulk build in a chroot on QNX once but it wasn't stock :).
Here's the layout I'm using now:

• One drive in two partitions.
1. Approx 8Gig for the qnx install which gets mounted read only (type 179).
2. The rest of the drive where all the work gets done (type 178).

• Here's a sample build file that does this BulkBuild/qnxbasepbulk.build. Notice this mounts the small
install partition (hd0t179) to / read only and the second work partition (hd0t178) as /fs/hd0-qnx6-2 as
would normally be done by 'diskboot' in the default image.

When performing setup and administration on the box I boot from the normal qnxbasesmp image. When doing
an actual bulk build I boot from the qnxbasebulk image.

To make the system usable in either configuration, I copy /tmp, /home and /var to the work partition which is
read / write in either case then add procmgr symlinks to point there.

[shell]# cp -R /tmp /fs/hd0-qnx6-2/tmp
[shell]# cp -R /var /fs/hd0-qnx6-2/var
[shell]# cp -R /home /fs/hd0-qnx6-2/home

Two other directories are used during bulk builds as I have them configured: /pbulk and /usr/pkg. /pbulk is
where I check out the pkgsrc repository and where I install packages required by the controlling part of the
build (the outer layer). /usr/pkg is where resulting packages created by this outer layer are staged before being
tarred up in a binary package. In pkgsrc parlance the outer layer controls the inner layer which builds packages
with the same default prefix of /usr/pkg that would normally be used if one were to build packages themselves
outside of a bulk build.

Here's a sample /etc/rc.d/rc.local that sets up these links BulkBuild/rc.local.

Basic box administration#

pbulk can be configured to run in 'parallel' mode (the 'p' in 'pbulk') with one master and multiple clients. My
current setup is one box as master which is also the only client with the hope that other clients may be added
in the future. As can be seen in the sample rc.local, I have one 10.x.x.x network on the master for control and
a 192.168.x.x network for all the clients. In this mode the master needs to be able to ssh into each client. I also
run the bulk build as root (not sure if this is still required) so you need to set up /etc/ssh/sshd_config on each
client with 'PermitRootLogin yes'. To avoid entering passwords all the time, start a ssh-agent session on the
master prior to starting the bulk build:

[shell]# eval $(ssh-agent)
[shell]# ssh-add <- password once
[shell]# ssh 192.168.1.1 echo hello <- ssh into client0 (self). Shouldn't be prompted for a passwd.

Verify you can ssh into each client as root with no passwd.

I move /root to /home/root. Recall /root is read only during a bulk build. Alternatively you can add an extra
symlink:

http://community.qnx.com/sf/wiki/do/viewAttachment/projects.pkgsrc/wiki/BulkBuild/qnxbasepbulk.build
http://community.qnx.com/sf/wiki/do/viewAttachment/projects.pkgsrc/wiki/BulkBuild/rc.local

[shell]# cp -R /root /home/root
< update /etc/passwd entry for root >
[shell]# grep ^root /etc/passwd
root::0:0:Superuser:/home/root:/bin/sh

I change the umask to 0022 and add /pbulk/pkg_bulk dirs to PATH. Something in this process actually
expected this umask (can't recall exactly what) but it's also generally good practice. More on /pbulk/pkg_bulk
below:

[shell]# cat ~/.profile
umask 0022
export PATH=$PATH:/pbulk/pkg_bulk/bin:/pbulk/pkg_bulk/sbin

The default /pbulk/pkg_bulk/etc/pbulk.conf specifies 'unprivileged_user=pbulk' so such a user needs to be
created.

[shell]# grep pbulk /etc/passwd
pbulk:x:100:100:pbulk:/home/pbulk:/bin/sh
[shell]# grep pbulk /etc/group
pbulk:x:100:

pbulk setup#

Notice also that the above rc.local script adds /pbulk/pkg_bulk/lib to the CS_LIBPATH. As mentioned above,
the outer, controlling part of the bulk build requires a few packages for its operation (here's where we get into
some pbulk specifics). I install these into /pbulk/pkg_bulk so the first step in the actual pbulk process is to
bootstrap in this location:

[shell]# cd /pbulk
< checkout pkgsrc repo to pkgsrc>
[shell]# cd pkgsrc/bootstrap
[shell]# ./bootstrap --prefix=/pbulk/pkg_bulk --pkgdbdir=/pbulk/pkg_bulk/.pkgdb

Now install the packages needed for a bulk build and anything else you find generally useful. For example:

[shell]# cd /pbulk/pkgsrc/pkgtools/pbulk
[shell]# /pbulk/pkg_bulk/bin/bmake install

The last time I did a bulk build I had:

[shell]# /pbulk/pkg_bulk/sbin/pkg_info
install-sh-20070712 install script compatible with the BSD install program
bmake-20081111 Portable (autoconf) version of NetBSD 'make' utility
nawk-20050424nb3 Brian Kernighan's pattern-directed scanning and processing language
nbsed-20040821nb1 NetBSD-current's sed(1)
pkg_install-20090518 Package management and administration tools for pkgsrc
digest-20080510 Message digest wrapper utility
libtool-base-1.5.26nb1 Generic shared library support script (the script itself)
pax-20080110 POSIX standard archiver with many extensions
libiconv-1.12nb1 Character set conversion library
rsync-3.0.5nb1 Network file distribution/synchronisation utility
bzip2-1.0.5nb1 Block-sorting file compressor
rcs-5.7nb3 GNU Revision Control System - version control software
heirloom-mailx-12.4 BSD mail utility with MIME extensions
pbulk-0.37 Modular bulk build framework
pkg_install-info-4.5nb3 Standalone GNU info file installation utility
screen-4.0.3nb2 Multi-screen window manager
m4-1.4.13 GNU version of UNIX m4 macro language processor
tcp_wrappers-7.6.1nb4 Monitor and filter incoming requests for network services

sendmail-8.14.3nb4 The well known Mail Transport Agent
mailwrapper-19990412nb4 Wrapper to support arbitrary Mail Transport Agents
vim-share-7.2.184 Data files for the vim editor (vi clone)
gettext-lib-0.14.6 Internationalized Message Handling Library (libintl)
vim-7.2.184 Vim editor (vi clone) without GUI
gettext-tools-0.14.6nb1 Tools for providing messages in different languages
pkg-config-0.23nb1 System for managing library compile/link flags
apr-1.3.3 Apache Portable Runtime
expat-2.0.1 XML parser library written in C
apr-util-1.3.4nb1 Apache Portable Runtime utilities
zlib-1.2.3 General purpose data compression library
neon-0.28.3 HTTP and WebDAV client library
subversion-base-1.5.6nb3 Version control system, base programs and libraries

I recall that a bulk build required 'rsync' and 'mailx' for its reporting phase. The latter requires 'sendmail' which
I had to install and configure. If you're not interested in the reporting phase none of these may be required.
'screen' is pretty much a must have if you want to check on progress remotely since a bulk build can take a long
time. I think the rest are personal preference.

Configure /pbulk/pkg_bulk/etc/pbulk.conf#

Most of this should be more or less self explanatory. Set your pkg_rsync_target, report_rsync_target and
report_recipients as desired. I have the following sections which follows the setup as described above:

pclient0="192.168.1.1"
pclient1="192.168.1.2"

master_ip="${pclient0}"
scan_clients="${pclient0}"
build_clients="${pclient0}"
...
...
...
bootstrapkit=/pbulk/bootstrap_kit.tar.gz
...
...
...
target_arch=qnx6
target_destdir=/pbulk/destdir.${target_arch}

The directories where the various files are created.
#
bulklog=/pbulk/bulklog
packages=/pbulk/packages
prefix=/usr/pkg
pkgsrc=/pbulk/pkgsrc

The creation of /pbulk/bootstrap_kit.tar.gz is described below:

create /pbulk/bootstrap_kit.tar.gz#

[shell]# cd /pbulk/pkgsrc/bootstrap && ./bootstrap --mk-fragment /tmp/mk-fragment.conf --gzip-binary-kit /pbulk/bootstrap_kit.tar.gz

Where the attached is a sample BulkBuild/mk-fragment.conf.

http://community.qnx.com/sf/wiki/do/viewAttachment/projects.pkgsrc/wiki/BulkBuild/mk-fragment.conf

