
Using wpa_supplicant to Manage your Wireless Network
Connections#

The wpa_supplicant daemon is the "standard" mechanism used to provide persistence of wireless networking
information as well as managing automated connections into networks without user intervention.

The supplicant is based upon the open source supplicant (albeit an earlier revision that matches that used by the
NetBSD distribution) located at http://hostap.epitest.fi/wpa_supplicant/.

The supplicant provides a number of key features to support wireless connectivity. These are:

• Provides a consistent interface for configuring all authentication / encryption mechanisms (unsecure, wep,
WPA, WPA2)

• Supports configuration of adhoc and infrastructure modes of operation
• Maintains the network configuration information in a configuration file (by default /etc/

wpa_supplicant.conf)
• Provides auto-connectivity capability allowing a client to connect into a WAP without user intervention

An example wpa_supplicant.conf file is installed in $STAGE/etc for you. It contains a detailed description of
the basic supplicant configuration parameters and network parameter descriptions (and there are lots of them)
and example network configuration blocks.

In conjunction with the supplicant is a command line configuration tool called wpa_cli. This tool lets you query
the stack for information on wireless networks as well as update the configuration file on the fly. We are also
in the process of developing a library of routines that will be pulled into a GUI (or that you can use yourself to
create a Wi-Fi configuration tool). This library can be found under the source tree in lib/wlconfig and creates a
libwlconfig library for applications to use.

The following commands are currently supported by the wpa_cli utility:

 status [verbose] = get current WPA/EAPOL/EAP status
 mib = get MIB variables (dot1x, dot11)
 help = show this usage help
 interface [ifname] = show interfaces/select interface
 level <debug level> = change debug level
 license = show full wpa_cli license
 logoff = IEEE 802.1X EAPOL state machine logoff
 logon = IEEE 802.1X EAPOL state machine logon
 set = set variables (shows list of variables when run without arguments)
 pmksa = show PMKSA cache
 reassociate = force reassociation
 reconfigure = force wpa_supplicant to re-read its configuration file
 preauthenticate <BSSID> = force preauthentication
 identity <network id> <identity> = configure identity for an SSID
 password <network id> <password> = configure password for an SSID
 new_password <network id> <password> = change password for an SSID
 pin <network id> <pin> = configure pin for an SSID
 otp <network id> <password> = configure one-time-password for an SSID
 passphrase <network id> <passphrase> = configure private key passphrase
 for an SSID
 bssid <network id> <BSSID> = set preferred BSSID for an SSID
 list_networks = list configured networks
 select_network <network id> = select a network (disable others)
 enable_network <network id> = enable a network
 disable_network <network id> = disable a network
 add_network = add a network
 remove_network <network id> = remove a network

http://hostap.epitest.fi/wpa_supplicant/

 set_network <network id> <variable> <value> = set network variables (shows
 list of variables when run without arguments)
 get_network <network id> <variable> = get network variables
 save_config = save the current configuration
 disconnect = disconnect and wait for reassociate command before connecting
 scan = request new BSS scan
 scan_results = get latest scan results
 get_capability <eap/pairwise/group/key_mgmt/proto/auth_alg> = get capabilities
 terminate = terminate wpa_supplicant
 quit = exit wpa_cli

If you want the wpa_cli to be capable of updating the wpa_supplicant.conf file, edit the wpa_supplicant.conf
file and uncomment the "update_config=1" option. (Note that when wpa_cli re-writes the configuration file, all
of the comments in there will be stripped out.) Copy the file into /etc (and make sure that it's owned and read/
writable by root only. It contains clear text keys and password information).

Given a system with a USB-WiFi dongle based on the RAL chips, here's a sample session showing how to get
things working with a WEP based WAP.

cp $HOME/stage/etc/wpa_supplicant.conf /etc
chown root:root /etc/wpa_supplicant.conf
chmod 600 /etc/wpa_supplicant.conf
io-pkt-v4-hc -dural
ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192
 inet 127.0.0.1 netmask 0xff000000
ural0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 ssid ""
 powersave off
 address: 00:ab:cd:ef:d7:ac
 media: IEEE802.11 autoselect
 status: no network
wpa_supplicant -B -iural0
wpa_cli
wpa_cli v0.4.9
Copyright (c) 2004-2005, Jouni Malinen <jkmaline@cc.hut.fi> and contributors

This program is free software. You can distribute it and/or modify it
under the terms of the GNU General Public License version 2.

Alternatively, this software may be distributed under the terms of the
BSD license. See README and COPYING for more details.

Selected interface 'ural0'

Interactive mode

> scan
OK
> scan_results
bssid / frequency / signal level / flags / ssid
00:02:34:45:65:76 2437 10 [WPA-EAP-CCMP] A_NET
00:23:44:44:55:66 2412 10 [WPA-PSK-CCMP] AN_OTHERNET
00:12:4c:56:a7:8c 2412 10 [WEP] MY_NET
> list_networks
network id / ssid / bssid / flags

http://community.qnx.com/sf/wiki/do/createPage/projects.networking/wiki?pageName=WiFi&referrerPageName=Wifi_wpa_supplicant_page

0 simple any
1 second ssid any
2 example any
> remove_network 0
OK
> remove_network 1
OK
> remove_network 2
OK
> add_network
0
> set_network 0 ssid "MY_NET"
OK
> set_network 0 key_mgmt NONE
OK
> set_network 0 wep_key0 "My_Net_Key234"
OK
> enable_network 0
OK
> save
OK
> list_network
network id / ssid / bssid / flags
0 QWA_NET any
> status
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2412 MHz)
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2412 MHz)
wpa_state=ASSOCIATING
> status
<2>Trying to associate with 00:12:4c:56:a7:8c (SSID='MY_NET' freq=2462 MHz)
<2>Associated with 00:12:4c:56:a7:8c
<2>CTRL-EVENT-CONNECTED - Connection to 00:12:4c:56:a7:8c completed (auth)
bssid=00:12:4c:56:a7:8c
ssid=MY_NET
pairwise_cipher=WEP-104
group_cipher=WEP-104
key_mgmt=NONE
wpa_state=COMPLETED
> quit
dhcp.client -i ural0
ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192
 inet 127.0.0.1 netmask 0xff000000
ural0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ssid MY_NET nwkey My_Net_Key234
 powersave off
 bssid 00:12:4c:56:a7:8c chan 11
 address: 00:ab:cd:ef:d7:ac
 media: IEEE802.11 autoselect (OFDM54 mode 11g)
 status: active
 inet 10.42.161.233 netmask 0xfffffc00 broadcast 10.42.160.252

