Quick way to find memory leaksin C/C++programs#

If your application is leaking memory the best way to find out whereit isleaking is to use Memory Analysis
tool.

For first iteration you only need

* you binary located on the target and ready to run

» TCP/IP connection to the target and gconn agent running on it (see below for workaround if you don't
have a direct connection)

* librcheck.so library installed on the the target (latest version can be download here)

Finding leaks by attaching to application#

This would describe how to create launch configuration to find memory leaks in a binary that was not build in
IDE and cannot be launched from IDE.

* In IDE create a C Makefile project (New->Projects...->C Project->Makefile->Empty Project (QNX
Toolchain))

» Open Target Navigator and create a New target with IP address of the target you going to be running
program

» Copy you binary from target to a host and place it in the created project (you can use Target File System
Navigator for that)

* Right click on binary and select Profile As...->C/C++ QNX Application Dialog...

» Onthe Main tab select your target

 Switch to Tools tab and Add Memory Analysis tooling, Enable switch to this tool's perspective (checkbox)

* Click Apply and Close (don't click on Profile button - nothing is running yet)

Now go back to target terminal:

Modify you launch script to include extra environment variables (and remove tracefile, if exists): rm /tmp/
traces.rmat; LD_PREL OAD-=librcheck.so MALLOC_CTHREAD=1 MALLOC_TRACE=1 MALLOC FILE=/
tmpl/traces.rmat ./your_app <arg>

and run it, switch back to IDE

* In IDE right click on binary and select Profile As...->C/C++ QNX Application Dialog...

 Configuration is aready prepared so just click "Profile" button

* Pick the process name and click Ok

* |DE should open Memory Analysis perspective

* You should see new session created in Sessions view. Double click on it.

* Let your app run, maybe execute a test that makes it leak memory

» Now switch to Settings tab and press get L eaks button

» Switch to Errors tab and you should see Leak errors there if you have any. Click on error line to see
allocation backtrace. This object has no references and has not being freed.

http://community.qnx.com/sf/frs/do/viewRelease/projects.ide/frs.binary_patches_for_ide.librcheck_632_compatible

File Edit Mavigate Search Project Bun QnxExample Window Help

ﬁ' a1d = @,"’ 1;3' ﬁ"’ Q." EL" ‘:.:';" P P~

™

E¥ Sessi 2 - T MNavig | — O memCxod g memCxx_g attach met

@ 8| o
[] memHang_g (15/04/09 3:1
b H| rmemCsxx_g attach (16/04):

(| —+
@l | |5

Severity Description

@ LEAK rmernory leak of size 111
P E] memCioc_g (16/04/09 12:5 @ LEAK memory leak of size 111
b EE] memCoc_g attach (16/04/(| @ |gak memory leak of size 111
b E] memCxox_g attach (16/04/(| | @ | eak memory leak of size 111

b] memCwe g attach (16/04/(L= —u.. e e
+ = allocated 0x8058230 (new)

3 [0xB048bce]llmemCxx_g) fhome/elaskav

| D
% Debu 32 . B conse| = O

o

2 [0xBo48afallmemCx_g) fhome/elaskav:

1 [0x80488el](memCxx_g) start:<no sol

% Allocations |Errors | Bins | Bands | Usage | Trace Detail

= 7 <terminated=>memCxx g
-9 le] memCxoccc B3

m. =terminated, exit value || _.

. . . =2-class Bar {
m <terminated, exit value

53 MiniClass *mc;

54 char *p;

=S public:

SE= Bar(int 1) {

57 mc = new MiniClass(1i):
58 p = new char[111];
59 1

60= void print(void] {

61 mc-=print();

62 T

B4= ~Bar() {

Finding leaks by running from | DE#

* |f you don't use IDE to build your binary create simple makefile project and drop your binary in there

» Select it, right click and select Run as QNX Application Dialog...

 Select target, Environment, Arguments

» Switch to Tools tab and Add Memory Analysis tooling, Enable switch to this tool's perspective

» When app started, double click on "session” in Sessions view of Memory Analysis perspective, it would
open an graphical editor

* Let your app run, maybe execute a test that makes it leak memory

» Now switch to Settings tab and press get L eaks button

» Switch to Errorstab and you should see Leaks errorsthere if you have any. Click on error line to see
allocation backtrace. This object has no references and has not being freed.

What to do if backtraceisnot there or has not enough data#

If you see aleak but it does not point to source code or there is no backtrace:

* You need debug version of the binary. Y ou can run non-debug on target but host site has to have debug
symbols (must be same build otherwise)

* |f you see incomplete trace it can be due to compiler optimization, compile with -O0

» Thiscode can belong to alibrary, if it isyour library you can add it to IDE search path, buy adding path in
Shared Library tab of Toolstab (Add tab using Add/Delete Tool... button) of launch configuration. Library
has to have debug symbols too for source to show up.

* To capture backtrace memory tracing hasto be on (MALLOC_TRACE=1 from command line).

» By default backtrace is depth of 5, if you need more you can change IDE settings in Tools tab or set
MALLOC TRACEBTDEPTH=10 from command line.

What to do if you don't have TCP/I P connection#

* You can find leaks postmortem by transferring alog fileto IDE

* Runyour applicationasrm /tnp/traces. rmat; LD PRELQAD=I i br check. so
MALLOC CTHREAD=1 MALLOC TRACE=1 MALLOC FI LE=/tnp/traces.rmat
MALLOC DUVP_LEAKS=1 ./your _app <arg>

» Thiswould dump leaks then app exists normally. If you kill the app it does not "exit normally".

* If you want to initiate leak detection before exit you can use "control thread" interface

* Runecho trace_dunp_unref /tnp/traces.rmat > /dev/rcheck/ctl /1982503,
where 1982503 should be replaced with your process ID (usualy it would be just one there so you can
use /dev/rcheck/ctl/*)

» Transfer /tmp/traces.rmat file on the host

» From IDE switch to Memory Analysis perspective and in Session view select an Import command. Select
create anew session to import datainto. Select afile to import, debug binary and shared library path if you
have any of your librariesinvolved. Click Finish.

» Double click on new session and switch to Errors tab to see memory leaks.

If you need more details please consult User Documentation.

