- Getting list of F27 packages#

Data Provider#

» The data provider uses a package definition file hosted on F27 to get the list of packages
Package definition file#

» Similar to amemento. It contains packages details including:
o Title - name of the package
Release - package version
CPU - target CPU variant
Source dependency - Reference to the dependent packages
Containing projects - Reference to
Vendor - package provider (mainly QNX)
Repository - The F27 repository (e.g. http://community.gnx.com/svn/repos/coreos pub)
Location - the F27 hosting URL within the repository (e.g. trunk/services/system)
o Description - the package detailed description
» The definition file will be maintained by F27 admin (?)
» Thefileis publicly accessible, can be downloaded without authentication. Location of thefileis- TBD
» The IDE does not cache any package information locally but always queries the definition file at the
beginning of every new import section

O O O o o o o

How packages ar e defined?#

» What isthe granularity?
 Source or binary format?
» Make sure packages are build-able before posting?

F27 login credential - two scenarios#
A per-repository login prompt#

» Similar to the update manager login panel
 User can have different username and password on different repositories (possible?)
» Username and password are recorded to "Team -> SVN -> Password Management" for future re-use

A preference page to save login username and passwor d#

 Applicable when using the same login info for all repositories
» Hasto encypt the password. Leverage the platform " Secure Storage” mechanism (?)
 Still haslimitation - save in workspace only. Can it be exported to other workspace?

Package dependenciest

» Dependencies are defined in the "module.tmpl™ <requires> tab, example for "trunk/services/system" is.

<!-- Dependencies -->
<reguires>
<part build="false" location="Ilib/elf"/>
<part build="true" location="Ilib/c"/>
<part build="false" location="hardware/startup/lib"/>
<part build="false" location="utilsyfm/mkasmoff"/>
<[/requires>


http://community.qnx.com/svn/repos/coreos_pub

 To build the complete dependency, all the referenced packages module.tmpl files have to be fetched
locally and parsed
* At this phase, only module.tmpl files are fetched, not the whole package tree

- Presenting packages#

The model#

Refactor existing model#

* Abstract the existing " PackageContainer" model to a " global PackageContainer"

 Refactor current source zip file model to be one implementation of the "global PackageContainer”
 Create a new remote package model as another implementation of the " global PackageContainer"
» Refactor al the model classes (BSP, sourcePackage) using the same manner

The remote package model#

» The remote package model is an abstract model by itself with different implementation for remote binary
file and remote source tree

» Based on the contents of the package definition file and the package dependency hierarchy, the remote
package model is built as atree like structure

» Each tree node is represented by a "packageltem” class. It has propertieslike "title", "release”, "cpu”,
"repositoryL ocation”, "dependingOn”, "dependedBY", "enabled", etc. There are helper methods to get/set
properties

» A "packageManager" class holds the model objects and is responsible to manage the tree nodes. It has
methods like "add()", "remove()", "convertTo()", "enable()", etc.

* Interfaces will be used to defined APIs to the tree node and the manager so that they can be extended to
different type of packages.

TheU.l #
-TBD
- Action#

The action isinvoke at the end of the wizard when user click "Finish", not from any context menu or tool bar
icon

Checking out packages#

» Depending on the selection in the U.1., the action does either a SVN "checkout" or "export”

* In both scenarios, the action preserves the source tree layout as the same as it's posted on F27

* For dependent packages, it prompts the user to check them out at the same time and gives "project may not
build if select no" warning in the prompt

Creating projects#

* Projectsto be created are defined by searching for "module.tmpl” filesin the packages.

* Project references are defined by the project dependencies. When creating the projects references should
be created as well

 Should leverage the existing source import action. It currently does an import on the source zip file, will
extend it to support source tree checkout


http://community.qnx.com/sf/wiki/do/createPage/projects.ide/wiki?pageName=PackageContainer&referrerPageName=F27DetailedDesign

