
Release Notes for the QNX Neutrino 6.5.0 BSP for Texas Instruments
AM3517 EVM Board#

System requirements#

Target system#

• QNX Neutrino RTOS 6.5.0
• Board version: TI AM3517 EVM (SOM Board: REV D, experimenter: REV B, Application board: REV

C)
• ROM Monitor version: Texas Instruments X-Loader 1.44, UBoot 2009.08-dirty
• Micron 512 MB NAND flash: MT29F4G16ABCHC/MT29F4G16ABBDAH4
• Intel 8MB NOR flash: PC28F640P30B85
• 256 MB DDR2 SDRAM

Host development system#

• QNX Momentics 6.5.0
• Terminal emulation program (Qtalk, Momentics IDE Terminal, tip, HyperTerminal, etc.)
• RS-232 serial port
• NULL-modem serial cable
• Ethernet link

System Layout#

The tables below depict the memory layout for the image and for the flash.

Item Address
OS image loaded at: 0x80100000
NOR flash base address: 0x10000000

The interrupt vector table can be found in the buildfile located at src/hardware/startup/boards/
am3517evm/build

Getting Started#

This BSP includes a prebuilt Out-Of-Box IFS image designed to support development with the Momentics
IDE. This is also the default image created by the BSP and includes the following features:

• IPv4 networking support using DHCP to automatically configure the ethernet network interface.
• an LCD splash screen displaying the configured network settings together with Neutrino kernel version

and hardware information.
• qconn and telnetd network services to support Momentics IDE remote target access.

o telnet login is root with no password (please disable this for production images!).
• pdebug program and rcheck, mudflap libraries to support debugging and memory analysis from the

Momentics IDE.
• runs an instrumented Neutrino kernel to support Momentics kernel tracing (also includes tracelogger

program for tracing from the shell on the TI AM3517 EVM board).

• nfs2 filesystem resource manager to allow mounting network filesystems on the AM3517 EVM to
simplify development processes.

• USB mass storage and SDCard drivers together with QNX4 and DOS file system resource managers to
support removable storage devices on the AM3517 EVM.

• ftp client to transfer files to/from the AM3517 EVM from the shell prompt.
• a basic set of target shell commands for file system, process, and network management.

Step 1: Connect your hardware#

• Connect the serial cable from the serial port P1(UART3) of the AM3517 EVM experimenter board to the
first serial port of your host machine (e.g. ser1 on a Neutrino host).

o If you have a Neutrino host with a serial mouse, you may have to move the mouse to the second serial
port on your host, because some terminal programs require the first serial port.

• Connect a Cat-5 network cable from the RJ45 10/100 network port J31 on the AM3517 EVM
experimenter board to a port on an ethernet network that has TCP/IP connectivity to your Momentics IDE
workstation, ideally on the same IP subnet.

Step 2: Build the BSP (optional)#

This BSP includes a prebuilt IFS Out-Of-Box image named ifs-am3517evm.raw in the images directory. You
can use this image or you can build a BSP OS image from the source code or the binary components contained
in the BSP package. For instructions about building a BSP OS image, please refer to the chapter Working with
a BSP in the Building Embedded Systems manual.

Step 3: Transfer the OS image to the target using the ROM monitor#

On your host machine, start your favorite terminal program with these settings:

• Baud: 115200
• Bits: 8
• Stop bits: 1
• Parity: none
• Flow control: none

Setting up the environment#

Apply power to the target board. You should see output on your terminal console, similar to the following:

Texas Instruments X-Loader 1.44 (Dec 8 2009 - 22:58:46)
Starting OS Bootloader...

U-Boot 2009.08-dirty (Jan 05 2010 - 10:21:46)

AM35xx-GP ES1.0, L3-165MHz
am3517evm board + LPDDR/NAND
I2C: ready
DRAM: 256 MB
NAND: 512 MiB
In: serial
Out: serial
Err: serial
HECC U20: port before = 00000040
HECC U20: programmed CAN_STB low
HECC U20: port after = 00000000

Die ID #2f280000000000000154417b0201300a
Net: davinci_emac_initialize
Ethernet PHY: GENERIC @ 0x00
DaVinci EMAC
Hit any key to stop autoboot: 0

Use the printenv command to show the current settings for serverip, gatewayip, netmask,
 bootfile, ipaddr, ethaddr etc.

At this point you can load the image to the AM3517 EVM either over the network with TFTP or via an SD/
MMC memory card. The U-Boot bootloader on the AM3517 EVM can then be configured to automatically
boot an IFS image using the chosen technique.

SD card download#

Copy the raw OS image ifs-am3517evm.raw onto a mmcsd card, then insert the SD card in J14 MMCSD1
port and apply power to the target board. After U-Boot is started, download the ifs-am3517evm.raw image
in the mmcsd card as follows from the AM3517EVM # prompt:

mmc init or mmcinit (depends on which version of uboot you are using)
fatload mmc 0 0x80100000 ifs-am3517evm.raw
go 80100000

At this point you should see the U-Boot download the boot image, indicated by a series of number signs. You'll
also see output similar to this when it completes downloading:

AM3517_EVM # mmc init
mmc1 is available
AM3517_EVM # fatload mmc 0 0x80100000 ifs-am3517evm.raw
reading ifs-am3517evm.raw

3421956 bytes read
AM3517_EVM # go 80100000
Starting application at 0x80100000 ...
CPU0: L1 Icache: 256x64
CPU0: L1 Dcache: 256x64 WB
CPU0: L2 Dcache: 4096x64 WB
CPU0: VFP 410330c1
CPU0: 411fc087: Cortex A8 rev 7 500MHz
Loading IFS...decompressing...done

System page at phys:80011000 user:fc404000 kern:fc404000
Starting next program at vfe04d604
cpu_startnext: cpu0 -> fe04d604
VFPv3: fpsid=410330c1
coproc_attach(10): replacing fe07d01c with fe07c8bc
coproc_attach(11): replacing fe07d01c with fe07c8bc
Welcome to QNX Neutrino 6.5.0 on the Texas Instruments AM3517 EVM (ARMv7 Cortex-A8 core)

Now you can test the QNX OS, simply by executing any shell builtin command or any command residing
within the OS image (e.g. ls).

TFTP download#

This method requires a raw image, which is simply a binary image, with a header on the beginning, that allows
the bootloader to jump to the very beginning of the image (the raw header), where it executes another jump to
the first instruction of the image.

Use the setenv command to configure the following parameters: serverip gatewayip netmask
 bootfile ipaddr ethaddr

Once these parameters are configured, use the saveenv command to store your changes and then use the
reset command to reset the B-Boot. Refer to the U-Boot documentation for more information.

After U-Boot is configured, download the ifs-am3517evm.raw image as follows from the AM3517EVM
prompt (we'll assume it's in a directory called /qnx/ exported by the TFTP server running at IP address
$serverip):

tftpboot 0x80100000 /qnx/ifs-am3517evm.raw

At this point you should see the U-Boot download the OS image, indicated by a series of number signs. You'll
also see output similar to this when it completes downloading:

AM3517_EVM # tftpboot 0x80100000 /qnx/ifs-am3517evm.raw
Using DaVinci EMAC device
TFTP from server 10.42.104.16; our IP address is 10.42.104.253
Filename '/qnx/ifs-am3517evm.raw'.
Load address: 0x80100000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###################
done
Bytes transferred = 3421956 (343704 hex)
AM3517_EVM #

Now, to run the image, enter:

go 0x80100000

You should see output similar to the following, with the QNX Neutrino welcome message on your terminal
screen:

AM3517_EVM # go 0x80100000
Starting application at 0x80100000 ...
CPU0: L1 Icache: 256x64
CPU0: L1 Dcache: 256x64 WB
CPU0: L2 Dcache: 4096x64 WB
CPU0: VFP 410330c1
CPU0: 411fc087: Cortex A8 rev 7 500MHz
Loading IFS...decompressing...done

System page at phys:80011000 user:fc404000 kern:fc404000
Starting next program at vfe04d604
cpu_startnext: cpu0 -> fe04d604
VFPv3: fpsid=410330c1
coproc_attach(10): replacing fe07d01c with fe07c8bc
coproc_attach(11): replacing fe07d01c with fe07c8bc
Welcome to QNX Neutrino 6.5.0 on the Texas Instruments AM3517 EVM (ARMv7 Cortex-A8 core)

You can now test the QNX OS simply by executing any shell builtin command or any command residing
within the OS image (e.g. ls).

Getting U-Boot to automatically boot your image#

Read the U-Boot documentation for full details on loading and starting images but the basic technique is to put
the above commands into the bootcmd environment variable. It's generally a good idea to save the previous
bootcmd value should you need to use it again. The following commands do this:

setenv defbootcmd $bootcmd
setenv qnxsdboot 'mmc init; fatload mmc 0 0x80100000 ifs-am3517evm.raw; go 80100000'
setenv qnxtftpboot 'tftpboot 0x80100000 /qnx/ifs-am3517evm.raw; go 80100000'
setenv bootcmd 'run qnxsdboot'
saveenv

Change the mmc init to mmcinit if required by your U-Boot version. This will setup three environment
variables for booting:

• defbootcmd is the original AM3517 EVM boot command intended to boot Linux.
• qnxsdboot will boot an ifs-am3517evm.raw image from an SD card.
• qnxtftpboot will boot an /qnx/ifs-am3517evm.raw image over the network using TFTP.

and sets the default autoboot command to execute the QNX SD card boot sequence. By changing the run
 qnxsdboot bootcmd setting to use one of the other variables and using saveenv to save it you can select
any of the three options to autoboot. For TFTP, the serverip, gatewayip, netmask, bootfile,
 ipaddr, ethaddr variables must also be set in the environment for static network configuration. Finally,
make sure the bootdelay variable is set to a reasonable value. This sets the time U-Boot will wait for
keyboard input before starting autoboot. Generally 2-4 seconds works well.

Flashing the IPL on to the target#

Step A: Create the IPL image#

Run 'make ipl' inside the /images directory of the BSP to run the mkflashimage script. The output file from this
script is a binary IPL image called ipl-am3517evm.bin and nand-ipl-am3517evm.bin.

The ipl-am3517evm.bin file is used by serial download method through UART3 to place the IPL into the
board's memory and will not be used to program on NAND flash.

The NAND IPL image nand-ipl-am3517evm.bin will be installed into the board's NAND flash by using
u-boot or IPL. This IPL is padded to 24K.

The following steps describe how to generate the ipl-am3517evm.bin and nand-ipl-am3517evm.bin files:

• generate a bin format OS image called ifs-am3517evm.raw using the am3517evm.build file
• Convert IPL NAND boot header into Binary format
• Convert IPL into Binary format
• Cat NAND boot header and ipl together
• Pad Binary IPL to 24K image, this is the image used by boot from UART
• Pad Binary IPL with Header to 24K image, this is the image to put on NAND and boot from NAND

Here is the mkflashimage script:

#!/bin/sh
script to build a binary IPL and boot image for the TI AM3517 EVM board
set -v
Convert IPL header into Binary format

${QNX_HOST}/usr/bin/ntoarmv7-objcopy --input-format=elf32-littlearm --output-format=binary ../src/hardware/ipl/boards/am3517evm/arm/le.v7/boot_header.o ./tmp-boot-header.bin

Convert IPL into Binary format
${QNX_HOST}/usr/bin/ntoarmv7-objcopy --input-format=elf32-littlearm --output-format=binary ../src/hardware/ipl/boards/am3517evm/arm/le.v7/ipl-am3517evm ./tmp-ipl-am3517evm.bin

Cat boot header and ipl together
cat ./tmp-boot-header.bin ./tmp-ipl-am3517evm.bin > ./tmp-header-ipl-am3517evm.bin

Pad Binary IPL to 24K image, this is the image used by boot from UART
mkrec -s24k -ffull -r ./tmp-ipl-am3517evm.bin > ./ipl-am3517evm.bin

Pad Binary IPL with Header to 24K image, this is the image to put on NAND and boot from NAND
mkrec -s24k -ffull -r ./tmp-header-ipl-am3517evm.bin > ./nand-ipl-am3517evm.bin

clean up temporary files
rm -f tmp*.bin

echo "done!!!!!!!"

Step B: Install NAND IPL image and IFS#

Refer to the AM/OMAP Boot Resource Pages for options for installing the IPL to flash.

Creating a new flash partition#

• Enter the following command to start the flash filesystem driver: devf-generic -
s0x10000000,8m

• unlock the raw partition: flashctl -p/dev/fs0 -o1M -l7M -U
• Erase a section of the flash: flashctl -p/dev/fs0 -o1M -l7M -ve
• Format the new patition filesystem: flashctl -p/dev/fs0p0 -o1M -l7M -vf
• Slay the devf-generic driver: slay devf-generic
• Restart the driver to mount the new partition devf-generic -s0x10000000,8M

You should now have a /fs0p1 directory which you can copy files to.

Note: The 8MB Intel PC28F640P30B85 NOR flash is on the Application board. Please make sure the
Application board has been connected properly before starting the NOR flash driver,

Summary of driver commands#

The following tables summarize the commands to launch the various drivers.

Component Buildfile Command Required Binaries Required Libraries Source Location
Startup startup-

am3517evm
. . src/hardware/

startup/
boards/
am3517evm

Serial devc-seromap -
e -F -b115200

devc-seromap . src/hardware/
devc/seromap

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/AM_OMAP_boot_resources

-c48000000/16
0x49020000^2,74

Ethernet io-pkt-v4 -
dam35xx

io-pkt-v4
ifconfig
nicinfo
ping

libsocket.so
devnp-am35xx.so

src/hardware/
devnp/am35xx

I2C i2c-omap35xx
For I2C1: i2c-
omap35xx -
p0x48070000 -
i56 --u0
For I2C2: i2c-
omap35xx -
p0x48072000 -
i57 --u1
For I2C3: i2c-
omap35xx -
p0x48060000 -
i61 --u2

i2c-omap35xx . src/hardware/
i2c/omap35xx

SPI spi-master -
d omap3530
base=0x48098000,bitrate=125000,clock=48000000,irq=65,force=1,num_cs=1,channel=1,sdma=1

spi-master spi-omap3530.so src/hardware/
spi/omap3530

USB OTG Host io-usb -
dam3517-mg
ioport=0x5c040400,irq=71

io-usb
usb*

libusbdi.so
devu-am3517-mg.so

prebuilt only

USB EHCI Host io-usb -
dehci-omap3
ioport=0x48064800,irq=77

io-usb
usb*

devu-ehci-omap3.so
libusbdi.so

prebuilt only

CAN dev-can-am3517
can1

dev-can-am3517
canctl

. src/hardware/
cani/am3517

SD card For MMCSD1:
devb-mmcsd-
am3517 cam
quiet blk
cache=2m mmcsd
ioport=0x4809C000,ioport=0x48056000,irq=83,dma=30,dma=61,dma=62
For MMCSD2:
devb-mmcsd-
am3517 cam
quiet blk
cache=2m mmcsd
ioport=0x480b4000,ioport=0x48056000,irq=86,dma=23,dma=47,dma=48

devb-mmcsd libcam.so
fs-dos.so
cam-disk.so

src/hardware/
devb/mmcsd

Graphics io-display -
dvid=0,did=0

am3517-evm.conf
io-display
egl-gears-lite
vsync

libGLES_CL.so
libffb.so
libgf.so
devg-omap35xx.so
devg-soft3d-fixed.so
libdisputil.so

src/hardware/
devg/omap35xx

SGX Graphics
Accesserator driver

pvrsrvd pvrsrvd
graphics.conf
gles1-egl-gears

libsrv_um.so
libglslcompiler.so
libIMGegl.so
libImgGLESv1_CM.so
libImgGLESv2.so
libImgOpenVG.so

prebuilt only

libpvr2d.so
libsrv_um.so
libWFDdevg.so
pvrsrvinit.so
wsegl-gf.so
libEGLdevg.so
libWFDdevg.so
libiow.so.1
libGLESv1_CM.so.1
libEGL.so.1

NOR flash devf-generic -
s0x10000000,8m

devf-generic
flashctl

. src/hardware/
flash/boards/
generic

NAND flash fs-etfs-
omap3530_micron
-r65536 -m /
fs/etfs

fs-etfs-
omap3530_micron
etfsctl

. src/hardware/
etfs/nand2048/
omap3530_micron

RTC rtc hw /dev/
i2c0

rtc
date

. src/utils/r/
rtc

DMA Manager resource_seed
dma=0,31

resource_seed . src/utils/r/
resource_seed

Some of the drivers are commented out in the default buildfile. To use the drivers in the target hardware, you'll
need to uncomment them in your buildfile, rebuild the image, and load the image into the board.

SD card #

Command:

MMCSD 1
devb-mmcsd-am3517 cam quiet blk cache=2m mmcsd ioport=0x4809C000,ioport=0x48056000,irq=83,dma=30,dma=61,dma=62

MMCSD 2
devb-mmcsd-am3517 cam quiet blk cache=2m mmcsd ioport=0x480b4000,ioport=0x48056000,irq=86,dma=23,dma=47,dma=48

Graphics#

Command:

io-display -dvid=0,did=0

Ethernet#

Command:

io-pkt-v4 -dam35xx
waitfor /dev/socket
ifconfig am0 xx.xx.xx.xx
or
dhcp.client

USB OTG Host Controller driver#

Command:

io-usb -dam3517-mg ioport=0x5c040400,irq=71 -dehci-omap3 ioport=0x48064800,irq=77,verbose=5

Note:

1. Min A to min B usb cable is required.

2. Connect to the micro usb adapter.

3. Start io-usb with the stock options from the bsp build file.

SGX Graphics Accelerator driver#

Command:

GRAPHICS_ROOT=/usr/lib/graphics/am3517
pvrsrvd

Note:

1. io-display must be run first

2. the GRAPHICS_ROOT enviornment has to been set properly before running pvrsrvd

3. This BSP only include the necessary prebuild binaries and libraries for the SGX demo. The
Composition_Manager patch(patch-650-2258-CompMgr.tar) need be installed first for the full SGX support.

• You can get the composition manager patch: patch-650-2258-CompMgr.tar here.
• To install the patch-650-2258-CompMgr.tar in the AM3517 board BSP's prebuilt directory:

 # cd am3517_workdir
 # tar -xvf patch-650-2258-CompMgr.tar
 # cp -vr patches/650-2258/target/qnx6/armle-v7 prebuilt/
 # make clean all

4. For the detailed documents about the composition_manager and SGX Graphics Accelerator, you can refer to

• composition_manager release notes
• SGX release notes

General Notes#

1. The ethernet driver generates two warnings in the kernel logs. These are normal warnings and can be
ignored.

• Unable to attach to pci server: No such file or directory
• Using pseudo random generator. See "random" option

Known issues for this BSP#

1. Only the mainboard USB host port is supported, and can only be controlled by the EHCI controller. Due to
a SoC limitation, the OHCI controller cannot be used as a companion controller on this port. As a result, a
high speed hub must be used to connect full/low speed devices.

2. The host port on on the Application Board is not yet supported.
3. The MMCSD2 interface has a hardware conflict with the LCD device. You can not run graphic driver

when use the MMCSD2.

http://community.qnx.com/sf/wiki/do/createPage/projects.bsp/wiki?pageName=CompMgr&referrerPageName=TiAm3517EvmNto650ReleaseNotes
http://community.qnx.com/sf/wiki/do/createPage/projects.bsp/wiki?pageName=CompMgr&referrerPageName=TiAm3517EvmNto650ReleaseNotes
http://community.qnx.com/sf/frs/do/viewRelease/projects.graphics/frs.sgx_drivers.650_v7
http://community.qnx.com/sf/wiki/do/createPage/projects.bsp/wiki?pageName=CompMgr&referrerPageName=TiAm3517EvmNto650ReleaseNotes
http://community.qnx.com/sf/frs/do/downloadFile/projects.graphics/frs.sgx_drivers.1_3_13_1971/frs10013?dl=1&logged=1
http://community.qnx.com/sf/frs/do/downloadFile/projects.graphics/frs.sgx_drivers.1_3_13_1971/frs10022?dl=1&logged=1

4. RTC: There is no external battery for RTC chip by default. The RTC data would lose once the system
power off.

5. Some SD cards are not detected properly in the MMC2 interface of the application board (ref #75227).
6. A log error is issued from the mentor graphics USB driver saying "Unknown option irq=71". This is a

bogus error and can be ignored (the IRQ is working properly). (ref #75292)
7. USB-OTG: Some SanDisk Cruzer devices do not operate reliably on the OTG interface (ref #76047).
8. USB-OTG: A D-Link DUB E-100 USB to Ethernet adapter did not operate reliably on the OTG interface

(ref #76107). Use the EHCI interface when possible.
9. Ethernet: Very rarely the ethernet driver fails to discover the PHY. sloginfo will show "PHY not

found" (ref #76310). The only workaround at this time is to slay and re-start the driver.
10. CAN: The HECC bus may not work reliably when the transaction bitrate has been set to less that 20K/S.

(ref #77624)
11. SGX: pvrsrvd driver would have a SIGSEGV error when you slay it. (ref #76821)

