
Release Notes of the QNX 6.4.1 BSP with Signal Processing Engine
(SPE) support for Freescale MPC85x0 ADS Trunk#

System requirements#

Target system

• QNX Neutrino RTOS 6.4.1
• Board version: Freescale MPC8560 ADS or Freescale MPC8540 ADS
• 16 MB NOR flash
• ROM Monitor version U-Boot 1.1.2

Host development system

• QNX Momentics 6.4.1
• Terminal emulation program (Qtalk, Momentics IDE Terminal, tip, HyperTerminal, etc.)
• RS-232 serial port and Straight-through serial cable
• Ethernet link

System Layout#

The tables below depict the memory layout for the image and for the flash.

Item Address
OS image loaded at: 0x00100000
OS image begins execution at: 0x00101e38
Flash base address 0xff000000
Monitor Flash offset 0xff800000
TSEC1 base address 0xe0002400 (IRQ: 13,14,18)
TSEC2 base address 0xe0002500 (IRQ: 19,20,24)
Serial base address (8540) 0xe0004500 (IRQ: 26)
Serial base address (8560) SCC1 IRQ(104, 112, 113) or SCC2 IRQ(105, 114,

115)

Getting Started#

Starting Neutrino#

Step 1: Build the BSP
You can build a BSP OS image from the source code. For instructions about building a BSP OS image, please
refer to the chapter Working with a BSP in the Building Embedded Systems manual.

Step 2: Connect your hardware
1. Set up the board.

 This BSP is set up for a PCI clock frequency of 33MHz. If you're using this setup, then the clock rates should be:
 CPU: 825 MHz
 CCB: 330 MHz

 DDR: 165 MHz
 LBC: 82 MHz

 Note: To change the PCI frequency for the Freescale MPC8540 ADS board to 66 MHz:
 1. Change the jumper settings as described in the hardware manual.
 2. Compile the ROM monitor to use a frequency of 66 MHz.
 3. Add the -t66000000 option to the startup command line in your buildfile and rebuild your OS image.

2. Connect one end of the serial cable to the P35 serial port 1.

3. Connect the other end of the serial cable to the first available serial port of your host machine (e.g. ser1 on a
Neutrino host).

Note: If you have a Neutrino host with a serial mouse, you may have to move the mouse to the second serial
port on your host, because some terminal programs require the first serial port.

On your host machine, start your favorite terminal program with these settings:

• Baud: 115200
• Bits: 8
• Stop bits: 1
• Parity: none
• Flow control: none

Then, apply power to the target. You should see output similar to the following:

U-Boot 1.1.0(pq3-20040423-r1) (Sep 29 2004 - 08:10:20)

Freescale PowerPC
 Core: E500, Version: 2.0, (0x80200020)
 System: 8540, Version: 2.0, (0x80300020)
 Clocks: CPU: 825 MHz, CCB: 330 MHz, DDR: 165 MHz, LBC: 82 MHz
 L1 D-cache 32KB, L1 I-cache 32KB enabled.
Board: ADS
I2C: ready
DRAM: SDRAM: 64 MB
128 MB
FLASH: 16 MB
L2 cache enabled: 256KB
*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
Net: MOTO ENET0: PHY is Marvell 88E1011S (1410c62)
MOTO ENET1: PHY is Marvell 88E1011S (1410c62)
MOTO ENET2: PHY is Davicom DM9161E (181b881)
MOTO ENET0, MOTO ENET1, MOTO ENET2
Hit any key to stop autoboot: 10
MPC8540ADS=> setenv ipaddr 192.168.200.2

Note: The version number for U-Boot is displayed as 1.1.0, but it's really 1.1.2.

Step 3: Setup the environment

On your target, type the following, filling in the appropriate IP addresses and ifs file:

MPC8540ADS=> setenv ipaddr 192.168.200.2
MPC8540ADS=> setenv serverip 192.168.200.1
MPC8540ADS=> setenv bootfile ifs-85x0ads.8540.spe.raw
MPC8540ADS=> setenv loadaddr 0x100000
MPC8540ADS=> setenv bootcmd 'tftpboot $loadaddr $bootfile; go $loadaddr'
MPC8540ADS=> setenv bootdelay 2
MPC8540ADS=> saveenv
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...
flash erase done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

Step 4: Boot the IFS image

You can use TFTP download (the default) or serial download to transfer the image from your host to the target:

Step 4A: TFTP download

This method requires a raw image, which the buildfile creates by default.

Once the above setup is complete, you can run the load command at the ~MPC8540ADS=> prompt to
download the image:

MPC8540ADS=> boot

At this point you should see the ROM monitor download the boot image, indicated by a series of number signs.
You'll also see output similar to this when it completes downloading:

Speed: 100, full duplex
Using MOTO ENET0 device
TFTP from server 192.168.200.1; our IP address is 192.168.200.2
Filename 'ifs-85x0ads.8540.spe.raw'
Load address: 0x100000
Loading: ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ###
 ##
done

done
Bytes transferred = 3956736 (3c6000 hex)
Starting application at 0x00100000 ...

Step 4B: Serial download

This method requires an SREC image. You have to modify the buildfile to create this format. Change this:

[virtual=ppcbe,raw]

to this:

[virtual=ppcbe,srec]

Rebuild the image. On your target, type:

MPC8540ADS=> setenv loads_echo 0
MPC8540ADS=> saveenv
MPC8540ADS=> loads

On your host, copy the image to the serial port that's connected to the board. For example, on a Neutrino host:

cp ifs-85x0ads.8540.spe.srec /dev/ser1

On a Windows host, you can use Hyperterminal's transfer feature to copy the image as a text file.

Note: The serial line shouldn't already be in use.

At this point, you should see the ROM monitor download the boot image, indicated by a series of dots. You'll
also see output similar to this when it finishes downloading:

First Load Addr = 0x00100000
Last Load Addr = 0x0023955B
Total Size = 0x0013955C = 1283420 Bytes
Start Addr = 0x00101E38
MPC8540ADS=>

Type: go start_addr

Note: The start_addr is the startup entry point address. You can find this address from the mkifs utility (you'll need to use the __{{-v}}__ option to get this information from the mkifs utility; the __{{-v}}__ option is not a default option).

 For example:

 mkifs -v -r../install 85x0ads.8540.spe.build ifs-85x0ads.8540.spe.srec
 Offset Size Entry Ramoff Target=Host
 100000 100 0 --- /usr/qnx641/target/qnx6/ppcbe/boot/sys/raw.boot
 100100 100 ---- --- Startup-header
 100200 10108 102b7c --- /tmp/DAA848168
 ...

 In this example, 102b7c is the address to use.

You should now see the QNX Neutrino welcome message on your terminal screen:

System page at phys:0000c000 user:0000c000 kern:0000c000
Starting next program at v00133af4
Welcome to QNX Neutrino trunk on the PPC 8540ADS board
#

You can test the OS simply by executing any shell builtin command or any command residing within the OS
image (e.g. ls).

Once the initial image is running, you can update the OS image using the network and flash drivers. For sample
command lines, please see the "Summary of driver commands" section.

Creating a flash partition#

1. Enter the following command to start the flash filesystem driver:

devf-generic -s0xff000000,16M

2. To prepare the area for the partition.

Caution: Do not erase the last 8M -- it contains the ROM monitor. Use the -l (length) option to avoid these
areas. To create a 1 MB partition, enter the following command:

flashctl -p/dev/fs0 -l1M -ve

3. Format the partition:

flashctl -p/dev/fs0p0 -l1M -vf

4. Slay, then restart the driver:

slay devf-generic &
devf-generic -s0xff000000,16M &

You should now have a /fs0p0 directory which you can copy files to.

Driver Command Summary#

The following table summarizes the commands to launch the various drivers.

Component Buildfile Command Required Binaries Required Libraries Source Location
Startup startup-85x0ads. . src/hardware/

startup/
boards/85x0ads

Serial for 8540 ADS devc-ser8250-
mpc8540 -e -
c330000000
-b115200
0xe0004500,26
0xe0004600,26

devc-ser8250-
mpc8540

. src/hardware/
devc/ser8250

Serial for 8560 ADS devc-
serppc8260 -
e -b115200
scc1^1

devc-serppc8260 . src/hardware/
devc/
serppc8260

Flash (NOR) devf-generic -
s0xff000000,16M

devf-generic
flashctl

. src/hardware/
flash/boards/
generic

PCI pci-mpc85xx pci-mpc85xx
pci

. src/hardware/
pci/mpc85xx

Network io-pkt-v4-
hc -dmpc85xx
mac=xxxxxxxxxxxx,verbose
-ptcpip

io-pkt-v4-hc
ifconfig

devnp-mpc85xx.so
libsocket.so

"Binary form only:"
prebuilt/
ppcbe/lib/
dll/devnp-
mpc85xx.so

Network:MPC
Security Engine
(AKA SEC)

io-pkt-v4-hc
-dmpcsec -p
tcpip-v6 ipsec
-dmpc85xx
mac=00112233AABB

io-pkt-v4-hc
ifconfig

devnp-mpc85xx.so
devnp-mpcsec.so
libsocket.so

"Binary form only:"
prebuilt/
ppcbe/lib/
dll/devnp-
mpcsec.so

Some of the drivers are commented out in the default buildfile. To use the drivers in the target hardware, you'll
need to uncomment them in your buildfile, rebuild the image, and load the image into the board.

Network:#

without encryption:
io-pkt-v4-hc -dmpc85xx mac=xxxxxxxxxxxx,verbose -ptcpip

with encryption in software:
io-pkt-v4-hc -p tcpip-v6 ipsec -dmpc85xx mac=00112233AABB

with encryption in hardware:
io-pkt-v4-hc -dmpcsec.so -p tcpip-v6 ipsec -dmpc85xx.so mac=00112233AABB

Note:
The latest sources for devnp-mpc85xx.so and devnp-mpcsec.so are available from the networking
project.

Known Issues#

• In those instances where the the ROM monitor's MAC address is different from the one you pass in when
running io-net and/or io-pkt , the host can cache the ROM monitor's address. This can result in a
loss of connectivity.Workaround: If you need to specify a MAC address to io-net and/or io-pkt-
v4 , we recommend that you use the same MAC address that the ROM monitor uses. This will ensure that
if the host caches the ROM monitor's MAC address, you'll still be able to communicate with the target.
Otherwise you might need to delete the target's arp entry on your host.

• The TCP/IP stack obtains a timer from the process manager. This timer starts at 0. If the TCP/IP stack and
a TCP/IP application that tries to connect to a remote host start executing too soon, the TCP/IP stack may
apply a time of 0 seconds to ARP cache entry structures. If this occurs, you may end up with a permanent
ARP entry (i.e. one that never times out). You can also end up with permanent, incomplete ARP entries
that never time out, and that the TCP/IP stack doesn't attempt to resolve. If this happens, your host won't
be able to communicate with one or (possibly) more remote hosts (i.e. the ones the TCP/IP application
in the OS image is trying to reach).You can check for permanent ARP entries by running the arp -an
command and examining the output. The only permanent entries listed should be for the IP addresses
assigned to your host's interfaces; there shouldn't be any permanent, incomplete entries. If you find a
permanent entry that isn't for the IP address of an interface on your host, and you didn't explicitly create
a permanent entry, then you could be encountering this problem. (Ref# 21395).Workaround: In the
buildfile for your OS image, delay the start of the TCP/IP stack or the first TCP/IP application by at least
one second, by using the sleep command (e.g. sleep 1) or some other delay mechanism.

• Some Rev-Pilot boards have problems running Ethernet at half-duplex mode. The second Ethernet port
may not work either. (Ref# 23333).The Rev-A boards do not exhibit these problems.Workaround: Run
the Ethernet driver in full-duplex mode on the first Ethernet port.

• When a "break" is detected by the hardware, the Line Status interrupt is asserted. This interrupt is
cleared by reading the line status register (which also gives you the cause of the interrupt). From the

http://community.qnx.com/sf/projects/networking/
http://community.qnx.com/sf/projects/networking/

documentation for the line status register (Section 12.13.9 of the 8540 User Manual): "Note that the
ULSRBI is set immediately after ULSR is read if bus remains zero and no mark state followed by a valid
new character has been detected." In other words, as long as there's no input to the board after a break, the
LS interrupt constantly gets cleared and reasserted resulting in the out-of-interrupt events being generated.

Workarounds: There are a few workarounds:
1. Ensure that no breaks are delivered to the target (if one is sent, sending a character to the target will clear the
interrupt). See option 2. Note that a break can be also generated to the target (under the conditions of having
mis-matched baud rates between the target and host).
2. Always ensure that at least one character is sent to the target immediately following the delivery of a break.
3. Disable the line status interrupt:

In the source file init.c, change line 84: write_8250(port[REG_IE], 0x0f);

to

write_8250(port[REG_IE], 0x0b);

This results in an unfortunate side effect: breaks, framing errors, parity errors, overrun errors, data ready
interrupts Rx FIFO errors, Tx empty, Tx holding register empty will not generate Line Status interrupts.
However, the LSR is also read with every character received, so processing of line status changes will not be
completely disabled, just delayed until a character is received.

• This BSP only tested on Freescale MPC8540 ADS board.

Appendix: CPM memory layout#

The following information applies to the Freescale 8x60 (MPC8260 and MPC8560) processors, which
contain the Communications Processor Module (CPM). Neutrino supports various devices found within these
processors, namely the SMC channels on the 8260 CPM, as well as the SCC and FCC channels found on both
the 8260 and 8560 CPM. The 8x60 CPM module contains 32K of dual-port RAM, which is divided up as
follows:

• The first 16K is divided into eight banks, each 2K in size, that can be used for buffer descriptors or data
buffers for the various CPM peripherals.

• The next 4K is reserved for parameter RAM, used to store operating parameters for the various CPM
devices.

• The remaining 14K is divided up differently, depending on whether the processor is an 8260 or an 8560.
On the 8260, the area from offset 20K to 28K is reserved; on the 8560, it's assigned to additional Buffer
Descriptor or data buffers. Then, on both the 8260 and 8560, the final 4K is assigned to FCC data.

The Buffer Descriptor Tables and Data Buffers for the SMC and SCC channels are allocated as follows:

• For SMC 1 and 2, bank 7 of the dual port RAM BD/Data area is used for Buffer Descriptor Tables, Data
Buffers, and Parameter RAM, as follows:

Item Space
SMC1 Buffer Descriptor Table 0x100 bytes
SMC1 Data Buffers 0x100 bytes
SMC2 Buffer Descriptor Table 0x100 bytes
SMC2 Data Buffers 0x100 bytes
SMC1 Parameter RAM 0x100 bytes
SMC2 Parameter RAM 0x100 bytes

http://community.qnx.com/sf/wiki/do/createPage/projects.bsp/wiki?pageName=BI&referrerPageName=NtotrunkFreescaleMpc85x0AdsTrunkReleasenotes

• For the SCC channels, bank 8 of the dual port RAM BD/Data area is used for Buffer Descriptor Tables
and Data buffers. The SCC channels have their own dedicated area for parameter RAM, within the
Parameter RAM area. Bank 8 is divided as follows:

Item Space
SCC1 Buffer Descriptor Table 0x100 bytes
SCC1 Data Buffers 0x100 bytes
SCC2 Buffer Descriptor Table 0x100 bytes
SCC2 Data Buffers 0x100 bytes
SCC3 Buffer Descriptor Table 0x100 bytes
SCC3 Data Buffers 0x100 bytes
SCC4 Buffer Descriptor Table 0x100 bytes
SCC4 Data Buffers 0x100 bytes

