QNX" Aviage Multimedia Suite 1.2.0
MME API Library Reference

For QNX" Neutrino™ 6.4.x

[J 2009, QNX Software Systems GmbH & Co. KG.

[0 2007-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems I nternational Corporation
175 Terence Matthews Crescent

Kanata, Ontario

K2Mm 1w8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email:i nf o@nx. com

Web: htt p: // www. gnx. conf

Electronic edition published May 04, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems Gnitss &1d are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Reference xiii

Typographical conventions xvi
Note to Windows users xvii

Technical support options xvii

1 MME API 1
Headers and libraries 5
Compiling client applications 5

Alphabetical list of MME functions, data structures, enumerated types and constants
5

FTYPE* 10
METADATA * 12

mm audi o_format _t 15

mm audi o_| ang_ext 17

nm _audi o_t ype 18

mm bitrate t 19

nm bl ocked_uops 20

mm _di spl ay_node 22

mm dvd_status_t 23

mm nmedi a_status_t 27

nm net adat a_t 29

nmm subpi ct _| ang_ext 31
nm_uop_t 32

mm vi deo_angl e_i nfo_t 36
nmm vi deo_audi o_info_t 37
nmm vi deo_i nfo_t 39

nm vi deo_properties_t 43
nm vi deo_status_t 46

mm vi deo_subtitle_info_t 48
mme_audio_get status() 50
mme_bookmark _create() 52
mme_bookmark _delete() 54
mre_buffer status_t 56

May 4, 2009 Contents ili

[J 2009, QNX Software Systems GmbH & Co. KG.

v

Contents

mme_button() 58
mme_charconvert_setup() 62
mme_connect() 64
nme_copy_info_t 67
mme_delete_mediastores() 68
mme_device get config() 70
mme_device_set_config() 72
mme_directed sync _cancel() 74
mme_disconnect() 76
mme_dvd_get discregion() 78
mme_dvd _get status() 80
mme_explore_end() 82
me_expl ore_hdl _t 84
mme_explore_info_free() 85
mme_explore_info_get() 87
me_explore_info_t 89
mme_explore_playlist_find_file() 92
mme_explore_position_set() 94
mme_explore_size get() 97
mme_explore_start() 99
MME_FORMAT_* and MME_PLAYMODE_* 101
mme_get_api_timeout_remaining() 103
mme_get_event() 105
mme_get_logging() 107
mme_get_title chapter() 110
mme_getautopause() 112
mme_getccid() 114
mme_getclientcount() 116
mme_getlocale() 118
mme_getrandom() 120
mme_getrepeat() 122
mme_getscanmode() 124
me_hdl _t 126
mme_lib_column_set() 127
mme_media_get_def lang() 129
mme_media_set_def lang() 131
mme_mediacopier_add() 133
mme_mediacopier_add_with_metadata() 137
mme_mediacopier_cleanup() 141
mme_mediacopier_clear() 143
mme_mediacopier_disable() 145

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

May 4, 2009

mme_mediacopier_enable() 147
mme_mediacopier_get mode() 149
mme_mediacopier_get status() 151
mme_nedi acopier _info t 154
mme_mediacopier_remove() 157
mme_mediacopier_set mode() 159
mme_metadata_alloc() 161
mme_metadata_extract_data() 163
mme_metadata_extract_string() 165

mme_metadata_extract_unsigned() 167

mme_metadata_create_session() 169
mme_metadata free session() 171
mme_metadata_getinfo_current() 173
mme_metadata_getinfo_file() 176
mme_metadata_getinfo_library() 179
me_net adata_hdl _t 182
mme_metadata_image _cache_clear()
mme_metadata_image load() 185
mme_metadata_image _unload() 188
me_net adata_i mage_url _t 190
me_netadata info t 191
nmme_net adat a_session_t 194
mme_metadata_set() 195
me_node_randomt 197
me_node_repeat t 198
MME_MSCAP_* 199
mme_ms_clear_accurate() 201
mme_ms_metadata_done() 203
mme_ms_metadata get() 204
mme_ms_restart() 206
me_ns_state t 208
mme_ns_st at echange t 209
mme_newtrksession() 211
mme_next() 214
me_out put _attr_t 216
mme_output_set permanent() 218
nmme_out puttype t 220
mme_play() 221
mme_play_attach output() 224
mme_play_bookmark() 226
mme_play_detach output() 228

Contents

\Y

[J 2009, QNX Software Systems GmbH & Co. KG.

Vi

Contents

mme_play_file() 230
mme_play_get_info() 232
mme_play_get output_attr() 234
mme_play _get speed() 236
mme_play_get status() 238
mme_play _get zone() 240
me_play info t 242
mme_play_offset() 244
mme_play_resume_msid() 247
mme_play_set_output_attr() 249
mme_play set speed() 251
mme_play_set_zone() 253
me_play status_t 255
MME_PLAYLIST_* 256
mme_playlist_close() 258
mme_playlist_create() 260
mme_playlist_delete() 262
mme_playlist_generate_similar() 264
me_playlist_hdl t 266
mme_playlist_item get() 267
mme_playlist_items _count_get() 270
mme_playlist_open() 272
mme_playlist_position_set() 274
mme_playlist_set statement() 276
mme_playlist_sync() 278
mre_pl aystate_speed_ t 280
me_pl aystate t 281
mme_prev() 282
mme_register_for_events() 284
mme_resync_mediastore() 287
mme_rmtrksession() 289
mme_seek title chapter() 291
mme_seektotime() 293
mme_set_api_timeout() 295
mme_set_debug() 297
mme_set_files permanent() 299
mme_set msid_resume_trksession() 301
mme_set_notification_interval() 303
mme_setautopause() 306
mme_setlocale() 308
mme_set_logging() 310

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_setpriorityfolder() 313
mme_setrandom() 315
mme_setrepeat() 318
mme_setscanmode() 320
mme_settrksession() 322
mme_shutdown() 326
MME_SLOTTYPE * 328
mme_start_device detection() 330
mme_stop() 332
MME_STORAGETYPE* 334
mme_sync_cancel() 337
mme_sync_db_check() 339
mme_sync_directed() 342
mme_sync_file() 345
mme_sync_get msid_status() 348
mme_sync_get_status() 350
MME_SYNC_OPTION * 352
mme_sync_status_t 354
me_tine t 356
mme_timebase set() 357
mme_trksession_append files() 359
mme_trksession_clear_files() 361
mme_trksession_get info() 363
mme_trksession_resume_state() 366
mme_trksession_save state() 368
mme_trksession_set_files() 370
mme_trksessionview_get_current() 372
mme_trksessionview_get_info() 374
me_trksessionview info t 376
mme_trksessionview_metadata_get() 378
mme_trksessionview_readx() 380
mme_trksessionview_update() 383
mme_trksessionview_writedb() 385
mme_video get angle info() 387
mme_video get_audio_info() 389
mme_video_get_info() 391
mme_video get status() 393
mme_video get_subtitle_info() 395
mme_video set angle() 397
mme_video_set_audio() 399
mme_video set properties() 401

May 4, 2009 Contents Vii

[J 2009, QNX Software Systems GmbH & Co. KG.

viii

Contents

mme_video set subtitle() 403
mme_zone_create() 405
mme_zone_delete() 407

MME Events 409

About MME events 411

MME event classes 411

MME eventdata 412
me_copy_error_t 413
me_event _t 413
mre_event _default | anguage t 414
nme_event netadata i nage t 414
mre_event _netadata info t 415
nme_event _netadata |licensing t 415
nmre_event _queue_size t 416
mre_event _type t 416
me_first fid data t 416
mre_fol der _sync_data_t 417
me_ns_update data t 418
mre_pl ay_command_error_t 419
me_play error_t 419
mre_play _error_track t 420
mre_sync_data t 421
me_sync_error_t 421
mre_t rackchange t 421
mm war ni ng_info_t 422

MME general events 423
MME_EVENT_AUTOPAUSECHANGED 423
MME_EVENT _BUFFER TOO SMALL 423
MME_EVENT_DEFAULT_LANGUAGE 424
MME_EVENT_NONE 424
MME_EVENT_SHUTDOWN 424
MME_EVENT_SHUTDOWN COMPLETED 425
MME_EVENT_USERMSG 425

MME Synchronization Events 427

Synchronization events 429
MME_EVENT_MS_DETECTION DISABLED 430
MME_EVENT_MS_DETECTION ENABLED 430
MME_EVENT_METADATA_LICENSING 431
MME_EVENT_MS_1PASSCOMPLETE 431

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

May 4, 2009

MME_EVENT_MS_2PASSCOMPLETE 433
MME_EVENT_MS_3PASSCOMPLETE 433
MME_EVENT_MS_STATECHANGE 434
MME_EVENT_MS_SYNCCOMPLETE 435
MME_EVENT_MS_SYNC_FIRST EXISTING_FID 436
MME_EVENT_MS_SYNCFIRSTFID 437
MME_EVENT_MS_SYNC_FOLDER COMPLETE 438
MME_EVENT_MS_SYNC_FOLDER CONTENTS COMPLETE 438
MME_EVENT_MS_SYNC_FOLDER STARTED 439
MME_EVENT_MS_SYNC_PENDING 439
MME_EVENT_MS_SYNC STARTED 439
MME_EVENT_MS_UPDATE 440
MME_EVENT_SYNCABORTED 441
MME_EVENT_SYNC_ERROR 441
MME_EVENT_SYNC_SKIPPED 442

Synchronization error events 442

MME_SYNC_ERROR MEDIABUSY 443
MME_SYNC_ERROR NETWORK 443
MME_SYNC_ERROR FOLDER DEPTH LIMIT 443
MME_SYNC_ERROR FOLDER LIMIT 444
MME_SYNC_ERROR LIB_LIMIT 444
MME_SYNC_ERROR NOTSPECIFIED 445
MME_SYNC_ERROR READ 445
MME_SYNC_ERROR UNSUPPORTED 445
MME_SYNC_ERROR USERCANCEL 446

MME Playback Events 447
Playback events 449

MME_EVENT_DVD_STATUS 450
MME_EVENT_FINISHED 450
MME_EVENT_FINISHED WITH_ERROR 451
MME_EVENT_MEDIA_STATUS 451
MME_EVENT_NEWOUTPUT 452
MME_EVENT_NOWPLAYING_METADATA 452
MME_EVENT_OUTPUTATTRCHANGE 453
MME_EVENT_OUTPUTREMOVED 453
MME_EVENT_PLAYAUTOPAUSED 454
MME_EVENT_PLAY_ERROR 454
MME_EVENT_PLAYLIST 454
MME_EVENT_PLAYSTATE 454
MME_EVENT_PLAY_WARNING 455

Contents

[J 2009, QNX Software Systems GmbH & Co. KG.

X

Contents

MME_EVENT_RANDOMCHANGE 455
MME_EVENT_REPEATCHANGE 456
MME_EVENT_SCANMODECHANGE 456
MME_EVENT_TIME 456
MME_EVENT_TRACKCHANGE 457
MME_EVENT_TRKSESSION 457
MME_EVENT_TRKSESSIONVIEW COMPLETE 458
MME_EVENT_TRKSESSIONVIEW INVALID 458
MME_EVENT_TRKSESSIONVIEW UPDATE 458
MME_EVENT_VIDEO_STATUS 459

Playback error events 459

MME_PLAY_ERROR BLOCKEDDOMAIN 460
MME_PLAY ERROR BLOCKEDUOP 460
MME_PLAY_ERROR CORRUPT 461
MME_PLAY_ERROR DEVICEREMOVED 461
MME_PLAY_ERROR INPUTUNDERRUN 461
MME_PLAY_ ERROR INVALIDFID 462
MME_PLAY_ERROR MEDIABUSY 462
MME_PLAY_ ERROR INVALIDSAVEDSTATE 462
MME_PLAY_ERROR NETWORK 463
MME_PLAY_ ERROR NOEXIST 463
MME_PLAY_ERROR NOOUTPUTDEVICES 463
MME_PLAY_ERROR NORIGHTS 463
MME_PLAY_ERROR NOTSPECIFIED 464
MME_PLAY_ERROR OUTPUTFAILEDATTACH 464
MME_PLAY ERROR PARENTALCONTROL 464
MME_PLAY _ERROR READ 464
MME_PLAY ERROR REGION 465
MME_PLAY_ERROR OUTPUTUNDERRUN 465
MME_PLAY_ERROR UNSUPPORTEDCODEC 465

MME Media Copy and Ripping Events 467
Media copying and ripping events 469

MME_EVENT_COPY_ERROR 469
MME_EVENT_MEDIACOPIER_COPYFID 470
MME_EVENT_MEDIACOPIER_SKIPFID 470
MME_EVENT_MEDIACOPIER_STARTFID 471
MME_EVENT_MEDIACOPIER_COMPLETE 471
MME_EVENT_MEDIACOPIER DISABLED 471

Media copying and ripping error events 472

MME_COPY_ERROR CORRUPTION 472

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

MME_COPY_ERROR DEVICEREMOVED 473
MME_EVENT_COPY_FATAL_ERROR 473
MME_COPY_ERROR FILEEXISTS 473
MME_COPY_ERROR MEDIABUSY 474
MME_COPY_ERROR MEDIAFULL 474
MME_COPY_ERROR NORIGHTS 474
MME_COPY_ERROR NOTSPECIFIED 475
MME_COPY_ERROR READ 475

MME_COPY_ERROR UNSUPPORTEDMEDIA_TYPE 475
MME_COPY_ERROR WRITE 475

6 MME Metadata Events 477
Metadata events 479
MME_EVENT_METADATA IMAGE 479
MME_EVENT_METADATA _INFO 480

A MME Database Schema Reference 481

Tables inmme 486
Table: controlcontexts 486
Table: renderers 486
Table: zones 487
Table: zoneoutputs 487
Table: outputdevices 487
Table: slots 488
Table: languages 489
Table: mediastores 490
Table: metadataplugins 493
Table: playlists 493
Table: trksessions 494
Table: encodeformats 495
Table: copyqueue 496
Table: bookmarks 496
Table: trksessionview 497
Table: copy incomplete 498
Table: mdi_ image cache 498
Table: ext db_sync state 499

Tablesinnme _|ibrary 499
Table: folders 499
Table: library 500
Table: library genres 503
Table: library artists 503

May 4, 2009 Contents Xi

[J 2009, QNX Software Systems GmbH & Co. KG.

Xii

Contents

Table:
Table:
Table:
Table:
Table:
Table:
Table:
Table:
Table:
Table:

Table:

library aloums 503
library composers 504
library conductors 504
library soloists 504
library ensembles 504
library opus 505
library categories 505
library languages 505
db sync 506
playlistdata 506

Tables innme_tenp 507

nowplaying 507

Tables innme_cust om 508

Table: mediastoreszustom 508

Table: library custom 509

Table: playlistdatacustom 509
Index 511

May 4, 2009

About this Reference

May 4, 2009 About this Reference Xiii

[J 2009, QNX Software Systems GmbH & Co. KG.

The MME API Library Reference accompanies the QNX Aviage multimedia suite,
release 1.2.0. It is intended for application developers who use the suite’s MultiMedia
Engine (MME) to develop multimedia applications.

This table may help you find what you need in tM®E API Library Reference:

When you want to: Goto:

Learn about MME API functions, data MME API
structures, enumerated types and
constants.

Learn about MME events and the data MME Events
structures they use.

Learn about MME synchronization MME Synchronization Events
events, and synchronization error events.

Learn about MME playback events, andVIME Playback Events
playback error events.

Learn about MME media copy and MME Media Copy and Ripping Events
ripping events, and copy and ripping
error events.

Learn about MME metadata events. MME Metadata Events

Learn about the MME database schema. MME Database Schema Reference

Other MME documentation available to application developers includes:

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.
MME Developer’s Guide How to use the MME to program client applications.
MME Utilities Utilities used by the MME.

MME Configuration Guide ~ How to configure the MME.

MME Technotes MME technical notes.

MediaFS Developer’s Guide Developer’s guide for implementing MediaFS.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

May 4, 2009 About this Reference XV

Typographical conventions 00 2009, QNX Software Systems GmbH & Co. KG.

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream== NULL)
Command options -IR

Commands make

Environment variables PATH

File and pathnames / dev/ nul |

Function names exit()

Keyboard chords Ctrl-Alt-Delete
Keyboard input sonet hi ng you type
Keyboard keys Enter

Program output | ogi n:

Programming constants ~ NULL

Programming data types unsi gned short
Programming literals OxFF, "nmessage string"
Variable names stdin

User-interface componentsCancel

We use an arrow-) in directions for accessing menu items, like this:
You'll find the Other... menu item undePer spective - Show View.

We use notes, cautions, and warnings to highlight important messages:

Q Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.

XVi About this Reference May 4, 2009

[2009, QNX Software Systems GmbH & Co. KG. Technical support options

WARNING: Warningstell you about commands or proceduresthat could be
dangerousto your files, your hardware, or even your self.

Note to Windows users

In our documentation, we use a forward slashds a delimiter irall pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options

To obtain technical support for any QNX product, visit Bugpport + Services area
on our websiteww. gnx. com). You'll find a wide range of support options,
including community forums.

May 4, 2009 About this Reference XVii

Chapter 1
MME API

In this chapter...

Headers and libraries 5
Compiling client applications 5
Alphabetical list of MME functions, data structures, enumerated types and constants

5
FTYPE* 10
METADATA _* 12
nm_audi o_f or mat _t 15
mm_audi o_| ang_ext 17

mm audi o_t ype 18

mm bitrate_t 19

mm bl ocked_uops 20

mm di spl ay_node 22

mm dvd_stat us_t 23

mm nmedi a_status_t 27

mm net adat a_t 29

mm subpi ct _| ang_ext 31
mm _uop_t 32

mm vi deo_angl e_info_t 36
nm_vi deo_audi o_i nfo_t 37
nm_vi deo_i nfo_t 39

mm vi deo_properties_t 43
mm vi deo_status_t 46

nm vi deo_subtitle_info_t 48
mme_audio_get status() 50
mme_bookmark create() 52
mme_bookmark _delete() 54
mre_buffer_status_t 56
mme_button() 58
mme_charconvert_setup() 62
mme_connect() 64
mre_copy_info_t 67
mme_delete_mediastores() 68
mme_device get config() 70
mme_device _set config() 72
mme_directed_sync_cancel() 74
mme_disconnect() 76
mme_dvd_get discregion() 78
mme_dvd_get status() 80
mme_explore_end() 82
mre_expl ore_hdl _t 84

May 4, 2009 Chapter 1 e MME API 1

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_explore_info_free() 85
mme_explore_info_get() 87
mre_explore_info_t 89
mme_explore_playlist_find_file() 92
mme_explore_position_set() 94
mme_explore_size get() 97
mme_explore_start() 99
MME_FORMAT_* and MME_PLAYMODE_* 101
mme_get_api_timeout_remaining() 103
mme_get_event() 105
mme_get_logging() 107

mme_get title_chapter() 110
mme_getautopause() 112
mme_getccid() 114
mme_getclientcount() 116
mme_getlocale() 118
mme_getrandom() 120
mme_getrepeat() 122
mme_getscanmode() 124

mre_hdl _t 126
mme_lib_column_set() 127
mme_media_get_def lang() 129
mme_media_set_def lang() 131
mme_mediacopier_add() 133
mme_mediacopier_add_with_metadata() 137
mme_mediacopier_cleanup() 141
mme_mediacopier_clear() 143
mme_mediacopier_disable() 145
mme_mediacopier_enable() 147
mme_mediacopier_get mode() 149
mme_mediacopier _get status() 151
mre_nedi acopier_info_ t 154
mme_mediacopier_remove() 157
mme_mediacopier_set mode() 159
mme_metadata_alloc() 161
mme_metadata_extract_data() 163
mme_metadata_extract_string() 165
mme_metadata_extract unsigned() 167
mme_metadata_create_session() 169
mme_metadata_free_session() 171
mme_metadata_getinfo_current() 173
mme_metadata_getinfo_file() 176
mme_metadata_getinfo_library() 179
mre_netadata_hdl _t 182
mme_metadata_image cache clear() 183
mme_metadata_image load() 185
mme_metadata_image _unload() 188
mre_rmnet adat a_i mage_url _t 190
me_met adata_i nfo_t 191
me_met adat a_sessi on_t 194
mme_metadata_set() 195
mre_node_randomt 197
mre_node_repeat t 198
MME_MSCAP_* 199
mme_ms_clear_accurate() 201
mme_ms_metadata done() 203

2 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_ms_metadata get() 204
mme_ms_restart() 206
me_ns_state_t 208
mre_ns_st atechange_t 209
mme_newtrksession() 211
mme_next() 214

mre_out put _attr _t 216
mme_output_set permanent() 218
mre_out puttype_t 220
mme_play() 221
mme_play_attach output() 224
mme_play_bookmark() 226
mme_play_detach_output() 228
mme_play_file() 230
mme_play_get_info() 232
mme_play_get output_attr() 234
mme_play _get speed() 236
mme_play _get status() 238
mme_play_get zone() 240
me_play_info_t 242
mme_play_offset() 244
mme_play_resume_msid() 247
mme_play_set_output_attr() 249
mme_play_set speed() 251
mme_play_set zone() 253
mre_play _status_t 255
MME_PLAYLIST_* 256
mme_playlist_close() 258
mme_playlist_create() 260
mme_playlist_delete() 262
mme_playlist_generate_similar() 264
mre_pl aylist_hdl _t 266
mme_playlist_item _get() 267
mme_playlist_items _count_get() 270
mme_playlist_open() 272
mme_playlist_position_set() 274
mme_playlist_set_statement() 276
mme_playlist_sync() 278
me_pl ayst at e_speed_t 280
mre_pl aystate_t 281
mme_prev() 282
mme_register_for_events() 284
mme_resync_mediastore() 287
mme_rmtrksession() 289
mme_seek_title chapter() 291
mme_seektotime() 293
mme_set_api_timeout() 295
mme_set_debug() 297
mme_set_files permanent() 299
mme_set_ msid_resume_trksession() 301
mme_set_notification_interval() 303
mme_setautopause() 306
mme_setlocale() 308
mme_set_logging() 310
mme_setpriorityfolder() 313
mme_setrandom() 315

May 4, 2009

Chapter 1 ¢ MME API

3

[J 2009, QNX Software Systems GmbH & Co. KG.

4

Chapter 1 ¢ MME API

mme_setrepeat() 318
mme_setscanmode() 320
mme_settrksession() 322
mme_shutdown() 326
MME_SLOTTYPE * 328
mme_start_device_detection() 330
mme_stop() 332
MME_STORAGETYPE* 334
mme_sync_cancel() 337
mme_sync_db_check() 339
mme_sync_directed() 342
mme_sync_file() 345
mme_sync_get_msid_status() 348
mme_sync_get status() 350
MME_SYNC_OPTION * 352
mre_sync_status_t 354
me_time_t 356
mme_timebase_set() 357
mme_trksession_append files() 359
mme_trksession clear_files() 361
mme_trksession_get_info() 363
mme_trksession_resume_state() 366
mme_trksession_save state() 368
mme_trksession_set_files() 370

mme_trksessionview_get_current() 372

mme_trksessionview_get_info() 374
me_trksessionview info t 376

mme_trksessionview_metadata_get() 378

mme_trksessionview_readx() 380
mme_trksessionview_update() 383
mme_trksessionview_writedb() 385
mme_video get angle info() 387
mme_video get audio_info() 389
mme_video_get_info() 391
mme_video get status() 393
mme_video get subtitle info() 395
mme_video_set_angle() 397
mme_video set audio() 399
mme_video set properties() 401
mme_video_set subtitle() 403
mme_zone create() 405
mme_zone _delete() 407

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Headers and libraries

This chapter describes publicly visible MME API:
e functions

e data structures

e enumerated types

Data structures and enumerated types that are used by only one API function are
documented with the relevant functions. Event structures, enumerated types and
constants are described in the chapter MME Events. If you do not find a structure,
enumerated type or constant in the list below, refer to the index. Configuration
constants are described in theME Configuration Guide.

Headers and libraries

For the location of MME libraries and header files, see the section “Headers and
libraries” in theRelease Notes for your MME release.

Compiling client applications

The MME requires that client applications be compiled wthE_ OFFSET BITS set
to 64. For example:

qcc -Any_library [other_options] - DFI LE_OFFSET_BI TS=64

For more information about compiling client applications for the MME, Geg,
gcc in the QNX Neutrino Utilities Reference.

Alphabetical list of MME functions, data structures,

May 4, 2009

enumerated types and
constants

FTYPE *

METADATA _*

nm audi o_format _t
mm_audi o_| ang_ext

nm audi o_t ype
mmbitrate_t

nm bl ocked_uops

mm di spl ay_node

nm dvd_status_t

mm nedi a_status_t

nm net adat a_t

mm subpi ct _| ang_ext
mm_uop_t

nm vi deo_angle info_t
mm vi deo_audi o_info_t

Chapter 1 e MME API 5

Alphabetical list of MME functions, data structures, enumerated types and constants 2009, QNx Software
Systems GmbH & Co. KG.

6

Chapter 1 ¢ MME API

mm vi deo_info_t

nm vi deo_properties_t
mm vi deo_status_t

mm vi deo_subtitle_info_t
mme_audio_get_status()
mme_bookmark _create()
mme_bookmark _delete()
mre_buffer _status_t
mme_button()
mme_charconvert _setup()
mme_connect()
mre_copy_info_t
mme_delete_mediastores()
mme_device get config()
mme_device set config()
mme_directed _sync_cancel()
mme_disconnect()
mme_dvd_get disc_region()
mme_dvd_get status()
mme_explore_end()
mre_expl ore_hdl _t
mme_explore_info_freg()
mme_explore_info_get()
mre_expl ore_info_t
mme_explore_playlist_find_file()
mme_explore_position_set()
mme_explore_size get()
mme_explore_start()
MME_FORMAT_*
mme_get_api_timeout_remaining()
mme_getautopause()
mme_getccid()
mme_getclientcount()
mme_get_event()
mme_getlocale()
mme_get_logging()
mme_getrandom()
mme_getrepeat()
mme_getscanmode()
mme_get_title_chapter()
mre_hdl _t
mme_lib_column_set()
mme_media_get def lang()
mme_media_set_def lang()
mme_mediacopier_add()
mme_mediacopier_add with _metadata()

May 4, 2009

[2009, QNX Software Systems GmbH & Co. KG. Alphabetical list of MME functions, data structures, enumerated
types and constants

mme_mediacopier_cleanup()
mme_mediacopier_clear()
mme_mediacopier_disable()
mme_mediacopier_enable()
mme_mediacopier_get mode()
mme_mediacopier _get status()
nme_redi acopi er _info_t
mme_mediacopier _remove()
mme_mediacopier_set_ mode()
mme_metadata_alloc()
mme_metadata_create session()
mme_metadata_extract_data()
mme_metadata_extract_string()
mme_metadata_extract _unsigned()
mme_metadata free session()
mme_metadata_getinfo_current()
mme_metadata_getinfo_file()
mme_metadata_getinfo_library()
mre_net adat a_hdl _t
mme_metadata_image cache_clear()
mme_metadata_image load()
mme_metadata_image unload()
nmre_net adat a_i mage_url _t
nme_net adata_info_t
nmre_net adat a_sessi on_t
mme_metadata_set()
nme_node_random t
nmre_node_repeat _t
MME_MSCAP_*
mme_ms_clear_accurate()
mme_ms_metadata_done()
mme_ms_metadata _get()
mme_ms_restart()

mre_ms_st at e_t

nme_ns_st at echange_t
mme_newtrksession()
mme_next()

mre_out put _attr_t
mme_output_set permanent()
mre_out put t ype_t
mme_play()
mme_play_attach_output()
mme_play_bookmark()
mme_play_detach _output()
mme_play_file()
mme_play_get_info()

May 4, 2009 Chapter 1 ¢ MME API 7

Alphabetical list of MME functions, data structures, enumerated types and constants 2009, QNx Software

Systems GmbH & Co. KG.

mme_play_get output_attr()
mme_play_get_speed()
mme_play_get status()
mme_play_get zone()

mre_pl ay_i nfo_t
mme_play_ offset()
mme_play_resume_msid()
mme_play_set output_attr()
mme_play_set speed()
mme_play_set zone()
MME_PLAYLIST_*
mme_playlist_close()
mme_playlist_create()
mme_playlist_delete()
mme_playlist_generate _similar()
ne_playlist_hdl _t
mme_playlist_item_get()
mme_playlist_items_count_get()
mme_playlist_open()
mme_playlist_position_set()
mme_playlist_set statement()
mme_playlist_sync()

mre_pl aystate_t

nme_pl aystate_speed_t
nmre_pl ay_status_t
mme_prev()
mme_register_for_events()
mme_resync_mediastore()
mme_rmtrksession()
mme_seek title chapter()
mme_seektotime()
mme_set_api_timeout()
mme_ setautopause()
mme_set_debug()
mme_set_files permanent()
mme_setlocalg()
mme_set_logging()
mme_set_msid_resume_trksession()
mme_set_notification _interval()
mme_setpriorityfolder()
mme_setrandom()
mme_setrepeat()
mme_setscanmode()
mme_settrksession()
mme_shutdown()
MME_SLOTTYPE *

8 Chapter 1 ¢« MME API

May 4, 2009

[2009, QNX Software Systems GmbH & Co. KG. Alphabetical list of MME functions, data structures, enumerated
types and constants

mme_start _device detection()
mme_stop()
MME_STORAGETYPE *
mme_sync_cancel()
mme_sync_db_check()
mme_sync_directed()
mme_sync_file()
mme_sync_get msid_status()
mme_sync_get_status()
MME_SYNC_OPTION *
mre_sync_st at us_t
mre_time_t

mme_timebase _set()
mme_trksession _append_files()
mme_trksession clear_files()
mme_trksession_get_info()
mme_trksession _resume_state()
mme_trksession_save_state()
mme_trksession _set files()
mme_trksessionview_get _current()
mme_trksessionview_get _info()
mre_t rksessi onvi ew_i nfo_t
mme_trksessionview_metadata_get()
mme_trksessionview_readx()
mme_trksessionview_update()
mme_trksessionview_writedb()
mme_trksessionview_update()
mme_video get angle info()
mme_video get_audio_info()
mme_video get info()
mme_video get_status()
mme_video get subtitle info()
mme_video _set_angle()
mme_video set audio()
mme_video_set_properties()
mme_video set subtitle()
mme_zone_create()
mme_zone_delete()

May 4, 2009 Chapter 1 e MME API 9

FTYPE*

[J 2009, QNX Software Systems GmbH & Co. KG.

Media type definitions

Synopsis:

#i ncl ude <mme/ i nterface. h>

#define FTYPE_*

Description:

The constant§TYPE* define the media types the MME recognizes. The values listed
in the table below are used by tfigpe field in the:

e me_play_info_t data structure

e nowpl ayi ng table

l'i brary table

Constant

Value Description

FTYPE_UNKNOWN
FTYPE_AUDIO
FTYPE_VIDEO
FTYPE_AUDIOVIDEO
FTYPE_PHOTO

FTYPE_DEVICE

Maintaining the accuracy of ftypefields

0

g A W N P

Unknown media type.

The media has audio only.

The media has video only.

The media has both audio and video.
The media has images (photos).

The media can be accessed and played as one file.
For example, play an entire DVD video rather than
tracks on the DVD, or play streamed media.

For some files, the file type cannot always be correctly established based only on the
file extension (hence during the first synchronization pass). To ensure correct entries in
theftype field in the MME tables, the MME updates this field when it performs:

10 Chapter 1 ¢« MME API

the first synchronization pass

the second synchronization pass

normal playback, upon receiving the metadata update frenmedi a, if the MME
is configured tanot update the i br ary from thenowpl ayi ng table

(<Updat eLi br ar yFr onNowpl ayi ng enabl ed="of f "/ >), the MME updates
theftype field in thel i br ar y tableonly

a mediacopier update of metadata, if the mediacopier is configured to make the
metadata accurate before rippirgJpdat eMet adat a enabl ed="true"/>)

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. FTYP E*

Classification:
ONX Multimedia

See also:

MME_FORMAT_*, MME_MSCAP_*, MME_ STORAGETYPE *,
MME_SYNC_OPTION *, nedi ast or es table in the appendix: MME Database
Schema Reference

May 4, 2009 Chapter 1 e MME APl 11

METADATA_*

[J 2009, QNX Software Systems GmbH & Co. KG.

Definitions for metadata string types

Synopsis:

#i ncl ude <mme/ net adat a. h>

#defi ne METADATA *

Description:

The constantETADATA _* define the metadata types for the strings used by MME
functions that retrieve metadata for specific filegne explore info_get() and
mme_ms_metadata_get(). For information about how to compose the strings, see the

chapter Metadata and Album Art in tiMME Developer’s Guide.

The table below lists current metadata types. All are types are of

METADATA _FORMAT_*, as listed.

Constant

Format

Value

Description

METADATA_TITLE

METADATA _ALBUM

METADATA _ARTIST

METADATA _GENRE

METADATA _COMPOSER

METADATA _PUBLISHER

METADATA _NAME

12 Chapter 1 ¢ MME API

STRING

STRING

STRING

STRING

STRING

STRING

STRING

" title"

" album’

"artist'

" genré

" composer

" publishet

"name

The track
title.

The
album
with the
track.

The
track’s
artist.

The
track’s
genre.

The track
composer.

The track
publisher.

The

folder

name.

See

METADATA _NAME
below.

continued. . .

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. M ETA DATA_*

Constant Format Value Description

METADATA_RELEASE DATE M " release date The
track’s
release
date.

METADATA _YEAR UNSIGNED "yeat The
track’s
release
year.

METADATA _DURATION UNSIGNED " duratiort The
duration
of the
track, in
milliseconds.

METADATA _COMMENT STRING " comment or description A
description
of the
track.

METADATA _TRACK_NUMBER UNSIGNED "track_numbet The track
number.

METADATA _PROTECTED UNSIGNED " protected The
DRM
PROTECTED
status of
the file.

METADATA_NAME

The metadata fOMETADATA _NAME varies according to the context. With iPods, the
name of a folder changes according to its parent folder. For example, the tracks from
the albumTransparente by Mariza, appear to be in different folders, depending on

how the user arrives at the tracks:

e If the user is exploring the iPod through thet i st s folder, the value for
METADATA NAME is “Mariza”, the name of the artist.

e If the user is exploring the iPod through thebuns, the value for
METADATA _NAME is “Transparente”, the name of the album.

i o-fs-nedi a -di pod must be settahort for the MME to be able to retrieve
metadata for tracks on an iPod.

May 4, 2009 Chapter 1 e MME APl 13

M ETA DATA_* [J 2009, QNX Software Systems GmbH & Co. KG.

METADATA_FORMAT_*
enum {
VETADATA FORMAT | NVALID = O,
VETADATA FORVAT_DATA,
VETADATA FORVAT_STRI NG,
VETADATA FORVAT_TM

VETADATA FORVAT_UNSI GNED,

};

The enumerated valu®ETADATA _FORMAT_* describe the data types for metadata
presentation, as follows:

e METADATA _FORMAT_INVALID — O (zero): invalid format.
e METADATA _FORMAT_DATA — blob.

e METADATA _FORMAT_STRING— character string.

e METADATA_FORMAT_TM —time.

e METADATA _FORMAT_UNSIGNED— unsigned integer.

Classification:
QNX Multimedia

See also:

mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image cache clear(),
mme_metadata_image load(), mme_metadata_image unload(),
nme_net adata_i nage_url _t,me_net adat a_session_t

14 Chapter 1 ¢« MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mm audi o_fornmat t

Synopsis:

Description:

Audio codec

May 4, 2009

#i ncl ude <nm types. h>

Audio format information

typedef struct nm audi o_format {

char codec[MM_CODEC _NAVE_MAX LEN];
ui nt32_t bitrate;

uint32_t sanpl er at e;

ui nt8_t channel s;

uint8 t bitrate_ type;

uint8 t channel _type;

uint 8_t reservel;

int32_ t reservez;

int32_ t reserves;

} nm audi o_format _t;

The structurevm audi o_f or mat _t provides information about the current state of
an audio stream. It includes at least the members described in the table below.

Member Type Description

codec char Name of the audio codec. This member is the
character string with the name of the audio codec.
See “Audio codec” below.

bitrate ui nt 32_t Average bitrate for the audio track, in bits per second.

samplerate ui nt 32_t
channels uint8_t
bitrate type uint8_t
channel_type uint8_t
reservel uint8_t

reserve?, 3 int32 t

Sample bitrate, in hertz.

Channel type. See Audio channels.

Bitrate type. Seem bi trat e_t in this reference.
Deprecated in MME 1.1.0. Do not use.

For future use.

For future use.

The MME API functionmme_audio_get_status() uses the data structure

mm_audi o_f or mat _t . The MME API functionmme_video get_status() uses the
data structurem vi deo_i nf o_t . Both these structures include a membaatec.
The codec members of the structunes vi deo_i nfo_t andnm audi o_f ormat _t
hold character strings identifying the codec format for the video or audio. These
strings can have a length of up to the number of bytes defined by

MM _CODEC NAME_MAX _LEN, which is currently 32 bytes.

Chapter 1 e MME API 15

m_au d I O_f Or rTHt _t 2009, QNX Software Systems GmbH & Co. KG.

Client applications can pass these character strings up to the end users to inform them

of the codec format used by a video or audio track.
Audio channels

Thechannels member of the structunem audi o_f or mat _t describes the number of
channels available in the audio stream. It can be set to any humber defined as valid by
the audio stream specification.

Example audio stream channels

Channels Audio stream

1 mono
2 stereo

6 Dolby digital 5.1
6 DTS

8 Dolby digital 7.1
8 DTS ES

Classification:
QNX Multimedia

See also:

mm bitrate_t,me_video_audio_info_t,mmvideo_audio_info_t,
mm vi deo_i nfo_t,mme_audi o_get _st at us, video_get_status()

16 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. I I l I_l aU d I O_I a.n g_eXt
Captions settings for videos

Synopsis:
#i ncl ude <nm types. h>

enum nm audi o_| ang_ext;

Description:

The enumerated typem audi o_| ang_ext defines video caption settings. Its values
include:

e MM_CAPTIONS NORMAL —normal captions.
e MM_VISUAL_IMPARED_AUDIO — captions for the visually impaired.
e MM_DIRECTORS COMMENTS1— director's comments.

e MM_DIRECTORS COMMENTS2— director's comments.

Classification:
QNX Multimedia

See also:

mm vi deo_info_t

May 4, 2009 Chapter 1 e MME APl 17

I I l I_l aU d I O_t y pe 0 2009, QNX Software Systems GmbH & Co. KG.
Audio types

Deprecated in MME 1.1.0. Do not use.

Synopsis:
#i ncl ude <nm types. h>

enum nmm audi o_t ype;

Description:
mm audi o_t ypes
The enumerated typem audi o_t ype defines video audio types. Its values include:
e DOLBY_AC3
e LINEAR_PCM
e MPEG 1 2
e MPEG 2 EXT
e DTS
e SDDS
e MONO
e STEREO
e JOINT_STEREO
e DUAL_CHANNEL

e OTHER(255)

Classification:
QNX Multimedia

See also:

nm audi o_format _t,mm video_info_t,nme_audi o_get status,
mme_video get status()

18 Chapter 1 ¢« MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. I I l I_l bl t r at e_t

Synopsis:

Description:

Y

Classification:

See also:

May 4, 2009

Media bitrate

#i ncl ude <nm types. h>

enum mmbitrate_t;

The enumerated typem bi t r at e_t defines streaming bitrate values. These values
are listed below:

e MM_BITRATE_TYPE_UNKNOWN — unknown bit rate.

e MM_BITRATE_TYPE_CONSTANT— constant bitrate: the listed bitrate is always
accurate.

e MM_BITRATE_TYPE VARIABLE — variable bitrate: the bitrate of encoded
packets is variable.

At present, all o- medi a graphs setm bitrate_t to
MM _BITRATE_TYPE_UNKNOWN.

ONX Multimedia

mm audi o_format _t,nm video_info_t,nme_audi o_get st at us,
mme_video get_status()

Chapter 1 ¢« MME APl 19

I I l I_l bI OC k ed_U O pS [J 2009, QNX Software Systems GmbH & Co. KG.
User Operation Prohibition values

Synopsis:
#i ncl ude <nm types. h>

enum nmm bl ocked_uops;

Description:

The enumerated typem bl ocked_uops defines values for the User Operations
Prohibitions (UOP) bit mask. Its values and the behaviors they define are described
below:

UOP_BLOCK_NONE— no user prohibitions.

UOP_BLOCK_TIME_PLAY_SEARCH— prohibit search to time.

e UOP_BLOCK_PTT_PLAY_SEARCH— prohibit search to chapters.
e UOP _BLOCK_TITLE_PLAY — prohibit play by title.

e UOP_BLOCK_STOP— prohibit stopping of video.

e UOP_BLOCK_GO_UP— prohibit “up” command.

e UOP BLOCK_PREV_TOP_ PG SEARCH— prohibit

e UOP_BLOCK_NEXT_PG_SEARCH— prohibit search for next page.
e UOP_BLOCK_FORWARD _SCAN— prohibit forward scans.

e UOP_BLOCK_BACKWARD_SCAN— prohibit backward scans.

e UOP_BLOCK_MENU_CALL_TITLE — prohibit use of title menu.

e UOP_BLOCK_MENU_CALL_ROOT— prohibit use of root menu.

e UOP_BLOCK_MENU_CALL_SUB PICTURE— prohibit use of sub-picture
(subtitles) menu.

e UOP_BLOCK_MENU_CALL_AUDIO — prohibit changes to audio

e UOP_BLOCK_MENU_CALL_ANGLE — prohibit changes to angle.
e UOP_BLOCK_MENU_CALL_PTT— prohibit calls to chapter menu.
e UOP_BLOCK_RESUME— prohibit resume functionality.

e UOP_BLOCK_BUTTON — prohibit button functionality.

e UOP_BLOCK_STILL_OFF— prohibit turning off of stills.

e UOP_BLOCK_PAUSE ON — prohibit pause.

20 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mm bl ocked_uops

Classification:

See also:

May 4, 2009

e UOP_BLOCK_AUDIO_CHANGE— prohibit changes to audio properties.

e UOP_BLOCK_SUB PICTURE CHANGE— prohibit changes to sub-picture
(subtitles).

e UOP_BLOCK_ANGLE_CHANGE— prohibit changes to video angle.

e UOP_BLOCK_KARAOKE_CHANGE— prohibit changes to karaoke settings.

e UOP_BLOCK_VIDEO_CHANGE— prohibit changes to video properties.

ONX Multimedia

mm dvd_status_t

Chapter 1 ¢ MME API

21

I I l I_l d I S pl ay_rTDd e [J 2009, QNX Software Systems GmbH & Co. KG.
Video display modes

Synopsis:
#i ncl ude <nm types. h>

enum di spl ay_node;

Description:

The enumerated typem di spl ay_node defines how a video is displayed. Its values
and the behaviors they define are described below:

e MM_DISPLAY_MODE_NORMAL — fit the display: the picture is full screen.

e MM_DISPLAY_MODE_LETTERBOX— fit one dimension of the display and add
black bars for other dimension: the picture is partial screen.

e MM_DISPLAY_MODE_PANSCAN— fit one dimension of the display and crop the
other dimension: the picture is full screen.

e MM_DISPLAY_MODE_OPEN MATTE — display full frame: the original content
cropping is changed.

Classification:
ONX Multimedia

See also:

mm vi deo_properties_t,mmvideo_info_t

22 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mm dvd_status t

Synopsis:

Description:

May 4, 2009

#i ncl ude <nme/types. h>

typedef struct nmdvd _status {

struct nm dvd_bl ocked {

ui nt 32_t uop_nask;

ui nt32_t audi o_mask;

ui nt32_t subpi ct ur e_mask;
} bl ocked,;
uint32_t donai n;
uint32_t title;
uint32_t chapt er
ui nt 64 _t chapter_start _tine;
uint32_t num audi o_st reans;
ui nt 32_t audi o_st ream
uint 32_t num subtitle_streans;
ui nt32_t subtitle_stream
ui nt32_t num angl es;
ui nt32_t angl e;
uint 32_t pl ayback pni ;
uint 32_t spare[4];

DVD status information

} mm.dvd_status_t;

The structureym dvd_st at us_t carries information about a DVD, including
blocked functionality. It includes at least the members described in the table below.

Member Type Description

blocked struct Masks for User Operation Prohibitions. See
nmm dvd_bl ocked below.

domain uint32_t The domain of the DVD.

title uint32_t The currently playing DVD title.

chapter ui n32_t The currently playing chapter in the DVD
title.

chapter_start_time ui n64_t The offset (in milliseconds) of the chapter
start from the start of the title.

num_audio_streams ui n32_t The number of available audio streams.

audio_stream ui n32_t The current audio stream.

num_subtitle streams ui n32_t The number of subtitle streams.

continued. ..

Chapter 1 e MME APl 23

I I | I_l dV d_St at U S_t 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

subtitle _stream ui n32_t The current subtitle stream.

num_angles ui n32_t The number of angles.

angle uin32_t The current angle.

playback pml ui n32_t The parental management level needed for
playback; set to 0 if no change in level is
required.

Spare ui n32_t Spare.

mm dvd_bl ocked

The structurerm dvd_bl ocked contains masks indicating which User Operation
Prohibitions (UOP), audio, and subpicture functionality is blocked for the current
track. The UOP mask has bits set to indicate which DVD remote button operations are
prohibited for the current track. The structun@ dvd_bl ocked includes at least the
members described in the table below.

Member Type Description

uop_mask uint 32_t The bit mask for (UOP) User Operation
Prohibitions. Seem bl ocked_uops in this
reference.

audio_mask uint32_t The mask indicating the audio functionality

permissions set for the current track.

subpicture_mask ui nt32_t The mask indicating the subpicture functionality
set for the current track.

mm dvd_st atus_event _t
typedef struct nmm.dvd_status_event {
mm dvd_status_t st at us;
mm dvd_status_reason_t reason;
} mmdvd_status_event t;

The structurerm dvd_st at us_event _t carries information about a DVD, including
its status, imm dvd_st at us_t , and the reason for the status event delivery, in

nm dvd_st at us_reason_t . It includes at least the members described in the table
below.

24 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. l I l I_I dV d_S t at U S _t

Member Type Description

status struct Information about a DVD, including blocked functionality.

reason enum The reason for the DVD event delivery.

mm dvd_status_reason_t

mm _dvd_donmai n

May 4, 2009

The enumerated typen dvd_st at us_r eason_t is used to indicate the reason for
which a DVD status update is delivered. It can be set to the following values:

MM_DVD_DOMAIN_UPDATE— the DVD domain has changed.
MM_DVD_TITLE_UPDATE — the DVD title has changed.

MM _DVD_CHAPTER UPDATE— th DVD chapter has changed.
MM_DVD_ANGLE_UPDATE— the DVD angle has changed.
MM_DVD_AUDIO_UPDATE— the DVD audio stream has changed.
MM_DVD_SUBTITLE_UPDATE — the DVD subtitle stream has changed.
MM _DVD_BLOCKED_UPDATE — the DVD user prohibitions have changed.
MM _DVD_MENU_ACTIVE_UPDATE— the DVD active menu has changed.

MM _DVD_PML_UPDATE — The parental management level is insufficient for
playback, se@layback pml in rm dvd_st at us_t for the needed level.

The enumerated typem dvd_domai n is used to indicate the domain of the current
track. The DVD specification defines four domains to which data can belong.
mm_dvd_domai n can be set to the following values:

MM_DOMAIN_STOP— DVD is not playing.
MM_DOMAIN_FP— First Play (optional): initialization domain.

MM_DOMAIN_VMGM — Video Manage Menu Domain (optional): The following
functionality operates in this domain:

- title menu
- legal notices and warnings
- previews (occasionally)

MM _DOMAIN_VTSM — Video Title Set Menu Domain (optional). Most menus
operate in this domain:

- root menu
- PTT (chapter selection) menu

Chapter 1 ¢« MME APl 25

mm dvd_status t

2009, QNX Software Systems GmbH & Co. KG.

audio menu
sub-picture (subtitles) menu
angle menu

e MM_DOMAIN_TT — Title Domain (nandatory).This domain includes most
previews, the main feature, etc., and is usually in standard (playback) mode.

Classification:

QNX Multimedia

See also:

26

mme_dvd _get status(), mme_video get status.html()

Chapter 1 ¢ MME API

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mm nedi a_status_t

Media status information

Synopsis:
#i ncl ude <nme/types. h>
typedef struct nm nedi a_status {
uint 32_t title;
ui nt32_t title_count;
uint32_t chapt er
uint32_t chapt er _count;
uint32_t num audi o_streans;
ui nt 32_t audi o_st ream
ui nt32_t num subtitle_stream
ui nt32_t subtitle_stream
uint32_t num angl es;
uint32_t angl e;
} mmnedia status_t;
Description:

The structureym nedi a_st at us carries information about a media device, such as
an iPod, that also serves as a mediastore. It includes at least the members described in

the table below.

Member Type Description

title uint32_t The currently playing media title.
title_count uint32_t The number of the current title.

chapter uin32_t The media title’s currently playing chapter.
chapter__count ui nt 32_t The number of the current chapter.
num_audio_streams ui n32_t The number of available audio streams.
audio_stream ui n32_t The current audio stream.

num_subtitle streams ui n32_t The number of available subtitle streams.
subtitle _stream ui n32_t The current subtitle stream.

num_angles ui n32_t The number of available angles.

angle uin32_t The current angle.

mm nedi a_stat us_event _t

typedef struct nmm nedi a_status_event {
mm nedi a_status_t

mm medi a_st atus_reason_t

} mm nedi a_status_event t;

May 4, 2009

st at us;

reason;

Chapter 1 ¢« MME APl 27

mﬂ_rTE d I a_S t at U S_t 2009, QNX Software Systems GmbH & Co. KG.

The structurerm nedi a_st at us_event _t carries media information delivered with
aMME_EVENT_MEDIA_ event, including its status, mm nedi a_st at us_t, and

the reason for the status event deliverymin nedi a_st at us_r eason_t . It includes
at least the members described in the table below.

Member Type Description

status struct Information about a media.

reason enum The reason for the media event delivery.

mm nedi a_status_reason_t

Classification:

See also:

typedef enum mm nedi a_status_reason {
MM _MEDI A Tl TLE_UPDATE
MM_MEDI A_CHAPTER_UPDATE
MM MEDI A ANGLE_UPDATE
MM _MEDI A AUDI O UPDATE
MM _MEDI A_SUBTI TLE_UPDATE
} mm nedi a_status_reason_t;

The enumerated typem nedi a_st at us_r eason_t is used to indicate the reason
for which a media status update is delivered. It can be set to the following values:

e MM_MEDIA_TITLE_UPDATE (0x01)— the media title has changed.

e MM_MEDIA_CHAPTER UPDATE (0x02) — th media chapter has changed.

e MM_MEDIA_ANGLE_UPDATE (0x04) — the media angle has changed.

e MM_MEDIA_AUDIO_UPDATE (0x08) — the media audio stream has changed.

e MM_MEDIA_SUBTITLE_UPDATE (0x10) — the media subtitle stream has
changed.

ONX Multimedia

mme_device_get_conf(), mme_device_set conf()

28 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. l I l I_I ITEt ad a.t a._t
Media metadata

Synopsis:
#i ncl ude <mmi types. h>
typedef struct nm netadata {
const char *strings[MM METADATA NUM STRINGS];
const char *reservedl][MV METADATA TOTAL_STRINGS - MM METADATA NUM STRINGS];
uint16_t rel ease_year;
ui nt8_t rel ease_nont h;
uint8_t rel ease_nday;
uintl6_t track_num
uint16_t di sc_num
uint32_t reserved2][4];
} mm.netadata_t;
Description:

The structurerm net adat a_t carries video metadata. Its members include at least
those listed in the table below.

Member Type Description

*strings const char Array of pointers to video metadata; the number
of pointers is set by the constant
MM _METADATA NUM_STRINGS See
mm _met adat a_stri ng_i ndex_t below.

*reservedl const char Reserved array size; the number of pointers is
equal toMM_METADATA _TOTAL_STRINGS
minusMM _METADATA NUM_STRINGS
Reserved for future use.

release year uint16_ The year the media content was released

release_month uint 8_t The month the media content was released

release mday uint8_t The day of the month the media content was
released.

track_num uint 16_t The track number on the mediastore.

disc_num uint16_t The disk number of the media store.

reserved2 uint32_t Reserved for future use.

mm et adata_string_i ndex_t

The enumerated typen net adat a_st ri ng_i ndex_t is used to index the strings
inside the structurem net adat a_t . Its values include:

e MM_METADATA_TITLE

e MM_METADATA _ARTIST

May 4, 2009 Chapter 1 ¢« MME APl 29

I I | I_l rTEt ad at a_t 2009, QNX Software Systems GmbH & Co. KG.

e MM_METADATA COMPOSER
e MM_METADATA ALBUM

e MM_METADATA GENRE

e MM_METADATA COMMENT

e MM_METADATA _NUM_STRINGS— the total number of pointers available to the
memberstring in the structuremm net adat a_t .

e MM_METADATA TOTAL_STRINGS— (16)

The enumerated typem net adat a_stri ng_i ndex_t is used when accessing the
strings member of amm _net adat a_t type. For example:

nm net adat a_t net adat a;

char *artist;

mre_versi on_of get netadata_functi on(&etadat a) ;

/1l print out the artist..

printf ("Artist is %\n", artist = netadata.strings[MM METADATA ARTI ST]? artist, "Unknown");

Classification:
QNX Multimedia

See also:

mm vi deo_i nfo_t,mm vi deo_audi o_i nfo_t

30 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. l I l I_I S U b pl Ct _I a.n g_eXt
Video language codes

Synopsis:
#i ncl ude <nm types. h>

enum mm subpi ct _| ang_ext;

Description:

The enumerated typem subpi ct _| ang_ext defines the video language extension
codes for audio streams and subtitles. Its values include:

e MM_NOT_SPECIFIED

e MM_CAPTION NORMAL

e MM_CAPTION LARGE

e MM_CAPTION CHILDRENS

e MM_CLOSED CAPTION NORMAL

e MM_CLOSED CAPTION LARGE

e MM_CLOSED CAPTION CHILDRENS
e MM_CAPTION_FORCED

e MM_DIRETORS COMNENT NORMAL
e MM_DIRECTORS COMMENT_LARGE

e MM_DIRECTORS COMMENT_CHILDREN

Classification:
ONX Multimedia

See also:

nm vi deo_audi o_info_t,mm video _subtitle info_t

May 4, 2009 Chapter 1 e MME APl 31

I I l I_l U 0 p_t [J 2009, QNX Software Systems GmbH & Co. KG.
User Operations Prohibitions settings

Synopsis:
#i ncl ude <nm types. h>

enum mm_uop_t;

Description:

The enumerated typem uop_t defines User Operations Prohibitions values. These
values are listed below:

e MM_UOP_CLOSE— prohibit application close.

e MM_UOP_GET_BOOKMARK — prohibit access to bookmarks.

e MM_UOP_SET BOOKMARK — prohibit

e MM_UOP_GET_SPRMS— prohibit access to system parameter registers.

e MM_UOP_GET _GPRMS— prohibit access to general parameter registers.

e MM_UOP_SET GPRM— prohibit modification of general parameter registers.
e MM_UOP_STOP— prohibit stop playback.

e MM_UOP_GO_UP— prohibit go up.

e MM_UOP_PREV_PG _SEARCH— prohibit searching to previous entity in program
chain (typically search to previous chapter).

e MM_UOP_TOP_PG_SEARCH— prohibit searching to first entity in program chain
(typically search to first chapter).

e MM_UOP_NEXT_PG _SEARCH— prohibit searching to next entity in program
chain (typically search to next chapter).

e MM_UOP_SET SPEED— prohibit set speed.

e MM_UOP_FRAME_ADVANCE — prohibit frame advance.

e MM_UOP_FRAME_REVERSE— prohibit frame reverse.

e MM_UOP_RESUME— prohibit resume playback.

e MM_UOP_UPPER BUTTON_SELECT— prohibit upper button selection.
e MM_UOP_LOWER BUTTON_SELECT— prohibit lower button selection.
e MM_UOP_LEFT_BUTTON_SELECT— prohibit left button selection.

e MM_UOP_RIGHT _BUTTON_SELECT— prohibit right button selection.

32 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. I I | I_l U O p_t

e MM_UOP_BUTTON_ACTIVATE — prohibit button activation.

e MM_UOP BUTTON_SELECT AND_ACTIVATE — prohibit button selection and
activation.

e MM_UOP_STILL_OFF— prohibit turing still mode off.

e MM_UOP_PAUSE ON — prohibit turning pause on.

e MM_UOP_PAUSE OFF— prohibit turning pause off.

e MM_UOP_MENU_LANGUAGE_SELECT— prohibit selection of language menu.
e MM_UOP_AUDIO_STREAM_CHANGE— prohibit changing the audio stream.

e MM_UOP_SUB PICTURE STREAM_CHANGE — prohibit changing the subtitle
stream.

e MM_UOP_ANGLE_CHANGE — prohibit changing the angle.
e MM_UOP_VIDEO_MODE_CHANGE— prohibit changing the video mode.
e MM_UOP_BUTTON_SELECT— prohibit button selection.

e MM_UOP _BUTTON_SELECT POINT— prohibit selection of button by
coordinates.

e MM_UOP _BUTTON_ACTIVATE _POINT— prohibit activation of button my
coordinates (i.e. by pressimhapter on track screen).

e MM_UOP_SUB PICTURE STREAM CHANGE_STREAM— prohibit changing
the subtitle stream.

e MM_UOP_SUB_PICTURE STREAM_CHANGE_DISPLAY — prohibit turning
subtitles on or off.

e MM_UOP_AUDIO_LANGUAGE_SELECT— prohibit selection of the audio
language.

e MM_UOP_SUB PICTURE LANGUAGE_SELECT— prohibit changing the subtitle
language.

e MM_UOP_REPEAT MODE_CHANGE — prohibit changing the repeat more.
e MM_UOP _TITLE_PLAY — prohibit playing the entire title.
e MM_UOP_PTT_PLAY — prohibit part of title play (i.e. jump to a title or chapter).

e MM_UOP TITLE_TIME_PLAY — prohibit play from at time in the title (i.e. jump
to a time in the title).

e MM_UOP _TITLE_TIME_SEARCH— prohibit search to a specific time in the title.

e MM_UOP_PTT_SEARCH— prohibit search by part of chapter.

May 4, 2009 Chapter 1 ¢« MME APl 33

I I | I_l U O p_t 2009, QNX Software Systems GmbH & Co. KG.

e MM_UOP _MENU_CALL_VIDEO — prohibit jump to video menu.

e MM_UOP_PARENTAL_LEVEL_SELECT— prohibit selection of parental control
level.

e MM_UOP_PARENTAL_COUNTRY_SELECT— prohibit country selection for
parental control.

e MM_UOP_KARAOKE_MODE_CHANGE— prohibit changing karaoke mode.

e MM_UOP_PTT_PLAY_RANGE — prohibit playback of part of title, by range of
chapters.

e MM_UOP_TITLE_TIME_PLAY_RANGE — prohibit playback of part of title, by
time range.

e MM_UOP_FIRST PLAY — prohibit playback of first title.

e MM_UOP_TITLE_GROUP PLAY — prohibit playback by group.

e MM_UOP_TRACK_PLAY — prohibit playback by track.

e MM_UOP_GROUP TIME_PLAY — prohibit playback of group of titles by time.
e MM_UOP_GROUP TIME_SEARCH— prohibit searching for time in a group.

e MM_UOP_TRACK_SEARCH— prohibit searching for specific tracks.

e MM_UOP_PREV_TK_SEARCH— prohibit searching for previous track.

e MM_UOP_TOP_TK_SEARCH— prohibit searching for top track.

e MM_UOP_NEXT_TK_SEARCH— prohibit searching for next track.

e MM_UOP_PREV DLIST_SEARCH— DVD-audio only: prohibit jumping to
previous playlist.

e MM_UOP_NEXT_DLIST_SEARCH— DVD-audio only: prohibit jumping to next
playlist.

e MM_UOP _HOME_DLIST_SEARCH— DVD-audio only: prohibit jumping to first
playlist.

e MM_UOP_MENU_CALL_AUDIO — DVD-audio only: prohibit jumping to
DVD-audio menu.

e MM_UOP_TEXT_LANGUAGE_SELECT— DVD-audio only: prohibit text
language selection.

e MM_UOP_HIDDEN_GROUP PLAY — DVD-audio only: prohibit playback of of
hidden groups.

e MM_UOP_HIDDEN_TRACK_PLAY — DVD-audio only: prohibit playback of
hidden tracks.

e MM_UOP_HIDDEN_TIME_PLAY — DVD-audio only: prohibit playback of
hidden time.

34 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. | I | |_| U O p_t

Classification:
ONX Multimedia

See also:

nm video_info_t

May 4, 2009 Chapter 1 ¢« MME APl 35

| I | I_l V | d eO_an g I e_l nf O_t [J 2009, QNX Software Systems GmbH & Co. KG.
Video angle settings

Synopsis:
#i ncl ude <nm types. h>
typedef struct nmyvideo_angle info {
uint 32_t title;
uint 8 _t total;
int8 t current;
int8_ t angl es_avai | abl e;
int8_t al i gn;
} nmyvideo_angle_info_t;
Description:

The structurerm vi deo_angl e_i nf o_t includes at least the members described in
the table below.

Member Type Description

title ui nt32_t The title of video for which angle information is
provided.

total ui nt 8_t The number of video angles available.

current int8_t The current video angle.

angles _available int8_t Indicate if changing the video angle will take

effect on the current chapter. Clear if no effect on
the current chapter.

align int8_t Aligns the structure to 32 bits.

Classification:
QNX Multimedia

See also:

mme_video get status(), mme_video set angle()

36 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. I I l I_l V I d eO_aU d I O_I nf O_t
Video audio information

Synopsis:
#i ncl ude <nm types. h>

typedef struct nm.video_audio_info {
uint 32_t title;
int8 t t ot al
int8 t current;
struct nmaudio_attr {
char I ang[2] ;
uint8 t ext;
uint 8_t type;
uint 8_t channel s;
uint 8_t spare;
} attr[MM MAX VI DEO AUDI O STREAMNS] ;
} mmvideo_audio_info t;

Description:

The structureym vi deo_audi o_i nf o_t structure carries information about the
languages of a video’s subtitles. It includes at least the members described in the table

below.

Member Type Description

title ui nt 32_t The title for which audio stream information is provided.

total int8 t The number of available audio streams. If this field is O
(zero), no audio streams are available.

current int8_t The audio stream currently selected. If this field is set to
-1, no audio is currently playing.

attr struct An array of structuresomm audi o_attr _t,of length

MM _MAX _AUDIO_STREAMS containing audio
languages information.

mm audi o_attr _t

The structurerm audi o_at t r _t carries information about the languages of a video'’s
audio streams. It includes at least the members described in the table below.

May 4, 2009 Chapter 1 ¢« MME APl 37

mﬂ_V I d eO_aU d I O_I nf O_t 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

lang char Two-character 1ISO 639-1 language code for the audio
stream.

ext uint8_t Language extension codes. $@e subpi ct _| ang_ext

in this reference.
type uint8_t Audio stream type.

channels uint8_t Total number of audio channels, including a low frequency
channel. Forexample,8=7.1,6=5.1,3=2.1,4=4,2=2,
1 =1, and 255 = “unknown”.

spare uint8_t Unused

Classification:
ONX Multimedia

See also:

mme_video_get_audio_info(), mme_video_set_audio()

38 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mm vi deo_info t

Video information

Synopsis:
#i ncl ude <nm types. h>
typedef struct nmmvideo_info {
struct {
uintle t w
uintl1l6 t h;
} aspect _rati o;
uint32_t wi dt h;
ui nt 32_t hei ght ;
uint32_t capture_format;
uint32_t frame_wi dt h;
uint32_t frame_hei ght ;
uint32_t mex_buf f er abl e_franes;
ui nt32_t di spl ay_node;
ui nt 32_t flags;
char codec[32] ;
} mmyvideo_info_t;
Description:

The structureym vi deo_i nf o_t provides information about a video. It includes at
least the members described in the table below.

Member Type Description

aspect_ratio struct The width to height aspect ratio of the
video. Seaspect _rati o below.

width ui nt 32_t The width of the video source, in pixels.

height uint 32_t Height of the video source, in pixels.

capture_format uint 32_t Flags for capturing additional information
useful for presenting the video. See
video_flags below.

frame_width uint32_t The width, in pixels, of the rendered video
in video memory; may be smaller than the
frame width. A value different fromvidth
does not imply scaling; sedlags’ below.

frame_height uint32_t The height, in pixels, of the rendered video

May 4, 2009

in video memory; may be smaller than the
frame height. A value different fromidth
does not imply scaling; sedlags’ below.

continued. ..

Chapter 1 ¢« MME APl 39

I I | I_l V I d eO_l nf O_t 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

max_bufferable frames uint32 t The maximum number of frames that can
be requested for buffering by a call to the
functionmme_video set properties(). A
-1 indicates that the video player does not
support bufferable frames.

display_mode uint32_t The video display mode. See
mm di spl ay_node

flags uint32 t Flags indicating how to handle the video
display frame croppiing and scaling.

codec char A character string with name of the video
codec. See “Video codec” below.

aspect _ratio

Theaspect _rati o member uses whole numbers to express the video aspect ratio.
These numbers only describe the height to widitho of the image, and have no
bearing on the actual width and height in pixels of the source.

Common aspect ratio values are:
e 235:100 (2.35:1)
e 16:90r 166:100 (1.66:1) and (4/3)

Usual representations are in parenthesesy)’(

wand h

Thew andh members of the structumespect rati o are the whole numbers used to
express the aspect ratio of the image.

Width w and height values of 0 (0,0) mean that no aspect ratio information is
available.

width and height

Thewidth andheight are the actual width and height of the source imaggixels.
flags

Theflags member of the structunem vi deo_i nf o_t uses the following values:

e MM_VIDEO_SOURCE CROP— the video player can crop the source video and
render only the cropped content to the video memory.

e MM_VIDEO_SCALEABLE — the video player can scale (or zoom) the specified
source video and place the scaled result in video memory; if this flag is not set, the
video_width andvideo _height members describe the active video dimensions.

40 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. l I l I_I VI deO_l nf O_t

Video codec

mm di spl ay_node

capt ure_f or mat

Classification:

May 4, 2009

e MM_VIDEO_FRAME_SETABLE — the video player can adjust the video memory
image size.

e MM_VIDEO_ SOURCE PICTURE LETTERBOXED— a 4:3 source picture; if the
source picture is 16:9, black bars are added to make the picture 4:3.

e MM_VIDEO_AUTO_SCALED— the video is scaled to best fit the frame described
inmm vi deo_info_t.

The functionvideo _get_status() uses the data structunen vi deo_i nfo_t. The
functionmme_audio_get status() uses the data structunen audi o_f or mat _t.
Both these structures include a membeaulec.

The codec members of the structunes vi deo_i nfo_t andnm audi o_f or mat _t
hold character strings identifying the codec format for the video or audio. These
strings can have a length of up to the number of bytes defined by

MM_CODEC NAME_MAX _LEN, which is currently 32 bytes.

Client applications can pass these character strings up to the end users to inform them
of the codec format used by a video or audio track.

The enumerated typem di spl ay_node describes a video’s display mode. Its values
include:

e MM_DISPLAY_MODE_NORMAL
e MM_DISPLAY MODE_LETTERBOX
e MM_DISPLAY _MODE_PANSCAN

e MM_DISPLAY _MODE_OPEN MATTE

The enumerated typeapt ur e_f or mat describes a video’s capture format. Its values
include:

e MM_CAPTURE NTSC
e MM_CAPTURE PAL

e MM_CAPTURE OTHER

ONX Multimedia

Chapter 1 e MME APl 41

| I | |_| V | d EO_I nf O_t 00 2009, QNX Software Systems GmbH & Co. KG.

See also:

mm audi o_format _t,nmbitrate_t,mm vi deo_audio_info_t,
mre_vi deo_properties_t,me_audi o_get _status, mme_video_get status()

42 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

nm vi deo _properties t

Synopsis:

#i ncl ude <nm types. h>

Video display properties

t ypedef struct nmvideo_properties {

ui nt 32_t
struct {

ui nt32_t
} source;

struct {

ui nt 32_t

} dest;

uint32_t
uint32_t
uint32_t
ui nt 32_t

Description:

flags;

| eft,top, right, bottom

left,top, right, bottom

frame_w dt h;
frame_hei ght ;
frame_buffers;
di spl ay_node;
} nm.video_properties_t;

The structureym vi deo_properti es_t describes video display properties. It
includes at least the members described in the table below.

M ember

Type

Description

flags

source

dest

frame_width

May 4, 2009

uint 32_t

struct

struct

uint 32_t

Flags indicating how to handle the video display.

The rectangle (left and top inclusive; right and
bottom exclusive) to extract from the source video;
must be within thewidth andheight dimensions
given bymme_video_get_info(); it is ignored if

MM _AUTO_SCALE s set.

The rectangle (left and top inclusive; right and
bottom exclusive) to render the video into; it must be
within the frame_width andframe_height

dimensions given bynme_video get _info(); it is
ignored ifMM_AUTO_SCALE is set.

Specify the width, in pixels, of the video surface to
use when rendering a video; it does not imply scaling
(the frame may or may not be completely filled by

the rendered video); it is used only if the
MM _SET VID_FRAME_SIZEflag is set.

continued. . .

Chapter 1 e MME APl 43

mﬂ_VI deO_pr Oper t I eS_t 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

frame_height uint32_t Specify the height, in pixels, of the video surface to
use when rendering a video; it does not imply scaling
(the frame may or may not be completely filled by
the rendered video); it is used only if the
MM_SET VID_FRAME_SIZEflag is set.

frame_buffers uint32_t Specify the number of video frames to buffer; must
be less than or equal toax_bufferable frames
given bymme_video get_info(); it is only used if the
MM _SET_FRAME_BUFFERSflag is set.

display mode uint32_t The video display mode; used only if the
MM _SET _DISPLAY_MODE flag is set.

For more information about video dimensions and aspect ratio see
mm vi deo_info_t.

Q Currentlyi o- medi a- gener i ¢ only supports setting the video source and destination
(the source anddest members of them vi deo_properti es_t structure). Other
i o- medi a variants may support other capabilities.

left, top, right and bottom

flags

44

Theleft, top, right andbottom members of the structura®ur ce anddest define,
respectively, the video source and destination video rectangles, in pixelseffTaed
top values are inclusive; theght andbottom values are exclusive.

Theflags member of the structunem vi deo_properti es_t uses the following
values:

e MM_AUTO_SCALE— ask the player to determine how best to display the video; if
this flag is setsource anddest members are ignored.

e MM_SET VID_FRAME_SIZE — set to use the values in tlfiame_width and
frame_height members. If this flag igot set, theframe_width andframe_height
members are ignored.

e MM_SET FRAME_BUFFERS— use the values in thieame_buffers member. If
this flag isnot set theframe_buffers member is ignored.

e MM_SET DISPLAY_MODE — use the values in thdisplay _mode member. Use
this flag only ifMM_AUTO_SCALE is set. If this flag ishot set, thedisplay _mode
member is ignored.

Chapter 1 ¢ MME API May 4, 2009

11 2009, QNX Software Systems GmbH & Co. KG. mm vi deo_properties_t

Classification:
ONX Multimedia

See also:

nm audi o_format _t,mm audi o_type,mmbitrate_t,
mre_vi deo_audi o_info_t,me_video_info_t,me_audi o_get status,
mme_video get_status(), mme_video_get _info(), mme_video_set properties()

May 4, 2009 Chapter 1 ¢« MME APl 45

ITTTI_V I d e O_S t at U S_t [J 2009, QNX Software Systems GmbH & Co. KG.

Video status information

Synopsis:

Description:

aspect _ratio

wand h

#i ncl ude <nm types. h>

typedef struct nmvideo_status {
uint 32_t wi dt h;
ui nt32_t hei ght ;
struct {
uintle t w
uintl6 t h;
} aspect _ratio;
} mmyvideo_status_t;

The structuremm vi deo_st at us_t describes a video’s status. It is filled in by the
functionmme_video_get_status() and includes at least the members described in the
table below.

Member Type Description
width ui nt 32_t The width of the video, in pixels.
height uint32_t Height of the video, in pixels.

aspect_ratio struct The width to height aspect ratio of the video. See
aspect rati obelow.

Theaspect _rati o member uses whole numbers to express the video aspect ratio.
These numbers only describe the height to widitho of the image, and have no
bearing on the actual width and height in pixels of the source.

Common aspect ratio values are:
e 235:100 (2.35:1)
e 16:9 0r 166:100 (1.66:1) and (4/3)

Usual representations are in parenthesesy)(

Thew andh members of the structumespect rati o are the whole numbers used to
express the aspect ratio of the image.

Width w and height values of 0 (0,0) mean that no aspect ratio information is
available.

46 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. I'TTT]_V | d e O_S t at U S _t

Classification:
ONX Multimedia

See also:

mme_video_get_info(), mme_video_get_status()

May 4, 2009 Chapter 1 ¢« MME APl 47

I I l I_l V I d eO_S U bt I t I e_l nf O_t [J 2009, QNX Software Systems GmbH & Co. KG.
Video subtitle and caption information

Synopsis:
#i ncl ude <nm types. h>

typedef struct nmvideo subtitle info {
uint 32_t title;
uint 8 _t total;
int8 t current;
struct nmyvideo_subtitle_attr {
char I ang[2] ;
uint8 t ext;
} attr[MM_MAX_ VI DEO SUBTI TLES] ;
} mmyvideo_subtitle_ info_t;

Description:

The structurerm vi deo_subtitl e_i nf o_t carries information about a video’s
subtitles. It includes at least the members described in the table below.

Member Type Description

title ui nt 32_t The title of video for which subtitle information is
provided.

total uint8_t The number of available subtitles. If this field is O (zero),

no subtitles are available.

current int8_t The current subtitle, which is in the range of Gtatal - 1
(number of available subtitles). If this field is set to -1, no
subtitles are currently displayed.

attr array An array of structuresmm vi deo_subtitle_attr_t,
of lengthMM_MAX _VIDEO_SUBTITLES, containing
subtitle languages information.

mm video_subtitle attr _t

The structurerm vi deo_subtitle_attr _t contains information about the
languages of a video’s subtitles. It includes at least the members described in the table
below.

48 Chapter 1 ¢ MME API May 4, 2009

mm vi deo_subtitle info t

[J 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

lang array An array with two-character 1ISO 639-1 language codes for
the subtitle.

ext uint8_t Language extension codes. $@e subpi ct _| ang_ext .

Classification:
ONX Multimedia

See also:
nmm subpi ct _| ang_ext ,mme_video get subtitle info(),
mme_video_set_subtitle()

May 4, 2009 Chapter 1 ¢« MME APl 49

mme_au di 0 g et_Stat us () 0 2009, QNX Software Systems GmbH & Co. KG.

Get the audio status

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int mMme_audi o_get _status (mre_hdl _t *hdl,
mm audi o_format _t *status) ;

hdl An MME connection handle.

status A pointer to anm audi o_f or mat _t structure that the function fills in
with information about the audio stream for the current track.

The functionmme_audio_get status() gets audio stream information for the currently
playing track and places it istatus. Seenm audi o_f or mat _t in this reference.

None delivered.

Blocking and validation

Returns:

Classification:

This function blocks on the control context andiasn nmedi a. It does not validate any
data, and returns with either the requested information or an error.

>0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

50 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_au di (OJNo et_Statu S ()

See also:

nmm audi o_f ormat _t ,mme_video get_status()

May 4, 2009 Chapter 1 e MME APl 51

mme_ bookmar k_C reate() [2009, QNX Software Systems GmbH & Co. KG.

Create a bookmark for the playing track

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMe_bookmark_create(nme_hdl _t *hdl,
const char *name,
ui nt 64_t *bookmarkid) ;

hdl An MME connection handle.
name The bookmark name. Set MULL if the bookmark name is not
important.

bookmarkid The bookmark ID.

The functionmme_bookmark create() creates a bookmark on a playing track at the
current point of the playback.

Bookmarks allow end users to mark points in tracks from which they want to resume
playing these tracks. They are usedraye_play bookmark(), which starts playback
of a track in a track session at the specified bookmark instead of at their beginning.

None delivered.

Blocking and validation

Returns:

This function behaves as follows, depending on the MME connection:
e Synchronous — fully validating and blocks on- nedi a.

e Asynchronous — replies before the bookmark is created; it doesn't block on
i o- nedi a.

=0 Success.

-1 An error occurreddrrno is set).

52 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_bookmark_create()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_bookmark _delete(), mme_play bookmark()

May 4, 2009

Chapter 1 ¢ MME API

53

mm e_b ookmar k_d el ete() 0 2009, QNX Software Systems GmbH & Co. KG.

Delete a bookmark from a track

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMe_bookmark_del ete(nme_hdl _t *hdl,
ui nt 64_t bookmarkid,
uint64_t fid);

hdl The MME connection handle.

bookmarkid The bookmark ID. Set this argument@af you are deleting the
bookmark(s) based on the file IBd).

fid The ID for the file from which you want to delete all bookmarks. Set
this argument t® and usébookmarkid if you want to delete only
one, specified bookmark from the file.

The functionmme_bookmark delete() deletes a specified bookmark or all bookmarks
on a specified track. Note that you can specify eithamkmarkid to delete a specific
bookmark, offid to delete all bookmarks for a specified track, but you wainspecify
bothbookmarkid andfid.

None delivered.

Blocking and validation

Returns:

Classification:

This function is fully validating and runs to completion.

>0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

54 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_b ookmar k_d el ete()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_bookmark _create(), mme_play _bookmark()

May 4, 2009 Chapter 1 ¢« MME APl 55

nmme_buffer status t

[J 2009, QNX Software Systems GmbH & Co. KG.

Buffer status information

Synopsis:
#i ncl ude <nme/types. h>
typedef struct nme_buffer_status {
uint 32_t st at e;
ui nt32_t read _ns;
uint32_t mex_Is;
ui nt 32_t reserved,
} mme_buffer _status_t;
Description:

The data structureme_buf f er _st at us_t carries buffer status information. Its
members are described in the table below.

Member Type Description

state ui nt 32_t The buffer state. Seare_buf fer _state_t below.

reead ms uint32_t The number of milliseconds of playback time that are
currently in the buffer.

max_ms uint32_t The maximum buffer size, in milliseconds.

reserved uint32 t Reserved for internal use.

The value inread_ms can be higher than the valuernax_ms. Values are roundedp
to the nearest MRA buffer size, so the current buffer level can be reported as greater
that the set level.

me_buffer_state t

The enumerated typeve_buf f er _st at e_t defines buffer states as follows:

e MME_BUFFER STATE NORMAL (0) — the MME is playing from the buffer and
draining it, but is not reading anything into the buffer.

e MME_BUFFER STATE PREFETCHING(1) — the MME is reading a track and
filling the buffer, but there is not enough playback time in the buffer to start
playback.

e MME_BUFFER STATE BUFFERING(2) — the MME is both reading a track and
filling the buffer, and playing from the buffer and draining it.

56 Chapter 1 ¢ MME API

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

me_buffer status_t

Classification:
ONX Multimedia

See also:

nre_time_t,me_playstate t,mme_pl aystate_speed_t

May 4, 2009

Chapter 1 ¢ MME API

57

mm e_b utton () [0 2009, QNX Software Systems GmbH & Co. KG.
Respond to button events for navigable tracks

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_button(mre_hdl _t *hdl,
mm button_t button);
Arguments:
hdl An MME connection handle.
button The “button” command to pass to the MME in the enumerated type
mm button_t.
Library:
me
Description:

The functionmme_button() passes button commands for navigable tracks from your
client application to the MME. Aavigable track is one of the following:

e atrack, such as DVD video, that contains a built-in menu
e atrack on a device, such as an iPod, that has its own navigation interface

Using the mme_button() function with an iPod device

iPods manage their own track sessions. To move to the next or previous track in an
iPod track session, call thame_button() function withnm but t on_t setto
MM_BUTTON_NEXT or MM_BUTTON_PREYV, as required.

Checking if a device can manage its own track sessions

To check is a device can manage its own track sessions, the client application can call
mme_play_get info() to get the data structurere_pl ay_i nf o_t . If the support flag
containsMME_ PLAYSUPPORT DEVICE_TRACKSESSION the current device

manages its own track sessions.

Using Repeat and Repeat AB modes

TheMM_BUTTON_REPEAT OFFandMM_BUTTON_REPEAT_AB_OFFvalues can

be used together to add repeat functionality. For example, you can repeat the current
title, then while repeating the title, mark A and mark B and repeat the AB range. You
can then turn off the repeat AB mode, leaving the repeat title mode active; or, you can
turn off the repeat title mode, leaving the repeat AB mode active.

58 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_button()

mm button_t

The enumerated typem but t on_t defines the button command to pass to the MME.
It can be set to any of the values listed in the table below.

Note that button commands only work for devices with navigable tracks, as described
above (iPod, DVD-V, Bluetooth), and that most devices only support a subset of the
functionality listed in the table. Check the table to see which devices support which

button values.

Value

iPod Bluetooth DVD-V Action

MM_BUTTON_NEXT
MM_BUTTON_PREV
MM_BUTTON_TOP
MM_BUTTON_CURSOR LEFT
MM_BUTTON_CURSOR RIGHT
MM_BUTTON_CURSOR UP
MM_BUTTON_CURSOR DOWN
MM_BUTTON_ENTER

MM_BUTTON_RETURN

MM_BUTTON_GOUP
MM_BUTTON_MENU_TITLE
MM_BUTTON_MENU_ROOT
MM_BUTTON_MENU_AUDIO
MM_BUTTON_MENU_ANGLE
MM_BUTTON_MENU_SUBTITLE
MM_BUTTON_MENU_PTT
MM_BUTTON_REPEAT AB_OFF

MM_BUTTON_REPEAT AB_POINT_A
MM_BUTTON_REPEAT AB_POINT B

May 4, 2009

Y

Zz2 Z2 2 Z2 zZ2 Z <

Zz2 Z2 Z2 Z2 Z2 Z2 Z Z

Y

Zz Z2 Z2 Z2 Z2 Z

z2 Z2 2 Zz2 Z2 Z2 Z2 Z 2

=z

Y

< < < < < < <

< < < < < < < <

<

Skip to next track.
Skip to previous track.
Skip to first track.
Move cursor left.
Move cursor right.
Move cursor up.
Move cursor down.

Activate the currently highlighted
item.

Return to previous activity (i.e.
playback). This button is
equivalent to
MM_BUTTON_RESUME

SeeMM_BUTTON_GOUPDbelow.
Show title menu.

Go to root menu.

Show audio properties menu.
Show video angle menu.
Show subtitle menu.

Show title or chapter menu.

Turn repeat from point A to B off.
See Using Repeat and Repeat AB
modes below.

Set repeat point A.
Set repeat point B.

continued. . .

Chapter 1 ¢« MME APl 59

mm e_b utton () 2009, ONX Software Systems GmbH & Co. KG.

Value iPod Bluetooth DVD-V Action

MM_BUTTON_REPEAT OFF N N Y Turn repeat mode off.

MM _BUTTON_REPEAT CHAPTER N Y Repeat current chapter.

MM_BUTTON_REPEAT _TITLE N N Y Repeat current title.

MM_BUTTON_REPEAT DISC N N Y Repeat current disc.

MM_BUTTON_RESUME N N Y Resume previous activity (i.e.
playback).

MM_BUTTON_FRAME_ADVANCE N N Y Advance to next video frame.

MM_BUTTON_FRAME_REVERSE N N Y Move to previous video frame.

MM _BUTTON_PAUSE N Y Y Pause play.

MM_BUTTON_PLAY N Y Y Play.

MM_BUTTON_STOP N Y Y Stop play.

MM_BUTTON_0 to 99 N N Y Accept input from buttom on a

remote control.

Q DVD, and video support is platform specific, and the current MME release supports
DVD mediastores and video playback only with custooa medi a modules.
Similarly, Bluetooth support is scheduled for a future release, or custom
implementations.

If MME API functions that support DVD mediastores and video playback are called
on a system that does not have the requirednmedi a modules, these functions return
-1 and seerrno to ENOSYS

Please contact QNX to discuss your implementation requirements.

MM_BUTTON_GOUP

The behavior oMM_BUTTON_GOUPis determined by the author of the DVD.
Typically, this button is used to jump to the start of the context the user is in. For
example, if the user is playing a movie, this button jumps to the start of the movie; or,
if the user is in a fourth level menu, this button jumps to the topmost menu.

Events

This function may return playback error event#mE_PLAY_ ERROR *
andMME_EVENT_PLAY_ERROR

Blocking and validation

This function verifies that the client application code is valid. It blocks on control
contexts.

60 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mm e_b utton ()

If mme_button() is called and another function is called befomee button() returns,

the second function blocks or- nedi a until mme_button() returns. If there are no

other pending callspme_button() returns without blocking ono- nedi a.
Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:
mme_play_get_info(), me_pl ay_i nf o_t

May 4, 2009 Chapter 1 e MME APl 61

mme_cC harco nvert_S etu P O 00 2009, QNX Software Systems GmbH & Co. KG.
Indicate the default character encoding

Synopsis:
#i ncl ude <nmme/ nme. h>
#i ncl ude <nme/ char conver. h>
int mMme_charconvert_setup(mre_hdl _t *hdl,
const char *default_encoding,
ui nt 32_t allow_detection) ;
Arguments:
hdl An MME connection handle.
default_encoding A pointer to string passed to the character conversion DLL
loaded into the MME. The contents of this string are not
currently defined. The character conversion DLL must
understand the contents of thsi string.
allow_detection A flag that determines if the MME and the character conversion
DLL are permitted to perform encoding detection. Setto 1 to
allow detection, or to O to disable detection.
Library:
mre
Description:

The functionmme_charconvert _setup() changes the default fallback character
encoding and passes the new values tactier convert DLL so that it knows the
new values requested by the system.

Character encoding conversion is required to convert different multimedia sources
(ID3, WMA, etc.) into UTF-8 character format, so that strings are consistent
throughout the system.

The MME already provides the ability to extend its character conversion algorithms by
using the external DLIchar conver t . However, the DLL can MME communicate

the encoding used by a media source to this DLL only if the source itself indicates that
encoding. In cases where the media source does not provide character encoding
information, the character conversion DLL must attempt to detect the encoding and, if
it is unable to do so, fall back to a default encoding.

mme_charconvert _setup() makes setting of the fallback encoding dynamic to allow
easy configuration for different areas of the world. A device controller can tell the
MME what new default encoding to use, and the MME can in turn pass this
information on to the character conversion DLL, which would uses that default.

62 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_C harco nvert_S etu P ()

Events

None delivered.
Blocking and validation

This function performs no validations and doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

“Creating an external DLL to provide character encoding routines” in the chapter
Configuring Internationalization of thdME Configuration Guide.
mme_media_get_def lang(), mme_media_set_def lang()

May 4, 2009 Chapter 1 e MME APl 63

mme_conn eCt() 0 2009, QNX Software Systems GmbH & Co. KG.
Connect to a control context

Synopsis:
#i ncl ude <me/ nme. h>
mre_hdl _t *mme_connect (const char *filename,
uint32_t flags);
Arguments:
filename The full pathname to the multimedia engine device name, including the
control context (for examplé,dev/ nme/ cont r ol _cont ext 1).
flags Flags that can be used to modify the behavior or the MME connection.
See “Flags” below.
Library:
me
Description:

The functionmme_connect() connects the client application to the MME in a specified
control context. It returns amme_hdl _t object, which is used by the otheime_*()
API functions.

To communicate to multiple control contexts you must mse_connect() to connect
at least once for each control context.

By default, the MME has one control context, but you can add more to the MME
database, then connect to them. For more detailed information about control contexts,
see “Connecting to the MME” in th®IME Developer’s Guide. For more information

about thecont r ol cont ext s table, see the appendix MME Database Schema
Reference.

CAUTION: Connections are not thread safe, so the client application must ensure that
a connection handle isn't used by more than one thread at a time.

Device path

A control context’s path maps directly to a resource manager device path. The device
path, such as, for examplegdev/ mre/ f r ont seat , correlates directly to the control
context with the same name; for example: “frontseat”. The device may be on the same
machine that the MME is running on, or it can be located on another machine
accessible to the MME.

64 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_conn eCt()

Flags

Events

Y

The client application can use tfflags variable to configure the behavior of the MME
connection. Behavior is configured as follows:

O_SYNCis not set (default).

The MME returns to the client as soon as possible, and completes
work after unblocking the client. It verifies the validity of as

much of the request as possible before unblocking with a success
code.

O_SYNCIis set. The MME completely executes requests before returning to the
client.

O_NONBLOCK is not set (default).
The MME will block clients in a queue until it can service their
requests.

O_NONBLOCK is set.

The MME will return an error witherrno set toEAGAIN if
executing a client request would result in the client being blocked.

The blocking option is not honored by all MME functions. Synchronizations, for
example, ignore the blocking flag and are always non-blocking. The main use for the
non-blocking option is to give client application developers more control over the
behavior of the MME playback functions.

Functions that use the QDB many block on the QDB.

None delivered.

Blocking and validation

Returns:

Examples:

May 4, 2009

This function fully validates all data; all arguments are checked before the call returns.
The operation is complete when the call returns.

An initialized mme_hdl _t, or NULL if an error occurredefrno is set).

The example below shows how to connect your client application to the MME:

Chapter 1 ¢« MME APl 65

mme_conn eCt() 2009, QNX Software Systems GmbH & Co. KG.

Classification:

Caveats:

See also:

#i ncl ude <me/ nme. h>
#i ncl ude <qdb/ qdb. h>

static char *nme_devi ce_nane "/ dev/ nme/ defaul t";
static char *qdb_device_nanme = "/dev/qdb/ mre";

/1 Establish a connection to the QDB
/1 (to obtain information about tracks and their infornation)
if(NULL == (qdb = qdb_connect(qdb_device_name, 0))) {
fprintf(stderr, "%: ", qdb_device_nane);
perror("qdb_connect()");
exit(EXIT_FAI LURE);

}

/'l Establish a connection to the MVE

/1 (to control what to play)

if(NULL == (me = mme_connect (me_devi ce_name, 0))) {
fprintf(stderr, "%: ", nme_device_nane);
perror("me_connect()");
exit(EXIT_FAILURE);

Note that in the sample code above tlags variable is set to 0. The MME will use its
default settings, which ai@_SYNC andO_NONBLOCK not set.

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

MME connections can be shared between threads in a process. However, they are not
thread safe, so the client application must take precautions to ensure that the same
connection handle isn't used by two threads at the same time.

mme_disconnect()

66 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. Mme_COo py_l nf O_t

Synopsis:

Description:

Classification:

See also:

May 4, 2009

Media copy and ripping event information

#i ncl ude <nme/types. h>

typedef struct _mmre_copy_info {

ui nt 64 _t srcfid;
ui nt 64 _t dstfid;
ui nt 64 _t cqi d;

} mme_copy_info t;

The structureme_copy_i nf o_t carries information about media copying and
ripping operations. The MME uses this structure with events such as
MME_EVENT_MEDIACOPIER COPYFID, MME_EVENT_MEDIACOPIER_SKIPFID
andMME_EVENT_MEDIACOPIER _STARTFID to deliver information about the state
of a media copy or ripping operation.

Member Type Description

srcfid uint64_t The file ID of the source file being copied or ripped.

dstfid uint64_t The file ID of the destination file.

cqid uint64_t The copy queue ID entry currently being copied or ripped.

QNX Multimedia

mme_play_get status(), “Event data” and the chapter Media Copy and Ripping
Events

Chapter 1 e MME APl 67

mm e_d el ete_m ediastores () 00 2009, QNX Software Systems GmbH & Co. KG.

Prune unavailable mediastores

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int mMme_del ete_nedi astores(nme_hdl _t *hdl,
uint32_t flags);

hdl An MME connection handle.

flags A flag determining if the function should delete mediastores marked as
permanent. Set to a value definedMWE_DB_DELETION_*.

The functionmme_delete_mediastores() prunes from the MME database entries for
mediastores whose stateuisavai | abl e. It deletes entries only for mediastores
whose type MIME_STORAGETYPE *) matches the storage types set by

<Medi ast or eMat chi ng> configuration elements. See “About pruning ejected
mediastores”.

The functionmme_delete_mediastores() can be called at any time, but it is usually

used after a system startup to delete mediastores entries for mediastores whose states
are set taunavai | abl e because they were removed while the system was shut down.
See Sample scriptme_del _unav in the MME Configuration Guide.

The default behavior ahme_deletemediastores() is to not delete entries for

mediastores whose library entries mark them as permanent. However, you can set the
flag argument to override this restriction and haxee delete mediastores() delete

all entries for unavailable mediastores of the types permitted by the

<Medi ast or eMat chi ng> configuration elements.

Q The<whenUnavai | abl e> configuration has no affect anme_delete_mediastores().

MME_DB_DELETION_*

The MME defines the following values imt er f ace. h that determine the behavior
of mme_delete_mediastores():

e MME_DB_DELETION_IGNORE PERMANENT— (0x0001) delete the mediastore
from the MME database, even if it or it$ br ar y table entries are marked as
permanent.

68 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_delete_mediastores()

Events

None delivered.

Blocking and validation

Returns:

Classification:

See also:

May 4, 2009

This function doesn’t block.

=0 Success.

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

()mme_resync mediastore

Chapter 1 ¢ MME API

69

mm e_d evic e g et_C onfi g () 0 2009, QNX Software Systems GmbH & Co. KG.
Get device configuration information

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_device_get_config(mme_hdl _t *hdl,
ui nt 64_t msid,
const char *xpath,
unsi gned flags,
unsi gned buflen,
char *buffer);
Arguments:
hdl An MME connection handle.
msid The mediastore ID of the device from which option information is required.
xpath A pointer to the xpath of the XML element attribute to retrieve. This xpath
must be the string/ " (Get all option configuration information).
flags Flags to detemine the behavior of the operation. For future use.
buflen The length of the buffer (referred to toyffer) for the device configuration.
buffer A pointer to the buffer where the option option values are placed. See
“Getting and setting device configuration values” in MBIE Developer’s
Guide chapter External Devices, CD Changers and Streamed Media.
Library:
me
Description:

The functionmme_device get config() retrieves device configuration information for
a specified device accessed through MediaFS.

Ensuring an adequate buffer length

The functionmme_device get_config() returns a buffer length when it successfully
completes execution. This buffer length indicates only that the function did not fail. It
doesnot indicate that the configuration information was successfully written to the
buffer referenced by thieuffer argument:

e |If the value returned bynme_device get_config() is less than or equal t&) the
buffer length buflen), the buffer was long enough for the requested information.
The function wrote the information to the buffer and you can go on to the next
operation.

70 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mm e_d evic e J et_C onfi 0 ()

e If the value returned bynme_device get config() is greater thanX) the buffer
length puflen), the buffer was too small for the requested information. You need to
increase the buffer length to at least the returned value and call

mme_device get config() again.

Q At presentimme_device _get config() only supports:
e the following devices accessed through MediaFS:

- iPod devices
- Bluetooth devices using a Temic stack

e retrieving all option configuration information; individual elements or attributes
cannot be specified

Events
None delivered.
Blocking and validation

This function perfoms no validations and runs to completion.

Returns:

>0 The function completed successfully, but did not necessarily retrieve the
requested information. See “Ensuring an adequate buffer length” above.

-1 An error occureddfrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

nmm_nmedi a_st at us_t ,mme_device_set_config()

May 4, 2009 Chapter 1 e MME APl 71

mm e_d evic e S et_CO nfi g () 0 2009, QNX Software Systems GmbH & Co. KG.
Set device options

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_device_set_config(mrme_hdl _t *hd,
ui nt 64_t msid,
const char *xpath,
const char *newvalue,
unsi gned flags) ;
Arguments:
hdl An MME connection handle.
msid The mediastore ID of the device from which option information is
required.
Xpath A pointer to the xpath of the XML element attribute to set. This xpath
must specify an XML element attribute; for example:
"/ path/to/ node@al ue".
newvalue A pointer to the new value for the specified option.
flags Flags to detemine the behavior of the operation. For future use.
Library:
me
Description:

The functionmme_device_set config() sets a device configuration attribute for a
specified device accessed through MediaFS.

Q As of this releasemme_device_set config() only supports:
e iPod devices accessed through MediaFS

e setting a single option configuration attribute; you must call the function for each
attribute you want to change

For more information, see “Getting and setting device configuration values” in the
MME Developer’s Guide chapter External Devices, CD Changers and Streamed
Media.

72 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mm e_d evi ce_S et_CO nfi g ()

Events

_ ~ None delivered.
Blocking and validation

This function performs no validations. It does not block.

Returns:

0 Success.

-1 An error occureddfrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

mm medi a_st at us_t , mme_device_get_config()

May 4, 2009 Chapter 1 e MME APl 73

mm e_d | reCted_Sy Nnc_can cel () [0 2009, QNX Software Systems GmbH & Co. KG.

Cancels a specified directed synchronization

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int me_directed_sync_cancel (nme_hdl _t *hdl,
i nt operation id) ;

hdl An MME connection handle.

operation_id The operation ID of the directed synchronization to be cancelled.

The functionmme_directed _sync_cancel() cancels a specified directed
synchronization. The synchronization to cancel can be either in progress or pending.

To cancel a directed synchronization, set the paranogiration_id to the
synchronization ID returned byme_sync_directed().

For more information about directed synchronizations,rsee_sync_directed().

This function can return synchronization error eveMME_SYNC_ERROR *) and
MME_EVENT_SYNCABORTED

Blocking and validation

Returns:

Classification:

This function validatesperation_id before returning.

=0 Success: the directed synchronization was cancelled, or the mediastore was
not being synchronized when the cancellation request was made.

-1 An error occurreddrrno is set).

ONX Neutrino

74 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mm e_d | reCted_Sy NC_can cel ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_resync_mediastore(), mme_setpriorityfolder(), mme_sync_directed(),
mme_sync_file(), mme_sync_get msid_status(), mme_sync_get status()

May 4, 2009 Chapter 1 e MME APl 75

mm e_d isconn eCt() 0 2009, QNX Software Systems GmbH & Co. KG.

Disconnect from a control context

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMme_di sconnect(nmre_hdl _t *hd);

hdl An MME connection handle.

The functionmme_disconnect() disconnects the client application from the current
MME control context.

If you want to disconnect from a control context but leave the MME process running
and available for new client application connections, simply rmate _disconnect()

with the handle of the control context from which you want to disconnect. However, if
you want to shut down the MME, you must:

1 Call mme_shutdown() to stop playback and synchronization operations and
prepare the MME for shutdown.

2 Call mme_disconnect() to disconnect from the MME.

For more information about how to shut down the MME, s#Be_shutdown() and
“Shutting down the MME” in the chapter Starting Up and Connecting to the MME of
the MME Developer’s Guide.

None delivered.

Blocking and validation

Returns:

Full validation of data; all arguments are checked before the call returns.

>0 Success.

-1 An error occurreddrrno is set).

76 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_d iIsconn eCt()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_connect(), mme_shutdown()

May 4, 2009 Chapter 1 e MME APl 77

mm e_dVd_g et_d ISC reg ion () 0 2009, QNX Software Systems GmbH & Co. KG.

Get the region permissions for a DVD-video

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int mme_dvd _get _disc_region (nre_hdl _t *hdl,
ui nt 64_t msid,
ui nt 32_t *region);

hdl An MME connection handle.
msid The ID of the mediastore (DVD-video disk) from which information is
needed.

region A pointer to the location where the function can store the region reported
by the DVD-video disk.

The functionmme_dvd _get_disc_region() gets the region code of specific DVD-video
disks that are inserted into the DVD drive. The bits set by

mme_dvd_get disc_region() represent the regions in which the DVD-video may be
played. If no bits are set, the DVD-video is regionless and can be played in any region.

Theregion argument takes a 32-bit region code, but the top 24 bits of the region aren’t
currently used. Region codes are represented in bits 0 to 7, with bit O representing
region 1, up to bit 7 representing region 8.

How to use mme_dvd_get_disc_region()

Before playing a DVD-video, the MME automatically checks the region for a
DVD-video disk against the DVD drive region, and enforces permissions. If the user
attempts to play a DVD-video in a drive that does not have permissions for that
DVD-video’s region, the MME generatesMME_PLAY_ERROR REGIONevent.

You should use the functiomme_dvd get_disc_region() to check the regions of a
DVD-video disk when you first access it. You can perform a bitwise AND operation to
compare these regions against the region codes for which a device is enabled in order
to determine if the DVD-video can be played on that device. For example, if the

device is enabled for regions 1 and 3, you can check that a DVD-video disk is from
one of these regions or has no region set before allowing the user to continue.

By getting the DVD-video disk regions on first access and checking these against the
DVD drive regions, you can inform the end-user immediately in the event that the
DVD-video is not playable on the drive.

78 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_dVd_get_diSC region()

Example: check if a DVD-video disk can be played on a device
/*
* You can play a disk if it has no region (its region code
* is 0), or if one of the disk region bits matches the
* device region bits.
*/
if (bitsfromdisc == 0 || (bitsfrondisc & deviceregion) != 0) {
/* Region is OK */
}

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_video get status()

May 4, 2009 Chapter 1 e MME APl 79

mm e_dVd_g et_Stat us () 0 2009, QNX Software Systems GmbH & Co. KG.
Get the status for a DVD

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_dvd _get _status (nme_hdl _t *hdl,
mm dvd_status_t *status);
Arguments:
hdl An MME connection handle.
status A pointer to anm dvd_st at us_t structure the function fills in with
information about the DVD status. Sem dvd_status_t.
Library:
me
Description:
The functionmme_dvd get_status() gets the status for a DVD device. This
information is specific to DVD devices; for generic video playback information, use
mme_video get status().
Events

None delivered.

Blocking and validation

This function blocks om o- nedi a.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

80 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_dVd_g et_stat us ()

See also:

mme_video_get_status(), nm dvd_st at us_t

May 4, 2009 Chapter 1 e MME APl 81

mme_exp lo re_en d 0 0 2009, QNX Software Systems GmbH & Co. KG.
End exploration of an item

Synopsis:
#i ncl ude <nme/ expl ore. h>
int me_expl ore_end(me_expl ore_hdl _t *x hdl);
Arguments:
x_hdl The explorer handle returned bymne_explore_start().
Library:
me
Description:
The functionmme_explore_end() ends the exploration of an item on a media store.
Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

82 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_en d ()

See also:

mre_expl ore_hdl _t,mme_explore_info_free(), mme_explore _info_get(),
mre_expl ore_i nfo_t,mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

May 4, 2009 Chapter 1 ¢« MME APl 83

ITTTE_eX pl Or e_h d I _t 0 2009, QNX Software Systems GmbH & Co. KG.

The explorer APl handle

Synopsis:

Description:

Classification:

See also:

#i ncl ude <nme/ expl ore. h>

struct mme_expl ore_hdl
typedef struct nme_expl ore_hdl me_explore_hdl t;

The structureme_expl ore_hdl _t is used for exploration session control. One
handle is used for each item explored.

ONX Multimedia

mme_explore_end(), mme_explore_info_free(), mme_explore_info_get(),
mre_expl ore_i nfo_t, mme_explore playlist find_file(),
mme_explore_position_set(), mme_explore_size get(), mme_explore_start()

84 Chapter 1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_i n fO_free()
Free an explorer data structure

Synopsis:
#i ncl ude <nme/ expl ore. h>
int me_explore_info_free(nmre_hdl _t *hdl,
const me_explore_info_t *info);
Arguments:
hdl A handle to the MME returned byime_explore_start().
info Pointer to themme_expl ore_i nf o_t structure to free.
Library:
mre
Description:
The functionmme_explore_info_free() releases anme_expl or e_i nf o_t structure
that was returned bgnme_explore playlist_find_file(), not in the context of an
explorer session.
Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢« MME APl 85

mme_exp lo re_i nfo_free() [2009, QNX Software Systems GmbH & Co. KG.

See also:

mme_explore_end(), mre_expl or e_hdl _t ,mme_explore_info_get(),
mre_expl ore_i nfo_t,mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

86 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_i n fO_g et ()
Get information about an item being explored

Synopsis:
#i ncl ude <nme/ expl ore. h>
const me_explore_info_t *nme_expl ore_i nfo_get (nme_expl ore_hdl _t *x_ hdl,
uint32_t flags);
Arguments:
x_hdl An explorer handle returned byme_explore_start().
flags Flags describing the type of item.
Library:
mre
Description:

The functionmme_explore_info_get() retrieves information about an item in a folder
or a playlist file, and returns this information in the data structure
me_expl ore_i nfo_t. This information is:

e The path and filename of the item.

e Aflag describing the item (file, folder, playlist, etc.). S#®E_EXPLORE * bit
masks immme_expl ore_hdl _t.

e Metadata, if metadata has been requested. The defaulbds tetrieve metadata.

The path information is identical in format to the path information returned by
mme_ms_metadata_get(), and used bynme_play_file() (deprecated).

The item the information is for is determined by:
e the current offset position in the folder
e the number of times this function has been called

Each time this function is called, the offset position is incremented by 1 (one), until
eithermme_explore_end() or mme_explore_position_set() is called. If no offset
position is setmme_explore_info_get() starts retrieving information from the first
item in the folder.

Q Items retrieved bynme _explore_info_get() are presented as they occur; that is, they
arenot sorted or reorganized in any way.

May 4, 2009 Chapter 1 ¢« MME APl 87

mme_exp lo re_i n fo_g et () 2009, QNX Software Systems GmbH & Co. KG.

MME_EXPLORE_RESOLVE_PLAYLIST_ITEM

The constanMME_EXPLORE _RESOLVE PLAYLIST_ITEM is an inbound flag telling

the MME to resolve playlist file entries immediately. Using this flag results in much
faster resolution of playlist contents to playable files, but the actual playlist entry value

is not visible at to the client application.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

An initialized mme_expl ore_hdl _t,or NULL if an error occurreddfrno is set).
Classification:

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_explore_end(), mre_expl ore_hdl _t, mme_explore_info_free(),
mre_expl ore_i nfo_t, mme_explore playlist find_file(),
mme_explore_position_set(), mme_explore_size get(), mme_explore_start()

88 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. ITTTE_eX pl Or e_l nf O_t

Synopsis:

Description:

I nformation about items found during mediastore exploration

#i ncl ude <nme/ expl ore. h>

typedef struct s _mme_explore_info {
uint32_t flags;

uint32_t index;

char *pat h;

nme_net adata_hdl _t *net adat a;

} nme_explore_info_t;

The structureme_expl ore_i nf o_t carries information about items (folders and
files) found at a specified path on a mediastore. It contains at least the members
described in the table below.

Member Type Description

flags uint 32_t Flags set to a value defined by
MME_EXPLORE * bit masks, described
below.

index uni nt 32_t Index for this entry in the parent folder.

path char A pointer to the full path to the item on the
mediastore.

metadata mmre_net adat a_hdl _t A pointer to the metadata for this item, if
metadata was requested and found. If this
pointer is not zero, you know that metadata
for this item is available. You doot need to
check the
MME_EXPLORE_FLAGS HAS_ METADATA
flag as well.

MME_EXPLORE_* bit masks

May 4, 2009

Bitmasks that support mediastore exploration are described in the table below:

Chapter 1 ¢« MME API 89

mTE_eX pl Or e_l nf O_t 2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_EXPLORE _FILTER_INCLUDE 0x00000000 Inbound flag: instruct the MME to treat
the file filter specification as an
include-only specifier. This is the
default setting if no flag is specified.

MME_EXPLORE FLAGS IS_FOLDER 0x00000001 The item is a folder et a file.
MME_EXPLORE FLAGS IS_PLAYLIST 0x00000002 The item is a playlist (folder or file).
MME_EXPLORE _FLAGS IS _PLAYLIST_ITEM 0x00000004 The item is a name from a playlist.

MME_EXPLORE FLAGS IS_PLAYLIST_FILENAME 0x00000008 The item is a resolved filename from a
playlist file. The MME returns this
value only for items retrieved from
playlists when
MME_EXPLORE RESOLVE PLAYLIST_ITEM
is used for items successfully converted
to a file on the mediastore. Otherwise,
the MME returns the
MME_EXPLORE FLAGS_IS_PLAYLIST_ITEM
flag with the item.

MME_EXPLORE_FLAGS HAS_METADATA 0x00000100 The item has metadata.

MME_EXPLORE_RESOLVE PLAYLIST_ITEM 0x00010000 Inbound flag: instruct the MME to
resolve playlist file entries immediately.
Using this flag results in much faster
resolution of playlist contents to
playable files, but the actual playlist
entry value is not visible to the client
application. This flag overrides the
MME_EXPLORE UNCONVERTED CHAR_ENCODING
flag.

MME_EXPLORE _FILTER_EXCLUDE 0x00020000 Inbound flag: instruct the MME to treat
the file filter specification as an exclude
specifier.

MME_EXPLORE_UNCONVERTED CHAR_ENCODING 0x00040000 Inbound flag: instruct the MMEtot
perform any character conversion on
entries before returning them. See
“MME_EXPLORE_UNCONVERTED CHAR_ENCODING
flag” below.

MME_EXPLORE_UNCONVERTED_CHAR_ENCODING flag
Normally, the MME attempts to convert playlist file entries to UTF-8.

Setting theME_EXPLORE_UNCONVERTED CHAR_ENCODINGinbound flag is
useful for seeing what comes out of playlists when their entries don’t appear to convert
to real files.

90 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. nTTE_eXpl Or e_l nf O_t

If the MME_EXPLORE_RESOLVE PLAYLIST_ITEM flag is set, this setting overrides
the MME_EXPLORE UNCONVERTED CHAR_ENCODINGflag.

Example

Below is an example from the command-line applicatiomxpl or e showing how
MME_EXPLORE * bit masks can be used.

static const char *itemtype_str(uint32_t flags)

{

if (flags & MVE_EXPLORE FLAGS | S PLAYLI ST _FI LENAMVE) {
return "PF";

if (flags & MVE_EXPLORE_FLAGS | S PLAYLI ST _ITEM {
return "PI";

if ((flags & (MVE_EXPLORE FLAGS | S PLAYLI ST| MVE_EXPLORE_FLAGS | S FOLDER)) ==
(MVE_EXPLORE_FLAGS | S PLAYLI ST| MVE_EXPLORE_FLAGS | S FOLDER)) {
return "DP";

if (flags & MVE_EXPLORE_FLAGS | S PLAYLI ST) {
return "P ";

}
if (flags & MVE_EXPLORE_FLAGS | S FOLDER) {
return "D ";

}

return "F ";

Classification:

ONX Multimedia

See also:

mme_explore_end(), mre_expl or e_hdl _t ,mme_explore_info_free(),
mme_explore_info_get(), mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size get(), mme_explore_start()

May 4, 2009 Chapter 1 e MME APl 91

mme_exp lo re_p I ayI | St_ﬁ n d_fl I eO 0 2009, QNX Software Systems GmbH & Co. KG.

Convert playlist file entries to filenames

#i ncl ude <nme/ expl ore. h>

const mMe_explore_info t
*mre_explore_playlist _find file(nmre_hdl _t *hdl,

Synopsis:
Arguments:
hdl
msid
entry
path
metadata_types
flags
Library:
me
Description:

ui nt 64_t msd,

const char *entry,

const char *path,

const char *metadata types,
uint32_t flags);

A handle to the MME returned byme_explore_start().
The ID of the media store to explore.

The playlist file entry retrieved from the explorer.
The path of the playlist file on the mediastore.

An optional pointer to a string containing a comma-separated list
of metadata types to retrieve. This pointer mayNg L. See
METADATA _* in this reference.

For future use.

The functionmme_explore_playlist find_file() converts playlist file entries retrieved
during exploration of a playlist file or folder to a filename on the system, and returns
information about these converted entries im&_expl ore_i nf o_t structure.

92 Chapter 1 ¢ MME API

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re p | ayl |St_f| n d_fl | e()

Q e You should convert your playlists to UTF-8 before calling
mme_explore_playlist_find_file(). This function currently assumes that egry
argument is in UTF-8 character encoding. Characters in playlists may not be in
UTF-8 encoding, and if they are not converted to UTF-8 may cause the function to
fail.

e Sincemme_explore playlist find file() cannot know the origin of entries it
converts, it always returns a value of O for ilndex member of the returned
mre_expl ore_i nfo_t structure.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

A populatednme_expl ore_i nf o_t structure on success, NULL if an error
occurred érrno is set).

The result of a successful call tane_explore _playlist find file() must be released
by mme_explore_info_free().

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_explore_end(), mre_expl ore_hdl _t,mme_explore_info_free(),
mme_explore_info_get(), nme_expl ore_i nf o_t ,mme_explore_position_set(),
mme_explore_size_get(), mme_explore_start()

May 4, 2009 Chapter 1 ¢« MME APl 93

mme_exp lo re_pos itio n_s et () 0 2009, QNX Software Systems GmbH & Co. KG.

Position the information extraction location in the current folder

Synopsis:
#i ncl ude <nme/ expl ore. h>
int mMe_explore_position_set(nme_explore_hdl t *x hdl,
unsi gned offset,
unsi gned items,
const char *metadata types,
const char *filter,
uint32_t flags);
Arguments:
x_hdl An explorer handle returned byme_explore_start().
offset The offset in the folder from which to start getting information.
items The number of items, starting at the offset from which
information is required.
metadata_types An optional pointer to a string containing a comma-separated list
of metadata types to retrieve. This pointer mayNg L. See
METADATA _* in this reference.
filter A pointer to a regular expression used for filtering. This pointer
may beNULL . See “Filtering” below.
flags An MME_EXPLORE FILTER_* bitmask instructing the MME to
treat the filter specification as either an include-only or as an
exclude-only specifier. The default is
MME_EXPLORE FILTER_INCLUDE. See “Filtering” below.
Library:
mre
Description:

The functionmme_explore_position_set() sets:
e The position offset in the current folder from which the MME extracts information.
e The number of items that are requested, starting at the offset.

e The metadata types, if any, returned with the items. See also the chapter Metadata
and Artwork in theMME Developer’s Guide.

94 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_pos itio n_sS et ()

Filtering

May 4, 2009

g
/N

If the item being explored is a playlist file, no metadata will be returned.

CAUTION: Retrieving more items than can be shown at one time in the HMI display
window reduces system responsiveness:

e Always setitems (the number of items requested) to a value less than or equal to
the number of items that can be shown at one time in the HMI display window size.

e Adjust the number of items requested to correspond to changes to the size of the
HMI display window.

You can use théilter andflag arguments to filter the files examined and deliver only
files of interest.

If the filter argument iNULL, it specifies no filter, and removes any previously used
filter. When this argument is ndtULL, it is an extended regular expression as defined
by theregcomp() function, where the flagREG ICASE| REG_EXTENDED|
REG_NOSUBare used.

For example, to include only MP3 and WAVE files, based on the extensiop® and
. wav, you should callnme_explore_position_set() as follows:

rc = nme_explore_position_set(x_hdl, 0, 20, NULL, ".np3$|.wav$",
MVE_EXPLORE_FI LTER | NCLUDE) ;

Or, to exclude all files with the extensiomov, do the following:

rc = mre_explore_position_set(x_hdl, 0, 20, NULL, ".nov$",
MVE_EXPLORE_FI LTER_EXCLUDE) ;

CAUTION:

e The presence of filters makes usimge_explore _size get() an expensive
operation (for mediastores for which it is normally inexpensive), because the
mme_explore_size get() operation must now traverse the entire session to
determine the actual number of items of interest.

e If afilter is assigned (or removed), the current position with the current explore
session is reset to 0.

e If mme_explore _size get() is called before the filter is set, its result may not be
accurate when the filter is applied.

Chapter 1 ¢« MME APl 95

m m e_ eX p | O I'e_p OS |t| O n_S et () 2009, QNX Software Systems GmbH & Co. KG.

Events

_ ~ None delivered.
Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_explore_end(), mre_expl ore_hdl _t,mme_explore_info_free(),
mme_explore_info_get(), mme_expl ore_i nfo_t,
mme_explore_playlist_find_file(), mme_explore size get(), mme_explore_start()

96 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_s | ze_ (g et O

Synopsis:

Arguments:

Library:

Description:

AN

Events

Get the number of entriesto be explored

#i ncl ude <nme/ expl ore. h>

ssize_ t me_explore_size get(mre_explore_hdl t *x hdl,
uint32_t flags);

x_hdl An explorer handle returned byme_explore_start().

flags For future use.

The functionmme_explore_size get() returns the number of entries of interest found

in the folder that is currently being explored.

CAUTION:

e mme_explore_size get() may require considerable time to complete execution:
with some mediastore types, it requiressaddir() of the entire item being
explored.

e If mme_explore _size get() is called before the filter is set, its result may not be
accurate when the filter is applied.

e The use of filters withmme_explore position_set() makes using
mme_explore_size get() an expensive operation (for mediastores for which it is
normally inexpensive), because timee_explore _size get() operation must now

traverse the entire session to determine the actual number of items of interest.

None delivered.

Blocking and validation

May 4, 2009

This function performs no validations. It doesn’t block.

Chapter 1 e MME APl 97

m m e_ eX p | O I'e_S | Ze_g et() 2009, QNX Software Systems GmbH & Co. KG.

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_explore_end(), nme_expl ore_hdl _t,mme_explore_info_freg(),
mme_explore_info_get(), nme_expl ore_i nfo_t,
mme_explore_playlist_find_file(), mme_explore position_set(),
mme_explore_start()

98 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_exp lo re_Start()

Sart exploring an item on a mediastore

#i ncl ude <nme/ expl ore. h>

nme_expl ore_hdl _t *nme_explore_start(mre_hdl _t *hd,

ui nt 64_t uint64 t msid,
const char *path,
uint32_t flags);

An MME connection handle.
The ID of the media store to explore.

The path to the item to explore. Use an empty string to start at the root of the
media store. See the “Description” below.

For future use.

The functionmme_explore_start() returns a handle to be used to explore a mediastore.
After calling mme_explore_start(), you can use othanme_explore *() functions to
find and learn about folders and files of interest on the media store.

Q Thepath argument can be refer to a file marked as a playlist as well as to a folder or to
a file that can be played.

Synopsis:
Arguments:
hall
msid
path
flags
Library:
me
Description:
Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:

An initialized mme_expl ore_hdl _t,or NULL if an error occurreddfrno is set).

May 4, 2009

Chapter 1 ¢« MME APl 99

mme_exp lo re_start() 2009, ONX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_explore_end(), mre_expl ore_hdl _t,mme_explore_info_free(),
mme_explore_info_get(), mre_expl ore_info_t,
mme_explore_playlist_find_file(), mme_explore_position_set(),
mme_explore_size get()

100 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. MM E_FO R MAT_* and MM E_P LAYMOD E_*

Synopsis:

Description:

May 4, 2009

#i ncl ude <mme/ i nterface. h>
#def i ne MVE_PLAYMODE *

#defi ne MVE_FORVAT_*

The constantMME_PLAYMODE_* define the play mode used for a track session. The
constantsME_FORMAT _* described in the table below define the media file formats

Track session creation definitions

(codecs). They are used by tfoemat field in thel i br ary table.

Constant Value Description
MME_PLAYMODE_LIBRARY 0x0 Library mode.
MME_PLAYMODE_FILE 0x2 File-based track session mode.
MME_FORMAT_UNKNOWN OULL Unknown media format.
MME_FORMAT_MLP 1ULL Meridian Lossless Packing
MME_FORMAT_PCM 2ULL LPCM and PCM (Pulse-Code
Modulation)
MME_FORMAT_AC3 3ULL AC-3 (Dolby Digital)
MME_FORMAT_MP2 4ULL MPEGL1 audio layer I
MME_FORMAT_MPEG1 L2 4ULL MPEG audio layer Il
MME_FORMAT_DTS 5ULL DTS Coherent Acoustics (Digital
Theatre Systems)
MME_FORMAT_SDDS 6ULL Sony Dynamic Digital Sound
MME_FORMAT _MPEG1 L1 7ULL MPEGL1 audio layer |
MME_FORMAT_MPEGL1 L3 8ULL MPEGL1 audio layer llI
MME_FORMAT _MPEG2 L1 9ULL MPEGL1 audio layer |
MME_FORMAT_MPEG2 L2 10ULL MPEGZ2 audio layer Il
MME_FORMAT_MPEG2 L3 11ULL MPEG2 audio layer Il
MME_FORMAT_MPEG2 PRO 12ULL MPEG2 program stream
MME_FORMAT_OGG 13ULL Ogg Vorbis format
MME_FORMAT_AAC 14ULL AAC format

continued. ..

Chapter 1 ¢« MME API 101

MM E_FOR MAT_* and MM E_PLAYMO D E_* [0 2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_FORMAT_AMR 15ULL AMR format

MME_FORMAT_PCM _PREEMPH 16ULL PCM format with pre-emphasis
MME_FORMAT_WMA 17ULL WMA format

Classification:
QNX Multimedia
See also:

MME_MSCAP_*, MME_MSCAP_*, MME_STORAGETYPE *,
MME_SYNC_OPTION_*, medi ast or es

102 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_Jg et_ap |_t| meo ut_rem ainin g ()

Synopsis:

Arguments:

Library:

Description:

Events

Get the time left on the unblocking timer

#i ncl ude <nme/ me. h>

int TMe_get _api _tineout_renmaining(mMme_hdl t *hdl,
ui nt 32_t *milliseconds) ;

hdl An MME connection handle.

milliseconds Deprecated.

The functionmme_get_api_timeout _remaining() distinguishes betweeBINTR errors
caused by the MME unblocking the caller and other EINTR errors.

If a client application has usedme_set_api_timeout() to set an unblocking timer on
the control context, API calls that are blocked beyond the set timeout period will
unblock the client, returning early with theerno set toEINTR.

Becauseerrnos propagate up, aBINTR can be returned to the client for reasons other
than a timeout. To distinguish EINTR errors caused by the MME unblocking the caller
and other EINTR errors, cathme _get api_timeout remaining() to get the time
remaining on the timer. If the time remaining indicatedriiyliseconds is greater that

0 (zero), then th&INTR error wasn'’t caused by a timeout. If the time remaining is 0,
then theEINTR was caused by a timeout.

The MME’s default configuration is to disable unblocking capabilities, which renders
the information delivered bynme_get_api_timeout_remaining() meaningless. To
enable the MME’s unblocking capability, set thenbl ock> configuration element
attribute to “true”.

None delivered.

Blocking and validation

May 4, 2009

This function doesn’t block.

Chapter 1 ¢ MME APl 103

mme_get_api_timeout_remaining() [2009, QNX Software Systems GmbH & Co. KG.

Returns:

=0 Success. Assuming an MMEINTR
-1 An error occurredérrno is set). Errno is set. ABINVAL error indicates that
the timeout is set to 0, so the request for the time remaining is invalid.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_set_api_timeout()

104 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Jg et_ event()
Get the next queued MME event

Synopsis:

#i ncl ude <me/ nme. h>

int Mme_get _event(nme_hdl _t *hdl,

nme_event _t **mme_event);

Arguments:

hdl An MME connection handle.

mme_event A pointer to a pointer to the event in the MME event queue.
Library:

mre
Description:

The functionmme_get_event() allows you to determine when your client application
receives events. It retrieves events from the event queue, and places event information
inthenme_event _t data structure. This information includes the event:

o type
e size, in bytes (events are variable length)
e data

Events are associated with an MME connection handke _hdl _t ; they cannot be
cleared by the client application.

The MME does not automatically place events in the event queue. You must use the
functionmme_register_for_events() to register for the types of events your client
application needs to receive. Registration is typically done immediately after
connection.

When the client application is registered for one or more type of event, the MME
places these event types in an event queue and sends the reieyanént to the
client application. Based on tls gevent , the client can decide to call
mme_get_event() to retrieve the event.

Q A call to mme_get_event() invalidates any data that was in thee_event _t before
the call was made. If the client application needs to keep event information longer
than the next call tonme_get _event(), it must copy the event before calling
mme_get_event().

May 4, 2009 Chapter 1 ¢ MME APl 105

m m e_g et_ event() 2009, QNX Software Systems GmbH & Co. KG.

For more information about registering for events, see “Registering for events” in the
chapter Starting Up and Connecting to the MME of MRIE Developer’s Guide, and
mme_register_for_events().

If your client application does not register for events before it caite_get_event(),
the event queue will be empty. If there are no events in the event queue
me_event _type_t will be set toMME_EVENT_NONE.

For more information about these data structures, see the relevant sections in the
chapter MME Events.

Events
None delivered.

Blocking and validation

This function doesn’t perform any validations, and blocks only on internal event
structures. It doesn't block on processes external to the MME, sugtibasr
i o- nedi a.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_connect(), mme_disconnect(), mme_register_for_events(), MME Events,
“Registering for events” in th&/ME Developer’s Guide

106 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Jg et_ lo Jg in g ()
Get the verbosity log levels for specified logging modules

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_get | oggi ng(me_hdl _t *hdl,
const char *name,
char * settings,
size_ t size);
Arguments:
hdl An MME connection handle.
name A pointer to a string with the name of the logging module for which
information is required. Set the string MJLL to retrieve information for
all logging modules.
settings A comma-separated list of the logging modules and their log levels. See
“Log level settings” below.
size The size, in bytes, of the buffer for the retrieved setting information.
Library:
mre
Description:

The functionmme_get_logging() retrieves the logging verbosity levels for the
specified MME logging modules. For more information about the logging modules
and how to set their levels, se@ne_set_logging().

Log level settings

Themme_get_logging() function writes logging level information into the buffer
referenced by theettings argument. These settings are written as a comma-separated
list with each item based on the following template:

nmodul e=verbosity | evel :flags

For example, if the metadata interface logging module has a verbosity level of 8 and
its flags set to Omme_get_logging() writes the following to the buffer referenced by
settings. ndi =8: 0.

Logging modules

The strings that identifyme logging modules include:

May 4, 2009 Chapter 1 ¢« MME API 107

mme_Jg et_ o gg in g () | 2009, QNX Software Systems GmbH & Co. KG.

String Module

i mgprc image processing module
mdi metadata interface module
mdp metdata plugin module
pl playlist module
sync synchronization module

ne all other modules

Q The above list is not definitive. The logging modules may change. To find out what
logging module strings are valid, caime_get_logging() with the string referenced
by thename argument set tdlULL .

Logging flags

The logging flags are bit masks that configure logging behavior:

Value Behavior

1 Also write anything logged to standard output.
2 Write timing logs.

Events

None delivered.

Blocking and validation

This function doesn’t perform any validations, and doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. ..

108 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_get_logging()

Safety
Signal handler No
Thread Yes

See also:
mme_set_logging()

May 4, 2009

Chapter 1 ¢ MME API

109

mme_Jg et_t it e C h apter () 0 2009, QNX Software Systems GmbH & Co. KG.
Get DVD title and chapter information

Synopsis:

#i ncl ude <nme/ me. h>

int me_get title_chapter(mre_hdl _t hdl,
ui nt 64_t *title
ui nt 64_t *ntitles,
ui nt 64_t *chapter,
ui nt 64_t *nchapters) ;

Arguments:
hdl An MME connection handle.

title The current title number.
ntitles The number of titles in currently playing track or mediastore.
chapter The current chapter number.

nchapters The number of chapters in the current title.

Library:

Description:
The functionmme_get_title_chapter() gets for the currently playing DVD track:
e the number of titles and chapters on the track or its mediastore
e the currently playing title and chapter numbers.

This function can be used only if théME_PLAYSUPPORT NAVIGATION flag is set
in the support member of the structuneme_pl ay_info_t.

To start playback from a specific title and chapter, call the function
mme_seek_title_chapter() to seek to the desired title and chapter, then call the
functionmme_play() to start playback.

Events

None delivered.

Blocking and validation

This function blocks om o- nedi a.

110 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_g et_tltl e C h apter()

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Examples:
Below is a code snippet that illustrates how to get DVD title and chapter information.

uinté4 t title, ntitles, chapter, nchapters;

rc = nme_get _title chapter(mmehdl, &title, &ntitles, &chapter, &nchapters);
if (rc == ECK) {
printf("Title %1d of %1d, Chapter %1d of %1d",
title, ntitles, chapter, nchapters);

} else {
printf("Error getting title/chapter info %", strerror(errno));
}

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_play(), mme_play_bookmark(), mme_play_get_info(), mme_pl ay_i nfo_t,
mme_seek_title_chapter(), mme_seektotime()

May 4, 2009 Chapter1 e MME API 111

mme_Jg etauto paus e() 0 2009, QNX Software Systems GmbH & Co. KG.
Get the autopause mode set for a control context

Synopsis:
#i ncl ude <me/ nme. h>
i nt mMme_get aut opause(nme_hdl _t *hdl);
Arguments:
hdl An MME connection handle.
Library:
me
Description:
The functionmme_getautopause() returns the autopause mode for a control context. It
returns 1 if autopause is enabled, O if it isn’t enabled. For a description of autopause
mode, seenme_setautopause().
Events

None delivered

Blocking and validation

This function doesn’t block.

Returns:

>0 Success:

1 Autopause mode is set.
0 Autopause mode is not set.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

112 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_g etauto paus e()

See also:

mme_next(), mme_play(), mme_prev(), mme_setautopause()

May 4, 2009 Chapter 1 e MME APl 113

mme_ g etccid () 0 2009, QNX Software Systems GmbH & Co. KG.
Get the control context ID for the currently connected control context

Synopsis:

#i ncl ude <nme/ me. h>

int mMe_getccid(nmre_hdl _t *hdl,
uint64_t *ccid) ;

Arguments:
hdl An MME connection handle.

ccid The control context ID (output).

Library:

Description:

The functionmme_getccid() returns the ID for the control context associated with the
specified MME handle. You can use this ID to query these tables in the MME
database:

e control cont ext,to obtain additional information about the control context
(such as its current track session)

e nowpl ayi ng, to find the metadata for the track currently playing on the control
context.

For more information about control contexts, see the chapter Control Contexts, Zones
and Output Devices in theIME Developer’s Guide.

Events

None delivered.
Blocking and validation

This function is fully validating; it checks all arguments before returning.
Returns:

0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

114 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_Jg etccid ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_connect()

May 4, 2009 Chapter 1 e MME APl 115

mme_Jg etclientcou nt() [2009, QNX Software Systems GmbH & Co. KG.
Get the number of clients connected to a control context

Synopsis:
#i ncl ude <me/ nme. h>
int mme_getclientcount(nmre_hdl _t *hd);

Arguments:
hdl An MME connection handle.

Library:
me

Description:
The functionmme_getclientcount() returns the number of clients connected to the
MME on the control context specified thgl. This count is the number ofire_hdl _t
active handles that have been returned by calfarte _connect() for the control
context.

Events

None delivered.

Blocking and validation

This function is non-blocking and performs no validations.

Returns:

=0 Success: the number of clients attached to the control context for the specified
MME handle.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

116 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Jg etclientcou nt()

See also:

mme_connect()

May 4, 2009 Chapter 1 « MME APl 117

mme_Jg etlocal e() 00 2009, QNX Software Systems GmbH & Co. KG.
Get the locale setting

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_getl ocal e(nre_hdl _t *hdl,
char *locale);
Arguments:
hdl An MME connection handle.
locale A pointer to a location where the function can store the current locale
setting. This location must be at least six characters long.
Library:
me
Description:
The functionmme_getlocale() gets the current locale setting for an MME control
context.
Events

None delivered

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

118 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_g etlocal e()

See also:
mme_setlocalg()

May 4, 2009 Chapter 1 ¢« MME APl 119

mme_ g etrandom () 0 2009, QNX Software Systems GmbH & Co. KG.
Get the random playback mode for a control context

Synopsis:
#i ncl ude <me/ nme. h>
int mre_getrandom(mre_hdl _t *hd);
Arguments:
hdl An MME connection handle.
Library:
mre
Description:
The functionmme_getrandom() tells you whether the specified control context has
been set to random playback mode. On success, it returns the control context’'s random
mode.
Seemme_node_r andom t for a description of the random modes.
Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns. Verifies that
the client application code is valid. Blocks on control contexts.

If mme_getrandom() is called and another function is called befomme getrandomy()
returns, the second function blocks oo+ nedi a until mme_getrandom() returns. If
there are no other pending caltsme_getrandom() returns without blocking on

i o- medi a.

Returns:

=0 Success: the random playback mode for the control context.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

120 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_Jg etrandom ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getrepeat(), mme_getscanmode() mme_setrandom() mme_setrepeat(),
mre_node_random t,nme_node_repeat _t

May 4, 2009 Chapter 1 ¢« MME API 121

mme_ g etrep eat () 0 2009, QNX Software Systems GmbH & Co. KG.

Get the repeat playback mode for a control context

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int Mme_getrepeat (mre_hdl _t *hd);

hdl An MME connection handle.

The functionmme_getrepeat() returns the repeat mode for the specified control
context. On success, it returns the control context’s repeat mode.

Seemme_node_r epeat _t for a description of these modes.

None delivered.

Blocking and validation

Returns:

Classification:

Full validation of data; all arguments are checked before the call returns.

This function blocks on control contexts.rfime_getrepeat() is called and another
function is called beforenme_getrepeat() returns, the second function blocks on
i o- medi a until mme_getrepeat() returns. If there are no other pending calls,
mme_getrepeat() returns without blocking oho- medi a.

=0 Success: the repeat playback mode for the control context.

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No
Signal handler No

continued. ..

122 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_g etrep eat ()

Safety
Thread Yes

See also:

mme_getrandom(), mme_getscanmode() mme_setrandom() mme_setrepeat (),
mre_node_random t,nme_node_repeat _t

May 4, 2009 Chapter 1 e MME APl 123

mme_ g etscanmod e() 0 2009, QNX Software Systems GmbH & Co. KG.

Get the scan mode for a control context

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMe_get scannode(me_hdl _t *hdl,
uint64_t *time);

hdl An MME connection handle.

time A pointer to a location where the function can store the scan mode setting (in
milliseconds).

The functionmme_getscanmode() gets the scan mode setting for a control context.
This setting is the number of milliseconds of a track that the MME plays in scan mode
before skipping to the next track in the tracklist.

None delivered.

Blocking and validation

Returns:

Classification:

This function blocks on control contexts.rtime_getscanmode() is called and another
function is called beforenme _getscanmode() returns, the second function blocks on
i 0- medi a until mme_getscanmode() returns. If there are no other pending calls,
mme_getscanmode() returns without blocking ono- nedi a.

>0 Success.

-1 An error occurreddrrno is set).

QNX Neutrino

124 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Jg etscanmod e()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getrandom(), mme_getrepeat(), mme_setrandom() mme_setrepeat(),
mme_setscanmode()

May 4, 2009 Chapter 1 ¢ MME APl 125

ITTTE_h d I _t [J 2009, QNX Software Systems GmbH & Co. KG.
The MME connection handle

Synopsis:

#i ncl ude <nme/types. h>

Description:

The opaque structurere_hdl _t carries MME connection handle information. Valid
connection handles are created by the functione _connect(). The MME fills in all
needed information to create the connection handle; you only need to know that all
calls to MME functions require a valid connection handle.

The functionmme_disconnect() releases connection handles. Function calls made
with a connection handle after it has been released will cause an error.

Safety

All MME functions are thread-safe. The client application can create multiple
connections and the MME handles thread safety for all thredwga each thread uses
a different connection handle.

However, if you use the same connection handle for more than one thread in your
client application, you must use mutexes, semaphores or some other method to protect
the connection handle from being accidently overwritten.

Classification:
ONX Multimedia

See also:

mme_connect(), mme_disconnect()

126 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_lib_column_set()

Set valuesin specified table column

#i ncl ude <nme/ me. h>

int mme_lib_colum_set(me_hdl t *hdl,

Synopsis:
Arguments:
hdl
msid
column
value
Library:
me
Description:

ui nt 64_t msid,
const char *column,
i nt value);

An MME connection handle.

The ID of the mediastore for which a value needs to be changed in the
l'i brary table.

The name of théi br ary table column that needs to be changed.

The new value for the entries for the specified mediastore in the specified
column.

The functionmme_lib_column_set() inserts a value into the entries for a mediastore in
thel i brary table (or adjunct tables). It can be used to perform actions such as
clearing thd i br ar y tableaccurate fields for the specified mediastore.

Update behavior

This function can only be used to update entries in the columns listed below, and it
validates that the character string referencedddymn specifies one of these columns:

e accurate

e last played

o fullplay_count

e playable

e permanent

e copied_fid

May 4, 2009

Chapter 1 ¢« MME API 127

mm e_l | b_COl um n_set () 2009, QNX Software Systems GmbH & Co. KG.

Y

Events

e Whenmme_lib_column_set() completes execution it returns the number of rows

for the specified mediastore that now have the new value. In other words, the
function returns the number of rows for the specified mediastore that are now set to
the new value.

If prior to the call tomme_lib_column_set() some rows were already set to the
required value, the return value may differ from the number of rows actually
updated.

Only rows for the specified mediastore are included in the return value. Rows for
other mediastores are not counted.

None delivered.

Blocking and validation

Returns:

Classification:

See also:

This function validates the column name; it executes to completion.

=0 Success: the number of table rows for the specified mediastore, with the new

value updated. See “Update behavior” above.

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

128 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m edi a (g et_d ef_ lan g ()
Get the preferred media playback language

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_nedia_get _def lang (mme_hdl _t *hdl,
char *lang);
Arguments:
hdl An MME connection handle.
lang A pointer to a location where the function can store the current preferred
media playback language (a string to place a O-terminated, 2-character
ISO639-1 language code). If the language hasn’t beetasitjs set to a
0-length string.
Library:
me
Description:
The functionmme_media_get def lang() gets the current preferred language
playback setting for an MME control context.
For more information about default language settings, see
mme_media_set_def lang().
Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. ..

May 4, 2009 Chapter 1 e MME API 129

mme_m edi a g et_d ef_l ang () [0 2009, ONX Software Systems GmbH & Co. KG.

Safety
Signal handler No
Thread Yes

See also:
mme_media_set def lang()

130 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m edi a_ S et_d Ef_l ang ()

Synopsis:

Arguments:

Library:

Description:

Events

Set the preferred media playback language

#i ncl ude <nme/ me. h>

int mMme_nedia_set_def lang (mme_hdl _t *hdl,
const char *lang);

hdl An MME connection handle.

lang The default language code to set. This is a string containing 2-character
ISO639-1 language code. See
http://ww. | oc. gov/ st andar ds/ i so639- 2/ php/ code_I|i st. php

The functionmme_media_set_def lang() sets the preferred language for media
playback. After this function sets the language preference for the current MME
control context, the MME uses the selected language as the default langauge for
playback whenever possible. For examphee_media_set_def lang() sets the
preferred language to German:

e If a DVD-video has playback in German, the MME will play the DVD in German.

e If a DVD-video does not have playback in German, the MME will play the DVD in
the preferred language set on the DVD itself.

If mme_media_set def lang() is not called after connecting to the MME, no language
preference is selected, and the MME will play media in the preferred language set on
the mediastores.

The functionmme_media_set def lang() delivers the

MME_EVENT_DEFAULT_LANGUAGE so that asynchronous clients are notified that

the default preferred language has been successfully set, or that the attempt to change
the language has failed.

Blocking and validation

May 4, 2009

This function doesn’t block.

Chapter 1 ¢« MME API 131

mme_m edi a_ S et_d ef_l ang () [0 2009, ONX Software Systems GmbH & Co. KG.

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_media_get def lang()

132 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P [er_ad d ()
Add files to the copy queue

Synopsis:
#i ncl ude <me/ nme. h>
i nt me_nedi acopi er _add(nme_hdl _t *hdl,
mre_nedi acopi er _i nfo_t *copyinfo,
char * statement,
uint32_t flags) ;
Arguments:
hdl An MME connection handle.
copyinfo A pointer to anme_nedi acopi er _i nf o_t structure that contains
information about the copy operation.
statement An SQL statement that selects the fids that you want to encode.
flags Flags affecting the copy operation. See “Mediacopier flags” below.
Library:
mre
Description:

The functionmme_mediacopier_add() prepares a media copying or ripping operation.
Files that are selected Isfatement are added to theopyqueue table in the MME
database.

To start a copy or ripping operation:

e usemme_mediacopier _add() to populate theopyqueue table with information
needed for the copy or ripping operation

e call mme_mediacopier_enable() to start the operation

Q To add files to the copy queue, specifying strings for unknown metadata, use
mme_mediacopier_add with_metadata().

Using default ripping values

By default, if you set theopyinfo members as followsdst nsi d=0,
dst f ol der =NULL,dst fi | ename=NULL, andencodef or mat i d=0, the MME will
use the defaults in the configuration fitee. conf .

May 4, 2009 Chapter 1 e MME APl 133

m m e_ m ed | aC O p | er_ ad d () 2009, QNX Software Systems GmbH & Co. KG.

CAUTION: You should not assume that the default destination mediastore set by the
configuration elementCopyi ng>/<Dest i nat i on>/<MSI D> is always your HDD. In
some instances, on startup the MME may detect another mediastore, such as a CD,
before it detects the HDD and assignnisid=1. When preparing a media copy or

ripping operation, ensure that the destination mediaststengid) is a writeable
mediastore.

For more information, see the chapter Configuring Media Copying and Ripping in the
MME Configuration Guide.

Mediacopier flags

Media copying and ripping uses tflags argument to determine media copying and
ripping behavior. Possible values are combinations of:

Flag Value Description

MME_MEDIACOPIER_COPYADD_NONE 0x0000 Copy or rip directly
to a destination
folder. Obsolete; not
supported.

MME_MEDIACOPIER COPYADD PRESERVE PATH 0x0001 Preserve the original
folder structure for
copied or ripped
files. Create folders
as required.
Obsolete; not
supported.

MME_MEDIACOPIER _USE_DEFAULT_FILENAME 0x0002 Use the default
destination filename
set in the MME
configuration file.

MME_MEDIACOPIER_USE_METADATA 0x0004 Use the specified
metadata; do not use
defaults.

MME_MEDIACOPIER USE DEFAULT_FOLDERNAME 0x0008 Use the default
destination folder
name set in the
MME configuration
file.

134 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er_ add ()

For more information about default destination files and folders, see “Configuration
elements for the media copy and ripping destination” inNE Configuration
Guide chapter Configuring Media Copying and Ripping.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:

>0 Success

-1 An error occurreddrrno is set).

Examples:

Below is a code snippet from therecl i . ¢ example application. This code snippet
illustrates how to set up a call tame_mediacopier_add().

me_nedi acopi er _i nfo_t copyi nfo;

/1 Just use defaults for now

copyi nfo.dstnmsid = O;

copyi nfo.dstfolderid = O;

copyi nfo. format = O;

copyinfo.bitrate = 0;

rc = mme_nedi acopi er _add(&mehdl, ©i nfo, statenent, 0);

if (rc ==-1) {
sprintf(output, "Error setting copy add");
}

el se {
sprintf(output, "copy added");
}

The example below shows how to use template strings for the destination folder and
file name.

nme_rnedi acopi er _info_t copyi nfo;

char *folder = "/ripped/ $ARTI ST/ $ALBUM " ;
char *title = "$0TRACK- $TI TLE(dat e=$DATESTAMP, t i ne=$TI MESTAMP, sr cf i d=$SR

copyinfo.dstnsid = 1;

copyi nfo. dstfol der = fol der;

copyi nfo.dstfilenane = title;

copyi nfo. encodeformatid = 2;

rc = mre_nedi acopi er _add(mehdl , ©i nfo, statenent, 0);

if (rc == -1) {
sprintf(output, "Error setting copy add");

May 4, 2009 Chapter 1 e MME APl 135

m m e_m ed | aC O p | el'_ ad d () 2009, QNX Software Systems GmbH & Co. KG.

el se {
sprintf(output, "copy added");
}

Seemre_nedi acopi er_info_t.
Classification:

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_mediacopier_add with _metadata(), mme_mediacopier_cleanup(),
mme_mediacopier_ clear(), mme_mediacopier_disable(),
mme_mediacopier_enable(), mme_mediacopier_get status(),
mme_mediacopier_remove(), nme_nedi acopi er _i nfo_t

136 Chapter 1 ¢ MME API May 4, 2009

[2009, QNX Software Systems GmbH & Co. k. [TTME_M ediaco P [er_ad d_Wlth_ metad ata()
Add files to the copy queue, specifying strings for unknown metadata

Synopsis:
#i ncl ude <me/ nme. h>
i nt mMe_nedi acopi er _add_wi t h_net adata(nme_hdl _t *hdl,
mre_nedi acopi er _i nfo_t *copyinfo,
const char *statement,
ui nt 32_t flags,
const char *unknown_album,
const char *unknown_artist) ;
Arguments:
hdl An MME connection handle.
copyinfo A pointer to ammre_nedi acopi er _i nf o_t structure that
contains information about the copy operation.
statement An SQL statement that selects the fids that you want to encode.
flags Flags affecting the copy operation. See “Mediacopier flags”
below.
unknown_album A pointer to a text string to add to the file metadata if the album
is not known.
unknown_artist A pointer to a text string to add to the file metadata if the artist is
not known.
Library:
mre
Description:

The functionmme_mediacopier_add_with_metadata() prepares a media copying or
ripping operation and adds specified strings when the artist or album is not known.
This function behaves exactly likeme_mediacopier_add(), except for the added
functionality required to add the string for unknown metadata.

This function updates metadata if:

e the<l gnor eNonAccur at e>and<Updat eMet adat a> configuration elements
have theirenable attributes set tor ue, and the source tradki brary. accur at e
value is O (the accuracy of metadata is not known);

or, if:

e theflagsargument is set tMME_MEDIACOPIER _USE _METADATA

May 4, 2009 Chapter 1 e MME API 137

mme_mediacopier_add_with_metadatal()

0 2009, QNX Software Systems GmbH & Co. KG

The functionmme_mediacopier_add with metadata() updates the metadata both in
the MMEI i br ary table entry for the destination file, and in the destination file itself.
This behavior ensures that the metadata added to the destination file is maintained,
even in the event that the MME database is lost.

To specify metadata for destination files whose album or artist is not known, use the
unknown_album andunknown_artist fields, specifying the strings to insert as
metadata, and including tt$M SIDENTI FIER template variable in the strings to
ensure that each file is uniquely identified. $8SIDENTIFIER below.

Determining destination file and folder names

Mediacopier flags

138 Chapter 1 ¢ MME API

Calls tomme_mediacopier_add with _metadata() determine destination file and
folder names as follows:

e Ifthe MME_MEDIACOPIER USE METADATA flag value is set, the filename and
folder name must be explicitly defined. Configured defaultshatéo be used, and
the MME_MEDIACOPIER_USE _DEFAULT_* flags are not relevant.

e |fthe MME_MEDIACOPIER USE DEFAULT_FILENAME flag is set, use the default
filename.

o Ifthe MME_MEDIACOPIER_USE_DEFAULT_FOLDERNAMEflag is set, use the
default folder name.

Media copying and ripping uses tflags argument to determine media copying and
ripping behavior. Possible values are combinations of:

Flag Value Description

MME_MEDIACOPIER_COPYADD_NONE 0x0000 Copy or rip directly
to a destination
folder. Obsolete; not

supported.

MME_MEDIACOPIER COPYADD PRESERVE PATH 0x0001 Preserve the original
folder structure for
copied or ripped
files. Create folders
as required.
Obsolete; not

supported.

Use the default
destination filename
set in the MME
configuration file.

MME_MEDIACOPIER _USE DEFAULT_FILENAME 0x0002

continued. . .

May 4, 2009

0 2000, QNx Software Systems amoH & co. ke, MM E_Mediacopier_add_with _metadata()

Flag Value Description

MME_MEDIACOPIER_USE_METADATA 0x0004 Use the specified
metadata; do not use
defaults.

MME_MEDIACOPIER_USE DEFAULT_FOLDERNAME 0x0008 Use the default
destination folder
name set in the
MME configuration
file.

For more information about default destination files and folders, see “Configuration
elements for the media copy and ripping destination” inNE Configuration
Guide chapter Configuring Media Copying and Ripping.

$MSIDENTIFIER

The$SM SIDENTIFIER template variable is set to the value of ildentifier field in

thenedi ast or es table. Adding it to the string written into a destination file’s
unknown_* fields ensures that the destinatation file is always correctly associated with
its mediastore.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:

>0. Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 e MME API 139

mme_mediacopier_add_with_metadata() o 2000 onx software systems cGmbH & co. ke.

See also:

METADATA _*, mme_mediacopier_add(), mme_mediacopier_cleanup(),
mme_mediacopier_ clear(), mme_mediacopier_disable(),
mme_mediacopier_enable(), mme_mediacopier_get status(),
mme_mediacopier_remove(), me_nedi acopi er _i nfo_t

140 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er c leanu p ()

Synopsis:

Arguments:

Library:

Description:

Events

Clean up partially copied or ripped files

#i ncl ude <nme/ me. h>

i nt mMe_nedi acopi er _cl eanup(me_hdl t *hdl);

hdl An MME connection handle.

The functionmme_mediacopier_cleanup() cleans up partially copied or ripped files

from the MME database and the system HDD. You should use this function when
starting up after a media copying or ripping operation has been aborted or was stopped
unexpectedly, in order to to ensure that the MME does not keep entries for
incompletely ripped files in its database.

The functionmme_mediacopier_cleanup() can be called only if the mediacopier is
disabled. An attempt to call this function while the mediacopier is enabled causes it to
return anEBUSY error.

None delivered.

Blocking and validation

Returns:

Classification:

May 4, 2009

This function checks that the mediacopier is disabled; it doesn’t block.

>0 Success.

-1 An error occurreddrrno is set). ANEBUSY error indicates that the
mediacopier is enabled.

ONX Neutrino

Safety

Interrupt handler No

continued. ..

Chapter 1 e MME API 141

mme_mediacopier_cleanup() 12009, QNX Software Systems GmbH & Co. KG.

Safety
Signal handler No
Thread Yes

See also:

mme_mediacopier_add(), mme_mediacopier_clear(), mme_mediacopier__disable(),
mme_mediacopier_enable(), mme_mediacopier_get status(),
mme_mediacopier _remove()

142 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er_c lear 0
Clear all files from the media copy queue

Synopsis:
#i ncl ude <me/ nme. h>
i nt mMe_nedi acopier_clear(me_hdl _t *hd);
Arguments:
hdl An MME connection handle.
Library:
me
Description:
The functionmme_mediacopier_clear() removes all files from the media copy queue.
To remove specific files from the copy queue, o¥ee_mediacopier_remove().
Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢ MME APl 143

mme_m ediaco P [er_Cl ear () [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_mediacopier_add(), mme_mediacopier_ cleanup(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier _get status(), mme_mediacopier_remove()

144 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P [er_d isabl e()

Synopsis:

Arguments:

Library:

Description:

Events

Disable the mediacopier

#i ncl ude <nme/ me. h>

i nt mMe_nedi acopi er _di sabl e(mme_hdl _t *hdl,
uint32_t flags);

hdl The MME connection handle.

flags Flags that affect the disable operation. None are defined; pass as 0.

The functionmme_mediacopier_disable() stops a copying or ripping operation.

Stopping a media copying or ripping operation does not affect tipg queue table.
To remove file frontopyqueue table, you must call the function
mme_mediacopier_clear().

None delivered.

Blocking and validation

Returns:

Classification:

May 4, 2009

Full validation of data; all arguments are checked before the call returns.

=0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

Safety

Interrupt handler No

continued. ..

Chapter 1 ¢ MME APl 145

mme_m ediaco P [er_d isabl e() [2009, ONX Software Systems GmbH & Co. KG.

Safety
Signal handler No
Thread Yes

See also:

mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier _clear(),
mme_mediacopier_enable(), mme_mediacopier_get status(),
mme_mediacopier _remove()

146 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er_en abl e()

Synopsis:

Arguments:

Library:

Description:

Events

Enable the mediacopier

#i ncl ude <nme/ me. h>

i nt me_nedi acopi er _enabl e(nme_hdl _t *hdl,
uint32_t flags);

hdl The MME connection handle.

flags Flags that affect the enable operation. None are defined; pass as 0.

The functionmme_mediacopier_enable() starts a copying or ripping operation.

Before callingmme_mediacopier__enable() you must calimme_mediacopier_add() to
prepare a media copy operation and populatectimgyqueue table. You can stop a
copy operation in progress by callimgne mediacopier_disable().

None delivered.

Blocking and validation

Returns:

Classification:

May 4, 2009

Full validation of data; all arguments are checked before the call returns.

>0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

Chapter 1 ¢« MME API 147

mme_m ediaco P [er_en abl e() [2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier _clear(),
mme_mediacopier_disable(), mme_mediacopier_get_status(),
mme_mediacopier _remove()

148 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P [er_g et_ mod e()
Get the selected media copy or rip mode

Synopsis:

#i ncl ude <me/ nme. h>

i nt me_nedi acopi er _get _node(nme_hdl _t *hdl,

nme_edi acopi er _node_t *copymode) ;

Arguments:

hdl An MME connection handle.

copymode The copy mode selected for the media copying or ripping operation.
Library:

mre
Description:

The functionmme_mediacopier_get mode() gets the selected mode for a media copy

or ripping operation. This mode is defined by the enumerated type

mre_nedi acopi er _node_t.
Events

None delivered.

Blocking and validation

This function blocks until it completes.

Returns:

>0 Success

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢« MME APl 149

mme_mediacopier_get_mode() [2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_mediacopier_cleanup(), mme_mediacopier _set mode(), mme_metadata_set()

150 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er g et_StatU S ()
Get the status of a media copy or ripping operation

Synopsis:
#i ncl ude <nmme/ nme. h>
i nt mMe_nedi acopi er _get _status(me_hdl _t *hdl,
mre_copy_status_t *copy_status) ;
Arguments:
hdl An MME connection handle.
msg A pointer to the structureme_copy_st at us_t that is filled in by the
function. Seeme_copy_st at us_t below.
Library:
mre
Description:

The functionmme_mediacopier_get_status() gets the status of a media copying or
ripping operation. The status information is placed in a structure
mre_copy_status_t.

nme_copy_stat us_t
typedef struct _mme_copy_status {

ui nt 64 _t cqi d;
ui nt 64 _t srcfid;
ui nt 64 _t dstfid;
uint32_t units;
ui nt 32_t reserved,;
uni on {

me_time_t time_info;

me_byte _status_t byte_info;
b

} mme_copy_status_t;

The structureme_copy_st at us_t defines information about the current media copy
or ripping operation. Its members include at least those described in the table below.

Member Type Description

cqid uint64_t The copy queue ID entry currently being
copied or ripped.

continued. . .

May 4, 2009 Chapter 1 e MME APl 151

mme_mediacopier_get status()

2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

srcfid uint64_t The file ID of the source file being copied or
ripped.

dstfid uint64_t The file ID of the destination file.

units ui nt 32_t The units (time or bytes) used to track
progress of the media copy or ripping
operation. Seeme_copy_uni ts_t below.

reserved ui nt32_t Reserved for internal use.

byte info/ time_info uni on Depending on the value aihits, either the

nme_copy_units_t

The enumerated typare_copy_uni t s_t defines the units used to measure progress

structurenme_t i me_t with the play time
ripped, or the structure

me_byt e_st at us_t with the number of
bytes copied.

during a media copy or ripping operation. It can have the following values:

e MME_COPY_UNITS_NONE (0) — no measurement units have been defined.

e MME_COPY_UNITS_TIME_MS (1) — time, in milliseconds.

e MME_COPY UNITS_BYTES (2) — bytes.

mre_byte status_t

typedef struct _mme_byte status {

ui nt 64 _t
ui nt 64 _t

byt epos;
nbyt es;

} mre_byte status_t;

Media copy operations usste info to communicate the progress of a copy operation

whennmme_copy_uni ts_t is set toMME_COPY_UNITS_BYTES. byte infois a
member ofme_copy_st at us_t ; it uses the structureme_byt e st at us_t to hold
the copy progress information. Its members are described in the table below.

Description

Member Type
bytepos ui nt 64 _t
nbytes ui nt 64_t

152 Chapter 1 ¢ MME API

Number of bytes copied thus far.

Total number of bytes to be copied.

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P [er g et_stat us ()

time_info

Ripping operations usiéme_info to communicate the progress of a ripping operation

whenmme_copy_units_t is set toMME_COPY_UNITS_TIME_MS. A member of
nmre_copy_st at us_t ,time_info uses the structuneme_t i me_t to hold the ripping

progress information, in milliseconds:
e the duration of the track
e the current time position
Seeme_tine_t.

Events
None delivered.

Blocking and validation

This function blocks until it completes.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier _clear(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier _remove(), nme_ti me_t

May 4, 2009 Chapter 1 ¢ MME APl 153

ITTTE_ITEd | a.C O pl er _I nf O_t 0 2009, QNX Software Systems GmbH & Co. KG.

Media copy and ripping information

Synopsis:

Description:

#i ncl ude <nme/types. h>

typedef struct {
ui nt 64 _t dst nsi d;
const char *dst f ol der
const char *dstfil enane;
ui nt 64_t encodef ormati d;
} mme_nedi acopier_info_t;

The structureme_nedi acopi er _i nf o_t carries information about a media copy or
ripping operation. It includes at least the members described in the table below.

Member Type Description

dstmsid uint64_t The destinationmmsid. Set to 0 to use the default
msid.

dstfolder char A pointer to the destination folder for the tracks to

be ripped. Sedstfolder below.

dstfilename char A pointer to the string used to create the destination
file name for the tracks to be ripped.

encodeformatid ui nt 64_t The encode format IDefcodeformatid) from the
encodef or mat s table that you want to use for
encoding. Seencodeformatid below.

dstfolder and dstfilename

The value fordstfolder must be in the formatfoldername/ (beginning and ending with
a “/" character). For example, if in youredi ast or es table the destinatiomsid has

a mountpath of medi a/ dri ve, and thedstfolder name is “/ripped/”, then the track is
ripped to/ medi a/ dri ve/ ri pped/ .

Setdstfolder to NULL to use the default destination folder, aasiffilename NULL to
use the destination file name defined in the MME configuratiomfite conf . You
can specify nested sub-directories, as required.

Destination folder dstfolder and file name dstfilename template strings

The MME defines templates strings you can use to name the ripping destination
folders and files. These template strings are described in the table below.

154 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mTE_rTEdI aCOpI er _I nf O_t

String Value Description

$TITLE MME_MEDIACOPIER TEMPLATE_TITLE song title

$ARTIST MME_MEDIACOPIER_TEMPLATE_ARTIST artist name

$ALBUM MME _MEDIACOPIER TEMPLATE_ALBUM album name

$GENRE MME_MEDIACOPIER TEMPLATE_GENRE song genre

$COMPOSER MME MEDIACOPIER_ TEMPLATE_COMPOSER song composer

$TRACK MME_MEDIACOPIER TEMPLATE_TRACK track number

$0TRACK MME_MEDIACOPIER TEMPLATE_OTRACK track number with leading
zeros: 01, 02, etc.

$DISC MME_MEDIACOPIER TEMPLATE_DISC disc number

$0DISC MME_MEDIACOPIER TEMPLATE_0DISC disc number with leading
zeros: 01, 02, etc.

$YEAR MME_MEDIACOPIER TEMPLATE_YEAR release year

$SRCFID MME_MEDIACOPIER_TEMPLATE_SRCFID source file ID

$SRCMSID MME_MEDIACOPIER TEMPLATE_SRCMSID source mediastore 1D

$TIMESTAMP MME_MEDIACOPIER_TEMPLATE_TIMESTAMP time when file is copied

$DATESTAMP MME_MEDIACOPIER_TEMPLATE_DATESTAMP date when file is copied

$MSIDENTIFIER MME_MEDIACOPIER TEMPLATE_MSIDENTIFIER source mediastore ID

$NO_PRESERVE PATH COPY_NO_PATH_PRESERVE force the path to be discarded

$PRESERVEPATH COPY_PATH_PRESERVE force the path to be preserved

$PRESERVEPATH_AFTER COPY PATH PRESERVEAFTER modify the source path when it
is appended to the destination
folder

encodeformatid

The standard default values femcodeformatid are:

e 1 — copy operation

e 2 — wav encoding

e 3 — AAC encoding (SH4 only; requires specific licences)
e 4 —wma encoding (requires specific licences)

Setencodeformatid to O to use the default encode format.

May 4, 2009 Chapter 1 ¢ MME APl 155

nme_nedi acopier _info_t 1) 2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Multimedia

See also:
mme_mediacopier__add()

156 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er_rem Ove()
Remove files from the media copy queue

Synopsis:
#i ncl ude <me/ nme. h>
i nt me_nedi acopi er _renove(nme_hdl _t *hdl,
char * statement,
uint32_t flags);
Arguments:
hdl An MME connection handle.
statement An SQL statement of copy queue IDs that you want to remove from the
copy queue.
flags Option flags. There are currently none defined, pass as 0.
Library:
me
Description:
The functionmme_mediacopier_remove() removes specified files from the copy
gueue. To clear all files from the copy queue, oeee_mediacopier_clear().
Events

None returned.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 e MME API 157

mme_m ediaco P [er_rem Ove() [2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier _clear(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier _get status()

158 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m ediaco P | er_s et_m od e()
Get the selected media copy or rip mode

Synopsis:

#i ncl ude <me/ nme. h>

i nt me_nedi acopi er _set _node(nme_hdl _t *hdl,

nme_nedi acopi er _node_t *copymode) ;

Arguments:

hdl An MME connection handle.

copymode The copy mode selected for the media copying or ripping operation.
Library:

mre
Description:

The functionmme_mediacopier_set _mode() sets the mode for a media copying or
ripping operation. This mode is defined by the enumerated type
mre_nedi acopi er _node_t.

me_nedi acopi er _node_t

The enumerated typere_nedi acopi er _node_t sets the media copying or ripping
mode:

e MME_MEDIACOPIER MODE_BKG — The MME will:

- return after it initiates the operation
- perform the media copy or ripping in the background
- give priority to other operations

e MME_MEDIACOPIER MODE_PRIORITY_BKG — The MME will:

- return after it initiates the operation
- perform the media copy or ripping in the background
- take priority over other background operations
e MME_MEDIACOPIER MODE_FOREGROUND (For future implementation.)
— The MME will:
- return after it completes the operation
- perform the media copy or ripping in the foreground
- negotiate priority with other foreground operations

May 4, 2009 Chapter 1 e MME APl 159

mme_mediacopier_set_mode() () 2009, QNX Software Systems GmbH & Co. KG.

Events

_ ~ None delivered.
Blocking and validation

This function blocks until it completes.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_mediacopier_cleanup(), mme_mediacopier_get_mode(), mme_metadata_set()

160 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etadat a_al loc ()
Copy a metadata handle

Synopsis:
#i ncl ude <nme/ expl ore. h>
nme_net adata_hdl _t *mre_net adat a_al | oc(
const mme_netadata_hdl _t *metadata) ;
Arguments:
metadata A pointer to the metadata to copy.
Library:
mre
Description:
The functionmme_metadata_alloc() makes and returns a malloced copy of a specified
metadata handle structuree_net adat a_hdl _t , making it easier for users of the
MME's explorer API to copy retrieved items.
Q The client application must deallocate the returned value frone_metadata_alloc()
by usingfree().
For more information about managing metadata handles, see “Managing explorer
structures and metadata handles” in the chapter Metadata and ArtworkNtMEe
Developer’s Guide.
Events

None delivered.
Blocking and validation
This function performs no validations and doesn’t block.

Returns

Returns:
A copied metadata handle structure.
Success.

0 An error occurreddrrno is set), or the metadata handle receivedUs L .

Classification:
ONX Neutrino

May 4, 2009 Chapter 1 e MME APl 161

mme_m etad ata_al loc () [2009, ONX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

METADATA _*, mme_metadata_extract data(), mme_metadata_extract_string(),
mme_metadata_extract_unsigned(), nme_net adat a_hdl _t,
mme_ms_metadata_done(), mme_ms_metadata_get()

162 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_ ext raCt_d a.ta()
Get the data format metadata from the metadata handle

Synopsis:
#i ncl ude <me/ net adat a. h>
const void *me_net adata_extract _data(const me_netadata_hdl _t *metadata,
const char *type,
ui nt 32_t flags,
size_t *length);
Arguments:
metadata The pointer to the handle with the metadata.
type The type of metadata to extract. SEETADATA _*.
flags For future use.
length A pointer to the location to which the function should return the length,
in bytes, of the extracted data. If there is no data, this value is 0 (zero).
Library:
nmet adat a
Description:
The functionmme_metadata_extract data() returns the format of the metadata
retrieved bymme_ms_metadata_get() and placed in the metadata handle
mre_net adat a_hdl _t . Metadata formats are defined by the
METADATA FORMAT * enumerated values.
Events

None delivered.

Blocking and validation

This function validates that the metadata handle ISWEL. It doesn’t block.

Returns:

Data in the character string, NIULL if no data is foundérrno is set).

Classification:
ONX Neutrino

May 4, 2009 Chapter 1 ¢ MME APl 163

mme_m etad ata_extraCt_d ata() [2009, ONX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract_string(),
mme_metadata_extract_unsigned(), nme_net adat a_hdl _t,
mme_ms_metadata_done(), mme_ms_metadata_get()

164 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_eXt raCt_St rin g ()
Get the string format from the metadata handle

Synopsis:
#i ncl ude <me/ net adat a. h>
const char *mme_netadata_extract _string(const mre_netadata hdl t *metadat
const char *type,
uint32_t flags);
Arguments:
metadata The pointer to the handle with the metadata, returned by
mme_ms_metadata_get().
type The type of metadata to extract. SBETADATA _*.
flags For future use.
Library:
nmet adat a
Description:
The functionmme_metadata_extract_string() extracts metadata in character string
format from the metadata handtee_net adat a_hdl _t .
Events

None delivered.
Blocking and validation

This function validates that the metadata handle INLL. It doesn’t block.

Returns:

Data in the character string, BIULL if no data is foundérrno is set).
Classification:

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢ MME APl 165

mme_metadata_extract_string() () 2009, QNX Software Systems GmbH & Co. KG.

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract _data(),
mme_metadata_extract_unsigned(), rme_net adat a_hdl _t,
mme_ms_metadata_done(), mme_ms_metadata_get()

166 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_eXt raCt_ unsi gn ed ()
Get unsigned metadata from the metadata handle

Synopsis:
#i ncl ude <me/ net adat a. h>
i nt mMme_netadat a_extract _unsi gned(const me_netadata_hdl _t *metadata,
const char *type,
ui nt 32_t flags,
unsi gned *value) ;
Arguments:
metadata The pointer to the handle with the metadata, returned by
mme_ms_metadata_get().
type The type of metadata to retrieve. SEETADATA _*.
flags For future use.
value A pointer to the location where the value is to be returned; moitsbe
NULL.
Library:
nmet adat a
Description:
The functionmme_metadata_extract _unsigned() extracts unsigned metadata from the
metadata handleme_net adat a_hdl _t.
Events

None delivered.

Blocking and validation

This function validates that the metadata handle INLL. It doesn’t block.

Returns:

0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 ¢« MME API 167

mme_metadata_extract_unsigned() () 2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract _data(),
mme_metadata_extract_string(), mre_net adat a_hdl _t,
mme_ms_metadata_done(), mme_ms_metadata_get()

168 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_C reate_S ession ()

Synopsis:

Arguments:

Library:

Description:

Events

Create a new metatdata session

#i ncl ude <nme/ me. h>

int TMme_netadata_create_session(nme_hdl _t *hdl,
nme_net adat a_session_t **session);

hdl An MME connection handle.

session A pointer to the location with the metadata session structure.

The functionmme_metadata create session() creates a new metata session. Creating
a metadata session guarantees that the images loaded and the metadata retrieved
remain valid until the session is ended by a calinme _metadata free session().

A client application may have multiple metadata sessions open at the same time, only
limited by system resources. Because every metadata session consumes system
resources, the client application should end a metadata session when the data
requested in that session is no longer needed.

None delivered.

Blocking and validation

Returns:

Classification:

May 4, 2009

This function doesn’t block.

EOK and a valid pointer to anmme_net adat a_sessi on_t data structure.
Success.

-1 An error occurreddrrno is set).

ONX Neutrino

Chapter 1 ¢« MME API 169

mme_metadata_create _session() 1) 2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_metadata_free session(), mme_metadata_getinfo_current(),
mme_metadata_getinfo_file(), mme_metadata getinfo_library(),
mme_metadata_image cache_clear(), mme_metadata_image load(),
mme_metadata_image unload(), mme_net adat a_i nage_url _t,
nme_net adata_i nfo_t,nme_net adat a_sessi on_t

170 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_free_s ession ()
End a metadata session

Synopsis:
#i ncl ude <me/ nme. h>
int Me_netadata_free_session(mre_netadata_session_t *session);
Arguments:
session A pointer to a metadata session structure.
Library:
me
Description:
The functionmme_metadata_free session() frees the memory and the images used in
a metadata session.
Every metadata session consumes system resources. The client application should
always call this function to end a metadata session when the data requested in that
session is no longer needed.
Events

None delivered.

Blocking and validation

This function will cancel any pending metadata or image requests before returning.
These cancellations may delay the return of the this function.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter1 ¢« MME API 171

mme_metadata free session() 12009, QNX Software Systems GmbH & Co. KG.

See also:

mme_metadata_create _session(), mme_metadata getinfo_current(),
mme_metadata_getinfo_file(), mme_metadata_getinfo_library(),
mme_metadata_image cache clear(), mme_metadata_image load(),
mme_metadata_image unload(), nre_net adat a_i nage_url _t,
mre_net adata_i nfo_t,me_net adat a_sessi on_t

172 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_g etin fO_C u rrent()
Get metadata for the currently playing track

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_netadata_getinfo_current(mme_netadata_session_t *session,
const char *metadata groups,
ui nt 64_t *mdinfo_rid,
mre_netadata_info_t **metadata) ;
Arguments:
session A pointer to a metadata session structure.
metadata _groups A pointer to a string representing the metadata information
groups for which metadata is requested.
mdinfo_rid A pointer to a generated metadata information request ID.
metadata A pointer to the location with the requested metadata. See
“metadata pointer” below.
Library:
mre
Description:

The functionmme_metadata_getinfo_current() retrieves metadata for the currently
playing track and places it at the location specifiedrigyadata. You must call
mme_metadata_create_session() to create a metadata session before using
mme_metadata_getinfo_current().

There is no guarantee that the current track will not change between the time
mme_metadata_getcurrent() is called and the return of the requested data. The client
application must therefore monitor track change events, and make a new request for
metadata if the track changes.

May 4, 2009 Chapter 1 e MME APl 173

mme_m etad ata_g etin fO_C u rrent() [0 2009, ONX Software Systems GmbH & Co. KG

Q e Metadata and images retrieved with this function are only valid for the current
metadata session.

e A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

e After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA _INFO event will return arEBUSY error.

metadata pointer

Themetadata argument points to a pointer ton@e_net adat a_i nf o_t metadata
structure with the retrieved metadata. Depending on the valuetatlata,
mme_metadata_getinfo_*() operates either synchonously or asynchronously.

NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatessynchronously, and the
me_net adat a_i nf o_t structure is delivered with the
MME_EVENT_METADATA _INFO event.

non-NULL pointer

If metadata is nonNULL function mme_metadata__getinfo_*() operates
synchronously and the following applies:

e |If the referenced pointer to there_net adat a_i nf o_t structure isNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

e |If the referenced pointer to the to thee_net adat a_i nf o_t structure is
nonNULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in timere_net adat a_i nf o_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA _INFO.

Blocking and validation

See ‘metadata pointer” above.

174 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_metadata getinfo_current()

Returns:

Classification:

See also:

May 4, 2009

0 Successmdinfo_rid is set.
-1 An error occurreddrrno is set).

ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

mme_metadata_create_session(), mme_metadata free session(),
mme_metadata_getinfo_file(), mme_metadata_getinfo_library(),
mme_metadata_image cache clear(), mme_metadata_image load(),
mme_metadata_image _unload(), nre_net adat a_i nage_url _t,
mre_net adata_i nfo_t,me_net adat a_sessi on_t

Chapter 1 ¢ MME API

175

mme_metadata_getinfo_file()

[0 2009, QNX Software Systems GmbH & Co. KG.

Get metadata for a specified file, based on the filepath

int Mme_netadata_getinfo file(nre_netadata session_t *session,

ui nt 64_t msid,

const char *file,

const char *metadata groups,

ui nt 64_t *mdinfo_rid,
nme_netadata_info_ t **metadata) ;

A pointer to a metadata session structure.

The mediastore ID for the mediastore with the file for which
metadata is required.

A pointer to the path, relative to the mediastore mountpath, of
the file for which metadata is required.

A pointer to a string representing the metadata information
groups for which metadata is requested.

A pointer to a generated metadata information request ID.

A pointer to the location with the requested metadata. See
“metadata pointer” below.

Synopsis:

#i ncl ude <me/ nme. h>
Arguments:

session

msid

file

metadata groups

mdinfo_rid

metadata
Library:

me
Description:

The functionmme_metadata_getinfo_file() retrieves metadata for the file identified by

the its filepath, and p

laces this metadata at the location specifigéthglata. You

must callmme_metadata_create_session() to create a metadata session before using
mme_metadata_getinfo_file().

176 Chapter 1 ¢ MME API

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_g etin fO_fi | e()

Q e Metadata and images retrieved with this function are only valid for the current
metadata session.

e A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

e After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA _INFO event will return arEBUSY error.

metadata pointer

Themetadata argument points to a pointer ton@e_net adat a_i nf o_t metadata
structure with the retrieved metadata. Depending on the valuetaflata,
mme_metadata_getinfo_*() operates either synchonously or asynchronously.

NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatesasynchronously, and the
me_net adat a_i nf o_t structure is delivered with the
MME_EVENT_METADATA _INFO event.

non-NULL pointer

If metadata is nonNULL functionmme_metadata__getinfo_*() operates
synchronously and the following applies:

e |If the referenced pointer to there_net adat a_i nf o_t structure isNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

e |If the referenced pointer to the to thee_net adat a_i nf o_t structure is
nonNULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in tmere_net adat a_i nf o_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA _INFO.

Blocking and validation

See ‘metadata pointer” above.

May 4, 2009 Chapter 1 e MME API 177

mme_m etad ata_g etin fO_fi | e() [0 2009, ONX Software Systems GmbH & Co. KG.

Returns:

0 Successmdinfo_rid is set.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_metadata_create_session(), mme_metadata free session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_library(),
mme_metadata_image cache clear(), mme_metadata_image load(),
mme_metadata_image _unload(), me_net adat a_i nage_url _t,
mre_net adata_i nfo_t,me_net adat a_sessi on_t

178 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_g etin fO_I ib rary ()
Get metadata for a specified file, based on the file ID

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_netadata _getinfo_library(mme_netadata_session_t *session,
uint64_t fid,
const char *metadata groups,
ui nt 64_t *mdinfo_rid,
mre_netadata_info_t **metadata) ;
Arguments:
session A pointer to a metadata session structure.
fid The file ID of the file for which metadata is required.
metadata_groups A pointer to a string representing the metadata information
groups for which metadata is requested.
mdinfo_rid A pointer to a generated metadata information request ID.
metadata A pointer to the location with the requested metadata. See
“metadata pointer” below.
Library:
mre
Description:
The functionmme_metadata _getinfo_library() retrieves metadata for the file
identified by the its file ID, and places this metadata at the location specified by
metadata. You must callmme_metadata_create session() to create a metadata
session before usingme_metadata_getinfo_library().
Q e Metadata and images retrieved with this function are only valid for the current
metadata session.

e Acall to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

e After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA _INFO event will return arEBUSY error.

May 4, 2009 Chapter 1 e MME API 179

m m e_m etad ata_g etl n f0_| | b rary () 2009, QNX Software Systems GmbH & Co. KG.

metadata pointer

Themetadata argument points to a pointer ton@e_net adat a_i nf o_t metadata

structure with the retrieved metadata. Depending on the valuetatlata,

mme_metadata_getinfo_*() operates either synchonously or asynchronously.
NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatesasynchronously, and the
mre_nmet adat a_i nf o_t structure is delivered with the
MME_EVENT_METADATA _INFO event.

non-NULL pointer

If metadata is nonNULL function mme_metadata_getinfo_*() operates
synchronously and the following applies:

e If the referenced pointer to threre_net adat a_i nf o_t structure iSNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

e If the referenced pointer to the to thee_net adat a_i nf o_t structure is
nonNULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in tinere_net adat a_i nf o_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA _INFO.

Blocking and validation

See ‘metadata pointer” above.

Returns:

0 Successmdinfo_rid is set.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

180 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_m etad ata_g etin fo_l ib rary()

See also:

mme_metadata_create_session(), mme_metadata free session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_image cache clear(), mme_metadata_image load(),
mme_metadata_image _unload(), ne_net adat a_i nage_url _t,
mre_net adata_i nfo_t,me_net adat a_sessi on_t

May 4, 2009 Chapter 1 ¢« MME API 181

ITTTE_ITEt ad at a_h d I _t 0 2009, QNX Software Systems GmbH & Co. KG.
The metadata API handle

Synopsis:

#i ncl ude <me/ net adat a. h>

struct mme_net adata_hdl ;

typedef struct nme_netadata hdl nmre_netadata _hdl t;
Description:

The structureme_net adat a_hdl _t carries the metadata retrieved by
mme_metadata_extract_data() andmme_metadata_extract _string().

Creating and freeing the metadata handle
A metadata handle can be acquired through any of these functions:
e mme_explore info_get()
e mme_ms_metadata get()
e mme_trksessionview metadata_get()

The data in the metadata handle can be usenrbg_metadata_extract_string() and
mme_metadata_extract _data(), and remains valid until the handle is freed.

To free a metadata handle, use one of these methods:

e Handles created byyme_ms_metadata_get() or
mme_trksessionview_metadata_get(), callmme_ms_metadata_done().

e Handles created byime_explore_info_get(), call mme_explore_end(), or
mme_explore_info_get() to create e new handle.

Classification:
QNX Multimedia

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract _data(),
mme_metadata_extract_string(), mme_metadata_extract _unsigned(),
mme_ms_metadata_done(), mme_ms_metadata_get()

182 Chapter 1 ¢ MME API May 4, 2009

[) 2008, QNX Software Systems GmbH & Co. KG. mme_metadata image cache_ clear()

Synopsis:

Arguments:

Library:

Description:

Events

Purge images from the image cache

#i ncl ude <nme/ me. h>

i nt TMme_netadata_i nage_cache_cl ear(nme_hdl _t *hdl,
uint64_t msd);

hdl An MME connection handle.

msid The ID of the mediastore for which images must be purged from the image
cache. Setto 0 (zero) to clear the entire cache.

The functionmme_metadata_image _cache clear() clears from the image cache:
e all images associated with the specified mediastore; or,
e if msidis setto 0, all images in the cache

This function can be called at any time; you wlai need to create a metadata session
before clearing the image cache.

If a client application attempt to clear the cache while an item is being inserted into the
cachemme_metadata_image cache clear() returns areBUSY error. If a client
application receives this error, it should attempt to clear the cache again at a later time.

None delivered.

Blocking and validation

Returns:

May 4, 2009

This function doesn’t block.

>0 Success.

-1 An error occurreddrrno is set).

Chapter 1 ¢ MME APl 183

mme_metadata _image_ cache_clear() [2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image load(),
mme_metadata_image unload(), mme_net adat a_i nage_url _t,
nme_net adata_i nfo_t,nme_net adat a_sessi on_t

184 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etadat a_i mag e_l oad ()
Load an image for afile

Synopsis:
#i ncl ude <me/ nme. h>
int TMme_netadata_i nage_| oad(mme_net adat a_sessi on_t *session,
ui nt 64_t mdinfo_rid,
unsi gned image id,
i nt image_format_profile,
ui nt 64_t *mdimage rid,
nre_net adat a_i mage_ur | _t **image url);
Arguments:
session A pointer to a metadata session structure.
mdinfo_rid A metadata information request ID, obtained by a call to a
mme_metadata_getinfo_*() function.
image_id The ID of the image, obtained from the track metadata .
image_format_profile
Predefined profile format index. Set to -1 for no conversion.
mdimage_rid A pointer to a generated metadata image request ID, populated on
success.
image_url A pointer to the location with the requested image. Se@afe url
pointer” below.
Library:
me
Description:

The functionmme_metadata_image load() uses information retrieved by a call to any
of themme_metadata_getinfo_*() functions to load an image to the location specified
by the URL referenced bynage url. You must callmme_metadata create session()

to create a metadata session before using_metadata _getinfo_current().

May 4, 2009 Chapter 1 ¢ MME APl 185

m m e_ m etad ata_l m ag e_ | O ad () 2009, QNX Software Systems GmbH & Co. KG.

Q e Metadata and images retrieved with this function are only valid for the current
metadata session.

e A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

e After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA _INFO event will return arEBUSY error.

image_url pointer

Theimage _url argument points to a pointer tonae_net adat a_i nage_ur| _t

metadata structure with the retrieved URL for the requested image. Depending on the
value ofimage_url, mme_metadata_image load() operates either synchonously or
asynchronously.

NULL pointer

If image _url is NULL, mme_metadata_getinfo_current() operatesasynchronously,
and thenme_net adat a_i nf o_t structure is delivered with the
MME_EVENT_METADATA _INFO event.

non-NULL pointer

If image_url is nonNULL functionmme_metadata_image load() operates
synchronously and the following applies:

e |If the referenced pointer to there_net adat a_i nf o_t structure isNULL,
mme_metadata_image load() allocates memory for the structure.

e If the referenced pointer to the to thee_net adat a_i nf o_t structure is
nonNULL mme_metadata_image load() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in timere_net adat a_*_t structure, see
“XML content” with the description of theme_net adat a_i nf o_t structure.

Events

MME_EVENT_METADATA _IMAGE.

Blocking and validation

See image_url pointer” above.

186 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_i mage load ()

Returns:

0 Successmdimage rid is set.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_metadata_create_session(), mme_metadata free session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata _image cache clear(),
mme_metadata_image _unload(), nme_net adat a_i nage_url _t,
mre_net adata_i nfo_t,me_net adat a_sessi on_t

May 4, 2009 Chapter 1 ¢ MME API 187

mme_m etad ata_i mage_un load () 0 2009, QNX Software Systems GmbH & Co. KG.

Clear image from temporary storage

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMe_netadat a_i nage_unl oad(nme_net adat a_sessi on_t *session,
uint 64 _t mdimage rid);,

session A pointer to a metadata session structure.

mdimage_rid A metadata image request ID, obtained by a call to a
mme_metadata getinfo_*() function.

The functionmme_metadata_image_unload() removes from temporary storage an
image loaded bynme_metadata_image load(). The image to remove from
temporary storage is identified by th@limage rid, which was generated by a
mme_metadata_image load() function when it retrieved an image for a file.

If mme_metadata_image_unload() is called while an image is loading, the call
cancels the load, and the MME delivers the event with the
me_event _net adat a_i nage_t error member set t& CANCELED.

You must callmme_metadata_create session() to create a metadata session before
usingmme_metadata_unload().

None delivered.

Blocking and validation

Returns:

Classification:

This function doesn’t block.

=0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

188 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_i mage _un load ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image cache clear(),
mme_metadata_image load(), nme_net adat a_i nage_ur| _t,
nme_net adata_i nfo_t,nme_net adat a_sessi on_t

May 4, 2009 Chapter 1 ¢« MME API 189

nme_net adata_i mage _url t 11 2009, QNX Software Systems GmbH & Co. KG.

The structure carrying the URL for an image

Synopsis:

Description:

Classification:

See also:

#i ncl ude <nme/types. h>

typedef struct s _mme_netadata inmage url {
int32_t | en;
char url [1];

} mre_netadata_i nage_url t;

The structureme_net adat a_i mage_ur | _t carries the URL retrieved by
mme_metadata_image load() used with a synchronous connection. This URL can be
used to load an image from a remote location.

Member Type Description

len int32_t The length, in bytes, of therl string, including itsNULL
terminator.

url char A NULL-terminated URL formated string location of an
image.

ONX Multimedia

mme_metadata_create_session(), mme_metadata free session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata _image cache clear(),
mme_metadata_image load(), mme_metadata_image _unload(),
mre_net adata_i nfo_t,me_net adat a_sessi on_t

190 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. rTn'E_rTEt a.d a.t a._l nf O_t
The metadata structure

Synopsis:
#i ncl ude <nme/types. h>
typedef struct s _me_netadata_ info {
int len;
char xm buf[1];
} mre_netadata_info t;
Description:

The structureme_net adat a_i nf o_t carries the metadata retrieved by
mme_metadata_getinfo_current(), mme_metadata_getinfo_file() and
mme_metadata_getinfo_library().

Member Type Description

len i nt The length, in bytes, of themlbuf string, including itSNULL
terminator. See “XML content” below.

xmlbuf char A NULL-terminated XML formated string containing metadata.

XML content

The MME’s metadata API organizes metadata into groups and subgroups. You can use
these groups and subgroups to request only the metadata you need, thereby optimizing
performance and reducing resource consumption.

To request only specified metadata, use the following guidelines to set the character
string referenced by mme_metadata_getinfo_* () function’s metadata_groups
argument:

e Setting thametadata_groups argument taNULL, or the group td *" instructs the
function to returrall avaialble metadata for the file.

e A metadata group can use wildcards characters to obtain all metadata for a
subgroup. For example, to get all image subgroups, use the Strirgge/ *" .

Supported <f or mat > attributes

The table below list the attributes for tk&or nat > element currently supported by
the MME’s metadata API.

Attribute Optional Description

height Yes The image height, in pixels.

continued. ..

May 4, 2009 Chapter 1 e MME API 191

mTE_rTEt ad at a_l nf O_t 2009, QNX Software Systems GmbH & Co. KG.

Attribute Optional Description

width Yes The image width, in pixels.

mime_type Yes The content MIME type.

start_timepos Yes The image start time, in milliseconds, from the start of the track.
end_timepos Yes The image end time, in milliseconds, from the start of the track.
desc Yes An image description.

size Yes The image size, in bytes.

url Yes An external URL to the image.

Example: default XML content

Below a example of the default XML content returnedambuf by a call to an
mme_metadata_getinfo_*() function. No metadata group is enabled:

<?xm version="1.0" standal one="yes" ?>
<contai ner type="file">
<track index="0">
<audi o>
<stream i ndex="0"/>
</ audi 0>
<i mages>
<i mage i ndex="0"/>
<i mage i ndex="1"/>
</i mages>
</track>
</ cont ai ner >

Example: XML content with one metadata group enable

Below is an example of the XML content returnedxmlbuf by a call to an

mme_metadata_getinfo_*() function. Only the<i mage>/<f or mat > metadata group

is enabled:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<contai ner type="file">
<track index="0">
<audi o>
<stream i ndex="0"/>
</ audi 0>
<i mages>
<i mage i ndex="0">
<format wi dt h="0" hei ght="0" size="29316"/>
</i mage>
<i mage i ndex="1"/>
</i mages>
</track>
</ cont ai ner >

192 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mTE_rTEt ad at a_l nf O_t

Classification:
QNX Multimedia

See also:

mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image cache clear(),
mme_metadata_image load(), mme_metadata_image unload(),
nme_net adata_i nage_url _t,me_net adat a_session_t

May 4, 2009 Chapter 1 ¢ MME APl 193

nme_net adat a_sessi on_t 11 2009, QNX Software Systems GmbH & Co. KG.

A metadata session identifier

Synopsis:

Description:

Classification:

See also:

#i ncl ude <nme/types. h>

typedef struct s_mre_netadata session {
uint64_t session_id;
} mre_netadata_session_t;

The structureme_net adat a_sessi on_t carries a unique identifier withinforamtion
about a metadata session. It is setye_metadata_create session() and used by
themme_metadata *() functions. Itis cleared bynme_metadata free session().

Member Type Description

session_id uint64_t A metadata session identifier.

ONX Multimedia

mme_metadata_create_session(), mme_metadata_free _session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image cache clear(),
mme_metadata_image load(), mme_metadata_image unload(),
nme_net adata_i mage_url _t,me_netadata info_t

194 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m etad ata_S et ()
Set the metadata for a file

Synopsis:

#i ncl ude <nme/ me. h>

int Me_netadata_set(nme_hdl _t *hdl,
uint 64 _t fid,
nm net adat a_t * metadata,
uint64_t flags);

Arguments:
hdl An MME connection handle.

fid The file ID of the file whose metadata you want to set.

metadata A pointer to the structure that carries the file metadata. For more
information, seeqm net adat a_t .

flags A flag to define the behavior of the call. For future use.

Library:

Description:

The functionmme_metadata_set() sets the metadata in the MME database for a
specified file. The client application can use this function with an HMI to allow the
end-user to change the metadata in the MME database for copied and ripped media. It
sets the metadata in the database, and can be used to correct and complete metadata
that was incorrectly or incompletely entered when the file was copied or ripped.

To set the metadata for a file:
1 Complete the structunem net adat a_t with the file metadata.
2 Call mme_metadata_set(), specifying the file ID.

Events

None delivered.

Blocking and validation

This function performs no validations, and doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

May 4, 2009 Chapter 1 ¢ MME APl 195

mme_m etad ata_set () [0 2009, ONX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_mediacopier_add(), mme_mediacopier_get_mode(),
mme_mediacopier _set_mode(),

196 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. ITTTE_ITD d e_r a.n d 0 m_t

Synopsis:

Description:

Classification:

See also:

May 4, 2009

Random mode values

#i ncl ude <nme/types. h>
t ypedef enum nmmre_node_random {

} mme_node_random t;

The enumerated typere_node_r andom t defines random mode settings. These
settings match the settings used by iPods:

e MME_RANDOM_OFF(0) — random mode is not selected
e MME_RANDOM_ALL (1) — random playback for the track session

e MME_RANDOM_ALBUMS (2) — random playback for the current aloum or
directory on an iPod device. The MME doesn't support this mode, and falls back to
MME_RANDOM_ALL if this mode is set. However, if playback is handled
externally (i.e. by an iPod device), then the random command is handled by the
device.

e MME_RANDOM_FOLDER(3) — random playback for the current folder
e MME_RANDOM_SUBFOLDER(4) — random playback for the current subfolder

For more information about playback random mode,rase_setrandom() and
“Using random and repeat modes” in the chapter Playing Media d¥itfi&
Developer’s Guide.

QNX Multimedia

mre_node_r epeat _t , mme_getrandom(), mme_getrepeat(), mme_getscanmode()
mme_setrandom() mme_setrepeat()

Chapter 1 ¢« MME API 197

ITTTE_ITD d e_r e p e at _t 0 2009, QNX Software Systems GmbH & Co. KG.
Repeast mode values

Synopsis:

#i ncl ude <nme/types. h>

t ypedef enum nmme_node_repeat t;

Description:

The enumerated typere_node_r epeat _t defines random mode settings. These
settings match the settings used by iPods:

e MME_REPEAT OFF— repeat mode is not selected

e MME_REPEAT SINGLE — repeat the current track

e MME_REPEAT ALL — repeat all tracks in the track session

e MME_REPEAT FOLDER— repeat all tracks in the current folder

e MME_REPEAT SUBFOLDER— repeat all tracks in the current subfolder

For more information about playback repeat mode,see_setrepeat() and “Using
random and repeat modes” in the chapter Playing Media df/ki& Developer’s
Guide.

Classification:
ONX Multimedia

See also:

mmre_node_r andom t , mme_getrandom(), mme_getrepeat(), mme_getscanmode()
mme_setrandom(), mme_setrepeat()

198 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

MME_MSCAP_*

Mediastore capability definitions

Synopsis:
#i ncl ude <nme/interface. h>
#define _MVE_MSCAP_* _MASK
#defi ne MVE_MSCAP_*
Description:
The constant®ME_MSCAP_* are bit masks defining mediastore capabilities. The
values listed in the table below are used bydhgabilities field in themedi ast or es
table.
Constant Value Description
MME_MSCAP_SYNC 0x00000001 The mediastore can be synchronized.
MME_MSCAP_PRUNABLE 0x00000002 Synchronization should manage pruning
of this mediastore.
MME_MSCAP_SYNC_DIRECTED 0x00000004 The mediastore supports directed
synchronizations.
MME_MSCAP_NO_AUTO_SYNC 0x00000008 The mediastore is never automatically
synchronized.
MME_MSCAP_PRIO_FOLDER 0x00000010 The mediastore can prioritize folders for
synchronization.
MME_MSCAP_MEDIAFS_1WIRE 0x00000020 The device is a media device.
MME_MSCAP_MEDIAFS_2WIRE 0x00000040 The device is a media device.
MME_MSCAP_DEVICE_TRACKSESSIONS 0x00000080 The device manages its own track
sessions.
MME_MSCAP_NOWPLAYING_METADATA 0x00000100 Metadata for the currently playing track
can be retrieved from the device.
MME_MSCAP_NOWPLAYING_FILENAME 0x00000200 The filename for the currently playing
track can be retrieved from the device.
MME_MSCAP_DEVICE_SAVES STATE 0x00000400 The device can save its own state; used

May 4, 2009

for resuming playback with
mme_play_resume_msid().

continued. . .

Chapter 1 e MME API 199

M M E_MSCA P_* [J 2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_MSCAP_DEVICE_REPEATRANDOM 0x00000800 The device supports repeat and random
modes. This capability does not apply to
USB devices; it appliesnly to devices
with the
MME_MSCAP_DEVICE_TRACKSESSIONS
capability set.

MME_MSCAP_DELETE_ON_EJECT 0x00001000 The MME should delete entries for this
mediastore when it is ejected.

MME_MSCAP_PLAY_FILE 0x00002000 The device supports the deprecated
mme_play_file() function.

MME_MSCAP_EXPLORABLE 0x00004000 The device supports the MME's explorer
API. Seemme_explore_start() and the
othermme_explore_*() functions.

MME_MSCAP_TRKSESSIONVIEW METADATA 0x00008000 The device supports the
mme_trksessionview_metadata_get()
function.

MME_MSCAP_TRACK_POSITION COOKIE BASED 0x00010000 The device supports the See
mme_trksession_save_state() function.

MME_MSCAP_SUPPORTSVIDEO 0x00020000 The device supports video playback.

MME_MSCAP_CONNECTION NONOPTIMAL 0x00040000 The device is not using the optimal link;
for example, an iPod that supports USB is
using a serial transport.

MME_MSCAP_AUDIO_NONOPTIMAL 0x00080000 The device is not using the optimal audio
link; for example, an iPod that supports
digital audio is using analog audio.

MME_MSCAP_SET 0x80000000 Device capabilities have been set (make
non-zero).

For more information about detecting mediastores and discovering their capabilities,
see “Mediastore and device capabilities” in the chapter Working with Mediastores of
the MME Developer’s Guide.

Classification:
QNX Multimedia

See also:

MME_FORMAT_*, MME_FTYPE_*, MME_STORAGETYPE *,
MME_SYNC_OPTION *

200 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_m S_CI ear_accu rate()
Mark library entries asinaccurate

Synopsis:
#i ncl ude <me/ nme. h>
int mme_ns_clear_accurate(mre_hdl _t *hd,
uint 64_t msid) ;
Arguments:
hdl An MME connection handle.
msid The ID for the mediastore to be marked inaccurate.
Library:
mre
Description:
The functionmme_ms_clear_accurate() clears theaccurate fields in thel i brary for
items linked to the specified mediastore. Clearingattheur at e marks the entry in the
i brary tabl e as inaccurate, so that the MME synchronizers will update the data.
Setmsid to 0 to mark as inaccurate all entries in thebr ar y linked to all
mediastores.
Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢« MME API 201

mme_ms_C | ear_accu rate() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder (),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get msid_status(), mme_sync_get_status()

202 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_ms_m etadat a_d on e()
Clear the metadata handle

Synopsis:
#i ncl ude <me/ net adat a. h>
voi d nMme_ns_net adat a_done(mme_net adata_hdl _t *metadata) ;
Arguments:
metadata The pointer to the handle with the metadata.
Library:
nmet adat a
Description:
The functionmme_ms_metadata_done() clears the metadata handle. It should be used
when the metadata in the handle is no longer needed.
Events

None delivered.

Blocking and validation

This function validates that the metadata handle INLL. It doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract _data(),
mme_metadata_extract_string(), mre_net adat a_hdl _t, mme_ms_metadata_get()

May 4, 2009 Chapter 1 ¢ MME APl 203

mme_ms_m etad ata_g et () 0 2009, QNX Software Systems GmbH & Co. KG.

Get metadata from afile

Synopsis:
#i ncl ude <me/ net adat a. h>
nme_netadata_hdl _t *mre_ns_net adat a_get (
nmre_hdl _t *hdl,
uint 64_t *msid,
const char *path,
const char *types,
uint32_t flags);
Arguments:
hdl The MME connection handle.
msid The ID of the mediastore with the file whose metadata is required.
path The path and filename (not including the mediastore mountpath) of the file
whose metadata is required.
types A pointer to a string containing a comma-separated list of metadata types to
retrieve. Maynot be NULL. SeeMETADATA _*.
flags For future use.
Library:
nmet adat a
Description:
The functionmme_metadata_get() gets metadata for a file and places it in the
metadata handlene_net adat a_hdl _t . The type of metadata retrieved is defined by
the METADATA _FORMAT_* enumerated values.
Events

None delivered.

Blocking and validation

This function performs no validations and doesn’t block.

Returns:

Data in the character string, BIULL if no data is foundérrno is set).

204 Chapter 1 ¢ MME API

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_ms_m etadat a g et ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

METADATA _*, mme_metadata_alloc(), mme_metadata_extract _data(),
mme_metadata_extract_string(), mre_net adat a_hdl _t,
mme_ms_metadata_done()

May 4, 2009 Chapter 1 ¢ MME APl 205

mme_m S_restart() 00 2009, QNX Software Systems GmbH & Co. KG.

Request that a media store be restarted

Synops

IS:

Arguments:

Library:

Descrip

tion:

AN

Events

#i ncl ude <nme/ me. h>

int me_ns_restart(mre_hdl _t *hdl,
uint64_t msid);

db An MME connection handle.

msid The ID of the mediastore to restart.

The functionmme_ms_restart() causes the specified mediastore to go through an
“active” to “nonexistent” transition, followed by an insertion to the “active” state.

When the state of a mediastore changes from another state to “nonexistent”, the MME
always prunes the entries for that mediastore from its databaseatter what the

pruning configurations. Thus, whemmme_ms_restart() is successful, when the
mediastore restarts it appears to the MME aswamediastore, and the MME assigns

it a new mediastore ID.

CAUTION: mme_ms_restart() is:

e not the recommended method for rediscovering a mediastore. It may be changed or
removed from the MME API.

e not supported for mediastores that are not active, or for mediastores that use an
mmdev handler plugin.

None delivered.

Blocking and validation

This function validates the request and runs asynchronously, so it may fail after
returning success. The calling application must examine the mediastore state change
events to determine if the entire operation finished successfully.

Calls using that MME handle used byne_ms_restart() will fail until the operation is
complete, even if the call tmme_ms_restart() has returned.

206 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_m S_restart()

Returns:

>0 Success.
-1 An error occurreddrrno is set):

e EINVAL — the mediastore does not exist or is not active
e ENOTSUP— the mediastore uses andev handler

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

“Mediastore states” in the chapter Working with Mediastores oMIME Developer’s
Guide

May 4, 2009 Chapter 1 ¢« MME API 207

ITTTE_ITB _S t at e_t 0 2009, QNX Software Systems GmbH & Co. KG.

Mediastore states

Synopsis:

Description:

Classification:

See also:

#i ncl ude <nme/types. h>

t ypedef enum {
e_nme_ns_nonexi stent = 0,
e_nmmre_ns_unavai |l abl e,
e_rmMme_ns_avail abl e,
e_mMme_mns_active

} nme_ns_state_ t;

The enumerated typare_ns_st at e_t defines mediastore states:

e e mme_ms_nonexistent— non-existent: the MME has no database entry for the
mediastore.

e e _mme _ms_unavailable— unavailable: the MME has a database entry for the
mediastore, but the mediastore is not in the system in which the MME is running.

e e mme_ms available— available: the MME has a database entry for the
mediastore, and the mediastore is in the system in which the MME is running. That
is, the MME knows the location of the mediastore, but the mediastore cannot be
synchronized, and tracks on the mediastore cannot be ripped or played. This state
is generally possible only for disk-based media stores in multi-disk changers.

e e mme ms active— active: the usable state of a mediastore. The MME has a
database entry for the mediastore, the mediastore can be synchronized, and tracks
on the mediastore can be ripped or played

For more information about mediastore states and state transitions, see the chapter
Working with mediastores of theIME Developer’s Guide.

ONX Multimedia

nme_ns_st at echange_t

208 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

nme_ns_st at echange t

Data for media store state change event

Synopsis:
#i ncl ude <nme/types. h>
typedef struct s _me_ns_stat echange {
ui nt 64 _t nsi d;
ui nt32_t ol d_state;
uint32_t new_st at e;
uint16 t devi ce_type;
uint16 t storage_type;
ui nt 32_t reserved,
}
Description:

The structureme_ns_st at echange_t carries data for the mediastore state change
eventsMME_MS_STATECHANGE It includes at least the members described in the

table below.

Member Type

Description

msid ui nt 64 _t
old state ui nt 32_t
new_state ui nt 32_t
device type uint16_t
storage type uint16_t

reserved ui nt 32_t

The mediastore ID

The previous state of the mediastore

The new state of the mediastore

The device type. See “Device types” below.

The mediastore storage type, as defined by the
MME_STORAGETYPE * constant.

Reserved for internal use.

Mediastore states are defined by the enumerated valelens_st at e_t . For more
information about mediastore states and state transitions, see the chapter Working with

Mediastores.

Device types

The value ofdevice type is defined by theslottype field for the mediastore in the
sl ot s table. This field uses the values defined byNMME_SLOTTYPE *, and its use

is defined by the user.

May 4, 2009

Chapter 1 ¢« MME APl 209

mTE_rTB_St at eC h an g e_t 00 2009, QNX Software Systems GmbH & Co. KG.

Q If the MME is unable to associate a mediastore that is available but not active with an
entry in thesl! ot s table, the value fodevice type may be
MME_SLOTTYPE_UNKNOWN.

Classification:
ONX Multimedia

See also:

mre_ms_state_t

210 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_n ewtrksession ()

Create a new track session
Synopsis:
#i ncl ude <me/ nme. h>
int mMe_newt rksession(nmre_hdl _t *hdl,
char * statement,
short int mode,
ui nt 64_t *trksessionid) ;
Arguments:
hdl An MME connection handle.
statement An SQL statement that defines the track session you want to create.
mode The track session mode. This mode can be either
MME_PLAYMODE_LIBRARY (0) orMME_PLAYMODE_FILE (1).
trksessionid The pointer to the location where the function can store the new track
session ID. Pass this valuerene_settrksession() to activate the
track session.
Library:
mre
Description:

The functionmme_newtrksession() creates a new track session for the specified
control context.

The SQL query passed to this function can select tracks frorhithear y table, the
pl ayl i st table, or any other valid source. The MME adds each new track session
created bymme_newtrksession() to thet r ksessi ons table in the MME library.

The SQL statement should not end with a semicolon. The statement is actually a
sub-statement, whicimme _newtrksession() places into a larger statement. The result
for the statement you passtwone_newtrksession() must include afid column.

For best performance, compose the query to look for media files only on available
mediastores. For example, for library-mode track sessions, compose the query:

SELECT fid FROM library WHERE nsid I N
(SELECT nsi d FROM nedi ast ores WHERE avai | abl e=1)

For file-based track sessions, compose a query that returi¥§¥Re_DEVICE fid for
the mediastore with the files discovered through the explorer API. For example:

SELECT fid FROM |ibrary WHERE ftype=5 AND nsi d=3

May 4, 2009 Chapter 1 ¢« MME API 211

m m e_n eWt r kS eSS | O n () 2009, QNX Software Systems GmbH & Co. KG.

Events

For more information about library-mode and file-based track sessions, see “Working
with track sessions” in th®IME Developer’s Guide.

After you have created a new track session, you need to:
e call mme_settrksession() to make it the active track session on the specified zone

e callmme_play() to start playing tracks in the track session

A new track session inherits its random and repeat modes from the control context in
which it is created. For more information about these modesyege setrandom()
andmme_setrepeat().

You can callmme_trksession _get_info() to get the ID of the active track session in a
specific control context.

None delivered.

Blocking and validation

Returns:

Examples:

Full validation of data; all arguments are checked before the call returns.

=0 Success.

-1 An error occurreddrrno is set).

/'l Create a new track session of all songs froma playlist
/1 that are currently available
sql = qgdb_nprintf(
"SELECT fid FROM pl ayl i stdata WHERE "
"plid = (SELECT plid FROM pl aylists WHERE name = "%’) "
"AND nsid I N (SELECT nsid FROM nedi ast ores WHERE avai | abl e=1)",
pl ayl i st nane) ;
if (sql == NULL) {
fprintf(stderr, "error with select statenment;");
exit(1);
}

rc = me_newtrksession(&me, sql, MVE_PLAYMODE_LI BRARY, &trksessionid);
if (rc ==-1) {

fprintf(stderr, "error creating new track session;");

exit(1);
}

rc = me_settrksession(&me, trksessionid);

if (rc ==-1) {
fprintf(stderr, "error setting track session;");
exit(1);

}

/1 pass in a fid of 0 to start from the begi nning.

212 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_newtrksession()

Classification:

See also:

May 4, 2009

rc = me_pl ay(&me, 0);

if (rc ==-1) {
fprintf(stderr, "error starting playback;");
exit(1l);

ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

mme_trksession_get_info(), mme_rmtrksession(), mme_settrksession()

Chapter 1 ¢ MME API

213

mme_next()

[J 2009, QNX Software Systems GmbH & Co. KG.

ip to the next track
Synopsis:
#i ncl ude <me/ nme. h>
int mre_next(mre_hdl _t *hd);
Arguments:
hdl An MME connection handle.
Library:
mre
Description:

The functionmme_next() skips to the next track in the currently playing track session.

Effect of play modes on behavior

The behavior ofnme_next() is affected by the play modes set for the specified control
context (sequential versus random, and repeat versus no repeat).

If sequential mode is set, the next track in the track session is determined by the
sequentialid field in the next row of the r ksessi onvi ewtable. The order of the file
IDs in this table column is determined by tBBDER BY clause used to create the
track session.

If random mode is set, the next track in the track session is determined by the
randomid field in the next row of the r ksessi onvi ewtable. The order of the file
IDs in this table column is generated by the MME when it sets the track session.

Effect of repeat mode on the last track of a session

When the last track in the track session is playing, the result of catlimg_next()
depends on whether the repeat mode is set.

If repeat is off, Mme_next() setserrno to ENODATA when it has reached the end of the
track session (or, when random mode is set, when all songs in the trackssessin have
been played).

If repeat is on:

e if sequential mode is set, the MME plays the first track in the track session, as
determined by theequentialid column in thet r ksessi onvi ewtable

e if random mode is set, the MME plays the first track in the track session, as
determined by theandomid column in thet r ksessi onvi ewtable

214 Chapter 1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_n ext ()

Working with an iPod device

Events

iPod devices manage their own track sessions. To move to the next or previous track in
an iPod track session, call thane _button() function withnmm but t on_t set to
MM_BUTTON_NEXT or MM_BUTTON_PREYV, as required.

Any event of the clasMIME_EVENT_CLASS PLAY, and anyMME_PLAY_ERROR *
event.

Blocking and validation

Returns:

Classification:

See also:

May 4, 2009

Verifies that thdid is valid. Does not verify that the file exists, or that it is playable.

This function blocks on control contexts.rtime_next() is called and another function
is called beforanme _next() returns, the second function blocks oo+ medi a until
mme_next() returns. If there are no other pending catiene _next() returns without
blocking oni o- nedi a.

=0 Successerrno set toENODATA indicates that there are no more tracks to play.

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

mme_prev(), mme_setrandom(), mme_setrepeat()

Chapter 1 ¢ MME APl 215

ITTTE_O Ut p Ut _at t r _t 0 2009, QNX Software Systems GmbH & Co. KG.
Media output attributes

Synopsis:
#i ncl ude <nme/types. h>
typedef struct nme_output_attr {
uni on {
struct {
i nt vol umne;
i nt bal ance;
i nt f ade;
i nt mut e;
uint64_t del ay;
} audi o;
struct {
i nt | ayer;
} video;
struct {
/* not yet inplenented */
} encoded,;
b
} mme_output _attr _t;
Description:

The structureme_out put _at tr_t carries playback output attributes and is used for
getting and setting attributes on output devices. Itis a union of the structudes,

vi deo andencoded, and can therefore only control one class of output device at a
time.

The members of the structuresdi o, vi deo andencoded that make up
mTe_out put _attr_t are described in the table below.

Structure Member Type Description

mre_out put _attr_t audio struct Audio information

nme_out put _attr_t video struct Video information

mre_out put _attr_t encoded struct Encoding information. For
future use.

audi o volume int The output volume, as a percent

from 0 to 100.

audi o balance i nt The output balance: 0 (left); 50
(center); 100 (right).

continued. ..

216 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mre_out put _attr t

Structure Member Type Description

audi o fade i nt The output fade setting: 0
(back); 50 (center); 100
(forward).

audi o mute i nt The output muted setting: Set to
1 for muted,0 for not muted.

audi o delay uint64_t The output delay, in
millisenconds.

vi deo layer i nt The GF/video layer.

Classification:

QNX Multimedia

See also:

mme_play_get output_attr()

May 4, 2009

Chapter 1 e MME API 217

mme_ou t pu t_S et_ permanen t () [2009, QNX Software Systems GmbH & Co. KG.
Set the permanency status of an output device

Synopsis:
#i ncl ude <me/ nme. h>
i nt mMe_out put _set permanent (nme_hdl _t *hdl,
ui nt 64_t outputid,
i nt permanent) ;
Arguments:
hdl An MME connection handle.
outputid The ID of the output device whose permanency status is to be set.
permanent The output device’s permanency status: Set this argument to 1 for
permanent, O for not permanent.
Library:
me
Description:
The functionmme_output_set permanent() sets the permanency status of the
specified output device:
1 The output device is permanent.
0 The output device isot permanent.
Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

218 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_oO Utp u t_S et_p erman ent()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_play_attach_output(), mme_play_detach _output(), mme_play get zone(),
mme_play_set zone(), mme_zone create(), mme_zone delete()

May 4, 2009 Chapter 1 e MME API 219

ITTTE_O Ut p Ut t y p e_t 0 2009, QNX Software Systems GmbH & Co. KG.
Define media output types

Synopsis:

#i ncl ude <nme/types. h>

t ypedef enum nmme_out puttype {
MVE_OUTPUTTYPE_UNKNOM = 0,
MVE_OUTPUTTYPE_AUDI O = 1,
MVE_QUTPUTTYPE_VI DEO = 2,
MVE_QUTPUTTYPE_ENCODED = 3

} mme_out puttype t;

Description:

The enumerated typesre_out put t ype_t defines media output types. Its values are
listed below:

e MME_OUTPUTTYPE UNKNOWN
e MME_OUTPUTTYPE AUDIO
e MME_OUTPUTTYPE VIDEO

e MME_OUTPUTTYPE ENCODED

Classification:
QNX Multimedia

See also:

mre_out put _attr_t,play_get output_attr()

220 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ay O

Synopsis:

Arguments:

Library:

Description:

May 4, 2009

Play a track session

#i ncl ude <nme/ me. h>

int me_play(nmre_hdl _t *hdl,
uinte4_ t fid);

hdl An MME connection handle.

fid The file ID of the file or track you want to play. Pass as 0 to start playback at
the first track in the track session.

The functionmme_play() plays tracks in a track session. This function can only be
used after the client application has calfadie newtrksession() to create a track
session, andme_settrksession() to set the track session.

If you specify thefid in a library-based track-session, the MME starts playback with
the specifiedid. If the library-based track session contains more than one instance of
the specifiedid, the MME starts playback at the first instance of fids

The MME control context notifies the client application at set intervals while it is
playing a track session by delivering the eveitME_EVENT_TIME. You can change
this period through the functiomme_set notification_interval().

Chapter 1 e MME API 221

m m e_ p | ay () 2009, QNX Software Systems GmbH & Co. KG.

Q e If you need the file IDfid) of the track being played, your client application can do
one of the following:

- wait for the MME_EVENT_TRACKCHANGE event, delivered when the track
session starts playing a new track. This event containfidhe

- call the functionmme_play_get info() and get thdid from
mre_play info t.fid

e If you call mme_play() while a track is playing, the MME will drop the current
track and start playing the new track.

e If mme_play() is unable to play a track in a track session it generates an
MME_PLAY_ERROR * event, then attempts to play the next track in the track
session.

e If you attempt to play a file IDf{d) that is not in your track session, the MME will
play the first track in the track session. This behavior is specific to MME 1.1.0; in
subsequent releaseame_play() will return an error.

Events

This function may deliver any event of the clad®IE_EVENT_CLASS PLAY, and
anyMME_PLAY_ERROR * event.

Blocking and validation

This function does not verify that tHal is in the track session. If the connection to the
MME is synchronous, the function validates that the file exists and that it is playable.

This function blocks on control contexts.rtime_play() is called and another function
is called beforanme_play() returns, the second function blocks ioor nmedi a until
mme_play() returns. If there are no other pending cattene_play() returns without
blocking oni o- nedi a.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. ..

222 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_play()

Safety
Signal handler No
Thread Yes

See also:

mme_newtrksession(), mme_next(), mme_prev(), mme_stop()

May 4, 2009

Chapter 1 ¢ MME API

223

mme_p I ay attac h_O ut pu t () [2009, QNX Software Systems GmbH & Co. KG.

Attach an output to a zone

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int me_play_attach_output(nme_hdl _t *hdl,
ui nt 64_t zoneid,
ui nt 64_t outputid) ;

hdl An MME connection handle.

zoneid The zone to which you want to attach the output device. If set to 0, use
the current control context zone.

outputid The ID of the output device to attach to the zone.

The functionmme_play_attach output() attaches an output device to a specified zone.
Playback on the control context using the specified zone will go to the output devices
attached to that zone.

The MME saves the output device setting so that the next time the control context is
used it will automatically send its output to the same output devices.

None delivered.

Blocking and validation

Returns:

Classification:

This function blocks on control contexts. It validates parameters. In asynchronous
mode, it returns before callinigo- nedi a.

=0 Success.

-1 An error occurreddrrno is set).

ONX Neutrino

224 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay attac h_O Utp Ut()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_output_set _permanent(), mme_play_detach output(), mme_play _get zone(),
mme_play_set zone(), mme_zone create(), mme_zone delete().

May 4, 2009 Chapter 1 e MME APl 225

mme_p I ay bookmark () 0 2009, QNX Software Systems GmbH & Co. KG.

Sart playback from a bookmark

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMe_bookmark_play(nmre_hdl _t *hdl,
ui nt 64_t bookmarkid) ;

hdl An MME connection handle.

bookmarkid The bookmark ID from which to play.

The functionmme_play_bookmark() begins playing a track from the specified
bookmark. Its behavior is like that ofime_play(), except that instead of playing the
track from its beginningmme_play_bookmark() starts playback from the bookmark.

Like mme_play(), mme_play_bookmark() requires that the track to be in the current
track session. In addition, the track must have the specified bookmark.

This function may deliver any event of the clad®IE_EVENT_CLASS PLAY, and
anyMME_PLAY_ERROR * event.

Blocking and validation

Returns:

This function verifies that théd is valid. It doesn’t verify that the file exists, or that it
is playable.

This function blocks on control contexts.rtime_play() is called and another function
is called beforenme_play() returns, the second function blocks ioo+ medi a until
mme_play() returns. If there are no other pending cattene play() returns without
blocking oni o- nedi a.

=0 Success.

-1 An error occurreddrrno is set).

226 Chapter 1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay bookmark ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_bookmark _create(), mme_bookmark _delete(),

May 4, 2009 Chapter 1 ¢« MME API 227

mme_p I ay_d etac h_O ut pu t () [2009, QNX Software Systems GmbH & Co. KG.
Detach an output from a zone

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_play_detach_out put(nme_hdl _t *hdl,
ui nt 64_t zoneid,
ui nt 64_t outputid) ;
Arguments:
hdl An MME connection handle.
zoneid The zone from which you want to detach the output device. If set to 0,
use the current control context zone.
outputid The ID of the output device to detach from the zone. .
Library:
mre
Description:
The functionmme_play_detach output() detaches an output device from a specified
zone.
Events

None delivered.

Blocking and validation

This function blocks on control contexts. It validates parameters. In asynchronous
mode, it returns before callinigo- medi a.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

continued. ..

228 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay_d etac h_O Utp Ut()

Safety
Signal handler No
Thread Yes

See also:

mme_output_set permanent(), mme_play_attach_output(), mme_play_get zone(),
mme_play_set_zone(), mme_zone_create(), mme_zone_delete()

May 4, 2009 Chapter 1 ¢« MME APl 229

mme_play file()

[J 2009, QNX Software Systems GmbH & Co. KG.

Play a track on an unsynchronized mediastore

Synopsis:

Arguments:

Library:

Description:

Events

This function is deprecated. Use file-based track sessions; see “Creating and
modifying file-based track sessions” in teME Developer’s Guide.

#i ncl ude <nme/ me. h>

int me_play_file(mre_hdl _t *hdl,
ui nt 64_t msid,
const char *filename) ;

hdl The handle of the control context.
msid The ID of the mediastore with the track to be played.

filename The path and filename of the track to play. The filename includes the
path to the file on the mediastore, but it does include the mountpath
to the mediastore. The pathfibename must begin with a “/” (slash).
For example/ songs_f ol der/ al bum f ol der/.

The functionmme_play_file() plays a track on a mediastore regardless of whether the
mediastore has been synchronized. This function can only be used to play a track on a
mediastore that has itapabilities field in thenmedi ast or es table set to
MME_MSCAP_PLAY_FILE.

Like mme_play(), in order to play a trackyme_play_file() requires a track session to
be set, but does not require the track to be in the set track session.

This function may deliver any event of the clad®IE_EVENT_CLASS PLAY, and
anyMME_PLAY_ERROR * event.

Blocking and validation

This function does not verify that tHel is in the track session. If the connection to the
MME is synchronous, the function validates that the file exists and that it is playable.

This function blocks on control contexts.rtime _play_file() is called and another
function is called beforenme_play_file() returns, the second function blocks on
i o- medi a until mme_play_file() returns. If there are no other pending calls,
mme_play_file() returns without blocking oho- nedi a.

230 Chapter1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ay_fi | e()

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_play()

May 4, 2009 Chapter 1 e MME API 231

mme_p I ay g et_i nfo () 0 2009, QNX Software Systems GmbH & Co. KG.
Get information about the track or file currently being played

Synopsis:
#i ncl ude <me/ nme. h>
int me_play_get _info(mre_hdl _t *hdl,
nre_play_info_t *info);
Arguments:
hdl An MME connection handle.
info A pointer to amme_pl ay_i nf o_t structure thatnme_play_get _info() can
fill with the playback information.
Library:
me
Description:
The functionmme_play_get_info() retrieves current information about the track that
is currently being played, and fills out the structure pointed tanby. For information
about this structure, seare_pl ay i nf o_t in this reference.
Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

=0 Success: MME retrieved the information for the current track and placed this
information in the structureme_pl ay _info_t.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

232 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay g et_i nfo ()

See also:

mme_play(), mme_play_get_status(), mme_play_get_info(),
mme_play_get_status(), mme_play_set_speed(), mme_set_notification_interval()

May 4, 2009 Chapter 1 ¢ MME APl 233

mme_p I ay g et_O ut pu t_ attr () [0 2009, QNX Software Systems GmbH & Co. KG.
Get the attributes for an output device

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_play_get _output_attr(nme_hdl _t *hdl,
ui nt 64_t outputdeviceid,
mre_out put _attr_t *attr);
Arguments:
hdl An MME connection handle.
outputdeviceid The ID of the output device for which to get attibutes.
attr A pointer to a structure with the output device attributes.
Library:
mre
Description:
The functionmme_play_get_output_attr() gets the output attributes for the specified
output device, and places them in a structure_out put _attr_t . For more
information about this structure, seee_out put _attr _t in this reference.
Events

None delivered.

Blocking and validation

This function blocks on control contexts.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

234 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_p | ay g et_O Utp u t_ attr()

See also:

mme_play_set output_attr(), mme_output_set permanent()

May 4, 2009 Chapter 1 ¢ MME APl 235

mme_p I ay_ g et_S P eed () 00 2009, QNX Software Systems GmbH & Co. KG.

Gets playback speed and direction (forward, reverse, pause) for tracks

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int me_play_get speed(me_hdl t *hdl,
int *speed);

hdl An MME connection handle.

speed A pointer to the playback speed for the current track, expressed in units of
1/1000 of normal speed.

The functionmme_play get speed() gets the playback speed for the current track or
file.

The playback speed is expressed in units of 1/1000 of normal speed: 1000 means
normal speed, 2000 means double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values between 0 and 1000 are slow
speed playback.

iPods do not report their current playback speed. Queries for their playback speed
always return a nominal 1000, but this value should not be considered accurate.

None delivered.

Blocking and validation

Returns:

This function validates all data, and doesn't block.

=0 Success: the playback speed was set.

-1 An error occurreddrrno is set).

236 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_play_get speed()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_play(), mme_play_get_info(), mme_play_get status(), mme_play_set_speed()

May 4, 2009

Chapter 1 ¢ MME API

237

mme_p I ay g et_statu S () 0 2009, QNX Software Systems GmbH & Co. KG.

Get the status of the current track

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int me_play _get _status(nme_hdl _t *hdl,
mre_play_status_t *play status) ;

hdl An MME connection handle.

play status The pointer to the structure with the playback status information
filled in by mme_play_get_status().

The functionmme_play_get _status() retrieves the status of a media play. It provides
the total play time of the media track and the play time elapsed by filling in the
structuremme_pl ay_st at us_t pointed to byplay_status. See

me_pl ay_st at us_t in this reference.

None delivered.

Blocking and validation

Returns:

Classification:

This function validates all data, and doesn't block.

=0 Success: MME retrieved the status of the media play and filled in the
information in the structureme_pl ay_status_t.

-1 An error occurreddrrno is set).

ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

238 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay g et_Statu S ()

See also:

mme_play(), mme_play_get_info(), mme_play get status(),
mme_play_set_output_attr(), mme_ti me_t ,mre_pl aystate_t,
mre_pl ayst at us_t

May 4, 2009 Chapter 1 e MME APl 239

mme_p I ay_ g et_ZO n e() 0 2009, QNX Software Systems GmbH & Co. KG.
Get the zone ID used by a control context

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_play_get zone(nmme_hdl _t *hdl,
uint64_t *zoneid);
Arguments:
hdl An MME connection handle.
zoneid The zone ID.
Library:
mre
Description:
The functionmme_play get zone() gets the zone used by the current control context.
For more information about zones, seme_zone create().
Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

240 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay g et_ZO n e()

See also:

mme_play_attach_output(), mme_play_detach_output(),
mme_output_set _permanent(), mme_play_set _zone(), mme_zone_create(),
mme_zone_delete()

May 4, 2009 Chapter 1 ¢« MME API 241

nmme play info t

[J 2009, QNX Software Systems GmbH & Co. KG.

Information about the currently playing track

Synopsis:

#i ncl ude <nme/types. h>

typedef struct nme_play_info {

ui nt 64 _t

ui nt 64 _t

uint 32_t

uint 32_t

ui nt 32_t

ui nt 32_t

ui nt 32_t

uint 32_t
uint32_t
ui nt 32_t
ui nt32_t
ui nt 64 _t
ui nt 32_t
ui nt 64 _t

fid;

nsi d;

storage_type;

ftype;

pl aynode;

sl ot t ype;

tracknum

titl enum
audi o_i ndex;
support;
reserved;
nscap;
reserved;
of f set;

} mre_play_info_t;

Description:

The structureme_pl ay_i nf o_t carries information about the currently playing
track. The functiormme_play_get_info() uses this structure to deliver information
about the state of a playback operation.

M ember

Type Description

fid
msid

storage_type

ftype

playmode

slottype

tracknum

titlenum

242 Chapter 1 ¢ MME API

u

u

u

ui

ui

u

ui

ui

nt64_t The track or file ID.
nt64_t The mediastore ID.

nt32_t The type of mediastore. SB&VIE_STORAGETYPE *
in this reference.

nt32_t The type of media track or file. S&ME_FTYPE *
in this reference.

nt32_t The playmode of the track session (library or file).
SeeMME_FORMAT_* andMME_PLAYMODE_* in
this reference.

nt32_t The slot type of the current track or file. See
MME_SLOTTYPE * in this reference.

nt 32_t The track number of the current track or file.

nt32_t The title or group number of the CD, DVD-video or
DVD-audio.

continued. ..

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. nTTE_p | ay_l nf O_t

Play support flag

Classification:

See also:

May 4, 2009

Member Type Description

audio_index uint32_t The audio index of the track on a DVD. It is the same
as theaudio_index filed in thel i brary.

support uint32_t A bitmask flag indicating the functionality supported
by the current playing track. See “Playpport flag”
below.

reserved uint32_t Reserved for future use..

mscap ui nt 64_t A bitmask with the mediastore capabilities. Values are
defined by the MMEMSCAP_* constants.

offset ui nt 64_t The current offset in the track session. Offsets are
zero-based

For information about storage types, $&E_STORAGETYPE * in this reference.

Thesupport member ofmre_pl ay_i nf o_t is a bitmask flag indicating the
functionality supported by the current track or file, and the device on which track or
file is located:

e MME_PLAYSUPPORT NAVIGATION — the current track is navigable. Use the
function mme_button() to allow the end-user to control navigation of the track.

e MME_PLAYSUPPORT DEVICE_TRACKSESSION— the device supports it own
track session management. An example of this functionality is an iPod running in
serial mode. Rather than issoene_next(), issuemme_button(NEXT) to move to
the next track.

e MME_PLAYSUPPORT VIDEO — the current track has video.
e MME_PLAYSUPPORT AUDIO — the current track has audio.

e MME_PLAYSUPPORT REPEATRANDOM— the device track session supports
repeat and random. An example of this sort of device is an iPod operating in serial
mode.

QNX Multimedia

mme_play_get_info(), mme_button(), MME_FTYPE_*, MME_FORMAT_* and
MME_PLAYMODE_*, MME_SLOTTYPE *, MME_STORAGETYPE *

Chapter 1 ¢ MME APl 243

mme_p I ay_OffS et () 0 2009, QNX Software Systems GmbH & Co. KG.

Sart playback at the specified offset in a track session

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int me_play_offset(me_hdl _t *hdl,
i nt offset,
uint32_t flags);

hdl An MME connection handle.
offset The 0-based offset in the track session at which to start playback.

flags For future use.

The functionmme_play_offset() starts playback at the specified offset in a track
session (the offset in ther ksessi onvi ewtable). A value of O for theffset starts
playback of the first track in the track session. Once started, playback continues
through to the end of the track session.

Note the following about usingime_play_offset():

e The client application must create and set a track session before using
mme_play_offset(), just as it does fomme_play().

e A call tomme_play_offset() while playback is underway will stop playback and
restart it at the specified offset:

- If the track currently playing is part of a device track session
(mme_play_get_info() reports
MME_PLAYSUPPORT DEVICE_TRACKSESSION, the MME applies the offset
to thedevice tracksession.

- In all other cases, the MME applies the offset to the MME tracksession. For

more information about MME and device track sessions, see “Playing media on

iPods” in the chapter Working with External Devices of M&E Developer’s
Guide.

244 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay_OffS et()

Q You need to be playing the iPod before you can jump to an index into its tracksession.
You can usanme_play_get info() to confirm that you are playing an iPod: if you are
not the iPod,mme_play get info() will not report
MME_PLAYSUPPORT DEVICE_TRACKSESSION

e Random and repeat modes do not change the behaviomef play offset():

- If random mode is on, playback starts at the specified offset in the random order
track session, and continues from that point.

- If repeat mode is on for the track session, playback repeats through the track
session until it is stopped.

In other words, if the value dafffsetis 1 and:

- the tracks in a sequential track session are 4, 5, 6, then playback starts with track
5.

- the tracks in a random track session are 6, 4, 5, then playback starts with track 4.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢ MME APl 245

mme_p | ay_OffS et() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_trksession_append_files(), mme_trksession set files(),
mme_trksessionview_readx()

246 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ay_resume_ms id ()
Resume playback of a track session on a specified mediastore.

Synopsis:

#i ncl ude <nme/ me. h>

int me_play _resunme_nsid(me_hdl _t *hdl,
uint64_t msd);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore for which to resume playback.

Library:

Description:

The functionmme_play _resume_msid() resumes playback of a track session on a
specified mediastore at the poimine_trksession_save state() saved the track
session’s state.

Q For devices, such as iPods, where the device itself maintains state knowledge:

e the functionmme_play_resume_msid() creates a new track session and resumes
playback where indicated by the device’s memory.

e callingmme_play _resume_msid() when the iPod device is in a stopped state will
not resume playback, because a stopped iPod has no active track session that can be
resumed.

e after a call tomme_play_resume_msid(), you should wait for the
MME_EVENT_PLAYSTATE event with theplaystate set to
MME_PLAYSTATE_PLAYING before querying the device or setting the random and
repeat modes.

For more information, see tHdME Developer’s Guide:
e “Stopping and resuming playback” in the chapter Playing Media
e “Using random and repeat modes on iPods” in the chapter Working with iPods

Events

The functionmme_play_resume _msid() delivers the following event:

e MME_EVENT_PLAYSTATE — the function has completed work.

May 4, 2009 Chapter 1 ¢« MME API 247

mme_p | ay_resume_ms id () 2009, ONX Software Systems GmbH & Co. KG.

Blocking and validation
This function blocks omdb. In asynchronous mode, it attempts to validate the request
(make sure the request makes sense) before releasing the caller.

Returns:
=0 Success: the MME resumed playback of the track session for the mediastore.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

mme_trksession_get_info(), mme_play_resume_msid()
mme_trksession_resume_state() mme_trksession_save state()

248 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_p I ay_s et_O u tp u t_att I ()

Synopsis:

Arguments:

Library:

Description:

Events

Set the attributes for an output device

#i ncl ude <nme/ me. h>

int me_play_set _output_attr(nme_hdl _t *hdl,
ui nt 64_t outputdeviceid,
nme_out put _attr_t *attr);

hdl An MME connection handle.
outputdeviceid The ID of the output device on which to set attributes.

attr A pointer to a structure with the output device attributes. See
me_out put _attr _t in this reference.

The functionmme_play set output_attr() sets the output attributes for the specified
output device. These attributes are carried in the data struetwreout put _attr _t
described in this reference.

To apply the same attributes to all output devices attached to a control context, set
outputdeviceid to 0. The MME will iterate through all attached output devices and
apply the values specified inre_out put _attr _t to them.

This function deliversMME_EVENT_OUTPUTATTRCHANGEwWith the ID of the
output device where the change occuredyie_event _data_t. val ue.

Blocking and validation

May 4, 2009

This function validates the output device ID, and behaves as follows, depending on
whether the MME is currently playing a track:

e Playing — if the MME connection is asynchronous, this function returns before
updatingi o- nedi a, becausé o- medi a communicates with hardware, which has
different response times, making it impossible for the MME to know how long it
will take to return.

e Not playing — behaves synchronously: fully validating, updating a cache, not
hardware.

Chapter 1 ¢« MME APl 249

mme_p | ay_ S et_O Utp u t_ attr() [0 2009, ONX Software Systems GmbH & Co. KG.

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_play_get_output_attr(), mme_output_set_permanent()

250 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ay_s et_S P eed ()

Synopsis:

Arguments:

Library:

Description:

Events

Y

Sets playback speed and direction (forward, reverse, pause) for tracks

#i ncl ude <nme/ me. h>

int me_play_set _speed(me_hdl t *hdl,
int speed);

hdl An MME connection handle.

speed The playback speed to set for the current track, expressed in units of 1/1000
of normal speed.

The functionmme_play_set speed() sets the playback speed for the current track or
file, including forward, reverse and pause.

The playback speed is expressed in units of 1/1000 of normal speed: 1000 means
normal speed, 2000 means double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values between 0 and 1000 are slow
speed playback.

e The requested speed can't be guaranteed for all devices. The graph used to play the
track will select the supported speed closest to the one requested. The client
application should useime_play get status() to get the actual playback speed.

e During fast forward or reverse, an iPod continuously increases speed until it
reaches the beginning or end of a track, at which time it resets to normal speed.

MME_EVENT_TIME when the function has completed work.

Blocking and validation

May 4, 2009

This function verifies that the requested time position is valid, and blocks until it has
advanced playback to this time position.

Chapter 1 e MME API 251

m m e_p | ay_S et_S p eed () 2009, QNX Software Systems GmbH & Co. KG.

Returns:

=0 Success: the playback speed was set.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_play(), mme_play_get_info(), mme_play_get_output_attr(),
mme_play_get_speed(), mme_play _get status(), mme_play_set output_attr()

252 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ay_s et_ZO n e()
Set the zone 1D used by a control context

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_play_set_zone(nmme_hdl _t *hdl,
uint 64_t zoneid);
Arguments:
hdl An MME connection handle.
zoneid The ID of the output zone to be used by the current control context.
Library:
mre
Description:
The functionmme_play_set zone() sets the output zone to be used by the current
control context. For more information about zones, se®_zone_create().
Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢ MME APl 253

mme_p | ay_ S et_ZO n e() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_output_set permanent(), mme_play_attach_output(),
mme_play_detach_output(), mme_play_set_zone(), mme_zone_create(),
mme_zone_delete()

254 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. ITTTE_pl ay_St a.t U S_t
Play status information

Synopsis:
#i ncl ude <nme/types. h>
typedef struct _mme_play_status {
mre_tinme_t time_info;
ui nt32_t pl ayst at e;
mre_buf fer_status_t buffer;
} nmme_play status_t;
Description:

The structureme_pl ay_st at us_t provides a snapshot of the current playback
status, including total play time and play time elapsed. It includes at least the members
described in the table below.

Member Type Description

time_info mre_time_t Time information about the current track
or file. Seemme_t i me_t in this reference.

playstate nmme_pl ayst ate_t The current MME playstate. See
me_pl ayst at e_t in this reference.

buffer mre_buf fer_status_t The current playback buffer status. See
mre_buffer_status_t.

Classification:
QNX Multimedia

See also:

mre_buffer _status_t,nme_tine_t,me_playstate_t,
nme_pl aystate_speed_t

May 4, 2009 Chapter 1 ¢ MME APl 255

M M E_P LAYL IST * [J 2009, QNX Software Systems GmbH & Co. KG.

Playlist ownership and mode definitions

Synopsis:

#i ncl ude <mme/ i nterface. h>

#defi ne MVE_PLAYLI ST_*

Description:
TheMME_PLAYLIST_* constants define values used in eyl i st s table,:

e MME_PLAYLIST _MODE_*
e MME_PLAYLIST _OWNER *

See also th®IME_PLAYLIST _FLAGS PLAYLIST_ENTRY and
MME_PLAYLIST_RESOLVE * constants used bhyme_playlist_item_get().

MME_PLAYLIST MODE_*

TheMME_PLAYLIST_MODE_* constants identify the type of playlist. The MME
updates thenode field in thepl ayl i st s table with the value identifying the playlist

mode.
Constant Value Description
MME_PLAYLIST_MODE_LIBRARY 0 The playlist is on a mediastore.

MME_PLAYLIST_MODE_GENERATED 1 The playlist has been created by the
user.

MME_PLAYLIST_OWNER_*

TheMME_PLAYLIST_OWNER * constants identify the owner of a playlist. The
MME updates thewnership field in thepl ayl i st s table with the value identifying
the playlist owner.

Constant Value Description

MME_PLAYLIST_OWNER_MME 0 The playlist is owned by the MME.

MME_PLAYLIST _OWNER _DEVICE 1 The playlist is owned by an external
device, such as an iPod.

MME_PLAYLIST_OWNER_USER 2 The playlist is owned by the user, who
created the playlist.

256 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. M M E_P LAYL |ST_*

Classification:
ONX Multimedia

See also:

mme_playlist_close(), mme_playlist_create(), mme_playlist_delete(),
mme_playlist_generate similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 e MME APl 257

mme_p I ayl [St_CI oS e() 00 2009, QNX Software Systems GmbH & Co. KG.
Close a playlist

Synopsis:
#i ncl ude <nme/ pl aylist.h>
int mre_playlist_close(me_playlist_hdl_t *hd);
Arguments:
hdl An MME playlist connection handle returned byne_playlist_open().
Library:
me
Description:
The functionmme_playlist _close() closes the playlist opened with the connection
handle referenced Hydl.
Events

None returned

Blocking and validation

This function validates the playlist connection handle and does not block.

Returns:

0 Success: the ID of the synchronization operation.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

MME_PLAYLIST_*, mme_playlist_create(), mme_playlist_delete(),
mme_playlist_generate_similar(), mre_pl ayl i st _hdl _t,

258 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl [St_Cl OSE()

mme_playlist_item_get(), mme_playlist_items _count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set _statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 ¢« MME APl 259

mme_p I ayl [St_C reate() [0 2009, QNX Software Systems GmbH & Co. KG.

Create a new playlist

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ pl aylist.h>

int Mme_playlist _create(nme_hdl _t *hdl,
ui nt 64_t msid,
const char *name,
uinte64_t *plid);

hdl An MME connection handle.

msid The ID for the mediastore from which the playlist will be made. If the
mediastore is pruned, the playlist will be deleted. Set the mediastore ID to 0
(zero) to prevent pruning of the mediastore.

name The name of the new playlist.

plid The ID for the new playlist.

The functionmme_playlist create() creates a new playlist from a mediastore. It adds
a playlist entry to the tablpl ayl i st s and the playlist data to th& ayl i st dat a
table. It does not write to thegl ayl i st dat a_cust omtable, or any other_cust om
tables; these remain the responsibility of the client application.

None delivered.

Blocking and validation

Returns:

Classification:

This function performs no validations, and runs to completion.

>0 Success.

-1 An error occurreddrrno is set).

QNX Neutrino

260 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl [St_C reate()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
MME_PLAYLIST_*, mme_playlist_close(), mme_playlist delete(),
mme_playlist_generate_similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 e MME API 261

mme_p I ayl [St_d el ete() 0 2009, QNX Software Systems GmbH & Co. KG.
Delete a specified playlist

Synopsis:
#i ncl ude <me/ nme. h>
int me_playlist_delete(nme_hdl _t *hdl,
uint64_t *plid);
Arguments:
hdl An MME connection handle.
plid The ID of the playlist to be deleted.
Library:
me
Description:
The functionmme_playlist _delete() deletes a playlist from thel ayl i st s table, and
its data from thepl ayl i st dat a table.
This function does not delete custom playlists inpheyl i st dat a_cust omtable.
Custom playlists must be deleted manually.
The following example provided imme_connect . sql shows how to create triggers
to delete entries from thel ayl i st dat a_cust omtable when the client application
callsmme_playlist _delete() to delete a playlist:
CREATE TEMP TRI GGER pl ayl i stdata_custom del ete DELETE ON pl aylists
BEG N
DELETE FROM pl ayl i stdat a_cust om WHERE pl i d=CLD. pl i d;
END;
Events

None delivered.
Blocking and validation

This function runs to completion.
Returns:

>0 Success.

-1 An error occurreddrrno is set).

262 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ayl iSt_d el ete()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_generate_similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 ¢ MME APl 263

mme_p I ayI [St_g en erate_Si milar () 0 2009, QNX Software Systems GmbH & Co. KG.
Generate a playlist like an existing playlist

This function is no yet fully implemented, and returnseNMOSUPerror if it is called.

Synopsis:
#i ncl ude <nme/ pl aylist.h>
int me_playlist _generate_simlar(mre_hdl t *hdl,
const char *name
ui nt 64_t fid,
ui nt 64_t msid,
unsi gned max_entries,
ui nt 32_t flags,
uint32_t *plid);
Arguments:
hdl An MME connection handle.
name A pointer to a text name to display for the new playlist.
fid The ID of the file to use as a seed for the new playlist.
msid The ID of the mediastore from which to select tracks to place in the
playlist. See “Playlists and mediastores” below.
max_entries The maximum number of entries that can be put in the new playlist.
flags For future use.
plid The playlist ID of the new playlist.
Library:
mre
Description:

The functionmme_playlist _generate similar() generates a playlist from files similar
to the seed file.

Playlists and mediastores

Themsid argument determines which mediastomn@se_playlist _generate_similar()
uses to generate a playlist. Possible values and behaviors are as follows:

>0 Build a playlist from tracks on the specified mediastore.
If the MME prunes the mediastore from its database, it also prunes the playlist.

=0 Build a playlist from tracks on all active mediastores.

The client application is responsible for pruning the playlist when it is no
longer needed; the MME doest prune the playlist from the database,
because it is not associated with a specific mediastore.

264 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_p | ayl [St_g en erate_Si milar ()

Events

_ ~ None delivered.
Blocking and validation

This function validates the mediastore 1D, and runs to completion.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), me_pl ayl i st _hdl _t,mme_playlist_item get(),
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 ¢ MME APl 265

ITTTE_pl a.y I | St _h d I _t 0 2009, QNX Software Systems GmbH & Co. KG.

The playlist API handle

Synopsis:

Description:

Classification:

See also:

#i ncl ude <nme/ pl aylist.h>

struct nmme_pl aylist_hdl;
typedef struct nme_playlist_hdl mre_playlist_hdl _t;

The structureme_pl ayl i st _hdl _t is used for playlist session control. One handle
is used for each playlist opened.

ONX Multimedia

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist generate similar(), mme_playlist_item_get(),
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

266 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl iSt_item_g et ()

Synopsis:

Arguments:

Library:

Description:

Flags

May 4, 2009

Get an entry froma playlist

#i ncl ude <nme/ pl aylist.h>

int me_playlist _ itemget(mre_playlist _hdl _t *hdl,
ui nt 32_t *flags,
char *buffer,
size_t length);

hdl A playlist connection handle.
flags A pointer to flags to control the operation. See “Flags” below.
buffer A pointer to a buffer

length The length of the buffer, in bytes; may be 0.

The functionmme_playlist_item_get() retrieves the playlist entry at the position
specified bymme_playlist_position_set(), and places it in the buffer referenced by
buffer.

Successful completion (return vak@ of a call tomme_playlist_item_get() does not

mean that the function successfully read in the playlist entry. If the returned value is
great than the allocated buffer lengtbngth), you must increase the buffer length to at
least the returned value and call the function again to read in the entry. Alternately, you
can callmme_playlist_item_get() with thelength argument set to 0 to get the playlist
entry length, set the buffer size to the returned value, then call the function again.

Theflags argument is used both to:

e Pass instructions tame_playlist_item_get(): when calling
mme_playlist_item_get(), set theflags argument to
MME_PLAYLIST_RESOLVE PLAYLIST_ENTRY to have the function convert the
playlist entry to a file.

e Return information about the retrieved playlist entry: the entry is either
unconvertedNIME_PLAYLIST_FLAGS_PLAYLIST_ENTRY) or convereted into a
file (MME_PLAYLIST_FLAGS PLAYLIST_FILE).

Chapter 1 ¢« MME APl 267

m m e_p | ayl | St_ | tem_g et() 2009, QNX Software Systems GmbH & Co. KG.

MME_PLAYLIST_FLAGS_*

TheMME_PLAYLIST_FLAGS * constants identify the type of item that has been
retreived by a call tonme_playlist_item_get().

Constant Value Description

MME_PLAYLIST_FLAGS PLAYLIST_ENTRY 0x00000001 Theitemis an
unconverted entry from
a playlist.

MME_PLAYLIST_FLAGS PLAYLIST_FILE 0x00000002 The item is a playlist
entry that has been
converted to a real file.

MME_PLAYLIST_RESOLVE_*

TheMME_PLAYLIST_RESOLVE * constants determine how to process a playlist item
retrieved withmme_playlist_item_get().

Constant Value Description

MME_PLAYLIST_RESOLVE PLAYLIST_ENTRY 0x00000001 Convert the entry to a
real file before
returning it.

Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:

>0 Success: the length of the playlist entry, in bytes, even if the buffer is too short
for the entry.

0 Success, but the end of the playlist has been reached.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

268 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl [St_ | tem_g et()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(),
mme_playlist_item_get()

May 4, 2009 Chapter 1 ¢ MME APl 269

mme_p I ayl [St_ item S_coun t_g et () 00 2009, QNX Software Systems GmbH & Co. KG.
Get the number of itemsin a playlist

Synopsis:
#i ncl ude <nme/ pl aylist.h>
int me_playlist_itenms_count_get(mme_playlist_hdl _t *hd,
int *items);
Arguments:
hdl An playlist connection handle.
items The number of items in the playlist.
Library:
mre
Description:
The functionmme_playlist_items _count_get() gets the number of items in the
currently open playlist. This number can be 0, greater than 0, or -1. If the value is -1,
the playlist has no fixed length.
Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:

0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

270 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ayl iSt_item S_coun t_g et()

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item get(), mme_playlist_open(), mme_playlist_position_set(),
mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 e MME API 271

mme_p I ayI [St_O pen () 0 2009, QNX Software Systems GmbH & Co. KG.
Open aplaylist

Synopsis:
#i ncl ude <nme/ pl aylist.h>
nre_playlist_hdl _t nre_playlist _open(mre_hdl _t *hdl,
ui nt 64_t plid,
uint32_t flags);
Arguments:
hdl An MME connection handle.
folderid The ID of the playlist to open.
flags For future use.
Library:
mre
Description:

The functionmme_playlist _open() returns a handle to be used to work with a playlist.
After calling mme_playlist_open(), you can use othenme_playlist *() functions to
find and extract entries from the opened playlist.

Q This function can only open a playlist if a playlist synchronization (PLSS) plugin able
to process the playlist is available. If no PLSS plugin for the playlist is available,
mme_playlist_open() fails.

Events

None delivered.

Blocking and validation

This function validates the playlist ID, and runs to completion.

Returns:

An initialized mme_pl ayl i st _hdl _t, or NULL if an error occurreddfrno is set).

Classification:
QNX Neutrino

272 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_p | ayl [St_O pen ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item_get(), mme_playlist_items_count_get(),
mme_playlist_position_set(), mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 ¢ MME APl 273

mme_p I ayl [St_ pPoOS itio n_set () 0 2009, QNX Software Systems GmbH & Co. KG.
Set the current position in a playlist

Synopsis:
#i ncl ude <me/ nme. h>
int me_playlist _position_set(nmre_playlist_hdl _t *hdl,
unsi gned position) ;
Arguments:
hdl A playlist connection handle.
position The position to set in the playlist to.
Library:
nme/ pl ayl i st
Description:
The functionmme_playlist_position_set() sets a position in the current playlist. After
calling this function, you can cathme_playlist_item_get() to retrieve the item from
the position set.
Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:

0 Success: the ID of the synchronization operation.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

274 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p I ayl iSt_p ositio Nn_S et()

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item get(), mme_playlist_items_count_get(), mme_playlist open(),
mme_playlist_set statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 ¢ MME APl 275

mme_p I ayl [St_S et_statem ent() 0 2009, QNX Software Systems GmbH & Co. KG.
Set the SQL statement to create a playlist

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_playlist_set _statenent(me_hdl _t *hdl,
ui nt 64_t *plid,
const char *sgl);
Arguments:
hdl An MME connection handle.
plid The ID of the playlist.
sl A pointer to the SQL statement used to retrieve the file IDs of the files or
tracks for the playlist.
Library:
me
Description:
The functionmme_playlist_set statement() sets the SQL statement to use when
retrieving the files to create a playlist.
Events

Blocking and validation

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

276 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl [St_S et_statem ent()

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item get(), mme_playlist_items_count_get(), mme_playlist open(),
mme_playlist_position_set(), mme_playlist_sync(),

May 4, 2009 Chapter 1 e MME API 277

mme_p I ayI [St_Sy nc () 0 2009, QNX Software Systems GmbH & Co. KG.
Synchronize a specified playlist

Synopsis:
#i ncl ude <me/ nme. h>
int me_playlist_sync(nmmre_hdl _t *hdl,
ui nt 64_t plid,
uint32_t flags);
Arguments:
hdl An MME connection handle.
folderid The ID of the playlist to synchronize.
flags For future use.
Library:
me
Description:
The functionmme_playlist_sync() synchronizes the specified playlist. When it
completes the synchronization operation it delivers either
MME_EVENT_MS_SYNCCOMPLETEfor a successfully synchronization, or
MME_EVENT_SYNCABORTED for an unsuccessful synchronization.
Events

The functionmme_playlist_sync() may deliver any event of the class
MME_EVENT_CLASS SYNC, and any of thavME_SYNC_ERROR * error events.

Blocking and validation

This function validates the synchronization request and does not block.

Returns:

>0 Success: the ID of the synchronization operation.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

278 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_p | ayl [St_Sy Nnc ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

MME_PLAYLIST_*, mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate _similar(), mre_pl ayl i st _hdl _t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set statement(),
mme_resync_mediastore()

May 4, 2009 Chapter 1 ¢« MME APl 279

ITTTE_p I a.y S t a.t e_S p e e d_t 0 2009, QNX Software Systems GmbH & Co. KG.
Playback state and speed

Synopsis:
#i ncl ude <nme/types. h>
typedef struct nme_pl aystate_speed {
uint 32_t pl ayst at e;
int32_t speed;
} mre_pl aystate_speed_t;
Description:

The structureme_pl ayst at e_speed_t carries information about state and speed
of playback. The MME uses this structure with the evdmtE_EVENT_PLAYSTATE
to deliver information about the state of a playback operation.

Member Type Description

playstate ui nt32_t The current play state. Seee_pl ayst ate_t

speed int32_t The current playback speed, expressed in units of 1/1000
of normal speed: 1000 means normal speed, 2000 means
double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values
between 0 and 1000 are slow speed playback.

Classification:
ONX Multimedia

See also:

mme_play_get_status(), mre_pl ayst ate_t ,nme_pl ay_st at us_t

280 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. ITTTE_pl aySt a.t e_t
Values for playback state

Synopsis:
#i ncl ude <nme/types. h>
typedef enum nme_pl aystate {
} mme_pl aystate t;
Description:

The enumerated typere_pl ayst at e_t defines the values used to describe
playback states. Its values include:

e MME_PLAYSTATE_UNKNOWN (0)
e MME_PLAYSTATE_ERROR(1)

e MME_PLAYSTATE_PLAYING (2)
e MME_PLAYSTATE_PAUSED(3)

e MME_PLAYSTATE_FASTFWD (4)
e MME_PLAYSTATE FASTREV(5)
e Not used. (6)

e MME_PLAYSTATE _STOPPED(7)
e MME_PLAYSTATE_SLOWFWD (8)

e MME_PLAYSTATE_SLOWREV(9)

Classification:
ONX Multimedia

See also:

mme_play_get_status(), me_pl ayst at e_speed_t ,mme_pl ay_st at us_t

May 4, 2009 Chapter 1 ¢« MME API 281

mme_prev()

[J 2009, QNX Software Systems GmbH & Co. KG.

Skip to the previoustrack

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int mre_prev(mre_hdl _t *hd);

hdl The MME handle for the control context playing the track session on which
you want to skip to the previous track.

The functionmme_prev() skips to the previous title in the currently playing track
session. The previously played track is obtained front thesessi onvi ewtable.

Effect of play modes on behavior

The behavior ofnme_prev() is affected by the play modes set for the specified control
context (sequential versus random, and repeat versus no repeat).

If sequential mode is set, the file ID of the previous track in the track session is in the
previous row in thesequentialid column of thet r ksessi onvi ewtable. If random

mode is set, the file ID of the previous track in the track session is iratigiomid

column of thet r ksessi onvi ewtable.

Effect of repeat mode on the first track of a session

When the first track in the track session is playing, the result of cattimg prev()
depends on whether the repeat mode is set.

If repeat mode is off, when it has reached the beginning of the track session (or, when
random mode is set, when all songs in the track session have been played),
mme_next() setserrno to ENODATA .

If repeat mode is on:

e if sequential mode is set, the MME plays the first track in the track session, as
determined by theequentialid column in thet r ksessi onvi ewtable.

e if random mode is set, the MME plays the first track in the track session, as
determined by theandomid column in thet r ksessi onvi ewtable.

282 Chapter 1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_prev ()

Working with an iPod device

iPod devices manage their own track sessions. To move to the next or previous track in
an iPod track session, call thane _button() function withnmm but t on_t set to
MM_BUTTON_NEXT or MM_BUTTON_PREYV, as required.

Events

This function may deliver any event of the clad®IE_EVENT_CLASS PLAY, and
anyMME_PLAY_ERROR * event.

Blocking and validation

This function verifies that th&d is valid. Does not verify that the file exists, or that it
is playable.

This function blocks on control contexts.rtime _prev() is called and another function
is called beforenme_prev() returns, the second function blocks oo+ nedi a until
mme_prev() returns. If there are no other pending cattene prev() returns without
blocking oni o- nedi a.

Returns:

=0 Successerrno set toENODATA indicates that there are no more tracks to play.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_next(), mme_setrandomy(), mme_setrepeat()

May 4, 2009 Chapter 1 ¢ MME APl 283

mme_reg iSter_fO r_even s () [0 2009, QNX Software Systems GmbH & Co. KG.

Register and unregister for events fromthe MME

Synopsis:

Arguments:

Library:

Description:

Register for events

#i ncl ude <nme/ me. h>

int me_register for_events(me_hdl _t *hdl,
mre_event _cl ass_t event class,
struct sigevent *event);

hdl The MME connection handle.

event_class The MME event class or classes for which the client application
wants to register or unregister.

event The event to have delivered when it is received. To unregister for the
specified class sevent to NULL.

The functionmme_register_for_events() allows the client application to determine the
events it wants to receive from the MME.

The MME does not deliver events to a client application unless it is specifically
instructed to do so. To receive events from the MME, a client application must register
for events after connecting to the MME, specifying the class or classes of events it
wants to receive.

The client application must register after each connection. This feature allows the
client application to register different different classes of events for connections. For
example, a connection used to handle synchronizations can register for
synchronization events, but not for playback events, because it will never call
functions that deliver playback events.

Each event class has a differaigevent When it has registered for an event class, the
client application has told the MME whidigevens it wants to receive. When it has a
relevant event, the MME will:

e place itin its event queue
e send thesi gevent automatically to the client application.

The client application can then decide from Higeventf it needs to see the associated
event. When it needs to see events, the client application can use the function
mme_get_event() to have them delivered from the MME’s event queue.

284 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_reg iSter_fO reven {s ()

Unregister for events

MME event classes

May 4, 2009

To stop receiving a class of events, the client application must unregister for that event
class. To unregister for an event class, call the funatiome_register _for_events()

with theevent_class set to the event class for which you want to stop receiving events,
and the argumeravent set to NULL.

If the client application has registered for several or all event classes, it can unregister
for any event class without affecting the registration for the other event classes. For
example:

nme_regi ster_for_events(hdl, MVE EVENT CLASS ALL, &event);
/1 Do some work here.

mre_regi ster_for_events(hdl, MV EVENT_CLASS COPY, NULL);

mre_event _cl asses_t defines the different MME event classes as bitmasks:

MME_EVENT_CLASS PLAY
Playback events.

MME_EVENT_CLASS SYNC
Synchronization events.

MME_EVENT_CLASS COPY
Copying and ripping events.
MME_EVENT_CLASS GENERAL

Events not specified in the other classes.

MME_EVENT_CLASS ALL
All events.

The MME event classes are bitmasks. They can be used together viiR @perator
to register for several events at once. For example, to registetdgrack and
synchronization events call the functiomme_register_for_events() as follows:

mre_regi ster_for_events(hdl,
MVE_EVENT_CLASS PLAY | MVE_EVENT_CLASS_SYNC,
event);

For more information about events, see the chapter MME Events and following.

Chapter 1 ¢ MME APl 285

mme_register_for_events()

[J 2009, QNX Software Systems GmbH & Co. KG.

Events

None delivered.

Blocking and validation

Returns:

Classification:

See also:

This function doesn’t block.

=0 Success.

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

mme_connect(), mme_disconnect(), mme_get_event(), MME Events

286 Chapter 1 ¢ MME API

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_resync_m ediasto re()
Re-synchronize a mediastore

Synopsis:
#i ncl ude <me/ nme. h>
int Me_resync_nedi astore(mre_hdl _t *hd,
ui nt 64_t msid,
ui nt 64_t folderid,
ui nt 32_t options) ;
Arguments:
hdl An MME connection handle.
msid The ID of the mediastore to resynchronize.
folderid Specifies the folder to synchronize. A value of 0 means synchronize all
folders.
options A mask that sets synchronization options. The options can be any
combination of:

e MME_SYNC _OPTION CANCEL_CURRENT— not used by
mme_resync_mediastore(). Seemme_sync_directed().

e MME_SYNC OPTION CLR_INV_COPIED— set to O (zero) all
invalid copied_fid values in the i br ar y table.

e MME_SYNC_OPTION PASS FILES— synchronize files (perform
first pass synchronization).

e MME_SYNC_OPTION PASS METADATA — synchronize metadata
(perform second pass synchronization).

e MME_SYNC _OPTION PASS PLAYLISTS — synchronize playlists
(perform third pass synchronization).

e MME_SYNC _OPTION PASS ALL — synchronize files, metadata,
and playlists.

e MME_SYNC _OPTION RECURSIVE— perform a recursive
synchronizationmme_resync_mediastore() always assumes that this
flag is set.

Library:
mre
Description:

The functionmme_resync_mediastore() attempts to start synchronization of a
mediastore. It returns immediately, with synchronization continuing in the
background.

May 4, 2009 Chapter 1 ¢« MME API 287

mme_resync_m ediasto re() 1 2009, QNX Software Systems GmbH & Co. KG.

When a particular pass is specified, if that pass was previously marked as complete in
the MME database, the MME first marks that pass as not complete, then attempts the
new synchronization. Any previously completed synchronization passes that are not
being redone are left untouched.

MME_SYNC_OPTION_CLR_INV_COPIEDflag judiciously —only when

& CAUTION: A clean up of invalidcopied _id fields can take a long time. Use the
synchronizing after deleting media files from your database.

Events

The functionmme_resync_mediastore() may deliver any event of the class
MME_EVENT_CLASS SYNC, and any of thayME_SYNC_ERROR * error events.

Blocking and validation

This function verifies that thensid andfolderid are valid. It returns, then requests a
synchronization in the background at the earliest possible time. If all synchronization
threads are busy, this request is queued until a synchronization thread becomes
available.

See the chapter Configuring Synchronization inNHéE Configuration Guide.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed _sync_cancel(), mme_playlist_sync(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_filg(),
mme_sync_get_msid_status(), mme_sync_get_status()

288 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_rm trksession ()

Synopsis:

Arguments:

Library:

Description:

Events

Remove a track session from the database

#i ncl ude <me/ nme. h>
int mre_rntrksession(nre_hdl _t *hdl,
ui nt 64_t trksessionid) ;

hdl An MME connection handle.

trksessionid The ID for the track session you want to remove.

The functionmme_rmtrksession() removes the specified track session from the
t r ksessi ons table in the MME library. It also removes references to the specified
track session from these other tables:

e control cont ext s table — if the removed track session is the currently playing
track session for the control context, tinksessionid field for the control context is
setto 0

e nedi ast or es — if the removed track session was the last played track session for
this mediastore, th&ksessionid field for the control context is set to O

You can get the current track session for a control context by calling
mme_trksession_get_info().

None delivered.

Blocking and validation

Returns:

May 4, 2009

This function blocks on control contexts. It fully validates data; all arguments are
checked before the call returns.

=0 Success.

-1 An error occurreddrrno is set).

Chapter 1 ¢« MME APl 289

mm e_rmtrkseSS ion () [2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_trksession_get _info(), mme_trksession_resume_state(),
mme_set_msid_resume_trksession(), mme_newtrksession(), settrksession()

290 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S eek_titl e C h apter()
Seek to a specified title and chapter on a track or mediastore

Synopsis:

#i ncl ude <nme/ me. h>

int Mme_seek title_chapter(mre_hdl _t hdl,
ui nt 64_t title,
ui nt 64_t chapter);

Arguments:
hdl An MME connection handle.

title The title from which to start playback.

chapter The chapter from which to start playback.

Library:

Description:

The functionmme_seek title _chapter() seeks to a specified title and chapter on a

track or mediastore so that playback can begin from that point. This function can only
be used if theME_PLAYSUPPORT NAVIGATION flag is set in thesupport member

of the structureme_play _info_t.

To start playback from a specific title and chapter:

1 Create a track session with the mediastore filefl®) for the entire DVD.
2 Set the track session.

3 Call mme_play() to start playback.

4

Once the navigator is active, catine_seek title chapter() to seek to the
desired title and chapter on the DVD.

To get information about titles and chapters on a playing track, call the function
mme_get_title_chapter().

Events

None delivered.

May 4, 2009 Chapter 1 e MME API 291

mme_S eek_titl e C h apter() 2009, ONX Software Systems GmbH & Co. KG.

Blocking and validation

This function blocks om o- nedi a.
Returns:

>0 Success.

-1 An error occurreddrrno is set).

Examples:

Below is a code snippet that illustrates how to seek to a specific title (1) and chapter
(5).
uinté4_t title = 1, chapter = 5;
rc = me_seek_title_chapter(nmehdl, title, chapter);
if (rc == EXK) {
printf("Seeking to title %I1d chapter %1d", title, chapter);

} else {
printf("Seek to title %1d chapter %1d failed, %", title, chapter, strerror(errno))

}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_get_title_chapter(), mme_play(), mme_play_bookmark(),
mme_play_get_info(), me_pl ay_i nf o_t , mme_seektotime()

292 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Ssee ktotim e()
Seek to atimein a playing track

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_seektotime(mre_hdl _t *hdl,
int time);
Arguments:
hdl An MME connection handle.
time The time you want to seek to, in milliseconds.
Library:
mre
Description:
The functionmme_seektotime() seeks to a specific time (expressed in milliseconds
from the start of the track) in the current track. The track must be playing for the seek
to work.
If timeis greater than the total time for the currently playing track, behavior varies,
depending on the media, as follows:
e DVD-audio — return to the beginning of the current track
e DVD-video — seek to the requested time in the title
¢ all other media — seek to the end of the current track
Events

None delivered.

Blocking and validation

This function blocks on control contexts.rtime_seektotime() is called and another
function is called beforenme _seektotime() returns, the second function blocks on
i o- medi a until mme_seektotime() returns. If there are no other pending calls,
mme_seektotime() returns without blocking ono- nedi a.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

May 4, 2009 Chapter 1 ¢ MME APl 293

mme_S eektotim e() [2009, ONX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_connect(), mme_next(), mme_play()

294 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_S et_ap |_t| meo Ut()

Synops

IS:

Arguments:

Library:

Descrip

Events

May 4, 2009

tion:

AN

Set the time period on the unblocking timer

#i ncl ude <nme/ me. h>

int Mme_set _api _tineout(nme_hdl _t *hdl,
ui nt 32_t *milliseconds) ;

hdl An MME connection handle.

milliseconds The time, in milliseconds, to wait before unblocking the client. Set
to 0 to disable.

The functionmme_set_api_timeout() sets, for the current control context, the amount
of time, in milliseconds, the MME will wait before unblocking the client application
when it is blocked by calls to the MME.

If mme_set_api_timeout() is set, API calls that are blocked beyond the set timeout
period will unblock the client, returning early with tkeerno set toEINTR.

For information about how to confirm the cause ofEANTR error, see
mme_get_api_timeout_remaining().

The MME's default configuration is to disable unblocking capabilities, which disables
mme_set_api_timeout(). To enable the MME’s unblocking capability, set the
<Unbl ock> configuration element attribute to “true”.

CAUTION: The MME connection handlegre_hdl _t , is not thread safe; only one
instance can be used at a time. This limitation meansntha set api_timeout() can
not be called concurrently with another function call: you can call
mme_set_api_timeout() at any time to configure the behaviorfofure calls to the
MME API, but you can't usenme_set_api_timeout() to force the return of a call that
has already been made.

None delivered.

Chapter 1 ¢ MME APl 295

mme_S et_ap |_t| meo Ut() [0 2009, ONX Software Systems GmbH & Co. KG.

Blocking and validation

This function doesn’t block.
Returns:

>0 Success.

-1 An error occurreddrrno is set). Errno is set.

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

mme_get_api_timeout_remaining()

296 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S et_d ebu g ()
Set MME debug settings

Synopsis:
#i ncl ude <me/ nme. h>
int mMe_set _debug(nme_hdl _t *hdl,
uint 8 _t verbose,
uint8_ t debug);
Arguments:
hdl An MME connection handle.
verbose The verbosity setting for the MME.
debug The debug setting for the MME.
Library:
mre
Description:

The functionmme_set_debug() sets the MME verbosity and debug levels. It can be
called at any time. Debug and verbosity levels range from 0 (zero) to 10, with O
meaning “turned off” and 10 providing the most detailed information. These levels are
equivalent to theme start up options v and- D. See alsame in the MME Utilities
Reference.

When debugging problems, use a higher verbosity level to write more detailed
information to the log. The debug setting is usually used only by QNX developers.

CAUTION: The higher the verbosity and debug settings, the more overhead is placed
on the system. A production environment should run with verbosity and debug
settings of O (zero).

Events

None delivered.
Blocking and validation

This function blocks until it completes.
Returns:

>0 Success.

-1 An error occurreddrrno is set).

May 4, 2009 Chapter 1 ¢« MME API 297

mme_set_debug()

[J 2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_set_api_timeout()

298 Chapter 1 ¢ MME API

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_S et_ﬁ | €S_perman ent()

Synopsis:

Arguments:

Library:

Description:

Events

St files as permanent (not prunable) or prunable

#i ncl ude <nme/ me. h>

int me_set files_pernmanent(me_hdl t *hdl,
bool permanent,
const char *fidselect);

hdl An MME connection handle.

permanent A boolean flag to set the file as permanent “true” (permanent) or
“false” (prunable).

fidselect A SELECT statement to retrieve file or files to be marked.

The functionmme_set_files permanent() marks specified media files as permanent

(not prunable), or prunable. This feature can be used to ensure that files, such as ring
tones, are never pruned from the MME'’s database. The default setting for files is
prunable.

To mark one or more files as either permanent or prunable, call
mme_set_files_permanent() with a SELECT statement to select the file or files from
thel i brary table, and thg@ermanent argument set to “true” (permanent) foul se
(prunable), as required. This action setsplananent field in thel i br ar y table for
the selected file or files. When the MME is pruning its database itneilremove files
with the permanent field set tot r ue.

For more information about prune management, see “Database pruning” in the chapter
Configuring Device Support and Media Synchronization ofNiME Configuration
Guide.

None delivered.

Blocking and validation

May 4, 2009

This function doesn’t block.

Chapter 1 ¢« MME APl 299

mme_S et_fi | €S_perman ent() [2009, ONX Software Systems GmbH & Co. KG.

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_resync_mediastore()

300 Chapter1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S et_ msi d_ resum e_trkS ession ()
Set the track session 1D to use when resuming playback of a mediastore.

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_set _nsid resune_trksession(nme_hdl _t *hdl,
uint64_t msd);
Arguments:
hdl An MME connection handle.
msid The ID of the mediastore to which the track session ID is set.
Library:
mre
Description:
The functionmme_set_ msid_resume_trksession() links a track session with a specific
mediastore. The track session ID is used by the functioe_play_resume_msid() to
resume playback on the the mediastore.
Q Multiple mediastore IDs can be assigned to the same track session ID.
For more information about stopping an resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media oMME
Developer’s Guide.
Events

None delivered.
Blocking and validation

This function blocks on the control context. It performs full validation and runs to
completion, returning success or failure.

Returns:
=0 Success: the MME assigned timsid to thetrksessionid.

-1 An error occurreddrrno is set).

May 4, 2009 Chapter 1 ¢« MME API 301

mme_set_msid_resume_trksession() [2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_newtrksession(), mme_rmtrksession(), settrksession().
mme_trksession_get_info(), mme_trksession_resume_state(),
mme_trksession_save_state()

302 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S et_ notificatio ﬂ_i nterval ()
Set the time interval between updates during playback

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_set _notification_interval (me_hdl t *hdl,
uint32_t time);
Arguments:
hdl An MME connection handle.
time The time interval between updates.
Library:
mre
Description:

The functionmme_set_notification_interval() configures the MME to deliver the
eventMME_EVENT_TIME at regular intervals to the client application, when the
MME control context to which the client application is connected is playing a file or
track.

The argumentime sets the event delivery period. The default period is 100
milliseconds.

The deliver period remains constant regardless of the speed of the playback. That is, if
the period is set to 100, the MME delivers the evdIME_EVENT_TIME to the client
application every 100 milliseconds. This represents 100 milliseconds of playback time
at the regular speed of 1000, but 200 milliseconds of playback time if the playback
speed is 2000.

The only exception is if the playback is stopped, in which case the playback speed is 0
and the MME does not deliver the eveiME_EVENT_TIME to the client application.

The table below shows some examples of behavior set by
mme_set_notification _interval().

time Playback speed Time between notifications Playback time between
notifications

100 1000 100 ms 100 ms
100 2000 100 ms 200 ms
100 500 100 ms 50 ms

continued. . .

May 4, 2009 Chapter 1 ¢« MME APl 303

mme_S et_n otificatio n_i nterval () 2009, QNX Software Systems GmbH & Co. KG.

time Playback speed Time between notifications Playback time between
notifications

200 2000 200 ms 400 ms

100 0 (paused) no notification sent n/a

For more information, seeme _play set speed().

Limitations of time reporting accuracy

The accuracy and frequency of time updates depends upon the implementation of the
i o- medi a graphs used to process the media, and on the accuracy and frequency of
updates delivered by the underlying drivers and hardware. Graphs should attempt to
deliver a timing resolution of 100 milliseconds or better, but this resolution is not
always available.

The MME delivers thevME_EVENT_TIME event to the client application only when
it receives a time update from the device or driver (throughnedi a). Thus, if, for
example, the MME'’s notification interval to the client application is set to 100
milliseconds, but a driver delivers time position updates to the MME only every 300
milliseconds, the client application will only receive time updates every 300
milliseconds and may see jitter in the time reporting.

Note also that notification intervals aapproximate. Actual intervals may vary
slightly, depending on the behavior of devices and drivers, and the time required for
requesting and receiving time updates.

Events
None delivered
Blocking and validation

This function does not make calls¢ab ori o- medi a. It blocks only at the control
context level; that is, it blocks only if other requests are already queued or being
processed. It validates that the notification interval is not being set to 0.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

304 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S et_n otificatio n_i nterval ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_play(), mme_play_get_info() mme_play _get output_attr()
mme_play_get status() mme_play_output_attr() mme_play_set speed()

May 4, 2009 Chapter 1 ¢ MME APl 305

mme_sS etauto paus e() 0 2009, QNX Software Systems GmbH & Co. KG.

Set the autopause mode for a control context

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

i nt mMe_set aut opause(nme_hdl _t *hdl,
bool enable);

hdl An MME connection handle.

enable The autopause setting. Pasg ase to turn on autopause mode, afatbe
to turn it off.

The functionmme_setautopause() sets the autopause mode for a control context.
Changing the autopause mode for a control context doesn’t affect a currently playing
track. The change comes into effect for the next track played. By default, autopause
mode is off.

The ability to set a control context’s default behavior to start tracks in the paused state
is particularly useful if you need to perform additional audio processing outside the
MME before playing tracks, or if the system needs to change mediastores during
playback of a tracksession.

Playback behavior when autopause mode is on

When autopause is turned on, tracks start playback in the paused state. When a track is
started in the paused state, the MME deliverMME_EVENT_PLAYAUTOPAUSED

event, and you need to explicitly resume paused tracks with a call to

mme_play_set speed() with speed set to 1000.

This behavior affects all calls that initiate playback of a track, including:
e mme_play()
e mme_prev()

e mme_next()

Autopause with devices that control their own track sessions

Do not set autopause for control contexts with devices, such as iPods and Bluetooth
phones, that control their own playback. If you set autopause for control contexts with
these devices attached:

306 Chapter1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_S etauto paus e()

e playback for these devices may produce unexpected behavior
e metadata and other track information requested from these devices may be invalid

Autopause with playback pre-queuing
Autopause willnot take effect if all the following conditions are true:
e the mediastore IDs of the currently playing track and the next track are the same

e i o-nedi awill use the same graph to play the next track as it is using for the
currently playing track (the tracks are of the same format)

See also “Playback pre-queuing” in the chapter Configuring Playback ddlhe
Configuration Guide.

Events

This function delivers the eveMME_EVENT_AUTOPAUSECHANGERD if it has

changed the autopause state for the control context (for example, from “on” to “off”,
or from “off” to “on”). If mme_setautopause() doesn’t change the autopause state for

the control context, it doesn’t deliver an event (for example, if the state was “on” and
was set to “on”, or the state was “off” and was set to “off”).

Blocking and validation

This function blocks on control contexts.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getautopause(), mme_next(), mme_play(), mme_prev()

May 4, 2009 Chapter 1 ¢« MME APl 307

mme_sS etlocal e() 00 2009, QNX Software Systems GmbH & Co. KG.

Set the preferred language for media with unknown language

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int Mme_setlocale (mre_hdl _t *hdl,
const char *locale);

hdl An MME connection handle.

locale The locale code to set. This is a string containing a 5-character language
and region code. This string consists of a 2-character ISO639-1 language
code, followed by a “” character, followed by a 2-character ISO3166-1
alpha-2 region code. See
http://ww. | oc. gov/ st andards/i so639- 2/ php/ code_| i st. php.

The functionmme_setlocale() sets the preferred language for displaying:
¢ MME messages, such as “synchronizing”
e metadata labels, such as “Artist”, for media for which the language is not known.

The requested language must exist in the database, ahditigeages table must be
populated with the appropriate text strings.

This function doesn't set the preferred language for media playback. To specify that
setting, usenme_media_set_def_lang().

The current MME implementation uses only the first two characters to extract the
language. In the future, this function may set the language used in strings where
language sets are available, causing a re-ordering of database tables that are
lexicographically collated.

None delivered.

308 Chapter1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_S etlocal e()

Blocking and validation

This function is fully validating and runs to completion.
Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
mme_getlocale(), mme_media_get def lang(), mme_media_set def lang()

May 4, 2009 Chapter 1 ¢« MME APl 309

mme_S et_l 0gg in g O 0 2009, QNX Software Systems GmbH & Co. KG.
Set the verbosity levelsfor specified logging modules

Synopsis:
#i ncl ude <me/ nme. h>
int mMme_set | oggi ng(me_hdl t *hdl,
const char *name,
uint8_ t level,
uint8_t flags);
Arguments:
hdl An MME connection handle.
name A pointer to a string with the name of the logging module for which log
levels are to be set. To set levels for all modules, set the striNg/La .
See the “Description” below.
verbose The new log verbosity level to use for the specified modules. See
“Logging modules” below.
flags Flags that configure logging behavior. See “Logging flags” below.
Library:
me
Description:

The functionmme_set_logging() sets the verbosity levels for specified MME logging
modules. You can set verbosity levels as required for individual modules or for all
modules, as required, by placing the appropriate strings in the buffer referenced by the
name argument.

Logging modules

The strings that identifyme logging modules include:

String Module

i mgprc image processing module
mdi metadata interface module
mdp metdata plugin module
pl playlist module

sync synchronization module

continued. . .

310 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S et_l 0gg in 0 ()

String Module

ne all other modules

Q The above list is not definitive. The logging modules may change. To find out what
logging module strings are valid, caiime_get_logging() with the string referenced
by thename argument set tdlULL .

Logging flags

The logging flags are bit masks that configure logging behavior:

Value Behavior

1 Also write anything logged to standard output.
2 Write timing logs.

Events
None delivered.
Blocking and validation

This function doesn’t perform any validations, and doesn’t block.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

May 4, 2009 Chapter 1 ¢« MME APl 311

mme_S et_l 0gg in g () [0 2009, ONX Software Systems GmbH & Co. KG.

See also:
mme_get_logging()

312 Chapter1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S et P riori tny Id er()
Set a priority folder for synchronization

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_setpriorityfolder(mre_hdl _t *hd,
ui nt 64_t folderid);
Arguments:
hdl An MME connection handle.
folderid The ID of the folder to be synchronized first. This ID must match the
folderid field in the MME databasgol der s table.
Library:
me
Description:
The functionmme_setpriorityfolder() tells the MME to synchronize the specified
folder first. When you call this function, if the MME is in the process of sychronizing
a mediastore, it pauses and synchronizes the specified folder first before resuming the
rest of the sychronization.
Events

None delivered.

Blocking and validation

This function blocks omdb. It validates:
e the folder ID (it must exist)

e that the synchronizer supports the use of prioritized folders

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

May 4, 2009 Chapter 1 ¢ MME APl 313

mme_S etp riori tny lder () [2009, ONX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed_sync_cancel(), mme_resync_mediastore(), mme_sync_cancel(),
mme_sync_directed(), mme_sync_file(), mme_sync_get_msid_status(),
mme_sync_get_status()

314 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_S etrandom ()

Synops

IS:

Arguments:

Library:

Descrip

tion:

Sets the random playback mode for a control context

#i ncl ude <nme/ me. h>

int mMme_setrandonm nme_hdl _t *hdl,
i nt mode);

hdl An MME connection handle.

mode The random mode. For a list of random modes, see
nmme_node_random t.

The functionmme_setrandom() sets the random playback mode for a control context.
Tracks are played in pseudo-random order (using the @mBom() function), and
won't be repeated until all the tracks in the track session have already been played.

Clearing a track session

AN

You can clear a track session by:
e calling mme_stop() to stop the track session

e calling mme_settrksession() with trksessionid set to O (zero)

A random or repeat mode setting only works if the external device supports the
setting. If the external device doesn't support the requested setting, the MME logs a
warning and continues playback.

CAUTION: A call to mme_settrksession() or mme_set msid_resume_trksession()
regenerates the pseudo-random list the MME uses for random mode playback.

Switching modes

May 4, 2009

The following describes how the MME plays through a track session when it switches
between random and sequential modes, assuming that repeat mode is off.

When the MME switches the track session from sequential to random mode it:

e generates a list of all the tracks in the track session in pseudo-random order

Chapter 1 ¢ MME APl 315

m m e_S etran d O m () 2009, QNX Software Systems GmbH & Co. KG.

AN

Events

e plays through this list until it has played all the tracks in the track session
When the MME switches the track session from random to sequential mode it:
e clears the random history

e continues playing tracks from the track session track list, starting with the currently
playing track

e plays through the track session to the end. Tracks on the track session track list that
are before the track at which sequential mode was started are not played.

If the client application callsnme_setrandom() when the track session is already in
random mode, the MME clears all random history and:

e If the call tomme_setrandom() sets the playback mode to random mode (for
example, fronrandom all to random album, or from random all to random all
[sic], the MME generates a new pseudo-random list of tracks in the track session
and continues playback from this new list.

e If the call tomme_setrandom() turns off the random mode, the MME continues
playback of the current track session in sequential mode.

For information about how the MME counts tracks played, see
mme_trksession _get _info().

CAUTION: The client application should always call the function
mme_trksession get info() immediately after switching between random and
sequential modes. Changing the random mode resets the vatue@ft_trk, and if
the client application doesn’t update this information wiiime trksession get info()
the client application can’t know where it is in the track session.

MME_EVENT_RANDOMCHANGE when the function has completed work.

Blocking and validation

Returns:

This function blocks on control contexts.rtime_setrandom() is called and another
function is called beforenme_setrandom() returns, the second function blocks on
i o- medi a until mme_setrandom() returns. If there are no other pending calls,
mme_setrandom() returns without blocking oho- nedi a.

>0 Success.

-1 An error occurreddrrno is set).

316 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S etrandom ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getrandom(), mme_getrepeat(), mme_getscanmode() mme_setrepeat(),
mmre_node_random t,mme_node_repeat _t

May 4, 2009 Chapter 1 e MME APl 317

mme_sS etr ep eat O 00 2009, QNX Software Systems GmbH & Co. KG.

Sets the repeat playback mode for a control context

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int mMe_setrepeat(nme_hdl _t * hdl,
i nt mode);

hdl An MME connection handle.

mode The repeat mode. For a list of repeat modes,nse®_node_r epeat _t.

The functionmme_setrepeat() sets the repeat playback mode for a control context. If
random playback mode is enabled and the repeat madsis REPEAT ALL, when

all the tracks in a tracksession are played once, the MME determines a new
pseudo-random order, and the first track in the new list starts playing. Playback will
continue indefinitely.

If the repeat mode iIMIME_REPEAT_SINGLE, the current track repeats indefinitely.

A random or repeat mode setting only works if the external device supports the
setting. If the external device doesn't support the requested setting, the MME logs a
warning and continues playback.

This function returnéME_EVENT_REPEATCHANGEwhen it has completed work.

Blocking and validation

Returns:

This function blocks on control contexts.rtime_setrepeat() is called and another
function is called beforenme_setrepeat() returns, the second function blocks on
i o- medi a until mme_setrepeat() returns. If there are no other pending calls,
mme_setrepeat() returns without blocking oho- medi a.

>0 Success.

-1 An error occurreddrrno is set).

318 Chapter1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S et rep eat ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getrandom(), mme_getrepeat(), mme_getscanmode() mme_setrandom(),
mmre_node_random t,mme_node_repeat _t

May 4, 2009 Chapter 1 e MME API 319

mme_sS etscanmod e() 0 2009, QNX Software Systems GmbH & Co. KG.

Set the scan mode and time for a control context

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

i nt mMme_setscannode(me_hdl _t *hdl,
uinte4_t time);

hdl An MME connection handle.

time The number of milliseconds to play a track before skipping to the next track
in the tracklist. Set to 0 to disable scan mode for the current control context.

The functionmme_setscanmode() sets the scan mode for a control context. The scan
mode setting is the maximum number of milliseconds from the beginning of the track
the MME will play before going to the next track.

If the scan mode setting is changed while a track is playing, the new scan mode will
take effect immediately. The MME will behave as though the new setting had been
made before it started playing the track. For example, if:

e the scan modéme is 8000 milliseconds
e the MME plays 5064 milliseconds of a track
e the scan modémeis set to 6000 milliseconds,

then the MME will stop playing the track at 6000 milliseconds and move to the next
track.

If the scan modéimeis set to a value less than the time already played from a track,
the MME will move immediately to the next track.

This function return$IME_EVENT_SCANMODECHANGEwhen it has completed
work.

Blocking and validation

This function blocks on control contexts.rtime_setscanmode() is called and another
function is called beforenme_setscanmode() returns, the second function blocks on
i o- medi a until mme_setscanmode() returns. If there are no other pending calls,
mme_setscanmode() returns without blocking ono- nedi a.

320 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_setscanmode()

Returns:

>0 Success.
-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_getrandom(), < mme_getrepeat(), mme_getscanmode(), mme_setrandom(),

mme_setrepeat()

May 4, 2009

Chapter 1 ¢ MME API

321

mme_sS ettrksession () 00 2009, QNX Software Systems GmbH & Co. KG.

Set the current track session

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int Mme_settrksession(me_hdl _t *hdl,
ui nt 64_t trksessionid) ;

hdl An MME connection handle.

trksessionid The track session ID, set gme_newtrksession(); set to O to release
(“unset”) the current track session.

The functionmme_settrksession() sets the current track session for the specified

control context. Before setting the track session for a control context, you must create
the track session wittnme_newtrksession(). To play the track session, after you have
set it, callmme_play().

A call to mme_settrksession() does the following:

e Ifthe MME is playing a track and the file Ii@l) of this track is also in the newly
requested track session, the MME doesstop playback. It :
- seamlessly switches playback to the same track in the new tracksession
- correctly sets the playback position for the new track session
- if the newly set track session has more than one instance @ifitbeing played,
playback is transferred to the first instance of fids

e |If the currently playing track is not in the newly requested track session, calling
mme_settrksession() will stop the currently playing track session and clear the data
associated with its track session. See “Preventing playback interruption” below.

322 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S ettrksession ()

Q e File-based track sessions are not permanent. Their contents are lost if playback is
switched to another track session.

e Callingmme_settrksession() regenerates the list of tracks used by the MME for
playback in random mode (the entries in tiaadomid field of the
t rksessi onvi ewtable).

Preventing playback interruption

In order to not interrupt playbackyme_settrksession() will fail (return -1 and set
errno to ECANCELED) if:

e thefid of the currently playing track is not in the new tracksession
or if:

e the track that was playing when the client issued the request to switch tracks is no
longer playing

Client applications have several options for handling situations where
mme_settrksession() cannot switch track sessions. These include:

e refuse the user request
e instruct the MME to stop playback, then set a new track session

e create a new track session that includesfithéor the currently playing track, then
call mme_settrksession() again to attempt a seamless transition to the new track
session

Using mme_settrksession() to resume playback

If you have stopped a track session and want tomrse_trksession_resume_state()
to resume playback, you must calime_settrksession() before calling
mme_trksession resume_state(), as follows:

1 Track session is stopped.
2 Call mme_settrksession().
3 Call mme_trksession_resume_state()

For more information about stopping an resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media irMME
Developer’s Guide.

Releasing or “unsetting” a track session

You can release or “unset” the current track session by catlimg _settrksession()
with trksessionid set to O (zero). Releasing a track session reduces the memory being
used by the MME.

May 4, 2009 Chapter 1 ¢ MME APl 323

mme_S ettrksession () 2009, ONX Software Systems GmbH & Co. KG.

Q e You must callmme_stop() to stop the track session before you can release it.

e Atrack session canot be used by more than one control context. If you attempt to
set a track session already in use by another control combend, settrksession()
returns -1 and se&rno to EINVAL . To pass control of a track session to a new
control context, you must first release it from the current control context

For information about deleting a track session, see “Deleting a track session” in the
chapter Using the MME.

Events

If the tracksession being set is not the currently active track session, the MME delivers
the evenMME_EVENT_TRKSESSION If the track session specified is already set, the
MME delivers no events.

If the new track session has different repeat or random settings than the current
settings on the control context, the MME delivers one or both of the events
MME_EVENT_REPEATCHANGEandMME_EVENT_RANDOMCHANGE.

Blocking and validation
Full validation of data; all arguments are checked before the call returns.

This function blocks on control contexts.rime_settrksession() is called and another
function is called beforenme_settrksession() returns, the second function blocks on
i o- medi a until mme_settrksession() returns. If there are no other pending calls,
mme_settrksession() returns without blocking oho- nedi a.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

324 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S ettrksession ()

See also:

mme_newtrksession(), mme_rmtrksession(), mme_trksessionview_update()

May 4, 2009 Chapter 1 ¢ MME APl 325

mme_sS hutdown () 0 2009, QNX Software Systems GmbH & Co. KG.

Prepare the MME for shut down

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <nme/ me. h>

int mre_shutdown (mre_hdl _t *hd);

hdl An MME connection handle.

The functionmme_shutdown() prepares the MME for shut down and delivers the
eventMME_EVENT_SHUTDOWN o all control contexts. When you call this function,
it stops and disables:

e playback on all control contexts

e synchronizations on all control contexts

e any other MME operations that write to the MME database

After calling mme_shutdown(), you can:

1 Call mme_disconnect() to disconnect the client application from the MME.

2 Shut down the system by, for instance, turning off the power.

The functionmme_shutdown() returns immediately and shuts down MME threads in
the background. This behavior means that the MME may deliver other eafbertst
has deliveredMME_EVENT_SHUTDOWN. When all MME threads have shut down,
the MME delivers the eveIME_EVENT_SHUTDOWN COMPLETED

If you want to shut down the MME without turning off the system, after calling
mme_shutdown() your client application needs to kill the MME process.

If your client application callsnme_disconnect() without callingmme_shutdown()
first, it will disconnect from the MME control context, but the MME process will
continue to run. Your client application will be able to uame_connect() to make a
new connection to the MME.

326 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_S hutdown ()

Events

This function returns the eventéME_EVENT_SHUTDOWN and

MME_EVENT_SHUTDOWN_COMPLETED,
Blocking and validation

Returns immediately and shuts down threads in background.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

Examples:

The code snippet below illustrates how to shut down the MME.

mre_hdl _t *hdl = mre_connect ("/dev/ nme/default”, 0);
mre_shut down(hdl) ;
mre_di sconnect (hdl);

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_connect(), mme_disconnect()

May 4, 2009 Chapter 1 ¢« MME APl 327

M M E_S L OTTY P E_* [J 2009, QNX Software Systems GmbH & Co. KG.
Sot type definitions

Synopsis:

#i ncl ude <mme/ i nterface. h>

#defi ne MVE_SLOTTYPE_*

Description:

The constantME_SLOTTYPE * define the slot types the MME recognizes. The
values listed in the table below are used by dluttype field in the:

e me_play_info_t data structure

e sl ot s table

Constant Value Description
MME_SLOTTYPE_UNKNOWN 0 Unknown device.
MME_SLOTTYPE USB 1 USB device.
MME_SLOTTYPE_CD 2 Internal CD/DVD drive.
MME_SLOTTYPE DRIVE 3 Not used.

MME_SLOTTYPE MEDIAFS 4 Not used.
MME_SLOTTYPE_CD_EXT 5 External CD/DVD drive.
MME_SLOTTYPE CD_CHGR_INT 6 Internal CD/DVD changer.
MME_SLOTTYPE_CD_CHGR _EXT 7 External CD/DVD changer.
MME_SLOTTYPE FILESYSTEM 8 Generic POSIX filesystem type.
MME_SLOTTYPE BLUETOOTH 9 Bluetooth stack.
MME_SLOTTYPE INTERNET 10 Internet, used for streaming.

Macros for determining slot types

The MME includes some macros that facilitate determining a slot type.

check_slottype cd

Use the macraheck_sl ot t ype_cd to determine if the slot type is for any type of
CD:

#define check_slottype_cd(slottype) \

((slottype == MVE_SLOTTYPE_CD || slottype == MVE_SLOTTYPE CD EXT || \
sl ottype == MVE_SLOTTYPE_CD CHGR INT || slottype == MVE_SLOTTYPE_CD CHGR EXT))

328 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. M M E_S I_ OTTYP E_*

check_slottype_cd_int

Use the macreheck_sl ottype_cd_i nt to determine if the slot type is for an
internal CD:

#define check_slottype_cd_int(slottype) \
((slottype == MVE_SLOTTYPE_CD || slottype == MVE_SLOTTYPE_CD CHGR_I NT))

check_slottype cd_int

Use the macraheck_sl ot t ype_cd_ext to determine if the slot type is for an
external CD:

#define check_slottype_cd_ext(slottype) \

((slottype == MVE_SLOTTYPE_CD EXT || slottype == MVE_SLOTTYPE_CD CHGR EXT))

is_mediafs_type

Use the macrds_nedi af s_t ype to determine if the slot type is for a media
filesystem:

#define is_nedi afs_type(SLOTTYPE) \
((SLOTTYPE == MVE_SLOTTYPE_MEDI AFS) || (SLOTTYPE == MVE_SLOTTYPE_MEDI AFS 2W RE))

Classification:
QNX Multimedia

See also:

mre_play_info_t

May 4, 2009 Chapter 1 ¢« MME APl 329

mm e_Start_d evi Ce_d etection () 00 2009, QNX Software Systems GmbH & Co. KG.

Start device and mediastore detection

Synopsis:

Arguments:

Library:

Description:

AN

Events

#i ncl ude <nme/ me. h>

int Mme_start_device detection(me_hdl t *hdl);

hdl An MME connection handle.

The functionmme_start _device detection() starts device and mediastore detection.
By default, device and mediastore detection is on, though it is possible to turn
detection off when first starting the MME by changing the setting of

<Devi ceDet ect i on>in the MME configuration filerme. conf . For more
information, see the chapter Configuring Device Support irMME Configuration
Guide.

CAUTION: If you have configured your MME taot automatically start device
detection, always calhme_start _device detection() before attempting any tasks that
access devices (synchronization, playback, media copy and ripping, etc.).

Failure to callmme_start_device detection() before attempting these type of tasks
will produce unexpected results that may compromise the integrity of your system.

None delivered.

Blocking and validation

Returns:

Full validation of data; all arguments are checked before the call returns.

>0 Success.

-1 An error occurreddrrno is set).

330 Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mm e_Start_d evi Ce_d etection ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
Configuring Device Support in thdME Configuration Guide

May 4, 2009 Chapter 1 e MME API 331

mm e_StO P () 0 2009, QNX Software Systems GmbH & Co. KG.
Sop atrack session

Synopsis:
#i ncl ude <nme/ nme. h>
int me_stop(nme_hdl _t *hd);
Arguments:
hdl An MME connection handle.
Library:
e
Description:
The functionmme_stop() stops the track session currently playing in the specified
control context. You can call this function even if no track session is playing.
Events

MME_EVENT_PLAYSTATE with mme_event _data_t. pl ayst at espeed setto 0
(zero).

Blocking and validation

This function verifies that the track session in the control context is in playback mode
and can be stopped.

This function blocks on control contexts.rtime_stop() is called and another function
is called beforanme_stop() returns, the second function blocks oo+ medi a until
mme_stop() returns. If there are no other pending catiene stop() returns without
blocking oni o- nedi a.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. ..

332 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_stop()

Safety
Signal handler No
Thread Yes
See also:
mme_play()

May 4, 2009

Chapter 1 ¢ MME API

333

MME_STORAGETYPE_*

[0 2009, QNX Software Systems GmbH & Co. KG.

Sorage type definitions

Synopsis:

Description:

#i ncl ude <mme/ i nterface. h>

#def i ne MVE_STORAGETYPE_*

The constant¥ME_STORAGETYPE * define the storage types the MME recognizes.

The values listed in the tables below are used bystbeage type field in the:

e mme_pl ay_i nfo_t data structure

e nedi ast or es table

Users can define their own, custom storager types, as required. Available values are

listed in the table “User defined storage types” below.

Pre-defined storage types

Thes storage types are pre-defined:

Constant Value Description
MME_STORAGETYPE UNKNOWN 0 Unknown storage type
MME_STORAGETYPE AUDIOCD 1 Audio CD
MME_STORAGETYPE FS 2 RAM disc
MME_STORAGETYPE DEVB 2 MME_STORAGETYPE FS
MME_STORAGETYPE DVDAUDIO 3 Audio DVD
MME_STORAGETYPE VCD 4 Video CD
MME_STORAGETYPE SVCD 5 Super Video CD
MME_STORAGETYPE DVDVIDEO 6 Video DVD
MME_STORAGETYPE IPOD 8 iPod device
MME_STORAGETYPE KODAKCD 9 Kodak picture CD
MME_STORAGETYPE PICTURECD 10 Other picture CD
MME_STORAGETYPE A2DP 12 A2DP protocol for Bluetooth
MME_STORAGETYPE RESERVEDO 13 Placeholder for UPnP
MME_STORAGETYPE SMB 14 MME_STORAGETYPEFS
MME_STORAGETYPE FTP 15 Internet FTP connection

334 Chapter 1 ¢ MME API

continued. ..

May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. M M E_STO RAG ETYP E_*

Constant Value Description
MME_STORAGETYPE HTTP 16 Internet HTTP connection
MME_STORAGETYPE NAVIGATION 17 Navigation CD or DVD. See

also “Mediastore
synchronization settings” .

MME_STORAGETYPE UPGRADE 18 Upgrade CD or DVD. See also
“Filtering synchronization by
storage type”.

MME_STORAGETYPE PLAYSFORSURE 20 PlaysForSure and similar
devices.
MME_STORAGETYPE UPNP 21 Devices using UPnP protocol.

MME_STORAGETYPE INTERNETSTREAM 22 Internet streaming.

Multiple mediastore types on single device

These storage types are used to identify different mediastore types on the same device
(such as a CD changer):

Constant Value Description

MME_STORAGETYPE MEDIAFS _2WIRE_UNKNOWN 620 Unknown storage
type
MME_STORAGETYPE MEDIAFS_2WIRE_CDAUDIO 621 Audio CD
MME_STORAGETYPE MEDIAFS_2WIRE_VCD 622 Video CD
MME_STORAGETYPE MEDIAFS_2WIRE_DEVB 623 RAMdisk
MME_STORAGETYPE MEDIAFS 2WIRE_DVDAUDIO 624 Audio DVD

MME_STORAGETYPE MEDIAFS_2WIRE DVDVIDEO 625 Video DVD

User defined storage types

These storage types are available for custom implementations:

Constant Value Description

MME_STORAGETYPE CUSTOM1 100
MME_STORAGETYPECUSTOM2 101

MME_STORAGETYPE CUSTOM3 102

continued. . .

May 4, 2009 Chapter 1 ¢ MME APl 335

M M E_STO RAG ETYP E_* [J 2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_STORAGETYPE CUSTOM4 103
MME_STORAGETYPE CUSTOM5 104
MME_STORAGETYPE CUSTOM6 105
MME_STORAGETYPE CUSTOM7 106
MME_STORAGETYPE CUSTOMS8 107
MME_STORAGETYPE CUSTOM9 108

MME_STORAGETYPE CUSTOM10 110

Events
Blocking and validation
Classification:

ONX Multimedia

See also:

MME_FORMAT _*, FTYPE *, MME_MSCAP_*, MME_SYNC_OPTION *, Table:
nedi ast or es

336 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_Sync_can cel ()

Synopsis:

Arguments:

Library:

Description:

Events

May 4, 2009

Cancels mediastore synchronization

#i ncl ude <nme/ me. h>

int mMe_sync_cancel (nme_hdl _t *hdl,
uint64_t msid);

hdl An MME connection handle.

msid The ID for the mediastore on which synchronization is to be stopped or
cancelled.

The functionmme_sync_cancel() cancels mediastore synchronizations. Set the
parametemsid to the mediastore ID of the mediastore for which you want to cancel
synchronization.

If you set the parametensid to O, mme_sync_cancel() cancels all current and pending
mediastore synchronizations on all devices.

All cancelled synchronizations send an MEAVENT_SYNCABORTED event.

For an active synchronization the MME:

e aborts the synchronization

e reports an error in the logs

e sends an MMEEVENT_SYNCABORTED event.

For pending synchronizations the MME

e immediately removes the pending synchronizations from the pending queue

e sends the MMEEVENT_SYNCABORTED event

This function can return synchronization error eveMsE_SYNC_ERROR *) and
MME_EVENT_SYNCABORTED

Chapter 1 e MME APl 337

mme_Sync_can cel () 2009, ONX Software Systems GmbH & Co. KG.

Blocking and validation

This function is non-blocking. It deliversMME_EVENT_SYNCABORTEDevent for

each completed cancellation. It does not validate the mediastomedD)(
Returns:

=0 Success: the mediastore synchronization was cancelled, or the mediastore was
not being synchronized when the cancellation request was made.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed _sync_cancel(), mme_playlist_sync(), mme_resync_mediastore(),
mme_setpriorityfolder(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

338 Chapter 1 ¢ MME API May 4, 2009

00 2009, QNX Software Systems GmbH & Co. KG. mme_Ssyn C_d b_C h ECk()
Check and repair a folder with inconsistencies

Synopsis:
#i ncl ude <me/ nme. h>
int Mme_sync_db_check(nmme_hdl _t *hdl,
ui nt 64_t folderid,
uint32_t flags);
Arguments:
hdl An MME connection handle.
folderid The ID of the folder to verify and repair.
flags Flags controlling the verification and repair. See “Flags” below.
Library:
mre
Description:

The functionmme_sync_db_check() checks the specified folder for consistency and,
optionally, attempts to repair any errors it encounters. It:

e Checks folder information (in fields reserved for internal use only) irf thieder s
table.

e Logs all inconsistencies.

e Ifthe MME_SYNC OPTION REPAIRflag is set, attempts to repair any
inconsistencies that it finds between the folder information in the database and the
folder’s contents.

The functionmme_sync_db_check():

e can be used to try to repair inconsistencies:

- if problems are encountered after a synchronization

- for mediastores with POSIX compliant filesysteamsy; if the specified folder is
not on a mediastore with a POSIX compliant filesystem (i.e. a CDDA),
mme_sync_db_check() returns an error

e always verifies the consistency of the specified folder if it can

May 4, 2009 Chapter 1 ¢« MME APl 339

m m e_syﬂ C_d b_C h eCk () 2009, QNX Software Systems GmbH & Co. KG.

CAUTION: If mme_sync_db_check() finds and is unable to repair inconsistencies
between the MME database and a folder, there is probably a problem with the
database that requires immediate attention.

When and how to use mme_sync_db_check()

Flags

340

You should usenme_sync_db_check() if you suspect a problem with the MME
database, and proceed as follows:

1 Callmme_sync_db_check() to verify the folder that may be the source of the
problem (donot setflagsto MME_SYNC_OPTION_REPAIR). If the function
reports zero inconsistencies, the database does not require repair.

2 If mme_sync_db_check() reports and logs inconsistencies, call the function
again with theflags option set taMME_SYNC_OPTION_REPAIR

3 After mme_sync_db_check() finishes repairing the database, run this function
again, with thelags option not set toMME_SYNC_OPTION _REPAIR— you
need to verify that the repair was completely successful.

4 If mme_sync_db_check() still reports inconsistencies:

4a Contact QNX and forward, if possible:
e alllogs
e the database with the inconsistencies

e a copy of the mediastore associated with the inconsistencies; this copy

must keep all file modification times from the original

4b Restart and resynchronize the mediastore with the inconsistencies by
callingmme_ms_restart() to delete all database contents associated with
this mediastore.

4c If resynchronization of an newly active mediastore is not automatic on

your system, calinme_resync_mediastore() to synchronize the
mediastore.

5 If mme_sync_db_check() no longer reports inconsistencies, resynchronize the

mediastore by callinghme_resync_mediastore().

The behavior olmme_sync_db_check() is determined by the values of tfiags
argument:

e MME_SYNC_OPTION REPAIR(0x0400) — verify and attempt to repair the
database

e MME_SYNC_OPTION VERIFY (0x0800) — verification is the minimum action
performed bymme_sync_db_check(), so this flag is always implied in any call to
this function

Chapter 1 ¢ MME API May 4, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. mme_Ssyn C_d b_C hec k()

e MME_SYNC_OPTION RECURSIVE(0x4000) — verify and repair recursively (the

specified folder and its subfolders)
Events

None delivered.

Blocking and validation

This function checks that:

e the specified folder ID exists

e the specified folder is on an active mediastore
e there is a checking function

This function runs synchronously, and therefore blocks.

Returns:

0 Success: the verification or repair operation has started.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:
MME_SYNC_OPTION *

May 4, 2009 Chapter 1 ¢« MME APl 341

mme_sync_directed()

[J 2009, QNX Software Systems GmbH & Co. KG.

Sart a directed synchronization

#i ncl ude <nme/ me. h>

int Mme_sync_directed(nmre_hdl _t *hdl,

Synopsis:
Arguments:
hdl
msid
path
options
Library:
me

342 Chapter 1 ¢ MME API

ui nt 64_t msid,
const char *path,
ui nt 32_t options) ;

An MME connection handle.

The ID for the mediastore on which directed synchronization is to be
performed.

The path to be synchronized on the mediastore.

The synchronization options. The options can be any combination of:

MME_SYNC_OPTION_CANCEL_CURRENT— Cancel any other
synchronization on the mediastore, and run this directed
synchronization. Used only byme_sync_directed(); not used by
mme_resync_mediastore().

MME_SYNC_OPTION _CLR_INV_COPIED— set to O (zero) all
invalid copied fid values in thd i br ary table.

MME_SYNC_OPTION_PASS FILES— synchronize files (perform
first pass synchronization).

MME_SYNC_OPTION_PASS METADATA — synchronize metadata
(perform second pass synchronization).

MME_SYNC_OPTION_PASS PLAYLISTS — synchronize playlists
(perform third pass synchronization).

MME_SYNC_OPTION_PASS ALL — synchronize files, metadata, and
playlists.

MME_SYNC_OPTION_RECURSIVE— perform a recursive
synchronization starting from the path defineddagh. Assumed set
by mme_resync_mediastore().

May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Ssyn C_d irected ()

Description:

AN

Events

The functionmme_sync_directed() starts directed synchronization for a specified path
on a mediastore.

Directed synchronization allows you to synchronize only a specified path on a
mediastore. This capability is particularly useful if you want to synchronize part of a
large mediastore in order to start playing its contents, then synchronize the rest (or
other parts) of the mediastore in the background or at a later time.

Directed synchronization is only available for mediastores with hierarchical directory
structures: HHDs, iPods, USB sticks, data CDs, etc. It is not available for mediastores,
such as music CDs, that have a single-level directory structure.

CAUTION: A clean up of invalidcopied _id fields can take a long time. Use the
MME_SYNC_OPTION_CLR_INV_COPIEDflag judiciously —only when
synchronizing after deleting media files from your database.

This function returns synchronization events with the operation ID. See the chapter
MME Synchronization Events for a full list.

Blocking and validation

Returns:

Examples:

This function is non-blocking. It returns asynchronously. On completion, it returns a
positive integer, which is the operation ID. This return value is sent with the event:

e MME_EVENT_MS_SYNCCOMPLETEIf the operation was successfully completed

e MME_EVENT_SYNCABORTEDIf the operation failed to complete successfully

>0 Success: the operation ID of the directed synchronization.

-1 An error occurreddrrno is set).

The code snippet below shows an example of how directed synchronization can be
used:

uint64_t go_to_folder (

mre_hdl _t *mre,
gdb_hdl _t *db,
uint64_t nsid,

uint64_t folderid,
const char *fol der _nane

May 4, 2009

Chapter 1 e MME APl 343

mme_Syn C_d irected () 2009, ONX Software Systems GmbH & Co. KG.

{ .
int rc;
/[* if it’s already synced, don’t resync it unless forced */
if (force_resync || (! folder_synced(db, nsid, folderid))) {
rc = me_sync_directed(me, nsid, folder_name, MVE_SYNC _OPTI ON_PASS ALL);
if (rc==-1) {
fprintf(stderr, "Unable to get sync path \"%\": % (%).\n",
fol der_name, strerror(errno), errno);
return O;
}
if (waitfor_directed_syncevent(rc) !'=1) {
/* operation didn’t finish, or failed */
fprintf(stderr, "**** (Operation failed. ****\n");
return O;
}
}
return fol derid;
}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed_sync_cancel(), mme_playlist_sync(), mme_resync_mediastore(),
mme_setpriorityfolder(), mme_sync_cancel(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

344 Chapter 1 ¢ MME API May 4, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. mme_Ssyn C_ﬁ I e()
Synchronize a specified file.

Synopsis:
#i ncl ude <me/ nme. h>
int mre_sync_file(mre_hdl _t *hdl,
uint 64_t old fid,
uint 64_t new_msid,
const char *new_filename) ;
Arguments:
hdl An MME connection handle.
old_fid The file ID of the file in the library before the change. Use O for file
additions, to indicate that there is no existing file associated with
the operation.
new_msid The ID for the media store with theew_filename path for the new
file. This value may be 0 ifiew_filename is NULL, as in the case
of file removals.
new_filename The path and name of the new file, relative to the mountpath of the
mediastore identified bgew_msid. This value may be a NULL
pointer to indicate there is no new file associated with the
operation, as in the case of file removals.
Library:
mre
Description:

The functionmme_sync_file() starts a synchronization for a specified file.

File synchronization allows the client application to have the MME synchronize only a
specified file. This capability is typically used when the client application knows that a
specific file change has occured: a file has been deleted, added, moved or renamed.

In all cases, the client application must specify, as a minimum, one aldhéd or the
new_filename. The values the client application should assign to these variables before
passing them toome_sync_file() depending on the reason it is calling the function:

e File additions

old_fid 0.
new_filename The path and name of the new file.

e File changes

May 4, 2009 Chapter 1 ¢ MME APl 345

m m e_sy n C_fl | e() 2009, QNX Software Systems GmbH & Co. KG.

old_fid fid of the changed file.
new_filename The path and name of the changed file.

e File removals

old_fid The file ID (fid) of the deleted file.
new_filename NULL.

Function behavior

No synchronization options are available for this function; it attempts to do the
equivalent of both file and metadata synchronization passes.

File changes and additions
During synchronization, thexme_sync_file() delivers synchronization events:

e When the function begins synchronization, it delivers the event
MME_EVENT_MS_SYNC _STARTED with the operation ID and thesid of the
new file.

e If old_fid is not specified and the file exists, the function delivers the event
MME_EVENT_MS_SYNCFIRSTFID with thefid of the file in the MME
database. The function performs the first and second synchronization passes, but
delivers only the event MMEEVENT_MS_1PASSCOMPLETE.

e If old_fid is specified, the function updates the existing library with the new folder
ID, mediastore ID and filename, but makes no other changes to the metadata.
Before completion it delivers only the event
MME_EVENT_MS_1PASSCOMPLETE.

File removal

If new_msid is 0 andnew_filename is NULL, mme_sync_file() removes the file
specified byfid. The function returns 0 on successful completion.

Limitations

346

The functionmme_sync_file() can only be used with certain media store types. For
example, the function it is not supported for use with iPods.

There is no support for changes across mediastores. For example, when busidthe
andold_msid are specified, thensid for the old file must match theld_msid.

File move or rename is supported only when the file remains on the same media store.
In this case, all metadata about the file is preserved. If the file is moved to a different
mediastore, two separate callsnime_sync_file() are required and:

¢ the file ID of the renamed file may change

e metadata is not preserved

Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Syn C_fi | e()

Events

This function returns synchronization events with the operation ID. See “File changes
and additions” above, and the chapter MME Synchronization Events for a full list.

Blocking and validation

This function is non-blocking. It returns synchronously. On completion, it returns O or
a positive integer, which is the operation ID. This return value is sent with:

e an MME_EVENT_MS SYNCCOMPLETE event if the operation was
successfully completed

e an MME_EVENT_SYNCABORTED event if the operation failed to complete
successfully
Returns:

>0 Success:

=0 Operation completed synchronously. This situation occurs only if
new_msid is 0 andnew_filename is NULL.

>0 Value returned is synchronization operation ID. the operation ID of the
directed synchronization.

-1 An error occurreddrrno is set). The event
MME_EVENT_SYNCABORTED is sent with thensid and the operation ID.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_get_msid_status(),
mme_sync_get_status()

May 4, 2009 Chapter 1 ¢« MME APl 347

mme_Ssync_Jg et_ msi d_Stat us () 0 2009, QNX Software Systems GmbH & Co. KG.
Gets the status of synchronization for a mediastore

Synopsis:

#i ncl ude <nme/ me. h>

int Mme_sync_get nsid status (mre_hdl _t *hdl,
ui nt 64_t msid,
me_sync_status_t *status)

Arguments:
hdl An MME connection handle

msid The ID of the mediastore for which you want to get the synchronization
status.

status A pointer to anme_sync_st at us_t structure where the function can
store information about the synchronization status.

Library:

Description:

The functionmme_sync_get msid_status() gets information about a specific
mediastore’s synchronization status. For more information abowtdhes structure,
seemme_sync_status_t.

If you request the synchronization status for an invalid MSID (a mediastore that
doesn't exist), the function returns success, but all pass fieldatirs are filled with O.

Events

None delivered.

Blocking and validation

This function is non-blocking. It validates thstatus is not null.

Returns:

=0 Success.

-1 An error occurreddrrno is set).

348 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mme_Sync_g et_ msi d_StatU S ()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_filg(),
mme_sync_get_msid_status()

May 4, 2009 Chapter 1 ¢« MME APl 349

mme_Ssync_Jg et_stat us () 0 2009, QNX Software Systems GmbH & Co. KG.

Gets information about system synchronization

Synopsis:

Arguments:

Library:

Description:

Events

#i ncl ude <nme/ me. h>

int Mme_sync_get status (mme_hdl _t *hdl,
me_sync_status_t *status,
size_ t dsatus size)

hdl An MME connection handle.

status A pointer to an array ofre_sync_st at us_t structures where the
function can store status information. Passla&L to get the number
of mediastores actively involved in synchronization. See
mTe_sync_st at us_t in this reference.

status size The number of elements in tieatus array. It may be 0 (zero).

The functionmme_sync_get status() gets information about system synchronization.
You can call this function and pasttus asNULL andstatus_size as 0 to simply

return the number of mediastores that have synchronization passes underway or
pending, and use this information to set up $tetus array for a subsequent call.

However, keep in mind that mediastore synchronization status can change rapidly, so
you should always check the return value for the number of elements that contain valid
data instatus.

None delivered.

Blocking and validation

Returns:

This function is non-blocking.

=0 Success. The value returned is the number of media stores that have
synchronization passes in progress or pending.

-1 An error occurreddrrno is set).

350 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

mme_sync_get_status()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

mme_playlist_sync(), mme_sync_cancel(), mme_sync_get msid_status()

mme_sync_status_t()

May 4, 2009

Chapter 1 ¢ MME API

351

M M E_SYN C_O PTI O N_* [J 2009, QNX Software Systems GmbH & Co. KG.

Synchroniztion option type definitions

Synopsis:
#i nclude <me/interface. h>
#def i ne MVE_SYNC_OPTI ON_*
Description:
TheMME_SYNC_OPTION * constants are bit masks defining the synchronization
options that can be set for synchronizing mediastores. The values listed in the table
below can be set by the client application to configure synchronization behaviors.
For more information, see the chapter Synchronizing Media, and
mme_sync_directed(), mme_resync_mediastore() andmme_sync_get_status() in this
reference.
Constant Value Description
MME_SYNC_OPTION PASS FILES 0x0001 Perform file and folder
synchronization pass.
MME_SYNC_OPTION PASS METADATA 0x0002 Perform metadata
synchronization pass.
MME_SYNC_OPTION PASS PLAYLISTS 0x0004 Perform playlist
synchronization pass.
MME_SYNC_OPTION PASS EXT_DB_SYNC 0x0008 Perform external database
synchronization pass.
MME_SYNC_OPTION PASS ALL 0x000F Perform all synchronization
passesFILES + METADATA +
PLAYLISTS + EXT_DB_SYNC.
MME_SYNC_OPTION REPAIR 0x0400 Repair the database. See
mme_sync_db_check().
MME_SYNC_OPTION VERIFY 0x0800 \Verify if the database needs
repairing. See
mme_sync_db_check().
MME_SYNC_OPTION_CLR_INV_COPIED 0x1000 Setto O (zero) all invalid
copied_fid values in the
I'i brary table. This option
can be used only with
mme_sync_directed() or
mme_resync_mediastore().
continued. . .
352 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

MME_SYNC_OPTION_*

Classification:

See also:

May 4, 2009

Constant

Value Description

MME_SYNC_OPTION CANCEL_CURRENT

MME_SYNC_OPTION RECURSIVE

MME_SYNC_OPTION _BLOCKING

ONX Multimedia

0x2000 Cancel current
synchronization.

0x4000 Perform recursive
synchronization.

0x8000 For future use.

MME_FORMAT_*, MME_FTYPE_*, MME_MSCAP_*, MME_STORAGETYPE *,
mme_sync_db_check(), mme_sync_directed(), mme_resync_mediastore(),

mme_sync_get_status()

Chapter 1 ¢ MME APl 353

ITTTE_S y n C_S t at U S_t 0 2009, QNX Software Systems GmbH & Co. KG.
Synchronization status information

Synopsis:
#i ncl ude <nme/types. h>
typedef struct s _mme_sync_status {
ui nt 64 _t nsi d;
uint16_t passes_done;
uint16_t current _pass;
uint16 t passes_to_do;
uint16 t reserved[1];
uint32_t operation_id,
} mre_sync_status_t;
Description:
The structureme_sync_st at us_t carries information about the status of a
synchronization operation. It has at least the members described in the table below.
Member Type Description
msid uint 64_t The ID of the mediastore.
passes done uint16_t The synchronization passes that have completed.
current_pass uint16_t The current synchronization pass flag.
passes to do uint16_t The synchronization passes yet to be performed.
operation_id ui nt32_t Anidentifier for the synchronization operation, used
for directed synchronizations. The MME sets itto O
(zero) for all synchronizationgxcept directed
synchronizations.
Pass flags

Thepasses_done andpasses to_do are a combination of zero or more of the flags
with the values listed below:

e MME_SYNC OPTION PASS FILES— file pass

e MME_SYNC OPTION PASS METADATA — metadata pass
e MME_SYNC _OPTION PASS PLAYLISTS — third pass

e MME_SYNC OPTION PASS ALL — all passes

Thecurrent_pass flag can only be set to O (zero) or 1 (one).

TheMME_SYNC_OPTION PASS * constants are described in
MME_SYNC_OPTION * in this reference.

354 Chapter 1 ¢ MME API May 4, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

me_sync_status t

Classification:
ONX Multimedia

See also:
mme_sync_get_status()

May 4, 2009

Chapter 1 ¢ MME API

355

ITTTE_t | ITE_t [J 2009, QNX Software Systems GmbH & Co. KG.
Time information for current track

Synopsis:
#i ncl ude <nme/types. h>
typedef struct mre_tinme_info {
ui nt 64 _t time;
ui nt 64 _t durati on;
} mre_tine_t;
Description:

The structureme_t i me_t carries the total play time and the play time elapsed for the
current track or file. It is used during operations such as playback and ripping. It
includes at least the members listed in the table below.

Member Type Description
time uint64_t The current time position in the track or file, in
milliseconds.

duration uint64_t The total duration of the track or file, in milliseconds.

Classification:
ONX Multimedia

See also:
mme_play_get _status()

356 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_ti mebas e S et ()
Ensure that database time val ues increase monotonically

Synopsis:

#i ncl ude <nme/ me. h>

int Mme_tinebase_set(nme_hdl t *hd);

Arguments:
hdl An MME connection handle.

Library:

Description:

The functionmme_timebase_set() ensures that the database time values increase
monotonically. This function should be used to ensure correct database time values on
systems that do not have a real-time clock implemented, or if the system time is
adjusted backwards.

As an alternative to runningime_timebase _set(), if this function is needed for every
MME startup, consider enabling th&i nebaseSet > option in the MME
configuration file. Setting this option runs the same function as a call to
mme_timebase _set(). It is exactly equivalent to callingime_timebase_set() at every
startup. See “Database time base” in MiIE Configuration Guide chapter
Configuring Database Behavior.

Events

None returned

Blocking and validation

This function performs no validations and does not block.

Returns:

0 Success: the ID of the synchronization operation.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 e MME APl 357

mm e_ti mebas € S et() [2009, ONX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

“Database configuration elements” in thBME Configuration Guide chapter
Configuring Database Behavior.

358 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_trkS essio Nn_appen d_fl les ()
Append tracks or a streamto a file-based track session

Synopsis:
#i ncl ude <me/ nme. h>
int mMe_trksession_append files(nme_hdl _t *hdl,
ui nt 64_t trksessionid,
i nt nfiles,
ui nt64_t *msid,
const char **filename) ;
Arguments:
hdl An MME connection handle.
trksessionid The ID of the track session to update.
nfiles The number of files to append to the track session.
msid A pointer to an array filled with the sanmasid (mediastore ID); this
msid must be thansid of the FTYPE_DEVICE fid (file ID) that was
used to create the track session.
filename A pointer to an array of strings. The content of these strings depends
on the mediastore type associated with the pointer. See “The
filename array” below.
Library:
mre
Description:

The functionmme_trksession_append_files() appends files (or streams) to an existing
file-based track session. It can be used to add to a track session tracks of interest
discovered through the explorer API, subject to the following conditions:

e The file or files to be appended are on the same mediastore (the same
FTYPE_DEVICE) that was used to create the track session.

e The track session is not in repeat or random mode.

Whenmme_trksession_append_files() successfully appends a file, files or a stream to
a track session it delivers amME_EVENT_TRKSESSIONVIEW UPDATE event to
indicate to the client application that the track session has changed.

The filename array

The strings in the array referred to bkename can be filenames of tracks to be played,
URLs of streams to be played, or strings appropriate for other types of media.

May 4, 2009 Chapter 1 ¢« MME APl 359

m m e_trkS eSS | O n_ap p en d_fl | eS () 2009, QNX Software Systems GmbH & Co. KG.

The formats of the strings in the array referred tdfibgname are dependent on the
types of mediastore referred to in theid array. Thus, for example, if amsid in the
msid array is of type internet stream, then the string at the same position in the
filename array must be a full URL.

If filename points to an array of tracks, it includes the path to the file on the mediastore,
but it doesnot include the mountpath to the mediastore. The patfiiéname must
begin with a “/” (slash). For examplé:songs_f ol der/ al bum fol der/.

The design that requires the repetition of the same mediastore ID throughout the array
referenced bynsid is implemented to facilitate the implementation of more advanced
file append capabilities in the future.

Events

MME_EVENT_TRKSESSIONVIEW UPDATE.

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

mme_trksession_clear_files(), mme_trksession_get info(),
mme_trksession _resume_state(), mme_trksession_save state(),
mme_trksession_set files()

360 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_t rksessio n_CI ear_ﬁ les ()
Clear all filesfrom a file-based track session

Synopsis:

#i ncl ude <me/ nme. h>

int Mme_trksession_clear files(me_hdl t *hdl,

ui nt 64_t trksessionid) ;

Arguments:

hdl An MME connection handle.

trksessionid The ID of the track session to clear.
Library:

mre
Description:

The functionmme_trksession clear_files() clears all tracks from the specified

file-based track session. You must stop playback before calling this fucntion.
Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:

>0 Success.

-1 An error occurreddrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

May 4, 2009 Chapter 1 e MME API 361

mm e_trkseSS 0 n_Cl ear_fi les () [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

mme_trksession _append_files(), mme_trksession_get info(),
mme_trksession_resume_state(), mme_trksession_save_state(),
mme_trksession _set files()

362 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_t rksessio n_g et_i nfo ()
Get information about the current track session

Synopsis:
#i ncl ude <nmme/ nme. h>
int me_trksession_get _info(me_hdl t *hdl,
ui nt 64_t *trksessionid,
ui nt 64_t *current trk,
uint64_t *total trk);
Arguments:
hdl An MME connection handle.
trksessionid The ID of the current track session, unique for the control context.
current_trk The one-based track currently being played from the tracksession.
For more information, see “Track number count with sequential and
random modes” below.
total _trk The number of tracks in the current track session.
Library:
mre
Description:

The functionmme_trksession _get_info() retrieves the following information about the
current track session:

e the track session ID
e thefid of the track currently being played
e the total number of tracks in the track session.

This information provides a snapshot of a track session and what the MME is doing
with the track session. For example, a track session teith trk set to O (zero)

indicates that the MME found no tracks or files that meet the criteria used to create the
track session (artist, genre, etc.).

Always use this function to retrieve track session information. The MME may to need
to retrieve track session information from an external device, such as an iPod, because
information stored in an external device will not be available intthiesessi on table.

Don’t use the track session tahleksessi on to retrieve track session information,
because this method will miss information on external devices.

May 4, 2009 Chapter 1 ¢ MME APl 363

m m e_trkS eSS | O n_g et_l nfO () 2009, QNX Software Systems GmbH & Co. KG.

Y

The values of a track’sequentialid andrandomid fields in thet r ksessi onvi ew
table have no bearing on the valuecofrent_trk. The value returned iourrent_trk is
just the one-based offset in the track session of the currently playing track. For
example, in a track session with 10 tracks, if playback is at the third tcactent_trk
will be 3, while thesequentialid field for the track may be 7, or some other number
used to sort the tracks (ORDER BY) when the track session was created.

Track number count with sequential and random modes

Sequential mode

Random mode

The method used by the MME to count the tracks played in a track session differs in
sequential and random modes, and is consistent with the method used by iPods.

For track sessions in sequential mode, the MME assignent_trk the number of the

track in the track session, and increments its value by 1 (one) each time it begins
playing a new track. For example, if the end-user chooses to start playing in sequential
mode on track 3 of the track sessi@arrent track the value ofcurrent track will be

3. The MME will continue playing tracks to the end of the track session, but will not
play tracks 0, 1 or 2 (unless repeat mode is on, in which case the MME will continue
playing through the track list until instructed to stop). The valueunfent _trk is

therefore always the same as the track number in the tracklist.

When the MME is asked to start playing a track session in random mode, it uses the
QDB random() function to create a pseudo-random order, and makes a list of tracks to
play in this order. The MME assigrtsirrent_trk the value 0 (zero) when it starts

playing the first track in its pseudo-random list,and increments this value by 1 (one)
each time it begins playing a new track. Thus, the valueuofent_trk is the number

or tracks played plus 1 for the current track, and has no relationship to the track
number in the track session.

How to calculate the number of tracks left to play

Events

For both sequential and random modes, to calculate the number of tracks left to play in
the track session, simply subtracirrent _trk from total _trk. The end of the track
session is reached wheuorrent_trk=total _trk.

None delivered.

Blocking and validation

This function returns immediately.

364 Chapter 1 ¢ MME API May 4, 2009

0 2009, QNX Software Systems GmbH & Co. KG. mm e_trkS essio n_g et_i nfo ()

Returns:

>=0 Success: the MME retrieved the track session information for the current

track session.. _
-1 An error