
QNX® Aviage Multimedia Suite 1.2.0
QNX Codec Engine for OMAP3530

The QNX Codec Engine for OMAP3530 is a codec engine created to support QNX
multimedia applications on OMAP3530 (Beagle) platforms, providing accelerated
decoding for AAC, MP3 and WMA audio media formats.

It is delivered as binaries and as source. The binaries provide a working example for
demonstration in a pre-defined configuration. The source can be used to modify the
configuration provided in the binary delivery. This technote includes the following
sections:

• Directory structure

• Install and set up the QNX Codec Engine

• Build the QNX Codec Engine

Directory Structure
The Codec Engine directory includes the following four package repositories
(directories):

• codec_engine_2_22— the primary Codec Engine package, which also includes
the Codec Engine tools package, documentation and release notes:

- The QNX OSAL implementation code can be found in
codec_engine_2_22/packages/ti/sdo/ce/osal/qnx

- The QNX IPC implementation stub is in
codec_engine_2_22/packages/ti/sdo/ce/ipc

In addition, to allow use of the QNX OSAL and IPC, some RTSC script changes
have been made in codec_engine_2_22/packages/ti/sdo/ce.

• framework_components_2_22— a supporting package repository (with some
supporting libraries). Currently, we only use the trace module from this repository,
and no changes were made to its contents. However, configuration and Make file
changes to the build are required; see “Building the Codec Engine primary library”
for details.

• omap3530_dvsdk_combos_3_16— the TI- provided decoder server and codecs.
All codecs can be found under packages/ti/sdo/codecs, while the server is
under packages/ti/sdo/servers. No changes were made to this directory.
However, configuration and Make file changes to the build are required; see
“Building the Codec Engine primary library” for details.

• qnx_packages— the main QNX-ported packages (libraries) directory. It includes
the following subdirectories:

Page 1 of 16

- gnu/targets/arm— the specification for building a target; it specifies the
QNX compiler tool chain, and is used by all package builds

- ti/sdo/ce/ipc/dsplink— the QNX implementation of the layer between
dsplink and the Codec Engine

- sdo/qnxutils/cmem— the QNX CMEM implementation

- ti/bios/power— the QNX implementation of the power module

- dsplink/dsplink160— the package that specifies the QNX-ported
dsplink client-side library

- codec_engine— the QNX shim layer of the Codec Engine API. Building this
package will produce a libcodecengine.so library your application can use.
This package specifies the decoder server to be used; in the current
implementation, this is the decodeCombo server from the
omap3530_dvsdk_combos_3_16 package.

Install and set up the QNX Codec Engine
The binaries for the QNX Codec Engine for OMAP3530 can be downloaded from the
QNX download site, at http://www.qnx.com/download/.

This technote section describes:

• Components list

• Codec Engine Installation and configuration

• Configuring io-media for the Codec Engine

Components list

This section lists the components that are included in the pre-built QNX Codec Engine
for OMAP3530 (binaries delivery). Components identified as such are from Texas
Instruments (TI); all others are from QNX, using the TI Codec Engine library.

Codec Engine components

The Codec Engine components include:

• arm/so.le/libcodecengine.so.1— library for the ARM side of the Codec
Engine

• arm/so.le/libcodecengineS.a— library for the ARM side of the Codec
Engine

• dsp-bins/decodeCombo.x64P— the pre-built DSP image containing the DSP
side of the Codec Engine, plus watermarked decoders, provided by Texas
Instruments (TI).

• dsp-bins/dsplink160— the QNX port of DSPLink161

Page 2 of 16

• ce_loader— a QNX utility used to load the DSP image and stay resident for the
duration of the multimedia session. Without this utility, the ce_audio_decoder
filter loads the DSP as each new track is started and unload the DSP when the track
is terminated, causing longer wait times between tracks.

MME components

The MME components included in the pre-built Codec Engine are the following
io-media filters for audio decoding on the OMAP3530 platform:

• ce_audio_decoder— the audio filter

This filter is located under lib/mmedia/filters/decoders/.

Board Support Package

The QNX Codec Engine for OMAP3530 needs the TI OMAP 3530 EVM and Beagle
Board Support Package (BSP), which can be downloaded from QNX download site, at
http://www.qnx.com/download/.

Installation and configuration

To configure and run the Codec Engine on an OMAP3530 Beagle target, complete the
following tasks in sequence:

1 Open the build file for the Beagle BSP (beagle.build) and reserve memory
for dsp, dsplink and cmem by changing the startup command line the in the
build file, as follows:

startup-omap3530 -L 0x87E00000,0x200000 -x 0x85800000,0x02600000 -v -p

2 Copy the decoder filters to the multimedia DLL directory on the target:

cp ce_audio_decoder.so path/armle/lib/dll/mmedia

3 In your MME boot.sh script, copy the DSP image to /tmp:

cp decodeCombo.x64P /tmp

4 Launch dsplink and ce_loader:

dsplink160 -q
ce_loader

5 When these applications have been started, you can start io-media and the
other MME components.

For more information about io-media, see the MME Utilities Reference.

Configuring io-media

After you have installed and configured the Codec Engine, you need to:

Page 3 of 16

• Configure io-media to use the DSP decoder

• Configure io-media to keep DLLs resident

Configure io-media to use the DSP decoder

To configure io-media to use the DSP decoder, change the io-media configuration
file as shown below.

In the mmf_graphbuildermodule configuration section:

module-options {
module = "mmf_graphbuilder"

change:

format {
url = "*.mov"
parser = "mp4_parser"
decoder = "qnx_raac_decoder"

}
format {

url = "*.mp[a123]"
parser = "mpega_parser"
decoder = "xing_mpega_decoder"
You can set MMF graph-level parameters here:
graphparam {
name = "foo"
value = "bar"
}

}
format {

url = "*.mp4"
parser = "mp4_parser"
decoder = "qnx_raac_decoder"

}
format {

url = "*.m4a"
parser = "mp4_parser"
decoder = "qnx_raac_decoder"

}
format {

url = "*.aac"
parser = "aac_parser"
decoder = "qnx_raac_decoder"

}
format {

url = "*.wma"
parser = "wma9_parser"
decoder = "wma9_decoder"

}

to:

Page 4 of 16

format {
url = "*.mov"
parser = "mp4_parser"
decoder = "ce_audio_decoder"

}
format {

url = "*.mp[a123]"
parser = "mpega_parser"
decoder = "ce_audio_decoder"
You can set MMF graph-level parameters here:
graphparam {
name = "foo"
value = "bar"
}

}
format {

url = "*.mp4"
parser = "mp4_parser"
decoder = "ce_audio_decoder"

}
format {

url = "*.m4a"
parser = "mp4_parser"
decoder = "ce_audio_decoder"

}
format {

url = "*.aac"
parser = "aac_parser"
decoder = "ce_audio_decoder"

}
format {

url = "*.wma"
parser = "wma9_parser"
decoder = "ce_audio_decoder"

}

Configure io-media to keep DLLs resident

To significantly reduce the time between track changes, you should also configure
io-media to keep the ce_audio_decoderDLLs resident.

In the mmf module configuration section:

module-options {
module = "mmf"

Add the following to keep the DLLs resident:

keepdll {
name = "ce_audio_decoder"
optional = yes

}

Page 5 of 16

Build the QNX Codec Engine
This section presents a brief description of how to build and port the Codec Engine
Version 2.22 for an OMAP3530 platform. The ported Codec Engine uses the
QNX-ported DSP/BIOS Link (dsplink version 1.61) as the transport between the
GPP and the DSP.

• Prerequisites

• Building the Codec Engine

• Customizing the codec for the Codec Server

• Setting up and customizing the memory map

To modify the Codec Engine source you will need to obtain some proprietary tools,
such as the TI Code Composer Studio; TI codecs, and relevant licences. Please contact
QNX for more information.

Prerequisites

Before building the Codec Engine, you need to have a correctly built QNX-ported
dsplink (1.61), which is available from QNX in a separate package.

To build the QNX-ported dsplink you need:

• a QNX compiler tool chain

• QNX 6.4.n on Windows or Linux

• the Texas Instruments XDC tools, version 3.10.2 or more recent; see

• the Texas Instruments DSP-side compiler, cg6x 6.0.15 or more recent

• the Texas Instruments BIOS bios 5.33.03 or more recent

For more information, or to obtain the Texas Instruments tools, see the Texas
Instruments site at:

http://focus.ti.com/dsp/docs/dspsupportaut.tsp?familyId=44§ionId=3&tabId=416&toolTypeId=30

Building the Codec Engine

Building the Codec Engine for QNX requires three tasks:

1 Build the Codec Engine library, including the primary library and the
framework component.

Page 6 of 16

2 Build the codecs and codec servers.

3 Build the QNX packages, including the CMEM, power, IPC dsplink, and the
shim layer (the final libcodecengine.so).

Detailed instructions for building the component parts of the Codec Engine are
provided below. As a general rule:

• if a package includes a Makefile, do: make clean, then make

• if there is no Makefile in the package, do: xdc clean, then xdc

Recommended build order

The first time you build the Codec Engine, you should perform the following tasks and
build the packages in the following sequence:

1 Set up the environment variables.

2 Build dsplink.

3 Build the target package.

4 Build the Codec Engine primary library.

5 Build the framework component package.

6 Build the dsplink client library package.

7 Build the power package.

8 Build the ipc/dsplink package.

9 Build the CMEM package.

10 Build the codecs and codec servers.

11 Build the shim layer (libcodecengine.so).

• If a package is already built, you can skip building it and move on to the next
package.

• If a package build fails because another package on which it depends is missing,
simply build the required package, then rebuild the package that failed.

• After the first build of the all the packages, you can modify any package, build it,
then rebuild the shim layer to generate a new libcodecengine.so.

Page 7 of 16

Set up the environment variables

To set up the environment variables for the Codec Engine:

1 In the Codec Engine root directory, edit setbuildenv.sh to make sure the
correct tool paths are set.

2 Export the XDCPATH environment variable so that the XDC tool will find the
QNX packages, instead of using the default Linux packages. The order of the
directories is very important, as it determines what gets over-written, and what
gets kept.

3 After you have finished editing the script, finishing setting up the environment
variable by enter the following on the command-line:

$. ./setbuildenv.sh

Build dsplink

To build the QNX-ported dsplink:

1 Build dsplink.

2 Copy the client-side library libdsplink160-client.a to the following
directory: qnx_packages/dsplink/dsplink160/arm/a.le.clent/.

Build the target package

You don’t need to change anything to build the target package; simply:

1 Use xdc clean, then xdc to build the package.

However, if you want to change the compiler, you can change the GCArmv5T.XDC file,
which can be found at:

$(rootDir)/bin/arm-unknown-nto-qnx6.4.0-ar

Build the Codec Engine primary library

To build the Codec Engine primary library, you need to:

1 Set the paths and environment variables.

2 Build the primary packages.

Set the paths and the environment variables

To set the paths and the environment variables:

1 In the codec_engine_2_22/packages directory, edit the following files to
ensure that they set the appropriate paths and environment variables:

Page 8 of 16

• config.bld

• user.bld

• xdcpaths.mak

If you are not building the DSP side of the image or changing the compiler version,
you should not have to change anything in the files listed above. Nevertheless, it is a
good idea to review their content to confirm that nothing needs to be changed.

Building the DSP side of the image

A standard build does not require a build of the DSP side of the image (codecs and
servers). However, if you want to build the DSP side of the image, you need to edit the
user.bld file. For example:

"DSP": [{doBuild: true, // DSP builds (DSP servers)
// Specify the "root directory" for the compiler tools.
// NOTE: make sure the directory you specify has a "bin" subdirectory
cgtoolsRootDir: "C:/CCStudio_v3.3/cg6x_6_0_15",

Build the primary packages

To build the primary packages for the Codec Engine base library:

1 In the codec_engine_2_22/packages/ti/sdo/ce directory, go into the
subdirectories for each package and use xdc clean, then xdc to build each
package. You must build at least the following packages:

• alg

• audio

• audio1

• global

• image

• image1

• ipc/qnx

• ipc

• node

• osal/qnx

• osal

• universal

• utils/xdm

2 When you have finished building all the primary packages:

2a Return to the codec_engine_2_22/packages/ti/sdo/ce directory.

2b Use xdc clean, then xdc to build this package.

Page 9 of 16

• You need some familiarity with the Codec Engine and the TI tools to complete this
task.

• The packages you build depends on the codecs you will use.

Build the framework component package

Currently, the codec engine only needs the trace module from this package. To build
this module with supporting libraries:

1 In the framework_components_2_22/packages/ti/sdo/utils/trace
directory, check the config.bld file to see if you need to change any paths or
environment variables. If you do need to change a path or environment variable,
follow the procedure as you did to build the Codec Engine primary library.

2 Use xdc clean, then xdc to build the package.

Build the dsplink client library package

The dsplink client library package tells the build tool where the dsplink client
library and header files are located.

To build the dsplink client library package:

1 In the qnx_packages/dsplink/dsplink160 directory, check the
config.bld file to see if you need to change any paths or environment
variables. If you do need to change a path or environment variable, follow the
procedure as you did to build the Codec Engine primary library.

2 Use xdc clean, then xdc to build the package.

Build the power package

Currently, there is nothing you need to do for the power package. Power control for
the OMAP3530 platform is done in dsplink, and the separate power package
provided is a dummy implementation of the power interface, already built.

Build the ipc/dsplink package

The ipc/dsplink package is the QNX implementation of the layer between
dsplink and the Codec Engine, providing the glue layer between these two
components.

To build the ipc/dsplink package:

1 In the qnx_packages/ti/sdo/ce/ipc/dsplink directory, check the
config.bld and user.bld files to see if you need to change any paths or
environment variables.

Page 10 of 16

If you do need to change a path or environment variable, follow the procedure as
you did to build the Codec Engine primary library.

2 Use make clean, then make to build the package.

Building the CMEM package

The CMEM package is the QNX CMEM implementation. To build the CMEM
package:

1 In the qnx_packages/qnx/sdo/qnxutils/cmem directory, edit the
rules.make files, if you want to change the compiler version or comnpiler
options.

2 Use make clean, then make to build the package.

• Please refer to the Linux CMEM documents from TI for more information about
the CMEM package.

• The current QNX CMEM implementation only supports single application process
access.

CMEM reserved memory

The default memory that needs to be reserved for CMEM is defined in
cmem_module.c, as follows:

#define BLOCK_0_ADDR 0x85800000 //start physical address of the CMEM
#define BLOCK_0_SIZE 0x1000000 //size of the CMEM.

And the default pool block allocation is as follows:

/*default pool block allocation*/
static int pools[NBLOCKS][MAX_POOLS][2] = {
{

{20,4096}, //number of blocks and block size
{8,131072},
{5,1048576},
{1,1429440},
{1,256000},
{1,3600000},
{5,829440},

},
};

Page 11 of 16

Customizing CMEM parameters

To customize the CMEM parameters, use the environment variable
CMEM_PARAMETERS by specifying, as follows:

• the start of the CMEM physical address (hexadecimal)

• the size, in bytes, of CMEM (hexadecimal)

• the specifics of each pool allocation, where the first number is the number of pools
and the second number is the size, in bytes, of each pool; for example, 20,4096
means 20 pools of 4096 bytes each.

For example:

export CMEM_PARAMETERS=0x85800000,0x10000000,20,4096,8,131072,5,1048576,1,1429440,1,256000,1,3600000,5,829440

If you customize the CMEM parameters, you must export the
CMEM_PARAMETERS environment variable before you start the Codec Engine
related components.

Build the codecs and codec servers

To build the codecs and codec servers:

1 In the omap3530_dvsdk_combos_3_16 directory, edit:

• the rules.make file information to ensure that the correct path are set

• the config.bld file information to ensure that the correct paths are set for
C64P.rootDir and GCArmv5T.rootDir

2 Save the file, and from the command line do a make clean, then a make to
generate the decoder server dsp image.

The generated decoder server DSP image will be: decodeCombo.x64P, in the
omap3530_dvsdk_combos_3_16/packages/ti/sdo/servers/decode/

directory.

You need to copy this binary to the target, and specify it when rebuilding
libcodecengine.so.

Building production and evaluation servers

If you have a non-watermarked version of the package from TI, before building you
can edit the XDCARGS option in the Makefile for building the server to make either a
production or an evaluation server:

• XDCARGS="eval"— build an evaluation server

• XDCARGS="prod"— build a production server

Page 12 of 16

Build the shim layer (libcodecengine.so)

The shim layer (libcodecengine.so) is the library you need to integrate the Codec
Engine into the filter. Building the shim layer is the final step in building the codec
engine.

• You must have successfully built all the other packages before you build the shim
layer.

• If modify or build any other package, you must rebuild the shim layer.

To build the shim layer:

1 If you want to change the compiler version, in the
qnx_packages/codec_engine/nto/arm/so.le directory, edit the
user.bld file to make the change.

2 In the qnx_packages/codec_engine directory, use make clean, then make

install to generate libcodecengine.so, the codec engine.

Changing the default DSP image

By default, the shim layer looks for the DSP image on the running target system at
/tmp/decodeCombo.x64P.

To change this default, modify the cebuild.cfg file in the
qnx_packages/codec_engine/nto/arm/so.le directory as follows:

var myEngine = Engine.createFromServer(
//creating audio dec server

"audiodec",
"./decodeCombo.x64P",
"ti.sdo.servers.decode"

);

myEngine.server = "/tmp/decodeCombo.x64P"

where:

• "audiodec" is the codec engine name

• "./decodeCombo.x64P" is the relative path image to the
ti.sdo.servers.decode package

• myEngine.server = "/tmp/decodeCombo.x64P" is the path where the
Codec Engine looks for the image on the running target; you can change this
location according to your needs

Page 13 of 16

Customizing the codec for the codec server

The codecs server is like a codec container that includes all the codecs you want to
have in the generate DSP image. To customize the image, you can:

1 In the
omap3530_dvsdk_combos_3_16/packages/ti/sdo/servers/decode/

directory, modify the decode.cfg file, as required to enable or disable specific
codecs.

2 Rebuild the codec server.

3 Rebuild libcodecengine.so.

Setting up and customizing the memory map

If you need to shrink memory usage, or move the memory to a different location, you
can change the memory map.

To change the memory allocation, you need to change the memory map. The memory
map is in the decode.tcf file in the
combos_3_16/packages/ti/sdo/servers/decode directory.

For instructions on how to set up and customize the memory map, refer to
decode_combo_datasheet.pdfwhich can be found in the
omap3530_dvsdk_combos_3_16/packages/ti/sdo/servers/decode/docs

directory. This document includes all the information you will need about the memory
map used in the codec server.

The codec server’s memory regions are used by either the GPP or the DSP, or are
shared by both the GPP and the DSP. For more information about CMEM, refer to the
“CMEM Overview” on the Texas Instruments Developer Wiki at
http://wiki.davincidsp.com/index.php?title=CMEM_Overview.

You should also check with Texas Instruments to find out how much memory each
codec requires.

Reserving memory in the BSP startup

You need to reserve the memory region used by dsplink and the DSP codec server in
the BSP startup, in order to prevent the kernel from allocating the required memory
region for another use.

To reserve the memory, specify command-line arguments in the BSP startup; for
example:

startup-omap3530 -L 0x87E00000,0x200000 -x 0x85800000,0x02600000

where:

• the -L option reserves for dsplink a memory region of 0x200000 bytes, with a
start address of 0x87E00000

Page 14 of 16

• the -x option reserves for the codec engine a memory region of 0x2600000 bytes
with a start address of 0x85800000; this memory region includes the CMEM, and
other memory specified in the decode.tcf file

• The startup above is the default startup; you can modify this startup to suit your
needs.

• You can customize all the above parameters, but it is best not to leave gaps between
the allocated memory regions. You should also make sure the startup commands
and the decode.tcf file are consistent.

Page 15 of 16

© 2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks,
registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and
are used under license by QNX Software Systems International Corporation. All other
trademarks belong to their respective owners.

Page 16 of 16

