
QNX® Neutrino® Realtime Operating System
QNX Database

Developer’s Guide

For QNX® Neutrino® 6.4.x

© 2009, QNX Software Systems GmbH & Co. KG.

© 2006–2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published June 05, 2009.

Technical support options

To obtain technical support for any QNX product, visit the Support + Services area on our website (www.qnx.com). You’ll find a wide range of support options, including
community forums.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About This Guide vii
Typographical conventions ix

Note to Windows users x

Technical support x

Introduction 11

Starting QDB 52
Synopsis: 7

Options: 7

Database directory 9

Schema files 9

Starting the QDB server 10

The QDB Client qdbc 213
Synopsis: 23

Options: 23

Description 24

QDB Administration 254
Backing up and restoring databases 27

QDB Examples 295
Example 33

Datatypes in QDB 356

QDB Virtual Machine Opcodes 457

Writing User-Defined Functions 698

QDB Client API Reference 79A
qdb_backup() 82

qdb_bkcancel() 84

June 5, 2009 Contents iii

© 2009, QNX Software Systems GmbH & Co. KG.

qdb_cell() 85

qdb_cell_length() 87

qdb_cell_type() 89

qdb_collation() 91

qdb_column_index() 93

qdb_column_name() 94

qdb_columns() 95

qdb_connect() 96

qdb_data_source() 98

qdb_disconnect() 100

qdb_freeresult() 101

qdb_getdbsize() 102

qdb_geterrmsg() 104

qdb_getoption() 106

qdb_getresult() 107

qdb_gettransstate() 109

qdb_last_insert_rowid() 111

qdb_mprintf() 113

qdb_parameters() 115

qdb_printmsg() 117

qdb_query() 119

qdb_rowchanges() 121

qdb_rows() 123

qdb_setbusytimeout() 124

qdb_setoption() 126

qdb_snprintf() 128

qdb_statement() 130

qdb_stmt_exec() 132

qdb_stmt_free() 134

qdb_stmt_init() 136

qdb_vacuum() 138

qdb_vmprintf() 140

QDB SQL Reference 141B
General 143

Statements 143

Row ID and Autoincrement 145

Comment 147

expressions 148

QDB Keywords 155

ALTER TABLE 157

iv Contents June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

ANALYZE 158

ATTACH DATABASE 159

CREATE INDEX 160

CREATE TABLE 161

CREATE TRIGGER 164

CREATE VIEW 167

DELETE 168

DETACH DATABASE 169

DROP INDEX 170

DROP TABLE 171

DROP TRIGGER 172

DROP VIEW 173

EXPLAIN 174

INSERT 175

ON CONFLICT 176

PRAGMA 178

REINDEX 185

REPLACE 186

SELECT 187

TRANSACTION 190

UPDATE 192

VACUUM 193

Index 195

June 5, 2009 Contents v

About This Guide

June 5, 2009 About This Guide vii

© 2009, QNX Software Systems GmbH & Co. KG. Typographical conventions

The QNX Database (QDB) Developer’s Guide accompanies the QDB database server
and is intended for application developers.
This table may help you find what you need in this book:

For information about: See:

QDB Overview Introduction

QDB command-line options Starting QDB

Executing SQL statements from the
command-line

The QDB Client qdbc

Managing a database QDB Administration

Sample application QDB Example

Supported data types QDB Datatypes

Op codes QDB Op Codes

Writing your own SQL or collation
functions

Writing User-Defined Functions

Client API QDB API reference

SQL commands SQL reference

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

continued. . .

June 5, 2009 About This Guide ix

Technical support © 2009, QNX Software Systems GmbH & Co. KG.

Reference Example

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support
If you have any questions, comments, or problems with a QNX product, please contact
Technical Support. For more information, see the How to Get Help chapter of the
Welcome to QNX Momentics guide or visit our website, www.qnx.com.

x About This Guide June 5, 2009

Chapter 1

Introduction

June 5, 2009 Chapter 1 • Introduction 1

© 2009, QNX Software Systems GmbH & Co. KG.

QDB is a small-footprint, embeddable SQL database server that supports most
SQL-92 syntax. It is designed as an easy-to-configure Neutrino resource manager.
QDB is based on the SQLite project (http://www.sqlite.org), and inherits many
of SQLite’s features.

QDB has these features:

• support for most ANSI SQL-92 syntax

• transactions

• concurrent access

• synchronous safe writes

• triggers, views, multiple attached databases

• small footprint

• leverages all benefits of the Neutrino resource manager framework including
network access to databases using QNet

• simple API for accessing the database

• result storing for repeated use. Results can also be passed from one application to
another.

• in-memory database support

• auto-attach support, to join disparate databases into a single, virtual database

June 5, 2009 Chapter 1 • Introduction 3

Chapter 2

Starting QDB

June 5, 2009 Chapter 2 • Starting QDB 5

© 2009, QNX Software Systems GmbH & Co. KG.

Synopsis:

qdb [-A] [-c config_file] [-C policy] [-D]
[-I test] [-n mountpoint] [-N control] [-o option[,option2...]]
[-P permissions] [-R mode]
[-r mode] [-s routine]
[-t timeout] [-T max_timeout] [-vV] [-W time] [-X path]

Options:
-A Turn off exclusive mode: allow other applications to use the

database files.

-c config_file Specify a configuration file of databases and policies. See the
“Configuration File” section below for more information.

-C policy Specify a database connection sharing policy. The policy can be
one of:

• unique

• private

• reuse

• share

See the “Sharing connections between clients” section below for
more information.

-D Disable shared cache. You should only use this option if you
need to debug shared caching.

-I test Perform a database integrity test at startup. The test can be one
of:

• none

• basic

• partial

• full

See the “Database integrity testing” section below for more
information.

-n mountpoint The QDB resource manager mountpoint. By default this is
/dev/qdb.

-N control Name of the database control entry. By default this is
.control.

-o option Configure miscellaneous options. The options are:

June 5, 2009 Chapter 2 • Starting QDB 7

© 2009, QNX Software Systems GmbH & Co. KG.

• unblock=0|1 — set whether or not to install an unblock
handler (that is, to allow a signal to interrupt an SQL
operation).

• threadmax — the maximum number of threads to allocate
to qdb; default is 64.

• threadhi — the maximum number of threads that can be
kept in a blocked state ready to work.

• threadlo — the minimum number of threads to be kept in a
blocked state ready for work.
See also thread_pool_create() in the Neutrino Library
reference.

• tempstore=directory — set the directory name where qdb
places certain temporary files. You can set this to a tmpfs
RAM disk location to prevent excessive disk access.

• bkcopy=buffer_size — set the size of the buffer to use when
making a backup or compressing. The default value is 64
KB, and is probably acceptable for most cases.

• trace — log SQL statements before QDB executes them.
You must set verbosity (-v) to six for this feature to work.

• profile — log SQL statements after QDB executes them,
as well as the time it took to execute them. You can
additionally specify the -Wtime option to log only SQL
statements that take more than the specified time, in
milliseconds. You must set verbosity (-v) to six for this
feature to work.

-P permissions Access permissions for the database and backup files. By default
this is 0664.

-R mode Set the database creation and recovery mode. The mode can be
one of:

• manual

• auto

• set

See the “Database recovery” section below for more
information.

-r mode Set the connection recovery mode. The mode specifies what
happens when a database problem is discovered and corrected. It
can be one of:

• manual — clients receive ESTALE errors until they
disconnect and reconnect.

• auto — clients are automatically reconnected, and receive
no notification that a problem was detected and repaired.

8 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

-s routine[@data] Name special collation routines and data. This setting specifies a
name (or wildcard pattern) of collation functions which expect
the format of data that you will pass in via qdb_collation(). only
those registered collation functions that match this pattern will
get their setup function invoked (since the format of the data
must be known to the function). By default, all functions have
their startup functions invoked.

You can also use the -s option to set the initial setup data. For
example, -s cldr@en_US would set the magic function name
to “cldr”, and also invoke the setup function with the “en_US”
string at startup.

-t timeout Set the busy-wait timeout on database access, in milliseconds.
By default, this is 5000 milliseconds. See the “Busy timeout”
section below for more information.

-T max_timeout Set the maximum busy-wait timeout on internal database access,
in milliseconds. By default, this is 5000 milliseconds. See the
“Busy timeout” section below for more information.

-v Increase output verbosity. Messages are written to sloginfo.

-V Replicate output messages to the console, as well as to
sloginfo.

-W time Used in conjunction with the -o profile option: log only
SQL statements that take longer than time (specified in
milliseconds). The default for time is 5000 milliseconds.

-X path Set a script to run when the QDB encounters a corrupt database.
See “Handling corrupt databases” below.

Database directory
The QDB database directory can be on any QNX or POSIX filesystem with read/write
access (including memory-based filesystems, such as tmp-fs). QDB can run from
QNX filesystems visible via Qnet, but can not run from an NFS filesystem.

Schema files
A schema file contains all the SQL commands to create the database schema the way
you want. Here’s an example:

CREATE TABLE customers(
customerid INTEGER PRIMARY KEY AUTOINCREMENT,
firstname TEXT,
lastname TEXT

);

Save that content in /db/customerdb.sql.

June 5, 2009 Chapter 2 • Starting QDB 9

© 2009, QNX Software Systems GmbH & Co. KG.

Starting the QDB server
If you have any database schema files (for example, /db/customerdb.sql), you
need to add them to the QDB configuration file before starting the QDB server. For
more information, see “The configuration file” below.

The QDB server must be run as root.

For debugging purposes, you should start qdb with -vvvvvvvV options to get very
verbose output. The v option is cumulative, with each additional v adding a level of
verbosity, up to 7 levels. The -V option sends output to the console, as well as to
sloginfo.

Once QDB is running, you can check to see that it sees your databases by running ls

/dev/qdb/. Using the previous example, we should see a file called
/dev/qdb/customerdb.

Temporary storage filesystem

The filesystem the QDB uses for temporary storage must support POSIX file locking.
File locking is required for database vacuuming.

The QDB checks its temporary storage as follows:

• If the tempstore option (-o tempstore) is specified on the command line, the
QDB checks to see if the specified location:

- exists

- is writable

- is not /dev/shmem

- is not a link to /dev/shmem

If all the above conditions are met, the QDB sets the internal temporary storage to
the location specified by the tempstore option. If any of the above conditions are
not met, the QDB logs errors to the slog and fails to start up.

• If no tempstore option (-o tempstore) is specified on the command line, the
QDB uses the environment variable TMPDIR to obtain the location it should use
for temporary storage. The QBD checks if TMPDIR exists and the location
specified by this variable:

- exists

- is writable

- is not /dev/shmem

- is not a link to /dev/shmem

If all the above conditions are met, the QDB sets the internal temporary storage to
the value of TMPDIR. If any of the above conditions are not met, the QDB logs
errors to the slog and fails to start up.

10 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Auto-attaching databases

You can create a list of databases that you’d like to be combined as if they formed a
single database. This is called auto-attaching a database. This is useful for breaking
up a database into separate pieces for performance reasons (each piece gets its own
lock, which makes multi-user access more responsive). It’s also useful for moving
parts of a database to different storage mediums (such as a RAM filesystem).

The list of databases is read from a configuration file, specified by the Auto Attach=

option. For more information, see “The configuration file” below.

When using the Auto Attach parameter to attach more than one database to another
database (attaching multiple sections to one section) you must make sure that the order
in which the sections are listed in the configuration file are the same as the order in
which they are listed via the Auto Attach parameters. The examples below show
incorrect and correct lists. To simplify the examples, only the section headings are
shown; parameters are not shown.

Incorrect

Note that the section definition order does not match the attach order.

[mme_library]
[mme_temp]
[mme_custom]

[mme]
Auto Attach = mme_library
Auto Attach = mme_custom
Auto Attach = mme_temp

Correct

Note that the section definition order matches the attach order.

[mme_library]
[mme_custom]
[mme_temp]

[mme]
Auto Attach = mme_library
Auto Attach = mme_custom
Auto Attach = mme_temp

Correct

Note that the attach order matches the section definition order.

[mme_library]
[mme_temp]
[mme_custom]

June 5, 2009 Chapter 2 • Starting QDB 11

© 2009, QNX Software Systems GmbH & Co. KG.

[mme]
Auto Attach = mme_library
Auto Attach = mme_temp
Auto Attach = mme_custom

Database integrity testing

At startup, QDB tests the integrity of databases, according the -I option specified. It
will execute statements based on this option, as follows:

• none= — don’t perform a database integrity check.

• basic=’;’ — verify only that SQLite can parse a string.

• partial= ’PRAGMA database_list;’ — validate the PRAGMA database list.

• full= ’PRAGMA integrity_check;’ — validate the database integrity.

The more verification the QDB performs at startup, the greater the time needed for
startup. For production environments, you will need to find the optimal balance
between the amount of verification required and the time needed to start the QDB.

Testing SQL statements

You can execute SQL statements on your QDB databases from the command-line
using the qdbc utility. See qdbc for more information.

The configuration file

QDB is configured with a single file, which is specified with the -c command-line
option. If this file is in the same location as the database SQL files (by default this is
/db/), you can use relative paths in the configuration file to point to schema files and
database locations. Otherwise, you need to use absolute paths.

The configuration file is composed of lines of text. Blank lines are ignored, as is any
leading or trailing white space. Lines beginning with a # character are comments. The
configuration file consists of named sections, each defined by a name enclosed in
square brackets ([]). Following each section are parameter lines in the form
key=value. Parameters apply to the current section.

Each section is the name of a database. This is the name presented under /dev/qdb,
and that clients use to establish a connection. The database is then configured using
the following parameters:

Filename= Set the name of the actual database file. This is the raw SQLite
file. It can be an absolute path to any file location, or can be a
relative name (in which case it is relative to the directory which
holds the configuration file). At startup either this file must exist,
or the directory in which it will be created must exist (otherwise

12 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

qdb will exit with an appropriate error). If the database file does
not exist, it is restored from the newest valid backup if possible,
or a blank database file is created.

Schema=

Schema File= These options describe the initial schema of the database (as
SQL commands which are used to create the initial set of tables,
indices, views, content, etc) of a new database (if it did not
already exist). In the first form, the SQL commands are in the
configuration file. The second form names a file (with either an
absolute or relative path) containing the SQL commands.

An initial schema is optional; without an initial schema, a new
database will just be empty.

Client Schema= This entry specifies a client schema, which is executed every
time a client calls qdb_connect(). YOu can use this mechanism
to implement cross-database triggers.

Auto Attach= This entry specifies another database to be attached to the current
one (using the SQL ATTACH DATABASE statement whenever a
database connection is established). The name is the section
name of the other database, not a filename. You can specify
multiple databases, each on its own Auto Attach= line.

Attached databases are a convenience to provide access to tables
that are physically stored in a different database file. Facilities
exist in QDB to also include attached databases in other
maintenance operations, such as backup or vacuum.

See also “Auto-attaching databases” above.

Backup Dir= This entry specifies a directory which is used to store a backup
of the database. UPi can specify multiple directories, each on its
own Backup Dir= line, and they will be used in rotation to
store backup files. This feature ensures that should a backup be
interrupted or aborted by a power-failure, another, older, backup
is still available.

This directory must exist at startup (though it does not need to
contain a valid backup); otherwise qdb exits with an appropriate
error. If any existing backup files are located in these directories,
they are sorted by date and overwritten oldest-to-newest when
performing backup operations, and used in newest-to-oldest
order to restore a missing or corrupt database.

Compression= This entry specifies a compression algorithm to apply to
backups. The supported options are none (for no compression),
lzo (for LZO compression), or bzip (for BZIP2 compression).
The lzo compression algorithm is fastest, but the bzip algorithm
offers the highest compression. The compressed files are created

June 5, 2009 Chapter 2 • Starting QDB 13

© 2009, QNX Software Systems GmbH & Co. KG.

with appropriate extensions added to the original database
filename. By default, backup files are not compressed.

Collation=

Function= These entries install user-provided collation (sorting) routines
and user functions (scalar or aggregate) routines respectively.
The argument format is tag@library.so, where tag is the symbol
name of the function description structure and library.so is the
name of the shared library containing the code. For more
information, see the Writing User-Defined Functions chapter.

QDB checks for the existence of the library and the specified
symbol at startup, and exits with an appropriate error if they’re
not found.

Vacuum Attached=

Backup Attached=

Size Attached=

These entries control what maintenance operations should apply
by default to attached databases when a command is issued to
the main database. These options can have a value of
TRUE|FALSE, YES|NO or ON|OFF. The default setting for each
is FALSE. You can change the option multiple times within the
database section to apply differently to attached databases.

Here’s a sample configuration:

[db]
Vacuum Attached = TRUE
Auto Attach = db1
Vacuum Attached = FALSE
Auto Attach = db2

In this example, a qdb_vacuum() operation on db will also
vacuum db1 but not db2.

You can use the Backup Attached=TRUE setting to provide a
facility similar to the old *.bks files. For more details on the
scope of maintenance operations with respect to attached
databases, refer to qdb_vacuum(), qdb_backup(), and
qdb_getdbsize().

To create RAM-based databases, point the Filename= option to
the RAM-disk file.

You can also create temporary databases by defining a database
with a Filename=:memory: entry. This action creates a
private, temporary, in-memory database, visible only in the
scope of the database connection. Each connection to such a
database has its own temporary file, which is removed when the
connection is closed.

14 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Backup Via= This entry specifies an interim directory into which the database
is copied as part of the backup. To make sure the database
backup is consistent, qdb places a read lock on the database
while it is copying and compressing it, so the database may be
locked a long time if the destination is slow (for example, flash).

For example, you could specify Backup Via=/dev/shmem.
When backing up, QDB locks the database, copies it to
/dev/shmem, and then releases the lock. Then, in a second step,
qdb performs the copy and compress operation into the location
specified by Backup Dir=, without needing to lock the
database.

Compress Via=TRUE|FALSE

This entry is used in conjunction with the Backup Via= entry
and any Compression= setting specified for the backup. By
default, the Backup Via= makes a raw/uncompressed copy of
the database into the temporary directory, and then performs the
compression at the second step. This works if you have space,
and read-locks the database for the least amount of time, but you
can use less space (at the expense of more time) by compressing
during the first copy. FALSE is the default; if you make this
setting TRUE, then compression is done in the first step.

Sharing connections between clients

You can allow multiple clients to share a database connection. This is controlled by
the -C option. These modes are:

unique Each individual client request gets a new connection. This mode exists
for pre-3.3.1 SQLite libraries, which were not thread-safe in any way.

private Each client has a private persistent connection for its session; this
connection is created when the client attaches and destroyed when it
detaches. This mode is the backwards-compatible mode; it is also the
mode forced when not using the QDB_CONN_DFLT_SHARE flag to
qdb_connect().

reuse Like private, except that connections are returned to a pool rather
than being destroyed, and can be assigned from there to a new client for
use in its duration.

share Like unique, except a connection pool is also used. This mode
multiplexes all clients over a small number of active database
connections.

Connection sharing exists because a non-negligable amount of work must be done to
establish a database connection (QDB must allocate memory, access files, attach

June 5, 2009 Chapter 2 • Starting QDB 15

© 2009, QNX Software Systems GmbH & Co. KG.

databases and callback functions, configure connection parameters, and so on), and if
clients do not assume any state, then this processing work can be avoided. The QDB
server detects if connection parameters have been changed by a client, and restores
them when the connection moves in or out of the pool in unique, reuse or share
modes.

This connection sharing should be safe (unless the client destructively modifies the
environment via SQL, such as by executing a DETACH DATABASE statement).
However, for full backwards compatibility, connection sharing can be overridden on
each qdb_connect() call, and the default libqdb access mode is private.

If a client is leaving open transactions across multiple calls to qdb_statement(), then it
needs a dedicated connection (private or reuse or should not set the
QDB_CONN_DFLT_SHARE flag).

Shared caching

The default startup mode for QDB is with both shared caching and exclusive modes
enabled:

• If you want to disable shared caching, you must use the new -D command-line
option.

• For shared caching, the QDB reserves exclusive write privileges to the database. To
allow other applications to use the database files, use the new -A option.

QDB will exit immediately if it is started with shared cache disabled and exclusive
mode enabled. For example:

qdb -c /db/qdb.cfg -v -D -Otempstore=/fs/tmpfs -Rset

qdb: Exclusive locking mode requires that shared cache be enabled

Advantages of shared caching

Shared caching can both improve performance times and reduce the total amount of
memory cache required for multiple connections. Shared caching also reduces the
total amount of memory required for multiple database connections, because multiple
connections can share the same memory cache.

For example, without shared caching, if 1 MB of memory is required for each
database connection, 40 connections require 40 MB of memory. However, with shared
cache enabled, these 40 connections can share the same memory cache, allowing you
to reduce the memory cache to 25 MB (or another size determined by your
environment and performance requirements). Further, with shared cache, there is no
duplication in memory, so in the 25 MB of memory you may have almost the entire
database, virtually eliminating the need for disk I/O.

16 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Database recovery

The -R options controls the recovery actions QDB performs when it encounters a
missing or corrupt database file. The options are:

auto In this mode, file manipulation is fully automatic and a best-effort is
always made to establish a valid database connection (both at startup and
runtime). Files are backed up individually, and restored individually.

A corrupt or missing database file is restored from the most recent, valid
backup that can be located. If there is no such backup, then a blank
database is recreated from the original schema definition.

manual In this mode, the only action performed is to create a blank database
from the original schema definition if the database file is missing at
startup. Databases are not restored from backups. If the file is corrupt,
the server will not start. If the file is detected, missing, or corrupt at
runtime, no access to that database is permitted, and it will not be
restored or re-created. This mode is intended to allow the creation of a
new system, or to give manual control over error recovery (for example,
to preserve the corrupt database for later analysis).

set In this mode, backups of attached databases are treated as a coherent set,
so an error with any one of the component databases cause qdb to restore
a complete and matching set of all database files. This is useful if
attached databases refer to each other.

The set master is the database that attaches other databases (by using the
Auto Attach option in the configuration file). The backup set contains
the set master and all attached databases that have Backup Attached

enabled. The set master can be backed up incrementally and still belong
to the set.

June 5, 2009 Chapter 2 • Starting QDB 17

© 2009, QNX Software Systems GmbH & Co. KG.

QNX recommends the following in order to back up and restore your databases as a
coherent set:

• For the master database (the database to which the other databases are attached), in
the QDB configuration file:

- Set the Backup Attached option to TRUE, as follows:

Backup Attached = TRUE

- List the databases you want to attach. For example:

Auto Attach = mme_library
Auto Attach = mme_custom

• Use the -R set option when starting QDB.

• When doing backups, call qdb_backup() on the master database with the scope
argument set to QDB_ATTACH_DEFAULT.

Busy timeout

The two timeout settings are differentiated as follows:

• The -t option sets the default user-level timeout which applies to each
qdb_connect() connection, and can be privately modified with
qdb_setbusytimeout().

• The -T option sets the global internal timeout which applies to database
connections made without a client context. Examples include verifying existing
databases or constructing new databases at startup, and auto-attaching databases.

Handling corrupt databases

The -X lets you provide qdb with a program or script to run when it encounters a
corrupt database. If the program or script appears to run correctly, qdb will continue.
The program or script is responsible for stopping and starting qdb if a start of stop is
necessary.

Sample script

Below is a sample qdb startup command with the -X:

qdb -c /etc/qdb.cfg -X /usr/bin/recover_db.sh

Below is a sample script that can be launched by qdb when it encounters a corrupt
database:

recover_db.sh:
#!/bin/sh
#
This script will kill qdb and mme,

18 Chapter 2 • Starting QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

remove the database files
on disk, and restart qdb and mme.

slay qdb mme-generic
rm -f /fs/tmpfs/*
rm -f /mnt/qdb_backup/*

Call an external program
to launch qdb and the MME.
/usr/bin/mme-launch

EOF

• To kill qdb without killing the script, send SIGTERM (the default for slay). With
this method qdb keeps the thread used by popen() to start the script available and
logs output until the script quits.

• If you send SIGKILL, qdb is killed immediately. The script continues to run but its
output is lost.

Maintenance Commands

You can write some maintenance commands to the /dev/qdb/.control entry (and
read back the result). The current commands supported are (where DBNAME is the
name of the database):

• backup DBNAME — make a backup of the database (qdb_backup())

• vacuum DBNAME — vacuum the database (qdb_vacuum())

• verify DBNAME — verify database integrity (like the -I full command-line
option)

• cancel DBNAME — cancel any in-progress backups (qdb_bkcancel())

June 5, 2009 Chapter 2 • Starting QDB 19

Chapter 3

The QDB Client qdbc

June 5, 2009 Chapter 3 • The QDB Client qdbc 21

© 2009, QNX Software Systems GmbH & Co. KG.

Synopsis:
qdbc [-a scope] [-B]
[-d database] [-f format]
[-q] [-S] [-t timeout] [-V] [-v[v...]] [sql]

Options:
-a scope Set the scope of operation for the -B, -S and -V options. This can be

one of:

• default — act on attached databases as specified in the
configuration file (honoring the value of the Vacuum Attached,
Backup Attached, and Size Attached parameters). This
gives backwards-compatible behavior.

• all — always act on any attached databases, regardless of
configuration file settings.

• none — act only on the connected database itself, and never on
any attached databases.

-B Perform a backup (the equivalent of calling qdb_backup()). The
scope of this operation is determined by the configuration file for the
database specified by -d or QDBC_DBNAME, or by the -a option,
if specified.

-d database The database you want to execute the SQL statement or other
operation on. If this isn’t specified, the value of the
QDBC_DBNAME environment variable is used.

-f format Format for the output. If this option isn’t specified, the simple format
is used by default. Can be one of:

• simple — plain text, including column names, with field data
separated by a pipe character (|) (default)

• html — HTML-encoded text

• sgml — SGML-encoded text

• data — plain text, without column names, with field data
separated by a tab character

-q Reset verbosity to quiet mode.

-S Print the database size information (the equivalent to calling
qdb_getdbsize()) for the database specified by -d or
QDBC_DBNAME. The scope of this operation is determined by
the database configuration file, or the -a option, if specified.

-t timeout Set the database connection timeout, in ms.

June 5, 2009 Chapter 3 • The QDB Client qdbc 23

© 2009, QNX Software Systems GmbH & Co. KG.

-V Perform a vacuum operation (the equivalent to calling
qdb_vacuum()). The scope of this operation is determined by the
configuration file for the database specified by -d or
QDBC_DBNAME, or by the -a option, if specified.

-v[v...] Increase verbosity.

sql An SQL statement you want to run on the specified database. This
statement should be quoted, and end in a semicolon. If no SQL
statement is specified, qdbc enters interactive mode and takes input
from the command-line, giving you an SQL prompt. When you are
finished entering SQL statements, press Ctrl-C to exit.

Description
The QDB Client utility allows you to execute SQL statements on a qdb database
without having to write code. It also allows you to perform backup, vacuum, and size
query operations. This can be useful when developing QDB applications.

The -B, -S, -V and sql options are mutually exclusive; you cannot specify more than
one.

The result of each SQL statement is displayed on the standard output by qdbc, if the
-q option isn’t set. You can also redirect a file containing SQL statements to QDB, for
example: qdbc < sql.txt. If you enter SQL from a command-line in a terminal,
qdbc enters interactive mode. In this mode, you can enter as many consecutive SQL
statements as you want. Statements entered in interactive mode don’t need to be
enclosed in quotation marks, but should end in a semicolon.

24 Chapter 3 • The QDB Client qdbc June 5, 2009

Chapter 4

QDB Administration

June 5, 2009 Chapter 4 • QDB Administration 25

© 2009, QNX Software Systems GmbH & Co. KG.

The QDB offers special commands that you can issue to the database to make it easier
to administer. You can use these commands to add new databases, delete old ones,
perform backups, etc.

Backing up and restoring databases
You can back up databases to permanent storage (or any POSIX filesystem that allows
read/write access) in the following ways; by:

• calling qdb_backup() from a client application

• using the -b option to qdbc.

• using the resource manager interface:

echo backup dbname >/dev/qdb/.control

These methods are affected by options in the QDB configuration file. See the
“Configuration File” section of the Starting QDB chapter for more information.

To restore a database, start qdb with the -R option set to auto. For more information
about this option, see the “Database Recovery” section in the Starting QDB chapter.

You can cancel a database backup in client code by calling qdb_bkcancel(). You can
also cancel a backup operation using the resource manager interface:

echo cancel >/dev/qdb/.control

June 5, 2009 Chapter 4 • QDB Administration 27

Chapter 5

QDB Examples

June 5, 2009 Chapter 5 • QDB Examples 29

© 2009, QNX Software Systems GmbH & Co. KG.

Your QDB client application should perform these general steps:

1 Connect to a database by calling qdb_connect()

2 You can now query the database:

2a Execute a statement on the database by calling qdb_statement().

2b Get the results of the statement (if any) by calling qdb_getresult().

2c Use the results by calling qdb_cell().

2d Free the result by calling qdb_freeresult().

2e Repeat executing statements and use the results, as required.

3 Close the database connection with qdb_disconnect()

Connecting to the database

Connecting to the database requires that you know the name of the database you want
to connect to, and you need a database handle that the qdb client library links against.

qdb_hdl_t *dbhandle; // The QDB database handle
dbhandle = qdb_connect("/dev/qdb/customerdb", 0)
if (dbhandle == NULL) {

fprintf(stderr, "Connect failed: %d\n", errno);
}

Two threads can share the same database connection, provided they coordinate
between themselves. Alternatively, each thread can call qdb_connect() and have its
own connection.

Executing a Statement

Executing statements against a QDB database requires that you know and follow the
QDB-supported SQL syntax, as described in the QDB SQL reference chapter. You
must, of course, connect to the database before attempting to execute statements
against it. See “Connecting to the database” above.

One example is to run the following query:

int rc;
qdb_hdl_t *dbhandle;
rc = qdb_statement(dbhandle, "SELECT * FROM customers;");
if (rc == -1) {

char *errmsg;
errmsg = qdb_geterrmsg(dbhandle);
fprintf(stderr, "QDB Error: %s\n", errmsg);

}

It is important to escape any strings that you pass in to qdb_statement(). The reason is
that if you pass in the string:

SELECT lastname FROM customerdb WHERE lastname=’O’Neil’;

June 5, 2009 Chapter 5 • QDB Examples 31

© 2009, QNX Software Systems GmbH & Co. KG.

you would get an error, because the string in the WHERE clause would be just ’O’
with trailing garbage characters Neil’. The proper way to run that query is:

SELECT lastname FROM customerdb WHERE lastname=’O’’Neil’;

The second single quotation mark (’) is escaped by the first single quotation mark.

Getting the result of a query

Some queries give results, and others don’t. For example, the data results for UPDATE,
INSERT, or DELETE statements always contain 0 rows. When running a SELECT
statement, there may or may not be rows that matched your query, so it is always a
good idea to make sure that you have data by checking the return value of
qdb_statement().

This does not mean that you can’t call qdb_getresult() for statements with 0 rows in
the data result. In fact, it may be the only way to retrieve the result. If the connection
was opened with the QDB_CONN_STMT_ASYNC flag bit set, then qdb_statement()
will return before the statement has been completed. With complex statements this
may mean a delayed error.

To help you debug your application, you can use qdb_printmsg(stdout,
result, QDB_FORMAT_SIMPLE) to print the fetched result to stdout() so that you
can visualize your data.

Here’s an example of getting the results of an operation:

qdb_result_t *result;
// requires a statement previously run
result = qdb_getresult(dbhandle);

Memory for the results is allocated when the statement is run on the database, so you
must free the result structure or you will have memory leaks. Do this by calling
qdb_freeresult(), as shown in the example later in this chapter. Never call free()
yourself.

Using a result

A result is a block of memory containing a description of each cell and the cell’s data.
There are functions that give you easy access to this data:

Function Name Use

qdb_columns() Returns the number of columns

qdb_rows() Returns the number of rows. An empty result will return 0.

qdb_cell_type() Returns the type of data in a cell (QDB_INTEGER,
QDB_REAL, QDB_TEXT, QDB_BLOB, QDB_NULL).

continued. . .

32 Chapter 5 • QDB Examples June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Function Name Use

qdb_column_name() Returns the column name from the database schema

qdb_cell() Returns the cell data as a void pointer that can be cast to
the correct type

qdb_column_index() Gets the column number that matches the passed in name

qdb_cell_length() Returns the length of a cell’s data

qdb_printmsg() Prints the contents of a result, which can be useful for
debugging

Disconnecting from the Server

To disconnect from the server when you no longer need to use it:

qdb_disconnect(dbhandle);

Example
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

#include <qdb/qdb.h>

/**
* This sample program connects to the database and does one INSERT and one
* SELECT.
*
* The database name is assumed to be /dev/qdb/customerdb
* with schema:
* CREATE TABLE customers(
* customerid INTEGER PRIMARY KEY AUTOINCREMENT,
* firstname TEXT,
* lastname TEXT
*);
*/

int main(int argc, char **argv) {
int rc;
qdb_hdl_t *hdl;
qdb_result_t *res;
char *errmsg;

// Connect to the database
hdl = qdb_connect("/dev/qdb/customerdb", 0);
if (hdl == NULL){

fprintf(stderr, "Error connecting to database: %s\n", strerror(errno));
return EXIT_FAILURE;

June 5, 2009 Chapter 5 • QDB Examples 33

© 2009, QNX Software Systems GmbH & Co. KG.

}

// INSERT a row into the database.
rc = qdb_statement(hdl,

"INSERT INTO customers(firstname, lastname) VALUES(’Dan’, ’Cardamore’);");
if (rc == -1) {

errmsg = qdb_geterrmsg(hdl);
fprintf(stderr, "Error executing INSERT statement: %s\n", errmsg);
return EXIT_FAILURE;

}

// SELECT one row from the database
// This statement combines the first and last names together into their
// full name.
rc = qdb_statement(hdl,

"SELECT firstname || ’ ’ || lastname AS fullname FROM customers
LIMIT 1;");

if (rc == -1) {
errmsg = qdb_geterrmsg(hdl);
fprintf(stderr, "Error executing SELECT statement: %s\n", errmsg);
return EXIT_FAILURE;

}
res = qdb_getresult(hdl); // Get the result
if (res == NULL) {

fprintf(stderr, "Error getting result: %s\n", strerror(errno));
return EXIT_FAILURE;

}
if (qdb_rows(res) == 1) {

printf("Got a customer’s full name: %s\n", (char *)qdb_cell(res, 0, 0));
}
else {

printf("No customers in the database!\n");
}
// Free the result
qdb_freeresult(res);

// Disconnect from the sever
qdb_disconnect(hdl);

return EXIT_SUCCESS;
}

34 Chapter 5 • QDB Examples June 5, 2009

Chapter 6

Datatypes in QDB

June 5, 2009 Chapter 6 • Datatypes in QDB 35

© 2009, QNX Software Systems GmbH & Co. KG.

Storage classes

Each value stored in a QDB database (or manipulated by the database engine) has one
of the following storage classes:

• NULL — a NULL value.

• INTEGER — a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes, depending on the
magnitude of the value.

• REAL — a floating-point value, stored as an 8-byte IEEE floating-point number.

• TEXT — a text string, stored using the database encoding (UTF-8).

• BLOB — a blob of data, stored exactly as it was input.

Any column in a database except an INTEGER PRIMARY KEY may be used to store
any type of value. The exception to this rule is described below under “Other Affinity
Modes” as strict affinity mode.

All values supplied to QDB, whether as literals embedded in SQL statements or values
bound to pre-compiled SQL statements are assigned a storage class before the SQL
statement is executed. Under the circumstances described below, the database engine
may convert values between numeric storage classes (INTEGER and REAL) and TEXT

during query execution.

Storage classes are initially assigned as follows:

• Values specified as literals as part of SQL statements are assigned storage class
TEXT if they are enclosed by single or double quotes, INTEGER if the literal is
specified as an unquoted number with no decimal point or exponent, REAL if the
literal is an unquoted number with a decimal point or exponent, and NULL if the
value is a NULL. Literals with storage class BLOB are specified using the X’ABCD’
notation.

The storage class of a value that is the result of an SQL scalar operator depends on the
outermost operator of the expression.

Column affinity

In QDB, the type of a value is associated with the value itself, not with the column or
variable in which the value is stored. (This is sometimes called manifest typing.) All
other SQL databases engines that we are aware of use the more restrictive system of
static typing where the type is associated with the container, not the value.

In order to maximize compatibility between QDB and other database engines, QDB
supports the concept of “type affinity” on columns. The type affinity of a column is the
recommended type for data stored in that column. The key here is that the type is
recommended, not required. Any column can still store any type of data, in theory. It
is just that some columns, given the choice, will prefer to use one storage class over
another. The preferred storage class for a column is called its affinity.

Each column in an QDB database is assigned one of the following type affinities:

June 5, 2009 Chapter 6 • Datatypes in QDB 37

© 2009, QNX Software Systems GmbH & Co. KG.

• TEXT

• NUMERIC

• INTEGER

• NONE

A column with TEXT affinity stores all data using the storage classes NULL, TEXT or
BLOB. If numerical data is inserted into a column with TEXT affinity, it is converted to
text form before being stored.

A column with NUMERIC affinity may contain values using all five storage classes.
When text data is inserted into a NUMERIC column, an attempt is made to convert it to
an integer or real number before it is stored. If the conversion is successful, then the
value is stored using the INTEGER or REAL storage class. If the conversion cannot be
performed, the value is stored using the TEXT storage class. No attempt is made to
convert NULL or blob values.

A column that uses INTEGER affinity behaves in the same way as a column with
NUMERIC affinity, except that if a real value with no floating point component (or text
value that converts to such) is inserted, it is converted to an integer and stored using
the INTEGER storage class.

A column with affinity NONE does not prefer one storage class over another. It makes
no attempt to coerce data before it is inserted.

Determination of column affinity

The type affinity of a column is determined by the declared type of the column,
according to the following rules:

1 If the datatype contains the string “INT”, then it is assigned INTEGER affinity.

2 If the datatype of the column contains any of the strings “CHAR”, “BLOB”, or
“TEXT”, then that column has TEXT affinity. Notice that the type VARCHAR
contains the string “CHAR” and is thus assigned TEXT affinity.

3 If the datatype for a column contains the string “BLOB” or if no datatype is
specified, then the column has affinity NONE.

4 Otherwise, the affinity is NUMERIC.

If you create a table using a CREATE TABLE table AS SELECT... statement, then
all columns have no datatype specified, and they are given no affinity.

Column affinity example
CREATE TABLE t1(

t TEXT,
nu NUMERIC,
i INTEGER,
no BLOB

);

38 Chapter 6 • Datatypes in QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

-- Storage classes for the following row:
-- TEXT, REAL, INTEGER, TEXT
INSERT INTO t1 VALUES(’500.0’, ’500.0’, ’500.0’, ’500.0’);

-- Storage classes for the following row:
-- TEXT, REAL, INTEGER, REAL
INSERT INTO t1 VALUES(500.0, 500.0, 500.0, 500.0);

Comparison expressions

QDB features the binary comparison operators =, <, <=, >= and !=; IN, an operation
to test for set membership; and the ternary comparison operator, BETWEEN.

The results of a comparison depend on the storage classes of the two values being
compared, according to the following rules:

• A value with storage class NULL is considered less than any other value (including
another value with storage class NULL).

• An INTEGER or REAL value is less than any TEXT or BLOB value. When you
compare an INTEGER or REAL to another INTEGER or REAL, a numerical
comparison is performed.

• A TEXT value is less than a BLOB value. When you compare two TEXT values, the
C library function memcmp() is used to determine the result.

• When you compare two BLOB values, the result is always determined using
memcmp().

QDB may attempt to convert values between the numeric storage classes (INTEGER
and REAL) and TEXT before performing a comparison. For binary comparisons, this is
done in the cases enumerated below. The term “expression” below refers to any SQL
scalar expression or literal other than a column value.

• When a column value is compared to the result of an expression, the affinity of the
column is applied to the result of the expression before the comparison takes place.

• When two column values are compared, if one column has INTEGER or NUMERIC
affinity and the other does not, the NUMERIC affinity is applied to any values with
storage class TEXT extracted from the non-NUMERIC column.

• When the results of two expressions are compared, no conversions occur. The
results are compared as they are presented. If a string is compared to a number, the
number will always be less than the string.

In QDB, the expression a BETWEEN b AND c is equivalent to a >= b AND a <=

c, even if this means that different affinities are applied to a in each of the
comparisons required to evaluate the expression.

Expressions of the type a IN (SELECT b) are handled by the rules
enumerated above for binary comparisons (e.g. in a similar manner to a = b). For

June 5, 2009 Chapter 6 • Datatypes in QDB 39

© 2009, QNX Software Systems GmbH & Co. KG.

example, if b is a column value and a is an expression, then the affinity of b is applied
to a before any comparisons take place.

QDB treats the expression a IN (x, y, z) as equivalent to a = z OR a = y OR

a = z.

A comparison example

CREATE TABLE t1(
a TEXT,
b NUMERIC,
c BLOB

);

-- Storage classes for the following row:
-- TEXT, REAL, TEXT
INSERT INTO t1 VALUES(’500’, ’500’, ’500’);

-- 60 and 40 are converted to ’60’ and ’40’ and values are compared as TEXT.
SELECT a < 60, a < 40 FROM t1;
1|0

-- Comparisons are numeric. No conversions are required.
SELECT b < 60, b < 600 FROM t1;
0|1

-- Both 60 and 600 (storage class NUMERIC) are less than ’500’
-- (storage class TEXT).
SELECT c < 60, c < 600 FROM t1;
0|0

Operators

All mathematical operators (which is to say, all operators other than the concatenation
operator ||) apply NUMERIC affinity to all operands prior to being carried out. If one
or both operands cannot be converted to NUMERIC, then the result of the operation is
NULL.

For the concatenation operator, TEXT affinity is applied to both operands. If either
operand cannot be converted to TEXT (because it is NULL or a BLOB) then the result of
the concatenation is NULL.

Sorting, grouping and compound SELECTs

When values are sorted by an ORDER BY clause, values with storage class NULL come
first, followed by INTEGER and REAL values interspersed in numeric order, followed
by TEXT values (usually in memcmp() order) and, finally, BLOB values in memcmp()
order. No storage class conversions occur before the sort.

When grouping values with the GROUP BY clause, values with different storage
classes are considered distinct, except for INTEGER and REAL values, which are
considered equal if they are numerically equal. No affinities are applied to any values
as the result of a GROUP BY clause.

40 Chapter 6 • Datatypes in QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

The compound SELECT operators UNION, INTERSECT and EXCEPT perform implicit
comparisons between values. Before these comparisons are performed, an affinity may
be applied to each value. The same affinity, if any, is applied to all values that may be
returned in a single column of the compound SELECT result set. The affinity applied is
the affinity of the column returned by the left-most component SELECTs that has a
column value (and not some other kind of expression) in that position. If for a given
compound SELECT column, none of the component SELECTs return a column value,
no affinity is applied to the values from that column before they are compared.

Other affinity modes

The above sections describe the operation of the database engine in normal affinity
mode. QDB features two other affinity modes, as follows:

• Strict affinity mode — if a conversion between storage classes is ever required, the
database engine returns an error and the current statement is rolled back.

• No affinity mode — no conversions between storage classes are ever performed.
Comparisons between values of different storage classes (except for INTEGER and
REAL) are always false.

User-defined collation sequences

By default, when QDB compares two text values, the result of the comparison is
determined using memcmp(), regardless of the encoding of the string. QDB lets you
supply arbitrary comparison functions, known as user-defined collation sequences, to
be used instead of memcmp(). See the chapter Writing User-Defined Functions for
more information.

Aside from the default collation sequence BINARY, implemented using memcmp(),
QDB features two extra built-in collation sequences intended for testing purposes,
NOCASE and REVERSE:

• BINARY — Compare string data using memcmp(), regardless of text encoding.

• REVERSE — Collate in the reverse order to BINARY.

• NOCASE — The same as BINARY, except the 26 upper-case characters used by the
English language are converted to their lower-case equivalents before the
comparison is performed.

Assigning Collation Sequences from SQL

Each column of each table has a default collation type. If a column requires a collation
type other than BINARY, you can define the collation type by specifying a COLLATE
clause as part of the CREATE TABLE column definition.

Whenever two text values are compared by QDB, a collation sequence is used to
determine the results of the comparison according to the following rules.

For binary comparison operators (=, <, >, ≤, and ≥), if either operand is a column, then
the default collation type of the column determines the collation sequence to use for

June 5, 2009 Chapter 6 • Datatypes in QDB 41

© 2009, QNX Software Systems GmbH & Co. KG.

the comparison. If both operands are columns, then the collation type for the left
operand determines the collation sequence used. If neither operand is a column, then
the BINARY collation sequence is used.

The expression x BETWEEN y and z is equivalent to x ≥ y AND x ≤ z. The
expression x IN (SELECT y ...) is handled in the same way as the expression x

= y for the purposes of determining the collation sequence to use. The collation
sequence used for expressions of the form x IN (y, z ...) is the default collation
type of x if x is a column, or BINARY otherwise.

An ORDER BY clause that is part of a SELECT statement may be assigned a collation
sequence to be used for the sort operation explicitly. In this case, the explicit collation
sequence is always used. Otherwise, if the expression sorted by an ORDER BY clause
is a column, then the default collation type of the column is used to determine sort
order. If the expression is not a column, then the BINARY collation sequence is used.

Collation Sequences Example

The examples below identify the collation sequences that would be used to determine
the results of text comparisons that may be performed by various SQL statements.
Note that a text comparison may not be required, and no collation sequence used, in
the case of numeric, BLOB or NULL values.

CREATE TABLE t1(
a, -- default collation type BINARY
b COLLATE BINARY, -- default collation type BINARY
c COLLATE REVERSE, -- default collation type REVERSE
d COLLATE NOCASE -- default collation type NOCASE

);

-- Text comparison is performed using the BINARY collation sequence.
SELECT (a = b) FROM t1;

-- Text comparison is performed using the NOCASE collation sequence.
SELECT (a = d) FROM t1;

-- Text comparison is performed using the BINARY collation sequence.
SELECT (d = a) FROM t1;

-- Text comparison is performed using the REVERSE collation sequence.
SELECT (’abc’ = c) FROM t1;

-- Text comparison is performed using the REVERSE collation sequence.
SELECT (c = ’abc’) FROM t1;

-- Grouping is performed using the NOCASE collation sequence
-- (i.e. values ’abc’ and ’ABC’ are placed in the same group).
SELECT count(*) GROUP BY d FROM t1;

-- Grouping is performed using the BINARY collation sequence.
SELECT count(*) GROUP BY (d || ’’) FROM t1;

42 Chapter 6 • Datatypes in QDB June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

-- Sorting is performed using the REVERSE collation sequence.
SELECT * FROM t1 ORDER BY c;

-- Sorting is performed using the BINARY collation sequence.
SELECT * FROM t1 ORDER BY (c || ’’);

-- Sorting is performed using the NOCASE collation sequence.
SELECT * FROM t1 ORDER BY c COLLATE NOCASE;

June 5, 2009 Chapter 6 • Datatypes in QDB 43

Chapter 7

QDB Virtual Machine Opcodes

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 45

© 2009, QNX Software Systems GmbH & Co. KG.

Each instruction in the virtual machine consists of an opcode and up to three operands
named P1, P2 and P3. P1 may be an arbitrary integer. P2 must be a non-negative
integer. P2 is always the jump destination in any operation that might cause a jump.
P3 is a null-terminated string or NULL. Some operators use all three operands, some
use one or two, and some use none.

The virtual machine begins execution on instruction number 0. Execution continues
until:

1 a Halt instruction is seen, or

2 the program counter becomes one greater than the address of last instruction, or

3 there is an execution error.

When the virtual machine halts, all memory that it allocated is released, and all
database cursors it may have had open are closed. If the execution stopped due to an
error, any pending transactions are terminated, and changes made to the database are
rolled back.

The virtual machine also contains an operand stack of unlimited depth. Many of the
opcodes use operands from the stack. See the individual opcode descriptions for
details.

The virtual machine can have zero or more cursors. Each cursor is a pointer into a
single table or index within the database. There can be multiple cursors pointing at the
same index or table. All cursors operate independently, even cursors pointing to the
same indexes or tables. The only way for the virtual machine to interact with a
database file is through a cursor. Instructions in the virtual machine can create a new
cursor (Open), read data from a cursor (Column), advance the cursor to the next entry
in the table (Next) or index (NextIdx), and many other operations. All cursors are
automatically closed when the virtual machine terminates.

The virtual machine contains an arbitrary number of fixed memory locations with
addresses beginning at zero and growing upward. Each memory location can hold an
arbitrary string. The memory cells are typically used to hold the result of a scalar
SELECT that is part of a larger expression.

The virtual machine contains a single sorter. The sorter is able to accumulate records,
sort those records, then play the records back in sorted order. The sorter is used to
implement the ORDER BY clause of a SELECT statement.

The virtual machine contains a single list, which stores a list of integers. This list is
used to hold the row IDs for records of a database table that needs to be modified. The
WHERE clause of an UPDATE or DELETE statement scans through the table and writes
the row ID of every record to be modified into the list. Then the list is played back and
the table is modified in a separate step.

The virtual machine can contain an arbitrary number of sets. Each set holds an
arbitrary number of strings. Sets are used to implement the IN operator with a constant
right-hand side.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 47

© 2009, QNX Software Systems GmbH & Co. KG.

The virtual machine can open a single external file for reading. This external read file
is used to implement the COPY command.

Finally, the virtual machine can have a single set of aggregators. An aggregator is a
device used to implement the GROUP BY clause of a SELECT. An aggregator has one
or more slots that can hold values being extracted by the select. The number of slots is
the same for all aggregators and is defined by the AggReset operation. At any point in
time, a single aggregator is current or “has focus”. There are operations to read or
write to memory slots of the aggregator in focus. There are also operations to change
the focus aggregator and to scan through all aggregators.

Viewing programs generated by QDB

Every SQL statement that QDB interprets results in a program for the virtual machine.
However, if you precede the SQL statement with the keyword EXPLAIN, the virtual
machine doesn’t execute the program. Instead, the instructions of the program are
returned like a query result. This feature is useful for debugging and for learning how
the virtual machine operates, and for profiling an SQL statement. The following is an
example of the output from the statement EXPLAIN DELETE FROM tbl1 WHERE

two<20;:

addr opcode p1 p2 p3
---- ------------ ----- ----- ------------------
0 Transaction 0 0
1 VerifyCookie 219 0
2 ListOpen 0 0
3 Open 0 3 tbl1
4 Rewind 0 0
5 Next 0 12
6 Column 0 1
7 Integer 20 0
8 Ge 0 5
9 Recno 0 0
10 ListWrite 0 0
11 Goto 0 5
12 Close 0 0
13 ListRewind 0 0
14 OpenWrite 0 3
15 ListRead 0 19
16 MoveTo 0 0
17 Delete 0 0
18 Goto 0 15
19 ListClose 0 0
20 Commit 0 0

All you have to do is add the EXPLAIN keyword to the front of the SQL statement. But
if you use the .explain command to qdb first, it will set up the output mode to make
the program more easily viewable.

You can put the QDB virtual machine in a mode where it will trace its execution by
writing messages to standard output; and you can use the non-standard SQL PRAGMA,

comments to turn tracing on and off. To turn tracing on, enter:

48 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

PRAGMA vdbe_trace=on;

You can turn tracing back off by entering a similar statement but changing the value
on to off.

The opcodes

There are currently 125 opcodes defined by the virtual machine. All currently defined
opcodes are described in the list below.

AbsValue Treat the top of the stack as a numeric quantity. Replace it with
its absolute value. If the top of the stack is NULL, its value is
unchanged.

Add Pop the top two elements from the stack, add them together, and
push the result back onto the stack. If either element is a string,
then it is converted to a double using the atof() function before
the addition. If either operand is NULL, the result is NULL.

AddImm Add the value P1 to whatever is on top of the stack. The result
is always an integer.

To force the top of the stack to be an integer, just add 0.

AggFinal Execute the finalizer function for an aggregate. P1 is the
memory location that is the accumulator for the aggregate.

P2 is the number of arguments that the step function takes and
P3 is a pointer to the FuncDef for this function. The P2
argument is not used by this opcode. It is there only to
disambiguate functions that can take varying numbers of
arguments. The P3 argument is needed only for the degenerate
case where the step function was not previously called.

AggStep Execute the step function for an aggregate. The function has P2
arguments. P3 is a pointer to the FuncDef structure that
specifies the function. Use memory location P1 as the
accumulator.

The P2 arguments are popped from the stack.

And Pop two values off the stack. Take the logical AND of the two
values and push the resulting boolean value back onto the stack.

AutoCommit Set the database auto-commit flag to P1 (1 or 0). If P2 is true,
roll back any currently active btree transactions. If there are any
active VMs (apart from this one), then the COMMIT or
ROLLBACK statement fails.

This instruction causes the VM to halt.

BitAnd Pop the top two elements from the stack. Convert both elements
to integers. Push back onto the stack the bitwise AND of the
two elements. If either operand is NULL, the result is NULL.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 49

© 2009, QNX Software Systems GmbH & Co. KG.

BitNot Interpret the top of the stack as an value. Replace it with its
ones-complement. If the top of the stack is NULL, its value is
unchanged.

BitOr Pop the top two elements from the stack. Convert both elements
to integers. Push back onto the stack the bitwise OR of the two
elements. If either operand is NULL, the result is NULL.

Blob P3 points to a blob of data P1 bytes long. Push this value onto
the stack. This instruction is not coded directly by the compiler.
Instead, the compiler layer specifies an OP_HexBlob opcode,
with the hexadecimal string representation of the blob as P3.
This opcode is transformed to an OP_Blob the first time it is
executed.

Callback Pop P1 values off the stack and form them into an array. Then
invoke the callback function using the newly formed array as
the third parameter.

Clear Delete all contents of the database table or index whose root
page in the database file is given by P1. But, unlike Destroy,
do not remove the table or index from the database file.

The table being cleared is in the main database file if P2 is 0. If
P2 is 1, then the table to be cleared is in the auxiliary database
file that is used to store tables create using CREATE

TEMPORARY TABLE.

See also: Destroy

Close Close a cursor previously opened as P1. If P1 is not currently
open, this instruction is a no-op.

CollSeq P3 is a pointer to a CollSeq struct. If the next call to a user
function or aggregate calls sqlite3GetFuncCollSeq(), this
collation sequence will be returned. This is used by the built-in
min(), max() and nullif() functions.

Column Interpret the data that cursor P1 points to as a structure built
using the MakeRecord instruction. (See the MakeRecord
opcode for additional information about the format of the data.)
Push onto the stack the value of the P2th column contained in
the data. If there are fewer than P2+1 values in the record, push
a NULL onto the stack.

If the KeyAsData opcode has previously executed on this
cursor, then the field might be extracted from the key rather than
the data.

If P1 is negative, then the record is stored on the stack rather
than in a table. If P1 is -1, the top of the stack is used, if P1 is
-2, the next on the stack is used, and so forth. The value pushed

50 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

is always just a pointer into the record that is stored further
down on the stack. The column value is not copied. The number
of columns in the record is stored on the stack just above the
record itself.

If the column contains fewer than P2 fields, then push a NULL.
Or if P3 is of type P3_MEM, then push the P3 value. The P3
value will be the default value for a column that has been added
using the ALTER TABLE ADD COLUMN command. If P3 is an
ordinary string, just push a NULL. When P3 is a string, it is
really just a comment describing the value to be pushed, not a
default value.

Concat Look at the first P1+2 elements of the stack. Append them all
together with the lowest element first. The original P1+2
elements are popped from the stack if P2 is 0 and retained if P2
is 1. If any element of the stack is NULL, then the result is
NULL.

When P1 is 1, this routine makes a copy of the top stack
element into memory obtained from sqliteMalloc().

ContextPop Restore the Vdbe context to the state it was in when
ContextPush was last executed. The context stores the last
insert row ID, the last statement change count, and the current
statement change count.

ContextPush Save the current Vdbe context, so that it can be restored by a
ContextPop opcode. The context stores the last insert row ID,
the last statement change count, and the current statement
change count.

CreateIndex Allocate a new index in the main database file if P2 is 0 or in
the auxiliary database file if P2 is 1. Push the page number of
the root page of the new index onto the stack.

CreateTable Allocate a new table in the main database file if P2 is 0 or in the
auxiliary database file if P2 is 1. Push the page number for the
root page of the new table onto the stack.

The difference between a table and an index is this: A table
must have a 4-byte integer key and can have arbitrary data. An
index has an arbitrary key but no data.

See also: CreateIndex

Delete Delete the record at which the P1 cursor is currently pointing.

The cursor will be left pointing at either the next or the previous
record in the table. If it is left pointing at the next record, then
the next Next instruction will be a no-op. Hence it is OK to
delete a record from within a Next loop.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 51

© 2009, QNX Software Systems GmbH & Co. KG.

If the OPFLAG_NCHANGE flag of P2 is set, then the row
change count is incremented (otherwise not).

If P1 is a pseudo-table, then this instruction is a no-op.

Destroy Delete an entire database table or index whose root page in the
database file is given by P1.

The table being destroyed is in the main database file if P2 is 0.
If P2 is 1 then the table to be cleared is in the auxiliary database
file that is used to store tables create using CREATE

TEMPORARY TABLE.

If AUTOVACUUM is enabled, then it is possible that another
root page might be moved into the newly deleted root page in
order to keep all root pages contiguous at the beginning of the
database. The former value of the root page that moved — its
value before the move occurred — is pushed onto the stack. If
no page movement was required (because the table being
dropped was already the last one in the database), then a zero is
pushed onto the stack. If AUTOVACUUM is disabled, then a
zero is pushed onto the stack.

See also: Clear

Distinct Use the top of the stack as a record created using MakeRecord.
P1 is a cursor on a table that declared as an index. If that table
contains an entry that matches the top of the stack, then fall
through. If the top of the stack matches no entry in P1, then
jump to P2.

The cursor is left pointing at the matching entry if it exists. The
record on the top of the stack is not popped.

This instruction is similar to NotFound except that this
operation does not pop the key from the stack.

The instruction is used to implement the DISTINCT operator on
SELECT statements. The P1 table is not a true index but rather a
record of all results that have been produced so far.

See also: Found, NotFound, IsUnique, NotExists

Divide Pop the top two elements from the stack, divide the first element
(what was on top of the stack) from the second element (the
next on stack), and push the result back onto the stack. If either
element is a string, then it is converted to a double using the
atof() function before the division. Division by zero returns
NULL. If either operand is NULL, the result is NULL.

DropIndex Remove the internal (in-memory) data structures that describe
the index named P3 in database P1. This is called after an index
is dropped in order to keep the internal representation of the
schema consistent with what is on disk.

52 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

DropTable Remove the internal (in-memory) data structures that describe
the table named P3 in database P1. This opcode is called after a
table is dropped in order to keep the internal representation of
the schema consistent with what is on disk.

DropTrigger Remove the internal (in-memory) data structures that describe
the trigger named P3 in database P1. This is called after a
trigger is dropped in order to keep the internal representation of
the schema consistent with what is on disk.

Dup Make a copy of the P1th element of the stack and push it to the
top of the stack. The top of the stack is element 0, so the
instruction Dup 0 0 0 will make a copy of the top of the stack.

If the content of the P1th element is a dynamically allocated
string, then a new copy of that string is made if P2 is 0. If P2 is
note 0, then just a pointer to the string is copied.

Also see the Pull instruction.

Eq Pop the top two elements from the stack. If they are equal, then
jump to instruction P2. Otherwise, continue to the next
instruction.

If the 0x100 bit of P1 is true and either operand is NULL, then
take the jump. If the 0x100 bit of P1 is clear, then fall through
if either operand is NULL.

If the 0x200 bit of P1 is set and either operand is NULL, then
both operands are converted to integers prior to comparison.
NULL operands are converted to zero and non-NULL operands
are converted to 1. Thus, for example, with 0x200 set,
NULL==NULL is true, whereas it would normally be NULL.
Similarly, NULL==123 is false when 0x200 is set, but is NULL
when the 0x200 bit of P1 is clear.

The least significant byte of P1 (mask 0xff) must be an affinity
character - ’n’, ’t’, ’i’ or ’o’ - or 0x00. An attempt is made to
coerce both values according to the affinity before the
comparison is made. If the byte is 0x00, then numeric affinity is
used.

Once any conversions have taken place, and neither value is
NULL, the values are compared. If both values are blobs, or
both are text, then memcmp() is used to determine the results of
the comparison. If both values are numeric, then a numeric
comparison is used. If the two values are of different types, then
they are unequal.

If P2 is zero, do not jump. Instead, push an integer 1 onto the
stack if the jump would have been taken, or a 0 if not. Push a
NULL if either operand was NULL.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 53

© 2009, QNX Software Systems GmbH & Co. KG.

If P3 is not NULL, it is a pointer to a collating sequence (a
CollSeq structure) that defines how to compare text.

Expire Cause precompiled statements to expire. An expired statement
fails with an error code of QDB_SCHEMA if it is ever executed
(via sqlite3_step()).

If P1 is 0, then all SQL statements expire. If P1 is non-zero,
then only the currently executing statement is affected.

FifoRead Attempt to read a single integer from the FIFO and push it onto
the stack. If the FIFO is empty push nothing but instead jump to
P2.

FifoWrite Write the integer on the top of the stack into the FIFO.

ForceInt Convert the top of the stack into an integer. If the current top of
the stack is not numeric (meaning that is a NULL or a string that
does not look like an integer or floating-point number), then pop
the stack and jump to P2. If the top of the stack is numeric, then
convert it into the least integer that is greater than or equal to its
current value if P1 is 0, or to the least integer that is strictly
greater than its current value if P1 is 1.

Found The top of the stack holds a blob constructed by MakeRecord.
P1 is an index. If an entry that matches the top of the stack
exists in P1, then jump to P2. If the top of the stack does not
match any entry in P1 then fall through. The P1 cursor is left
pointing at the matching entry if it exists. The blob is popped
off the top of the stack.

This instruction is used to implement the IN operator where the
left-hand side is a SELECT statement. P1 is not a true index but
is instead a temporary index that holds the results of the
SELECT statement. This instruction just checks to see if the
left-hand side of the IN operator (stored on the top of the stack)
exists in the result of the SELECT statement.

See also: Distinct, NotFound, IsUnique, NotExists

Function Invoke a user function (P3 is a pointer to a Function structure
that defines the function) with P2 arguments taken from the
stack. Pop all arguments from the stack and push back the
result.

P1 is a 32-bit bitmask indicating whether or not each argument
to the function was determined to be constant at compile time.
If the first argument was constant, then bit 0 of P1 is set. This is
used to determine whether metadata associated with a user
function argument using the sqlite3_set_auxdata() API may be
safely retained until the next invocation of this opcode.

See also: AggStep and AggFinal

54 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Ge This opcode works just like the Eq opcode except that the jump
is taken if the second element down on the stack is greater than
or equal to the top of the stack. See the Eq opcode for additional
information.

Gosub Push the current address plus 1 onto the return address stack,
then jump to address P2.

The return address stack is of limited depth. If too many
OP_Gosub operations occur without intervening OP_Returns,
then the return address stack will fill up and processing will
abort with a fatal error.

Goto An unconditional jump to address P2. The next instruction
executed will be the one at index P2 from the beginning of the
program.

Gt This works just like the Eq opcode except that the jump is taken
if the second element down on the stack is greater than the top
of the stack. See the Eq opcode for additional information.

Halt Exit immediately. All open cursors, FIFOs, etc. are closed
automatically.

P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
or sqlite3_finalize(). For a normal halt, this should be QDB_OK
(0). For errors, it can be some other value. If P1 is non-zero,
then P2 will determine whether or not to rollback the current
transaction. Do not roll back if P2 is OE_Fail. Do the rollback
if P2 is OE_Rollback. If P2 is OE_Abort, then back out all
changes that have occurred during this execution of the VDBE,
but do not rollback the transaction.

If P3 is not null, then it is an error message string.

There is an implied Halt 0 0 0 instruction inserted at the
very end of every program. So a jump past the last instruction of
the program is the same as executing Halt.

HexBlob P3 is an UTF-8 SQL hex encoding of a blob. The blob is
pushed onto the VDBE stack.

The first time this instruction executes, in transforms itself into
a Blob opcode with a binary blob as P3.

IdxDelete The top of the stack is an index key built using the MakeIdxKey
opcode. This opcode removes that entry from the index.

IdxGE The top of the stack is an index entry that omits the row ID.
Compare the top of stack against the index that P1 is currently
pointing to. Ignore the row ID on the P1 index.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 55

© 2009, QNX Software Systems GmbH & Co. KG.

If the P1 index entry is greater than or equal to the top of the
stack then jump to P2. Otherwise fall through to the next
instruction. In either case, the stack is popped once.

If P3 is the "+" string (or any other non-NULL string), then the
index taken from the top of the stack is temporarily increased by
an epsilon prior to the comparison. This makes the opcode work
like IdxGT except that if the key from the stack is a prefix of the
key in the cursor, the result is false whereas it would be true
with IdxGT.

IdxGT The top of the stack is an index entry that omits the ROWID.
Compare the top of stack against the index that P1 is currently
pointing to. Ignore the ROWID on the P1 index.

The top of the stack might have fewer columns than P1.

If the P1 index entry is greater than the top of the stack then
jump to P2. Otherwise fall through to the next instruction. In
either case, the stack is popped once.

IdxInsert The top of the stack holds an SQL index key made using the
MakeIdxKey instruction. This opcode writes that key into the
index P1. Data for the entry is nil.

This instruction works only for indexes. The equivalent
instruction for tables is OP_Insert.

IdxIsNull The top of the stack contains an index entry such as might be
generated by the MakeIdxKey opcode. This routine looks at the
first P1 fields of that key. If any of the first P1 fields are NULL,
then a jump is made to address P2. Otherwise it falls straight
through.

The index entry is always popped from the stack.

IdxLT The top of the stack is an index entry that omits the ROWID.
Compare the top of stack against the index that P1 is currently
pointing to. Ignore the ROWID on the P1 index.

If the P1 index entry is less than the top of the stack then jump
to P2. Otherwise fall through to the next instruction. In either
case, the stack is popped once.

If P3 is the "+" string (or any other non-NULL string), then the
index taken from the top of the stack is temporarily increased by
an epsilon prior to the comparison. This makes the opcode work
like IdxLE.

IdxRowid Push onto the stack an integer which is the last entry in the
record at the end of the index key pointed to by cursor P1. This
integer should be the row ID of the table entry to which this
index entry points.

56 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

See also: Rowid.

If Pop a single boolean from the stack. If the boolean popped is
true, then jump to p2. Otherwise continue to the next
instruction. An integer is false if zero, and true otherwise. A
string is false if it has zero length, and true otherwise.

If the value popped of the stack is NULL, then take the jump if
P1 is true, and fall through if P1 is false.

IfMemPos If the value of memory cell P1 is 1 or greater, jump to P2. This
opcode assumes that memory cell P1 holds an integer value.

IfNot Pop a single boolean from the stack. If the boolean popped is
false, then jump to P2. Otherwise continue to the next
instruction. An integer is false if zero, and true otherwise. A
string is false if it has zero length, and true otherwise.

If the value popped of the stack is NULL, then take the jump if
P1 is true and fall through if P1 is false.

Insert Write an entry into the table of cursor P1. A new entry is
created if it doesn’t already exist or the data for an existing entry
is overwritten. The data is the value on the top of the stack. The
key is the next value down on the stack. The key must be an
integer. The stack is popped twice by this instruction.

If the OPFLAG_NCHANGE flag of P2 is set, then the row
change count is incremented (otherwise not). If the
OPFLAG_LASTROWID flag of P2 is set, then row ID is stored
for subsequent return by the sqlite3_last_insert_row ID()
function (otherwise it’s unmodified).

This instruction works only on tables. The equivalent
instruction for indexes is OP_IdxInsert.

Int64 P3 is a string representation of an integer. Convert that integer
to a 64-bit value and push it onto the stack.

Integer Push the 32-bit integer value P1 onto the stack.

IntegrityCk Do an analysis of the currently open database. Push onto the
stack the text of an error message describing any problems. If
there are no errors, push a ok onto the stack.

The root page numbers of all tables in the database are integer
values on the stack. This opcode pulls as many integers as it can
off of the stack and uses those numbers as the root pages.

If P2 is not zero, the check is done on the auxiliary database
file, not the main database file.

This opcode is used for testing purposes only.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 57

© 2009, QNX Software Systems GmbH & Co. KG.

IsNull If any of the top abs(P1) values on the stack are NULL, then
jump to P2. Pop the stack P1 times if P1 is greater than 0. If P1
is less than 0, leave the stack unchanged.

IsUnique The top of the stack is an integer record number. Call this
record number R. The next on the stack is an index key created
using MakeIdxKey. Call it K. This instruction pops R from the
stack but it leaves K unchanged.

P1 is an index. So it has no data and its key consists of a record
generated by OP_MakeRecord where the last field is the row ID
of the entry that the index refers to.

This instruction asks if there is an entry in P1 where the field
matches K but the row ID is different from R. If there is no such
entry, then there is an immediate jump to P2. If any entry does
exist where the index string matches K but the record number is
not R, then the record number for that entry is pushed onto the
stack and control falls through to the next instruction.

See also: Distinct, NotFound, NotExists, Found

Last The next use of the Rowid, Column, or Next instruction for P1
will refer to the last entry in the database table or index. If the
table or index is empty and P2 is greater than 0, then jump
immediately to P2. If P2 is 0 or if the table or index is not
empty, fall through to the following instruction.

Le This works just like the Eq opcode, except that the jump is taken
if the second element down on the stack is less than or equal to
the top of the stack. See the Eq opcode for additional
information.

LoadAnalysis Read the sqlite_stat1 table for database P1 and load the
content of that table into the internal index hash table. This will
cause the analysis to be used when preparing all subsequent
queries.

Lt This works just like the Eq opcode, except that the jump is taken
if the second element down on the stack is less than the top of
the stack. See the Eq opcode for additional information.

MakeRecord Convert the top abs(P1) entries of the stack into a single entry
suitable for use as a data record in a database table or as a key in
an index. The details of the format are irrelevant as long as the
OP_Column opcode can decode the record later and as long as
the sqlite3VdbeRecordCompare() function correctly compares
two encoded records. Refer to source code comments for the
details of the record format.

The original stack entries are popped from the stack if P1 is
greater than 0 but remain on the stack if P1 is less than 0.

58 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

If P2 is not zero and one or more of the entries are NULL, then
jump to the address given by P2. This feature can be used to
skip a uniqueness test on indexes.

P3 may be a string that is P1 characters long. The nth character
of the string indicates the column affinity that should be used
for the nth field of the index key (i.e. the first character of P3
corresponds to the lowest element on the stack).

The mapping from character to affinity is as follows:

• n = NUMERIC

• i = INTEGER

• t = TEXT

• o = NONE

If P3 is NULL, then all index fields have the affinity NONE.

MakeRecordI This opcode works just OP_MakeRecord except that it reads an
extra integer from the stack (thus reading a total of abs(P1+1)
entries) and appends that extra integer to the end of the record
as a variant. This results in an index key.

MemIncr Increment the integer valued memory cell P1 by 1. If P2 is not
zero and the result after the increment is exactly 1, then jump to
P2.

This instruction throws an error if the memory cell is not
initially an integer.

MemInt Store the integer value P1 in memory cell P2.

MemLoad Push a copy of the value in memory location P1 onto the stack.

If the value is a string, then the value pushed is a pointer to the
string that is stored in the memory location. If the memory
location is subsequently changed (using OP_MemStore), then
the value pushed onto the stack will change too.

MemMax Set the value of memory cell P1 to the maximum of its current
value and the value on the top of the stack. The stack is
unchanged.

This instruction throws an error if the memory cell is not
initially an integer.

MemMove Move the content of memory cell P2 to memory cell P1. Any
prior content of P1 is erased. Memory cell P2 is left containing
a NULL.

MemNull Store a NULL in memory cell P1.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 59

© 2009, QNX Software Systems GmbH & Co. KG.

MemStore Write the top of the stack into memory location P1. P1 should
be a small integer, since space is allocated for all memory
locations between 0 and P1 inclusive.

After the data is stored in the memory location, the stack is
popped once if P2 is 1. If P2 is zero, then the original data
remains on the stack.

MoveGe Pop the top of the stack and use its value as a key. Reposition
cursor P1 so that it points to the smallest entry that is greater
than or equal to the key that was popped from the stack. If there
are no records greater than or equal to the key, and P2 is not
zero, then jump to P2.

See also: Found, NotFound, Distinct, MoveLt, MoveGt,
MoveLe.

MoveGt Pop the top of the stack and use its value as a key. Reposition
cursor P1 so that it points to the smallest entry that is greater
than the key from the stack. If there are no records greater than
the key, and P2 is not zero, then jump to P2.

See also: Found, NotFound, Distinct, MoveLt, MoveGe,
MoveLe.

MoveLe Pop the top of the stack and use its value as a key. Reposition
cursor P1 so that it points to the largest entry that is less than or
equal to the key that was popped from the stack. If there are no
records less than or equal to the key, and P2 is not zero, then
jump to P2.

See also: Found, NotFound, Distinct, MoveGt, MoveGe,
MoveLt.

MoveLt Pop the top of the stack and use its value as a key. Reposition
cursor P1 so that it points to the largest entry that is less than the
key from the stack. If there are no records less than the key, and
P2 is not zero, then jump to P2.

See also: Found, NotFound, Distinct, MoveGt, MoveGe,
MoveLe.

Multiply Pop the top two elements from the stack, multiply them
together, and push the result back onto the stack. If either
element is a string, then it is converted to a double using the
atof() function before the multiplication. If either operand is
NULL, the result is NULL.

MustBeInt Force the top of the stack to be an integer. If the top of the stack
is not an integer and cannot be converted into an integer with
out data loss, then jump immediately to P2, or if P2 is 0, raise a
QDB_MISMATCH exception.

60 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

If the top of the stack is not an integer and P2 is not zero and P1
is 1, then the stack is popped. In all other cases, the depth of the
stack is unchanged.

Ne This works just like the Eq opcode, except that the jump is taken
if the operands from the stack are not equal. See the Eq opcode
for additional information.

Negative Treat the top of the stack as a numeric quantity. Replace it with
its additive inverse. If the top of the stack is NULL, its value is
unchanged.

NewRowid Get a new integer record number (rowid) used as the key to a
table. The record number is not previously used as a key in the
database table that cursor P1 points to. The new record number
is pushed onto the stack.

If P2 is greater than 0, then P2 is a memory cell that holds the
largest previously generated record number. No new record
numbers are allowed to be less than this value. When this value
reaches its maximum, a QDB_FULL error is generated. The P2
memory cell is updated with the generated record number. This
P2 mechanism is used to help implement the
AUTOINCREMENT feature.

Next Advance cursor P1 so that it points to the next key/data pair in
its table or index. If there are no more key/data pairs, then fall
through to the following instruction; if the cursor advance was
successful, jump immediately to P2.

See also: Prev

Noop Do nothing. This instruction is often useful as a jump
destination.

Not Interpret the top of the stack as a boolean value, and replace it
with its complement. If the top of the stack is NULL, its value is
unchanged.

NotExists Use the top of the stack as a integer key. If a record with that
key does not exist in table of P1, then jump to P2. If the record
does exist, then fall through. The cursor is left pointing to the
record if it exists. The integer key is popped from the stack.

The difference between this operation and NotFound is that
this operation assumes the key is an integer and that P1 is a
table whereas NotFound assumes key is a blob constructed
from MakeRecord and P1 is an index.

See also: Distinct, Found, NotFound, IsUnique.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 61

© 2009, QNX Software Systems GmbH & Co. KG.

NotFound The top of the stack holds a blob constructed by MakeRecord.
P1 is an index. If no entry exists in P1 that matches the blob,
then jump to P1. If an entry does existing, fall through. The
cursor is left pointing to the entry that matches. The blob is
popped from the stack.

The difference between this operation and Distinct is that
Distinct does not pop the key from the stack.

See also: Distinct, Found, NotExists, IsUnique.

NotNull Jump to P2 if the top P1 values on the stack are all not NULL.
Pop the stack if P1 times if P1 is greater than zero. If P1 is less
than zero, then leave the stack unchanged.

Null Push a NULL onto the stack.

NullRow Move the cursor P1 to a null row. Any OP_Column operations
that occur while the cursor is on the null row will always push a
NULL onto the stack.

OpenPseudo Open a new cursor that points to a fake table that contains a
single row of data. Any attempt to write a second row of data
causes the first row to be deleted. All data is deleted when the
cursor is closed.

A pseudo-table created by this opcode is useful for holding the
NEW or OLD tables in a trigger.

OpenRead Open a read-only cursor for the database table whose root page
is P2 in a database file. The database file is determined by an
integer from the top of the stack. A 0 means the main database
and a 1 means the database used for temporary tables. Give the
new cursor an identifier of P1. The P1 values need not be
contiguous, but all P1 values should be small integers. It is an
error for P1 to be negative.

If P2 is 0, then take the root page number from the next of the
stack.

There will be a read lock on the database whenever there is an
open cursor. If the database was unlocked prior to this
instruction then a read lock is acquired as part of this
instruction. A read lock allows other processes to read the
database but prohibits any other process from modifying the
database. The read lock is released when all cursors are closed.
If this instruction attempts to get a read lock but fails, the script
terminates with a EBUSY error code.

The P3 value is a pointer to a KeyInfo structure that defines
the content and collating sequence of indexes. P3 is NULL for
cursors that are not pointing to indexes.

See also OpenWrite.

62 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

OpenVirtual Open a new cursor P1 to a transient or virtual table. The cursor
is always opened for reading and writing, even if the main
database is read-only. The transient or virtual table is deleted
automatically when the cursor is closed.

P2 is the number of columns in the virtual table. The cursor
points to a BTree table if P3 is 0, and to a BTree index if P3 is
not 0. If P3 is not NULL, it points to a KeyInfo structure that
defines the format of keys in the index.

OpenWrite Open a read/write cursor named P1 on the table or index whose
root page is P2. If P2 is 0, then take the root page number from
the stack.

The P3 value is a pointer to a KeyInfo structure that defines
the content and collating sequence of indexes. P3 is NULL for
cursors that are not pointing to indexes.

This instruction works just like OpenRead, except that it opens
the cursor in read/write mode. For a given table, there can be
one or more read-only cursors or a single read/write cursor, but
not both.

See also OpenRead.

Or Pop two values off the stack. Take the logical OR of the two
values and push the resulting boolean value back onto the stack.

ParseSchema Read and parse all entries from the QDB_MASTER table of
database P1 that match the WHERE clause P3.

This opcode invokes the parser to create a new virtual machine,
then runs the new virtual machine. It is thus a reentrant opcode.

Pop Pop P1 elements off the top of the stack and discarded.

Prev Back up cursor P1 so that it points to the previous key/data pair
in its table or index. If there is no previous key/value pair, then
fall through to the following instruction. If the cursor backup
was successful, then jump immediately to P2.

Pull Remove the P1th element from its current location on the stack
and push it back on top of the stack. The top of the stack is
element 0, so Pull 0 0 0 is a no-op. Pull 1 0 0 swaps the
top two elements of the stack.

See also the Dup instruction.

Push Overwrite the value of the P1th element down on the stack (P1
is 0 is the top of the stack) with the value of the top of the stack.
Then pop the top of the stack.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 63

© 2009, QNX Software Systems GmbH & Co. KG.

ReadCookie Read cookie number P2 from database P1 and push it onto the
stack. A value of P2==0 is the schema version, while P2==1 is
the database format. P2==2 is the recommended pager cache
size, and so forth. P1==0 is the main database file and P1==1 is
the database file used to store temporary tables.

There must be a read-lock on the database (either a transaction
must be started or there must be an open cursor) before
executing this instruction.

Real The string value P3 is converted to a real and pushed on to the
stack.

Remainder Pop the top two elements from the stack, divide the first (the
element that was on top of the stack) from the second (the
element that was next on the stack) and push the remainder after
division onto the stack. If either element is a string, then it is
converted to a double using the atof() function before the
division. Division by zero returns NULL. If either operand is
NULL, the result is NULL.

ResetCount This opcode resets the VM’s internal change counter to 0. If P1
is true, then the value of the change counter is copied to the
database handle change counter (returned by subsequent calls to
sqlite3_changes()) before it is reset. This is used by trigger
programs.

Return Jump immediately to the next instruction after the last
unreturned OP_Gosub. If an OP_Return has occurred for all
OP_Gosub, then processing aborts with a fatal error.

Rewind The next use of the Rowid, Column, or Next instruction for P1
will refer to the first entry in the database table or index. If the
table or index is empty and P2>0, then jump immediately to P2.
If P2 is 0 or if the table or index is not empty, fall through to the
following instruction.

RowData Push onto the stack the complete row data for cursor P1. There
is no interpretation of the data. It is just copied onto the stack
exactly as it is found in the database file.

If the cursor is not pointing to a valid row, a NULL is pushed
onto the stack.

Rowid Push onto the stack an integer which is the key of the table entry
that P1 is currently pointing to.

RowKey Push onto the stack the complete row key for cursor P1. There
is no interpretation of the key. It is just copied onto the stack
exactly as it is found in the database file.

64 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

If the cursor is not pointing to a valid row, a NULL is pushed
onto the stack.

Sequence Push onto the stack an integer which is the next available
sequence number for cursor P1. The sequence number on the
cursor is incremented after the push.

SetCookie Write the top of the stack into cookie number P2 of database
P1. A value of P2==0 indicates the schema version, while a
value of P2==1 indicates the database format. P2==2 is the
recommended pager cache size, and so forth. P1==0 is the main
database file and P1==1 is the database file used to store
temporary tables.

A transaction must be started before executing this opcode.

SetNumColumns Before the OP_Column opcode can be executed on a cursor, this
opcode must be called to set the number of fields in the table.

This opcode sets the number of columns for cursor P1 to P2.

If OP_KeyAsData is to be applied to cursor P1, it must be
executed before this op-code.

ShiftLeft Pop the top two elements from the stack, convert both elements
to integers, and push back onto the stack the second element
shifted left by N bits, where N is the top element on the stack. If
either operand is NULL, the result is NULL.

ShiftRight Pop the top two elements from the stack, convert both elements
to integers, andush back onto the stack the second element
shifted right by N bits, where N is the top element on the stack.
If either operand is NULL, the result is NULL.

Sort This opcode does exactly the same thing as OP_Rewind, except
that it increments an undocumented global variable used for
testing.

Sorting is accomplished by writing records into a sorting index,
then rewinding that index and playing it back from beginning to
end. We use the OP_Sort opcode instead of OP_Rewind to do
the rewinding so that the global variable will be incremented
and regression tests can determine whether or not the optimizer
is correctly optimizing out sorts.

Statement Begin an individual statement transaction which is part of a
larger BEGIN..COMMIT transaction. This opcode is needed so
that the statement can be rolled back after an error without
having to roll back the entire transaction. The statement
transaction will automatically commit when the VDBE halts.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 65

© 2009, QNX Software Systems GmbH & Co. KG.

The statement is begun on the database file with index P1. The
main database file has an index of 0, and the file used for
temporary tables has an index of 1.

String The string value P3 is pushed onto the stack. If P3 is 0, then a
NULL is pushed onto the stack. P3 is assumed to be a
null-terminated string encoded with the database native
encoding.

String8 P3 points to a null-terminated UTF-8 string. This opcode is
transformed into an OP_String before it is executed for the
first time.

Subtract Pop the top two elements from the stack, subtract the first (the
element that was on top of the stack) from the second (the
element that was next on the stack) and push the result back
onto the stack. If either element is a string, then it is converted
to a double using the atof() function before the subtraction. If
either operand is NULL, the result is NULL.

ToBlob Force the value on the top of the stack to be a BLOB. If the
value is numeric, convert it to a string first. Strings are simply
reinterpreted as blobs with no change to the underlying data.

A NULL value is not changed by this routine; it remains NULL.

ToInt Force the value on the top of the stack to be an integer. If the
value is currently a real number, drop its fractional part. If the
value is text or blob, try to convert it to an integer using the
equivalent of atoi() and store 0 if no such conversion is possible.

A NULL value is not changed by this routine. It remains NULL.

ToNumeric Force the value on the top of the stack to be numeric (either an
integer or a floating-point number. If the value is text or blob,
try to convert it to an using the equivalent of atoi() or atof() and
store 0 if no such conversion is possible.

A NULL value is not changed by this routine. It remains NULL.

ToText Force the value on the top of the stack to be text. If the value is
numeric, convert it to an using the equivalent of printf(). Blob
values are unchanged and are afterwards simply interpreted as
text.

A NULL value is not changed by this routine. It remains NULL.

Transaction Begin a transaction. The transaction ends when a Commit or
Rollback opcode is encountered. Depending on the ON
CONFLICT setting, the transaction might also be rolled back if
an error is encountered.

66 Chapter 7 • QDB Virtual Machine Opcodes June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

P1 is the index of the database file on which the transaction is
started. Index 0 is the main database file and index 1 is the file
used for temporary tables.

If P2 is non-zero, then a write transaction is started. A
RESERVED lock is obtained on the database file when a write
transaction is started. No other process can start another write
transaction while this transaction is underway. Starting a write
transaction also creates a rollback journal. A write transaction
must be started before any changes can be made to the database.
If P2 is 2 or greater, then an EXCLUSIVE lock is also obtained
on the file.

If P2 is zero, then a read lock is obtained on the database file.

Vacuum Vacuum the entire database. This opcode will cause other
virtual machines to be created and run. It may not be called
from within a transaction.

Variable Push the value of variable P1 onto the stack. A variable is an
unknown in the original SQL string as handed to
sqlite3_compile(). Any occurrence of the ? character in the
original SQL is considered a variable. Variables in the SQL
string are number from left to right beginning with 1. The
values of variables are set using the sqlite3_bind() API.

VerifyCookie Check the value of global database parameter number 0 (the
schema version) and make sure it is equal to P2. P1 is the
database number, which is 0 for the main database file, 1 for the
file holding temporary tables, and some higher number for
auxiliary databases.

The cookie changes its value whenever the database schema
changes. This operation is used to detect when the cookie has
changed and the current process needs to reread the schema.

Either a transaction needs to have been started or an OP_Open

needs to be executed (to establish a read lock) before this
opcode is invoked.

June 5, 2009 Chapter 7 • QDB Virtual Machine Opcodes 67

Chapter 8

Writing User-Defined Functions

June 5, 2009 Chapter 8 • Writing User-Defined Functions 69

© 2009, QNX Software Systems GmbH & Co. KG.

There are two types of user-defined functions you can write for QDB to use: functions
that transform some data (called scalar or aggregate functions), and functions that
order data (called collation functions). The first type is invoked using the SELECT SQL
statement, while the second by using the COLLATE clause. An example of a built in
scalar function is ABS(), while BINARY() is an example of a built in collation function.

To define functions that QDB can use, you need to compile them into a DLL. You then
tell QDB to load the DLL by setting the Collation and Function options in the
QDB configuration file for each required function.

User scalar/aggregate functions

These are specified in the configuration file with the Function = tag@library.so
option, where library.so is the name of a DLL containing your code (this can be an
absolute path or a filename within the LD_LIBRARY_PATH search) and tag is the
name of the struct qdb_function entry describing the function. This is set up as
follows:

static void myfunc(sqlite3_context *context, int narg, sqlite3_value **value)
{
}

struct qdb_function ftag = { "func", SQLITE_UTF8, 1, NULL, myfunc, NULL, NULL };

The tag value in this case is ftag, the function name as visible to SQL is func, and
the function called is myfunc(), which can retrieve the 4th field (here NULL) as its
sqlite3_user_data().

The ftag was used to clarify the example. You would probably use the name func
here so it was the same as the SQL name.

There can be multiple functions defined (in the same or different DLLs), but each must
have a Function= entry in the configuration file for the database it is associated with,
and each must have a struct qdb_function with a unique name describing it.

The qdb_function structure has these members:

struct qdb_function {
char *name;
int encoding;
int narg;
void *arg;
void (*func)(struct sqlite3_context *, int, struct Mem **);
void (*step)(struct sqlite3_context *, int, struct Mem **);
void (*final)(struct sqlite3_context *);

};

name The name used for this function in SQL statements. This is
limited to 255 bytes, exclusive of the zero-terminator, and it can’t
contain any special tokens, or start with a digit. Any attempt to

June 5, 2009 Chapter 8 • Writing User-Defined Functions 71

© 2009, QNX Software Systems GmbH & Co. KG.

create a function with an invalid name will result in an
SQLITE_ERROR error.

encoding The character encoding of strings passed to your function. Can be
one of:

• SQLITE_UTF8

• SQLITE_UTF16

• SQLITE_UTF16BE

• SQLITE_UTF16LE

narg The number of arguments that the function or aggregate takes. If
this argument is -1, then the function or aggregate may take any
number of arguments. The maximum number of arguments to a
new SQL function is 127. A number larger than 127 for the third
argument results in an SQLITE_ERROR error.

arg An arbitrary pointer. The function implementations can gain
access to this pointer using the sqlite_user_data() API.

func, step, final Pointers to your function or aggregate. A scalar function requires
an implementation of the func callback only; NULL pointers
should be passed as the step and final arguments. An aggregate
function requires an implementation of step and final, and NULL
should be passed for func. Specifying an inconsistent set of
callback values, such as a func and a final, or an step but no final,
results in an SQLITE_ERROR return.

User collation routines

Collation routines can be used to order results from a SELECT statement. You can
provide your own routine, and tell qdb to use it by providing the COLLATE keyword to
the ORDER BY clause.

These routines are specified in the configuration file with the Collation =
tag@library.so option, where library.so is the name of a DLL object containing your
code (this can be an absolute path or a filename within the LD_LIBRARY_PATH
search) and tag is the name of the struct qdb_collation entry describing the
collation. This is set up as follows:

static int mysort(void *arg, int l1, const void *s1, int l2, const void *s2)
{

return(0);
}

struct qdb_collation ctag = { "nosort", SQLITE_UTF8, NULL, mysort, NULL };

The tag value in this case is ctag, the collation name as visible to SQL will be
nosort, and the function called is mysort(), which is passed in the 3rd field (here

72 Chapter 8 • Writing User-Defined Functions June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

NULL) as its arg argument (refer to SQLite docs on sqlite3_create_collation for more
detail).

The ctag was used to clarify the example. You would probably use the name nosort
here so it was the same as the SQL name.

There can be multiple collation sequences defined (in the same or different DLLs), but
each must have a Collation= entry in the configuration file for the database it is
associated with, and each must have a struct qdb_collation of a unique name
describing it. This replaces the old mechanism of an array of
qdb_collmodule_list_t always named init_coll_list.

The qdb_collation structure has these members:

struct qdb_collation {
char *name;
int encoding;
void *arg;
int (*compare)(void *, int, const void *, int, const void *);
int (*setup)(void *, const void *, int, char **);

};

name The name used for this function in SQL statements. This is limited to
255 bytes, exclusive of the zero-terminator, and it can’t contain any
special tokens, or start with a digit. Any attempt to create a function
with an invalid name will result in an SQLITE_ERROR error.

encoding The character encoding of strings passed to your function. Can be one
of:

• SQLITE_UTF8

• SQLITE_UTF16

• SQLITE_UTF16BE

• SQLITE_UTF16LE

arg An arbitrary pointer to user data that is passed as the first argument to
your function each time it’s invoked. The function implementations can
gain access to this pointer using the sqlite_user_data() API.

compare A pointer to your collation function.

setup A pointer to a setup function to allow dynamic configuration of sort
order at runtime. See below.

The setup function takes this form:

int (*setup)(void *arg, const void *data, int nbytes, char **errmsg);

The parameters of the setup function are:

June 5, 2009 Chapter 8 • Writing User-Defined Functions 73

© 2009, QNX Software Systems GmbH & Co. KG.

void *arg The context pointer. This is the same as the arg to the compare
function, and is passed in from the arg element of the
qdb_collation structure.

const void *data
int nbytes

The configuration data, used to configure the sort. When invoked
from startup, this is NULL and 0. When invoked at runtime, it is
the data provided to the qdb_collation() function. QDB does not
interpret the format in any way; the DLL must cooperate with the
caller of qdb_collation() to exchange data of a known format.

char **errmsg A pointer to an error message string that is available to
qdb_geterrmsg() displayed on failure (actually, from startup
QDB will fail it, from runtime qdb_collation() will fail and this
string will be available to it as qdb_geterrmsg())

The function should return a POSIX errno, or EOK if it succeeds.

If a collation entry has a non-NULL setup entry, then this is invoked at startup and
passed NULL for data and 0 for nbytes, which it can use as a hint to go into some
default configuration. Then, whenever you call qdb_collation(), the setup function is
invoked with new data.

If a collation has no dynamic configuration, then it can use a NULL setup entry in the
struct qdb_collation, and it can’t be dynamically configured.

Example

Here is an example of a table-driven collation algorithm, which uses the data pointer
arg to say what table to use. The DLL would have the following entries exported from
it:

uca_t _en_US_ = { ... };
uca_t _fr_FR_ = { ... };

int UCAsort(void *arg, int l1, const void *s1, int l2, const void *s2) { }

struct qdb_collation en_US = {
"en_US", SQLITE_UTF8, &_en_US_, UCAsort, NULL };

struct qdb_collation fr_FR = {
"fr_FR", SQLITE_UTF8, &_fr_FR_, UCAsort, NULL };

Note that both collations call the UCASort() routine, but they pass in different data
pointers (&_en_US_ vs &_fr_FR_), where those are tables inside the DLL that tell it
how to sort in English or French. This is passed as the first argument to the function,
arg.

You would install these to QDB in the configuration file as:

[DB]
Collation = en_US@/usr/lib/libqdb_uca.so
Collation = fr_FR@/usr/lib/libqdb_uca.so

74 Chapter 8 • Writing User-Defined Functions June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

SQLite C/C++ API

This is an abridged version of the C/C++ API documentation for SQLite, which covers
just the functions you might call in user-defined functions. For the full API
documentation, see the SQLite website (www.sqlite.org).

When consulting SQLite documentation, ensure that it corresponds to the SQLite
library version that QDB is using.

sqlite3_result_*

void sqlite3_result_blob(sqlite3_context*, const void*, int n, void(*)(void*));
void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_int(sqlite3_context*, int);
void sqlite3_result_int64(sqlite3_context*, long long int);
void sqlite3_result_null(sqlite3_context*);
void sqlite3_result_text(sqlite3_context*, const char*, int n, void(*)(void*));
void sqlite3_result_text16(sqlite3_context*, const void*, int n, void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int n, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int n, void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);

User-defined functions invoke these routines in order to set their return value. The
sqlite3_result_value() routine returns an exact copy of one of the arguments to the
function.

Your user-defined function should pass as the first argument the sqlite3_context*
that was passed to it by QDB.

sqlite3_value_*
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
long long int sqlite3_value_int64(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);

This group of routines returns information about arguments to a user-defined function.
User-defined function implementations use these routines to access their arguments.

The sqlite3_value_type() routine returns one of:

• SQLITE_INTEGER

• SQLITE_FLOAT

June 5, 2009 Chapter 8 • Writing User-Defined Functions 75

© 2009, QNX Software Systems GmbH & Co. KG.

• SQLITE_TEXT
• SQLITE_BLOB

• SQLITE_NULL

If the result is a BLOB, then the sqlite3_value_blob() routine returns the number of
bytes in that BLOB. No type conversions occur. If the result is a string (or a number
since a number can be converted into a string), then sqlite3_value_bytes() converts the
value into a UTF-8 string and returns the number of bytes in the resulting string. The
value returned does not include the \000 terminator at the end of the string. The
sqlite3_value_bytes16() routine converts the value into a UTF-16 encoding and
returns the number of bytes (not characters) in the resulting string. The \u0000
terminator is not included in this count.

These routines attempt to convert the value where appropriate. For example, if the
internal representation is FLOAT, and a text result is requested, sprintf() is used
internally to do the conversion automatically. The following table details the
conversions that are applied:

Internal Type Requested Type Conversion

NULL INTEGER Result is 0

NULL FLOAT Result is 0.0

NULL TEXT Result is NULL pointer

NULL BLOB Result is NULL pointer

INTEGER FLOAT Convert from integer to float

INTEGER TEXT ASCII rendering of the integer

INTEGER BLOB Same as for INTEGER to TEXT

FLOAT INTEGER Convert from float to integer

FLOAT TEXT ASCII rendering of the float

FLOAT BLOB Same as FLOAT to TEXT

TEXT INTEGER Use atoi()

TEXT FLOAT Use atof()

TEXT BLOB No change

BLOB INTEGER Convert to TEXT, then use atoi()

BLOB FLOAT Convert to TEXT, then use atof()

BLOB TEXT Add a \000 terminator if needed

76 Chapter 8 • Writing User-Defined Functions June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

sqlite3_user_data
void *sqlite3_user_data(sqlite3_context*);

The arg member to the qdb_function struct used to register user functions is
available to the implementation of the function using this call.

June 5, 2009 Chapter 8 • Writing User-Defined Functions 77

Appendix A

QDB Client API Reference

June 5, 2009 Appendix: A • QDB Client API Reference 79

© 2009, QNX Software Systems GmbH & Co. KG.

These functions handle operations that directly involve the QDB. Using these
functions, your client application can:

• attach to a database session

• set database properties

• create and execute SQL statements

• inspect the results of SELECT queries

June 5, 2009 Appendix: A • QDB Client API Reference 81

qdb_backup() © 2009, QNX Software Systems GmbH & Co. KG.

Start a database backup

Synopsis:
#include <qdb/qdb.h>

int qdb_backup(qdb_hdt_t *db,
int scope);

Arguments:
db A pointer to the database handle.

scope The scope of the backup. Possible values are:

• QDB_ATTACH_DEFAULT — Act on attached databases as specified in
the configuration file (honouring the value of the Vacuum Attached,
Backup Attached, and Size Attached parameters. This gives
backwards-compatable behavior.

• QDB_ATTACH_ALWAYS — Always act on any attached databases,
regardless of configuration file settings.

• QDB_ATTACH_NEVER — Act only on the connected database itself,
and never on any attached databses.

Library:
qdb

Description:
This function performs a backup on the connected database hdl, and optionally any
attached databases, depending on the scope argument. Backups are controlled in the
configuration file, via the Backup Dir= and Compression= options. For more
information about these options, see the Configuration File section of the chapter
Starting QDB.

A client can cancel a backup operation by calling qdb_bkcancel(). If a backup is
cancelled (either by a client or via the QDB resource manager interface), the call to
qdb_backup() fails and returns -1, with errno set to EINTR.

Returns:
>0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

82 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_backup()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_bkcancel()

June 5, 2009 Appendix: A • QDB Client API Reference 83

qdb_bkcancel() © 2009, QNX Software Systems GmbH & Co. KG.

Cancel a database backup

Synopsis:
#include <qdb/qdb.h>

int qdb_bkcancel(qdb_hdl_t *hdl,
int *nactive);

Arguments:
hdl A pointer to the database handle.

nactive A pointer to a location where the function stores the number of backup
operations that were aborted. You can use this if you want to know if a
backup was interrupted and needs to be rescheduled, or set it to NULL if
you don’t need this information.

Library:
qdb

Description:
This function cancels all active backup operations for any databases on the QDB
server associated with the specified hdl handle.

Returns:
>0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_backup()

84 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_cell()
Return a cell’s data

Synopsis:
#include <qdb/qdb.h>

void * qdb_cell(qdb_result_t *res,
int row,
int col);

Arguments:
res A pointer to a result structure to check.

row The row number of the cell, where the first row is 0.>

col The column number of the cell, where the first column is 0.

Library:
qdb

Description:
This function returns the data from one cell from a database query result. The returned
pointer points to the beginning of the data. You must cast the pointer to the appropriate
data type. For example:

uint64_t storage_type = *(uint64_t*)qdb_cell(res, 0, 0);

Returns:
A pointer A pointer to the beginning of the cell’s data.

NULL An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 85

qdb_cell() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_cell_length(), qdb_cell_type()

86 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_cell_length()
Return the length of a cell’s data

Synopsis:
#include <qdb/qdb.h>

int qdb_cell_length(qdb_result_t *res,
int row,
int col);

Arguments:
res A pointer to a result structure to check.

row The row number of the cell.

col The column number of the cell.

Library:
qdb

Description:
This function returns the length of a specified cell in a database query result. This is
useful for datatypes that are variable-length, such as QDB_TEXT and QDB_BLOB.

For QDB_TEXT, this function does not count the terminating \0 character.

Returns:
>-1 The length of the specified cell’s data, in bytes.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 87

qdb_cell_length() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_cell(), qdb_cell_type()

88 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_cell_type()
Return a cell’s datatype

Synopsis:
#include <qdb/qdb.h>

int qdb_cell_type(qdb_result_t *res,
int row,
int col);

Arguments:
res A pointer to a result structure to check.

row The row number of the data cell.

col The column number of the data cell.

Library:
qdb

Description:
This function returns the type of the specified cell, which you can use to cast the cell
data to the proper C datatype. The datatypes that can be returned are defined in
<qdb/qdb.h>. They are:

Return Type ANSI C Type Variable Length

QDB_UNSUPPORTED NULL No

QDB_INTEGER int64_t No

QDB_REAL double No

QDB_TEXT char * Yes

QDB_BLOB void * Yes

QDB_NULL NULL No

If the data can have variable length, then you should check its length by calling
qdb_cell_length(). The text type QDB_TEXT (char *) is always null-terminated.

Returns:
>-1 The datatype of the specified cell.

-1 An error occurred (errno is set).

June 5, 2009 Appendix: A • QDB Client API Reference 89

qdb_cell_type() © 2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_cell(), qdb_cell_length()

90 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_collation()
Change the runtime configuration of user-defined collation sequences

Synopsis:
#include <qdb/qdb.h>

int qdb_collation(qdb_hdl_t *db,
void *data,
int nbytes,
int reindex);

Arguments:
db A pointer to the database handle.

data A pointer to arbitrary configuration data used by the user-defined
collation library.

nbytes The length of data, in bytes.

reindex A flag to indicate if QDB should reindex any database indexes that would
be affected by changing the collation. If any indexes exist that have a
COLLATE component, then these must be regenerated to reflect the
potentially new sorting order.

Library:
qdb

Description:
This function is used to configure special user-defined collation sequences attached to
the database, defined by Collation= entries in the configuration file. The setup()
function of each entry is invoked with the specified data and nbytes, and any error
raised by that function is returned to the client. Otherwise, the collation routine is
expected to use the data in a proprietary manner to configure itself to a new sort order.
The collation routine and the client must both know what format this configuration
data is in. You might consider use strings as a simple self-documenting extensible
format (e.g. getsubopt() style).

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

June 5, 2009 Appendix: A • QDB Client API Reference 91

qdb_collation() © 2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_query()

92 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_column_index()
Find a column by name

Synopsis:
#include <qdb/qdb.h>

int qdb_column_index(qdb_result_t *result,
const char *name);

Arguments:
result A pointer to a result structure to check.

name The name of the column to get the index number for.

Library:
qdb

Description:
This function returns the index for specified column name, name.

Returns:
>-1 The index of the specified column

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_column_name(), qdb_columns()

June 5, 2009 Appendix: A • QDB Client API Reference 93

qdb_column_name() © 2009, QNX Software Systems GmbH & Co. KG.

Return a column’s name

Synopsis:
#include <qdb/qdb.h>

char * qdb_column_name(qdb_result_t *res,
int col);

Arguments:
res A pointer to a result structure to check.

col The index of the column name to return.

Library:
qdb

Description:
This function returns the name of a specified column index col, as defined in a
database schema when the table was created.

Returns:
A pointer A pointer to the specified column’s name.

NULL An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_column_index(), qdb_columns()

94 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_columns()
Return the number of columns in a result

Synopsis:
#include <qdb/qdb.h>

int qdb_columns(qdb_result_t *res);

Arguments:
res A pointer a result structure to check.

Library:
qdb

Description:
This function returns the number of columns in the result structure res. If your query
matches 0 rows, you can still have a value greater than 0 for the number of columns.
You should use qdb_rows() to determine if the results are empty.

Returns:
>-1 The number of columns in the result set.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_column_index(), qdb_column_name()

June 5, 2009 Appendix: A • QDB Client API Reference 95

qdb_connect() © 2009, QNX Software Systems GmbH & Co. KG.

Connect to a database

Synopsis:
#include <qdb/qdb.h>

qdb_hdl_t *qdb_connect(const char *dbname,
int flags);

Arguments:
dbname The database device name (for example, /dev/qdb/customerdb).

flags Flags which can be used to control attributes of the connection. This
argument can be 0, or a combination of:

• QDB_CONN_DFLT_SHARE — Use the default database connection
share mode (as given to the -C command line option to qdb). Without
this flag, a private connection is forced.

• QDB_CONN_NONBLOCKING — If this bit is set, qdb_statement()
fails and returns immediately (setting errno to EBUSY) if the database
file is locked. By default, qdb_statement() waits for at least the busy
timeout period (set using qdb_setbusytimeout()) if the database is
locked, before failing and returning.

Setting this bit also makes subsequent calls to qdb_connect()
non-blocking (as if the -T commandline option was 0).

• QDB_CONN_STMT_ASYNC — Execute statements asynchronously.
In this mode, qdb_statement() may return before the statement has
completed execution against the database. See “Using asynchronous
mode” below.

Library:
qdb

Description:
This function connects to the database specified by dbname, and returns a pointer to
the database connection. You need to call this function for every database, or for
concurrent access to one database.

Two threads can share the same database connection, provided they coordinate
between themselves. Alternatively, each thread can call qdb_connect() and have its
own connection.

You should disconnect all connections with a call to qdb_disconnect() when you’re
finished using them.

96 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_connect()

Using asynchronous mode

By default, QDB completes execution of statements against a database before
returning from qdb_statement(). However, you can connect to QDB using
asynchronous mode by setting the QDB_CONN_STMT_ASYNC in flags.
While some errors (such as syntax errors) can be caught before qdb_statement()
returns in this mode, others, such as database constraint violations, may not be
generated until the statement is completed. These errors are available only to a
subsequent qdb_getresult() call.

The advantage of asynchronous operation is that it allows parallelism between the
client application and the database engine, especially in cases where the client will
later retrieve the statement result anyway (for example, SELECT statements). The
danger of asynchronous operation is that the client must be aware that the statement
may not necessarily have completed or indicated all errors, and must be coded to call
qdb_getresult() to retrieve any errors.

The mode you should use depends on the type of operation you are doing. If it is
primarily SELECT statements, then you can use asynchronous mode and let the
database engine run, since you are calling back in anyway for the row/results. If you
are primarily doing database maintenance (that is, INSERT, UPDATE, and DELETE

statements), then you probably want synchronous statement execution so you can just
use one API call.

Returns:
A valid pointer to an opaque database connection (qdb_hdl_t), NULL if an error
occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_disconnect(), qdb_setbusytimeout(), qdb_statement()

June 5, 2009 Appendix: A • QDB Client API Reference 97

qdb_data_source() © 2009, QNX Software Systems GmbH & Co. KG.

Extract the data source for a specific database

Synopsis:
#include <qdb/qdb.h>

int qdb_data_source(qdb_hdl_t *db,
char *buffer,
int buffer_length);

Arguments:
db A pointer to the database handle.

buffer A buffer to hold the resulting source path information.

buffer_length The length of buffer.

Library:
qdb

Description:
This function provides a path to the source used to initialize the database. This source
may be one of several paths, depending on the state of the specified database when
qdb is started and the database initialized:

• If the database is empty, the string will be empty.

• If the database is created with a schema only, the string will be the path to the
schema file used to create the database.

• If the database is created with a schema and initialized with a data schema, then the
string will be a colon delimited list of schema:data schema1[:data schema2...]

• If the database is created from an existing database that is not corrupted (and not a
backup database), then the string will be the path to that database which will be the
same as the Filename entry.

• If the database is created from a backup database, then the string will be the path to
the restoring database from one of the Backup Dir entries.

Returns:
>0 Success.

-1 An error occurred (errno is set).

98 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_data_source()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_connect()

June 5, 2009 Appendix: A • QDB Client API Reference 99

qdb_disconnect() © 2009, QNX Software Systems GmbH & Co. KG.

Disconnect from a database

Synopsis:
#include <qdb/qdb.h>

int qdb_disconnect(qdb_hdt_t *hdl);

Arguments:
hdl A pointer to the database handle to disconnect from.

Library:
qdb

Description:
This function disconnects from a database connected to previously by qdb_connect().

You should disconnect from all connections when you have finished with them.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_connect()

100 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_freeresult()
Free the result of an SQL statement

Synopsis:
#include <qdb/qdb.h>

int qdb_freeresult(qdb_result_t *res);

Arguments:
res A pointer a result structure to free.

Library:
qdb

Description:
Results returned from qdb_getresult() need to be freed using this function when
you’re finished using them.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_getresult()

June 5, 2009 Appendix: A • QDB Client API Reference 101

qdb_getdbsize() © 2009, QNX Software Systems GmbH & Co. KG.

Return the size of a database

Synopsis:
#include <qdb/qdb.h>

int qdb_getdbsize(qdb_hdt_t *hdl,
int scope,
uint32_t *page_size,
uint32_t *total_pages,
uint32_t *free_pages);

Arguments:
hdl A pointer to the database handle.

scope Describes the scope of the operation. See the description of the scope
argument to qdb_backup() for more information.

page_size A pointer to a location where the function stores the size (in bytes) of
a page in the database file.

total_pages A pointer to a location where the function stores the number of pages
in the database file.

free_pages A pointer to a location where the function stores the number of pages
that aren’t being used to store data.

Library:
qdb

Description:
This function fills in arguments with information about the size (in bytes) of the
database file associated with the database handle hdl. The size of the database on the
filesystem is page_size × total_pages.

If you vacuum the database, qdb gets rid of the free pages so that the total pages goes
down, free pages goes to 0, and the database file size becomes smaller. For more
information, see the VACUUM SQL command, qdb_vacuum() function, and the
auto_vacuum section of the PRAGMA command.

For a database to be included in the size count for a database handle, the Size
Attached option for that database file must be set to TRUE in the QDB configuration
file.

102 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_getdbsize()

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_vacuum(), PRAGMA, VACUUM

June 5, 2009 Appendix: A • QDB Client API Reference 103

qdb_geterrmsg() © 2009, QNX Software Systems GmbH & Co. KG.

Return last error

Synopsis:
#include <qdb/qdb.h>

const char * qdb_geterrmsg(qdb_hdl_t *hdl);

Arguments:
hdl A pointer to the database handle.

Library:
qdb

Description:
This function returns a pointer to a string containing an error message from the server
for the most recent call to:

• qdb_statement()

• qdb_getresult()

• qdb_getoption()

• qdb_setoption()

• qdb_busytimeout()

• qdb_vacuum()

• qdb_backup()

• qdb_getdbsize()

You typically call this function after one of the above functions fails. If the error
occurred within the SQL library, the returned string is an SQLite error message. If the
error occurred in the QDB system, the returned string is a POSIX errno message.

Returns:
A pointer to string if there is an error message, or a pointer to an empty string if there
is no error.

Classification:
QNX Neutrino

104 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_geterrmsg()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_backup(), qdb_getdbsize(), qdb_getoption(), qdb_getresult(), qdb_setoption(),
qdb_statement(), qdb_vacuum(),

June 5, 2009 Appendix: A • QDB Client API Reference 105

qdb_getoption() © 2009, QNX Software Systems GmbH & Co. KG.

Return the value for a database session option

Synopsis:
#include <qdb/qdb.h>

int qdb_getoption(qdb_hdt_t *hdl,
int option);

Arguments:
hdl A pointer to the database handle.

option The option you’d like to query. See qdb_setoption() for a list of database
options.

Library:
qdb

Description:
This function returns the value of the option for the database hdl.

Returns:
≥0 The value of the option passed, either 0 (“off”) or 1 (“on”).

-1 The specified option isn’t supported (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_setoption()

106 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_getresult()
Return the result of an SQL statement

Synopsis:
#include <qdb/qdb.h>

qdb_result_t* qdb_getresult(qdb_hdt_t *hdl);

Arguments:
hdl A pointer to the database handle

Library:
qdb

Description:
After running a SELECT statement on the database, you can retrieve its result using
this function. All rows that matched the query are returned into one result, which is
returned as a qdb_result_t structure. You can get further information about the
result using these functions:

• qdb_cell()

• qdb_cell_length()

• qdb_column_index()

• qdb_column_name()

• qdb_columns()

• qdb_printmsg()

• qdb_rows()

The result needs to be freed by calling qdb_freeresult() once you’ve finished using it.

Returns:
A pointer to the query result, or NULL if an error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 107

qdb_getresult() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_cell(), qdb_cell_length(), qdb_column_index(), qdb_column_name(),
qdb_columns(), qdb_printmsg(), qdb_rows()

108 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_gettransstate()
Return the size of a database

Synopsis:
#include <qdb/qdb.h>

int qdb_gettransstate(qdb_hdl_t *hdl);

Arguments:
hdl A pointer to the database handle.

Library:
qdb

Description:
This function returns the connection state for the current QDB connection. If the
connection is in an SQL transaction, this function returns 1, and 0 if it the connection
is not an SQL transaction. It returns -1 if there’s an SQL error (you can use
qdb_geterrmsg() to get the error string).

You can use this function to determine how to clean up after an SQL error, for
example when you execute several commands including a transaction and need to
determine which statement casued the error.

Returns:
=0 There is no SQL transaction in progress.

≥1 An SQL transaction is in progress.

-1 An SQL error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 109

qdb_gettransstate() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_geterrmsg()

110 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_last_insert_rowid()
Return the last inserted row primary key

Synopsis:
#include <qdb/qdb.h>

uint64_t qdb_last_insert_rowid(qdb_hdt_t *hdl,
qdb_result_t *result);

Arguments:
hdl A pointer to the database handle. You can pass as NULL if you provide

result, and QDB_OPTION_LAST_INSERT_ROWID option has been set by
qdb_setoption() (it’s on by default).

result A pointer to a result set you want to query. If you pass NULL, the function
queries the qdb server connection hdl for the last executed
qdb_statement().

Library:
qdb

Description:
Each entry in a QDB table has a unique integer key called the row ID. The row ID is
always available as an undeclared column named ROWID, OID, or _ROWID_. If the
table has a column of type INTEGER PRIMARY KEY, then that column is another an
alias for the rowid.

This function returns the row ID of the last INSERT. It first looks in result (if the
QDB_OPTION_LAST_INSERT_ROWID option has been set by qdb_setoption()),
returning the information for the statement that produced the result. If result is NULL,
or QDB_OPTION_LAST_INSERT_ROWID is off, the function queries the database
handle hdl and returns the information about the last executed statement.

If this function returns 0, check errno to make sure that it is EOK, indicating that no
rows were inserted (you should set errno to 0 before calling this function if you want
to distinguish between an error and 0 rows). If errno is set, then there was an error
with the request.

If an INSERT occurs within a trigger, then the rowid of the inserted row is returned by
this function as long as the trigger is running. But once the trigger terminates, the
value returned by this routine reverts to the last value inserted before the trigger fired.

Returns:
> 0 The integer primary key of the last row inserted

0 An error occurred (errno is set), or no rows were inserted.

June 5, 2009 Appendix: A • QDB Client API Reference 111

qdb_last_insert_rowid() © 2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_setoption(), qdb_statement()

112 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_mprintf()
Print formatted output to a new string

Synopsis:
#include <qdb/qdb.h>

char * qdb_mprintf(const char* fmt,...);

Arguments:
fmt A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. For more information, see
printf() in the Neutrino Library Reference.

Library:
qdb

Description:
This function is a variant of sprintf() from the standard C library. The resulting string
is written into memory obtained from malloc(), so there is never a possibility of buffer
overflow. This function also implements some additional formatting options that are
useful for constructing SQL statements.

The qdb_statement() function also allows you to format strings in this way, and
doesn’t require that you remember to free the resulting string. However, qdb_mprintf()
may be useful for building queries from multiple strings.

You should call free() to free the strings returned by this function.

All the usual printf() formatting options apply. In addition, there is a %q option. The
%q option works like %s: it substitutes a null-terminated string from the argument list.
But %q also doubles every \’ character (every escaped single quotation). %q is
designed for use inside a string literal. By doubling every \’ character, it escapes that
character and allows it to be inserted into the string.

For example, suppose some string variable contains text as follows:

char *zText = "It’s a happy day!";

You can use this text in an SQL statement as follows:

qdb_mprintf(db, "INSERT INTO table VALUES(’%q’)",
zText);

Because the %q format string is used, the \’ character in zText is escaped, and the SQL
generated is as follows:

INSERT INTO table1 VALUES(’It’’s a happy day!’)

This is correct. Had you used %s instead of %q, the generated SQL would have looked
like this:

June 5, 2009 Appendix: A • QDB Client API Reference 113

qdb_mprintf() © 2009, QNX Software Systems GmbH & Co. KG.

INSERT INTO table1 VALUES(’It’s a happy day!’);

This second example is an SQL syntax error. As a general rule, you should always use
%q instead of %s when inserting text into a string literal.

The %Q option works like %q except that it also adds single quotes around the outside
of the total string. Or, if the parameter in the argument list is a NULL pointer, %Q
substitutes the text "NULL" (without single quotes) in place of the %Q option. So, for
example, one could say:

char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
sqlite3_exec(db, zSQL, 0, 0, 0);
sqlite3_free(zSQL);

The code above will render a correct SQL statement in the zSQL variable even if the
zText variable is a NULL pointer.

Returns:
An escaped string Success.

NULL An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_snprintf(), qdb_vmprintf(), printf() in the Neutrino Library Reference

114 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_parameters()
Get or set database connection parameters

Synopsis:
#include <qdb/qdb.h>

int qdb_parameters(qdb_hdl_t *db,
int mask,
int bits);

Arguments:
db A pointer to the database handle.

mask A bitmask of the bits you want to set or unset.

bits The bits you want to set. If a bit is in mask but not in bits, it’s knocked
down.

Library:
qdb

Description:
This function queries or modifies the database connection parameters. You can set or
unset the QDB_CONN_BLOCK_FOREVER and QDB_CONN_STMT_ASYNC
parameters (see the description of the flags argument passed to qdb_connect() for a
description of these flags). You can’t change the QDB_CONN_DFLT_SHARE flag. The
function returns the value of the old flags, so they can be temporarily changed and
restored.

Returns:
>-1 The value of the old flags.

-1 An error occurred.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 115

qdb_parameters() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_connect()

116 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_printmsg()
Print data from a query result

Synopsis:
#include <qdb/qdb.h>

int qdb_printmsg(FILE *file,
qdb_result_t *result,
int format);

Arguments:
file A file handle where the function can send the results.

result The query result you want to print.

format The format you want the results in. Can be one of:

• QDB_FORMAT_SIMPLE — minimal formatting.

• QDB_FORMAT_HTML — HTML formatting, suitable for viewing in a
web browser.

• QDB_FORMAT_COLUMN — column formatting, so that results appear
under column names.

Library:
qdb

Description:
This function prints the results of an SQL SELECT query on a QDB database. You
must specify a standard file stream, such as stdout.

Returns:
>0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL Invalid format specified

Classification:
QNX Neutrino

June 5, 2009 Appendix: A • QDB Client API Reference 117

qdb_printmsg() © 2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_mprintf()

118 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_query()
Perform a database query

Synopsis:
#include <qdb/qdb.h>

qdb_result_t *qdb_query(
qdb_hdl_t *db,
int size_hint,
const char *fmt, ...);

Arguments:
db A pointer to the database handle.

size_hint An estimate (in bytes) of how much memory to initially allocate to
receive the database result. Specifying a value of 0 will use a default
initial setting. If you know the rough order of magnitude of the result in
advance (either very small or very large), then you can improve
performance by specifying that value in the size_hint. In all cases, the
full result will be received.

fmt A string that controls the format of the output, as described in
qdb_statement().

Library:
qdb

Description:
This convenience function provides a single-interface alternative to calling
qdb_statement() and qdb_getresult(), and offers a potential performance improvement
if the statement and result communication can be made with a single context switch.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

June 5, 2009 Appendix: A • QDB Client API Reference 119

qdb_query() © 2009, QNX Software Systems GmbH & Co. KG.

See also:
qdb_statement(), qdb_getresult()

120 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_rowchanges()
Return the number of rows affected by a statement

Synopsis:
#include <qdb/qdb.h>

uint64_t qdb_rowchanges(qdb_hdt_t *hdl
qdb_result_t *result);

Arguments:
hdl A pointer to the database handle. You can pass as NULL if you provide

result, and QDB_OPTION_ROW_CHANGES option has been set by
qdb_setoption() (it’s on by default).

result A pointer to a result set you want to query. If you pass NULL, the function
queries the result from the last executed qdb_statement() on hdl.

Library:
qdb

Description:
This function returns the number of rows that were affected in a statement. It first
looks in result (if the QDB_OPTION_ROW_CHANGES option has been set by
qdb_setoption()), returning the number of rows for the statement that produced the
result. If result is NULL, or QDB_OPTION_ROW_CHANGES is off, the function
queries the database handle hdl and returns the information about the last executed
statement.

If this function returns 0, check errno to make sure that it is EOK, indicating that no
row was affected (you should set errno to 0 before calling this function if you want to
distinguish between an error and 0 rows). If errno is not EOK then there was an error
with the request.

Returns:
> 0 The number of rows affected

0 An error occurred (errno is set), or 0 rows were affected.

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

June 5, 2009 Appendix: A • QDB Client API Reference 121

qdb_rowchanges() © 2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
qdb_setoption(), qdb_statement()

122 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_rows()
Return the number of rows in a result

Synopsis:
#include <qdb/qdb.h>

int qdb_rows(qdb_result_t *res);

Arguments:
res A pointer a result structure to check.

Library:
qdb

Description:
This function returns the number of rows in the result. If your query matched no rows
in the database, then this function returns 0.

Returns:
>-1 The number of rows in the result set.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_rowchanges()

June 5, 2009 Appendix: A • QDB Client API Reference 123

qdb_setbusytimeout() © 2009, QNX Software Systems GmbH & Co. KG.

Set the busy timeout delay for a database connection

Synopsis:
#include <qdb/qdb.h>

int qdb_setbusytimeout(qdb_hdt_t *hdl,
int timeout);

Arguments:
hdl A pointer to the database handle to set the timeout for.

timeout The timeout delay, in ms. This value may also be:

• QDB_TIMEOUT_NONBLOCK — the equivalent of a 0 timeout. This
means that calls to qdb_statement() return immediately with failure if
the database file is locked.

• QDB_TIMEOUT_BLOCK — the equivalent of an infinite timeout
period. Calls to qdb_statement() will wait forever, or until the
database is unlocked and the call succeeds.

Library:
qdb

Description:
This function sets the busy timeout delay for the database connection specified by hdl.
The initial value is specified on the qdb commandline with the -t option, with a
default of 5000 ms. Specifying a value of 0 is the same as
QDB_TIMEOUT_NONBLOCK.

The timeout is the amount of time that a client will attempt to access a database before
it returns EBUSY. If two clients attempt to write to the database, for example, the
database is locked while the first client is writing, and the second client’s attempt will
fail if the busy timeout period expires.

The QDB_CONN_NONBLOCKING flag bit is affected by the timeout value. If you set
or toggle QDB_CONN_NONBLOCKING, the busy timeout value itself is set to 0 or
back to the -t default. Similarly, if you set the timeout to be
QDB_TIMEOUT_NONBLOCK, the QDB_CONN_NONBLOCKING bit is set.

(The QDB_CONN_NONBLOCKING flag bit is set with qdb_connect() and toggled
with qdb_parameters().)

124 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_setbusytimeout()

Returns:
≥0 Success. The previous busy timeout setting is returned.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_connect(), qdb_parameters(), qdb_statement()

June 5, 2009 Appendix: A • QDB Client API Reference 125

qdb_setoption() © 2009, QNX Software Systems GmbH & Co. KG.

Set an option for a database connection

Synopsis:
#include <qdb/qdb.h>

int qdb_setoption(qdb_hdt_t *hdl,
int option,
int value);

Arguments:
hdl A pointer to the database handle to set the option for.

option The option to set; can be one of:

• QDB_OPTION_LAST_INSERT_ROWID — automatically put the last
inserted ROWID into any result you fetch. If this option isn’t set, that
data isn’t included in the result structure, and calling
qdb_last_insert_rowid() will query the database connection for this
information instead.

By default, this option is on.

• QDB_OPTION_ROW_CHANGES — put the number of rows affected by
a statement into any result you fetch. If this option isn’t set, that data
isn’t included in the result structure, and calling qdb_rowchanges() will
query the database connection for this information instead.

By default, this option is on.

• QDB_OPTION_COLUMN_NAMES — populate the column names into
the qdb_result_t that is returned from qdb_getresult(). If this option
isn’t set, that data isn’t provided, and calling qdb_column_index()
won’t work.

By default, this option is on.

value The value to set the option to: either 0 ("off") or 1 ("on").

Library:
qdb

Description:
This function sets options for the database connection hdl. By default, all of these
options are on.

Returns:
≥0 Success. The previous value for option is returned.

-1 The option specified isn’t supported (errno is set).

126 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_setoption()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_column_index(), qdb_getresult(), qdb_last_insert_rowid(), qdb_rowchanges()

June 5, 2009 Appendix: A • QDB Client API Reference 127

qdb_snprintf() © 2009, QNX Software Systems GmbH & Co. KG.

Print formatted output to a string, up to a given maximum number of characters

Synopsis:
#include <qdb/qdb.h>

char * qdb_snprintf(int n,
char *buf,
const char *format, ...);

Arguments:
n The maximum number of characters to store in the buffer, including a

terminating null character. The function will always write a
zero-terminator if n is positive.

buf A pointer to the buffer where you want the function to store the formatted
string.

format A pointer to a formatting string to process. The formatting string
determines what additional arguments you need to provide. For more
information, see printf() in the Neutrino Library Reference.

Library:
qdb

Description:
This function is a variant of the snprintf() from the standard C library. However, it is
different from snprintf() in these ways:

• qdb_snprintf() returns a pointer to the buffer rather than the number of characters
written

• the order of the n and buf parameters is reversed

• qdb_snprintf() always writes a zero-terminator if n is positive

For more information about additional formatting options, see qdb_mprintf().

CAUTION: You shouldn’t use the return value of this function. In future versions, it
may be changed to return the number of characters written rather than a pointer to the
buffer.

!

Returns:
A pointer to buf Success.

NULL An error occurred (errno is set).

128 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_snprintf()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_mprintf(), printf() in the Neutrino Library Reference

June 5, 2009 Appendix: A • QDB Client API Reference 129

qdb_statement() © 2009, QNX Software Systems GmbH & Co. KG.

Execute an SQL statement

Synopsis:
#include <qdb/qdb.h>

int qdb_statement(qdb_hdt_t *hdl,
const char *format,]
...);

Arguments:
hdl A pointer to the database handle.

format A string that controls the format of the output, as described below. The
formatting string determines what additional arguments you need to
provide. The string that results from the combination of format and the
additional arguments is executed as a statement on the database referred to
by hdl.

Library:
qdb

Description:
This function executes against the database all statements in the string generated by
the combination of format and any additional arguments. A statement must be
completed with a semicolon. The string may contain multiple statements as long as
they are separated by semicolons. There’s no arbitrary restriction on the length of the
command string.

The format string and additional arguments work in the same way as the arguments for
printf(), and all the same conversion specifiers apply. There are additional conversion
type specifiers, %q and %Q, which in general should be used instead of %s for inserting
text into a literal string. The %q type specifier properly escapes special characters for
SQL. For more information, see qdb_mprintf().

If you are passing in multiple statements, the function returns the number of affected
rows only for the last statement.

By default, the SQL statement is executed on the database before qdb_statement()
returns. However, if the connection is in asynchronous mode, this function can return
before the statement is executed, and it may not report errors. In this case, you need to
call qdb_getresult() to retrieve any errors generated by the statement. For more
information, see “Using asynchronous mode” in qdb_connect().

130 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_statement()

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_mprintf(), qdb_vmprintf(), printf() in the Neutrino Library Reference

June 5, 2009 Appendix: A • QDB Client API Reference 131

qdb_stmt_exec() © 2009, QNX Software Systems GmbH & Co. KG.

Execute a precompiled statement

Synopsis:
#include <qdb/qdb.h>

int qdb_stmt_exec(qdb_hdl_t *hdl,
int stmtid,
qdb_binding_t *bindings,
uint8_t binding_count);

Arguments:
hdl A pointer to the database handle.

stmtid The ID of a pre-compiled statement, returned by qdb_stmt_init().

bindings An array of qdb_binding_t structures filled in with pointers to
data that will be bound in to the variable parameters in the
pre-compiled statement. See below.

binding_count The number of items in bindings.

Library:
qdb

Description:
This function executes a precompiled statement that was previously prepared with
qdb_stmt_init().

The qdb_binding_t structure

The qdb_binding_t structure has at least these members:

int index The index of the variable parameter in the precompiled statement that
this data should be bound to. The placeholder is in the form of ?n,
where n is a number between 1 and 999.

int type The type of the data. Can be one of: QDB_NULL, QDB_BLOB,
QDB_TEXT, QDB_INTEGER, or QDB_REAL.

int len The length of the data argument. This number should exclude ’\0’
for QDB_TEXT, should be sizeof(uint64_t) for QDB_INTEGER
and sizeof(double) for QDB_REAL.

void *data A pointer to the data to be bound in.

You can initialize an instance of qdb_binding_t using one of the convenience
macros below. In the macro prototypes, bind is the address of the qdb_binding_t
structure, i is the index member, t is the type member, l is the len member, and d is the
data:

132 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_stmt_exec()

QDB_SETBIND(bind, i, t, l, d)

Bind in any type of data.
QDB_SETBIND_INT(bind, i, d)

Bind in an integer.

QDB_SETBIND_NULLbind, i)

Bind in NULL.

QDB_SETBIND_TEXT(bind, i, d)

Bind in text.

There is a limit to the amount of data that can be sent to a database when using
qdb_stmt_exec(). This limit is the lesser of the following values:

• the limits set by the database

• x = 231 - (binding_count + 1) × 12, where x is the data limit, in bytes

Returns:
>0 Success.

-1 An error occurred (errno is set).

Examples:
See qdb_stmt_init().

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_stmt_free(), qdb_stmt_init()

June 5, 2009 Appendix: A • QDB Client API Reference 133

qdb_stmt_free() © 2009, QNX Software Systems GmbH & Co. KG.

Free a precompiled statement

Synopsis:
#include <qdb/qdb.h>

int qdb_stmt_free(qdb_hdl_t *hdl,
int stmtid)

Arguments:
hdl A pointer to the database handle.

stmtid The ID of a pre-compiled statement to free, returned by qdb_stmt_init().

Library:
qdb

Description:
This function frees a statement previously compiled by qdb_stmt_init(). It’s not
strictly necessary to call this function, as all precompiled statements are freed when
you call qdb_disconnect().

Returns:
>0 Success.

-1 An error occurred (errno is set).

Examples:
See qdb_stmt_init().

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

134 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_stmt_free()

See also:
qdb_stmt_exec(), qdb_stmt_init()

June 5, 2009 Appendix: A • QDB Client API Reference 135

qdb_stmt_init() © 2009, QNX Software Systems GmbH & Co. KG.

Initialize a precompiled statement

Synopsis:
#include <qdb/qdb.h>

int qdb_stmt_init(qdb_hdl_t *hdl,
const char *sql,
uint32_t len)

Arguments:
hdl A pointer to the database handle.

sql An SQL statement. This statement may contain variable parameters of the
form ?n, where n is a number between 1 and 999. These placeholders can be
filled in with data on a subsequent call to qdb_stmt_exec(). Parameters that
aren’t filled in are interpreted as NULL. For more informatin, see
“Parameters” in the description of expressions, in the appendix: SQL
Expressions Reference.

len The length of sql.

Library:
qdb

Description:
This function initializes a prepared (precompiled) SQL statement. A prepared
statement is compiled once, and can be executed multiple times (with calls to
qdb_stmt_exec()). This function returns a statement ID for the precompiled statement,
which you need to pass in to qdb_stmt_exec().

QDB executes precompiled statements faster than uncompiled statements, so this
approach can optimize your application’s performance when executing frequently
used statements.

You can free precompiled statements using qdb_stmt_free(), although all precompiled
statements are freed when you call qdb_disconnect().

Returns:
>0 Success. The returned value is the prepared statement ID, which you pass to

qdb_stmt_exec() and qdb_stmt_free().

-1 An error occurred (errno is set).

136 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_stmt_init()

Examples:
The following code snippet shows how you could compile and execute a simple
statement:
int stmtid;
qdb_binding_t qbind[2];
uint64_t msid, limit;

const char *sql = "SELECT fid FROM library WHERE msid=?1 LIMIT ?2;";

stmtid = qdb_stmt_init(db, sql, strlen(sql)+1);

if (stmtid == -1) {
// Could not compile
return -1;

}

msid = 1;
limit = 10;
QDB_SETBIND_INT(&qbind[0], 1, msid);
QDB_SETBIND_INT(&qbind[1], 2, limit);

if (qdb_stmt_exec(db, stmtid, qbind, 2) == -1) {
// Could not execute
return -1;

}

qdb_stmt_free(db, stmtid);

Note the +1 added to the length of the string returned by strlen(); this sends QDB the
final NULL character required of a valid string.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_stmt_exec(), qdb_stmt_free()

June 5, 2009 Appendix: A • QDB Client API Reference 137

qdb_vacuum() © 2009, QNX Software Systems GmbH & Co. KG.

Vacuum a database

Synopsis:
#include <qdb/qdb.h>

int qdb_vacuum (qdb_hdt_t *hdl,
int scope);

Arguments:
hdl A pointer to the database handle.

scope Describes the scope of the operation. See the description of the scope
argument to qdb_backup() for more information.

Library:
qdb

Description:
This function starts a vacuum operation on the specified database, as well as any
auto-attached databases (databases listed in the specified datases’s .aa file). This is an
alternative to using the VACUUM command for each database.

You can call qdb_getdbsize() to determine whether a database should be vacuumed.

If the auto-vacuum mode is set (see the PRAGMA SQL command for details),
databases are vacuumed whenever free space is created. By default, auto-vacuum
mode is off.

Returns:
>0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

138 Appendix: A • QDB Client API Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. qdb_vacuum()

See also:
VACUUM

June 5, 2009 Appendix: A • QDB Client API Reference 139

qdb_vmprintf() © 2009, QNX Software Systems GmbH & Co. KG.

Print formatted output to a new string

Synopsis:
#include <qdb/qdb.h>

char * qdb_vmprintf(const char* fmt,
va_list arg);

Arguments:
fmt A pointer to a formatting string to process. The formatting string determines

what additional arguments you need to provide. For more information, see
printf() in the Neutrino Library Reference.

arg A variable-argument list of the additional arguments, which you must have
initialized with the va_start() macro.

Library:
qdb

Description:
This function is a variant of the vsprintf() from the standard C library. For more
information about additional formatting options, see qdb_mprintf().

Returns:
An formatted string, or NULL if an error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
qdb_mprintf(), qdb_snprintf(), printf(), va_start() and vsprint() in the Neutrino
Library Reference

140 Appendix: A • QDB Client API Reference June 5, 2009

Appendix B

QDB SQL Reference

June 5, 2009 Appendix: B • QDB SQL Reference 141

© 2009, QNX Software Systems GmbH & Co. KG.

QDB supports a sub-set of ANSI SQL-92. This appendix provides information about
supported capabilities, organized into the following topis:

• General information

• Information about Statements

General
General information is organized into the following topics:

• Row ID and Autoincrement

• Comments

• Expressions

• Keywords

Statements
The statements described in this appendix are:

• ALTER TABLE

• ANALYZE

• ATTACH DATABASE

• CREATE INDEX

• CREATE TABLE

• CREATE TRIGGER

• CREATE VIEW

• DELETE

• DETACH DATABASE

• DROP INDEX

• DROP TABLE

• DROP TRIGGER

• DROP VIEW

• EXPLAIN

• INSERT

• ON CONFLICT

• PRAGMA

June 5, 2009 Appendix: B • QDB SQL Reference 143

© 2009, QNX Software Systems GmbH & Co. KG.

• REINDEX

• REPLACE

• SELECT

• TRANSACTION

• UPDATE

• VACUUM

144 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Row ID and Autoincrement
Automatically incrementing values

Description:
In QDB, every row of every table has a 64-bit signed integer row ID. The row ID for
each row is unique among all rows in the same table.

You can access the row ID of an QDB table using one the special column names
ROWID, _ROWID_, or OID. However, if you declare an ordinary table column to use
one of those special names, then the use of that name refers to the declared column,
not to the internal row ID.

If a table contains a column of type INTEGER PRIMARY KEY, then that column
becomes an alias for the row ID. You can then access the row ID using any of four
different names: the original three names described above, or the name given to the
INTEGER PRIMARY KEY column. All these names are aliases for one another and
work equally well in any context.

When you insert a new row into a QDB table, you can either specify the row ID as part
of the INSERT statement, or the database engine can assign it automatically. To specify
a row ID manually, just include it in the list of values to be inserted. For example:

CREATE TABLE test1(a INT, b TEXT);
INSERT INTO test1(rowid, a, b) VALUES(123, 5, ’hello’);

If no row ID is specified on the insert, an appropriate row ID is created automatically.
By default, QDB gives the newly created row a row ID that is one larger than the
largest row ID in the table prior to the insert. If the table is initially empty, then QDB
uses a row ID of 1. If the largest row ID is equal to the largest possible integer
(9223372036854775807), then the database engine starts picking candidate IDs at
random until it finds one that isn’t previously used.

The normal row ID selection algorithm described above will generate monotonically
increasing unique row IDs as long as you never use the maximum row ID value and
you never delete the entry in the table with the largest row ID. If you ever delete rows
or if you ever create a row with the maximum possible row ID, then row IDs from
previously deleted rows might be reused when creating new rows, and newly created
row IDs might not be in strictly ascending order.

The AUTOINCREMENT Keyword

If a column has the type INTEGER PRIMARY KEY AUTOINCREMENT then a slightly
different row ID selection algorithm is used. The row ID chosen for the new row is
one larger than the largest row ID that has ever before existed in that same table. If the
table has never before contained any data, then the database engine uses a row ID of 1.
If the table has previously held a row with the largest possible row ID, then new
INSERTs are not allowed, and any attempt to insert a new row fails with a QDB_FULL
error.

QDB keeps track of the largest row ID that a table has ever held using the special
QDB_SEQUENCE table. The QDB_SEQUENCE table is created and initialized
automatically whenever a normal table that contains an AUTOINCREMENT column is

June 5, 2009 Appendix: B • QDB SQL Reference 145

Row ID and Autoincrement © 2009, QNX Software Systems GmbH & Co. KG.

created. The content of the QDB_SEQUENCE table can be modified using ordinary
UPDATE, INSERT, and DELETE statements. But make sure you know what you are
doing before you undertake such changes — making modifications to this table will
likely perturb the AUTOINCREMENT key generation algorithm.

The behavior implemented by the AUTOINCREMENT keyword is subtly different from
the default behavior. With AUTOINCREMENT, rows with automatically selected row
IDs are guaranteed to have row IDs that have never been used before by the same table
in the same database. And the automatically generated row IDs are guaranteed to be
monotonically increasing. These are important properties in certain applications. But
if your application does not require this behavior, you should probably stay with the
default behavior, since the use of AUTOINCREMENT requires QDB to perform
additional work as each row is inserted and thus causes INSERTs to run a little more
slowly.

146 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Comment
SQL comment

Synopsis:
-- single-line

/* multiple-lines [*/]

Description:
Comments aren’t SQL commands, but can occur in SQL queries. They are treated as
whitespace by the parser. They can begin anywhere whitespace can be found,
including inside expressions that span multiple lines.

SQL comments extend only to the end of the current line.

C comments can span any number of lines. If there is no terminating delimiter, they
extend to the end of the input. This is not treated as an error. A new SQL statement
can begin on a line after a multiline comment ends. C comments can be embedded
anywhere whitespace can occur, including inside expressions, and in the middle of
other SQL statements. C comments do not nest. SQL comments inside a C comment
will be ignored.

June 5, 2009 Appendix: B • QDB SQL Reference 147

expressions © 2009, QNX Software Systems GmbH & Co. KG.

SQL expressions

Synopsis:

expr binary-op expr |
expr [NOT] { LIKE | GLOB } expr [ESCAPE expr] |
unary-op expr |
(expr) |
[[database-name .] [table-name .] column-name |
literal-value |
parameter |
function-name (expr-list | *) |
expr ISNULL |
expr NOTNULL |
expr [NOT] BETWEEN expr AND expr |
expr [NOT] IN (value-list) |
expr [NOT] IN (select-statement) |
expr [NOT] IN [database-name .] table-name |
[EXISTS] (select-statement) |
CASE [expr] (WHEN expr THEN expr)+ [ELSE expr] END |
CAST (expr AS type)
expr COLLATE collation-name

Description:
SQL expressions are subcomponents of most other commands. QDB understands the
following binary operators, in order from highest to lowest precedence:

||
* / %
+ -
<< >> & |
< <= > >=
= == != <> IN
AND
OR

The supported unary prefix operators are:

- + ! ˜ NOT

The COLLATE operator can be thought of as a unary postfix operator. The COLLATE
operator has the highest precedence. It always binds more tightly than any prefix
unary operator or any binary operator.

The unary operator [Operator +] is a no-op. It can be applied to strings, numbers, or
blobs and it always gives as its result the value of the operand.

Note that there are two variations of the equals and not equals operators. Equals can be
either = or ==. The non-equals operator can be either != or <>. The || operator is
“concatenate” — it joins together the two strings of its operands. The operator %
outputs the remainder of its left operand modulo its right operand.

148 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. expressions

The result of any binary operator is a numeric value, except for the || concatenation
operator, which gives a string result.

Literal values

A literal value is an integer number or a floating point number. Scientific notation is
supported. The “.” character is always used as the decimal point even if the locale
setting specifies “,” for this role — the use of “,” for the decimal point would result in
syntactic ambiguity. A string constant is formed by enclosing the string in single
quotation marks (’). A single quotation mark within the string can be encoded by
putting two single quotes in a row, as in Pascal. C-style escapes using the backslash
character are not supported because they are not standard SQL. BLOB literals are
string literals containing hexadecimal data and preceded by a single “x” or “X”
character. For example:

X’53514697465’

A literal value can also be the token NULL.

Parameters

A parameter specifies a placeholder in the expression for a literal value that is filled in
at runtime using qdb_stmt_exec(). Parameters can take several forms:

?NNN A question mark followed by a number, NNN, holds a spot for the
NNN-th parameter. NNN must be between 1 and 999.

? A question mark that is not followed by a number holds a spot for the
next unused parameter.

:AAAA A colon followed by an identifier name holds a spot for a named
parameter with the name AAAA. Named parameters are also numbered.
The number assigned is the next unused number. To avoid confusion, it is
best to avoid mixing named and numbered parameters.

@AAAA An “at” sign works exactly like a colon.

$AAAA A dollar-sign followed by an identifier name also holds a spot for a
named parameter with the name AAAA. The identifier name in this case
can include one or more occurrences of "::" and a suffix enclosed in
“(...)” containing any text at all. This syntax is the form of a variable
name in the Tcl programming language.

Parameters that are not assigned values using qdb_stmt_exec() are treated as NULL.

LIKE

The LIKE operator does a pattern-matching comparison. The operand to the right
contains the pattern; the left-hand operand contains the string to match against the
pattern.

June 5, 2009 Appendix: B • QDB SQL Reference 149

expressions © 2009, QNX Software Systems GmbH & Co. KG.

A percent symbol(%) in the pattern matches any sequence of zero or more characters
in the string. An underscore (_) in the pattern matches any single character in the
string. Any other character matches itself or its lower/upper case equivalent (i.e.
case-insensitive matching). (A bug: QDB understands only upper/lower case for 7-bit
Latin characters. Hence the LIKE operator is case sensitive for 8-bit iso8859
characters or UTF-8 characters. For example, the expression ’a’ LIKE ’A’ is TRUE
but ’æ’ LIKE ’Æ’ is FALSE.).

If the optional ESCAPE clause is present, then the expression following the ESCAPE
keyword must evaluate to a string consisting of a single character. This character may
be used in the LIKE pattern to include literal percent or underscore characters. The
escape character followed by a percent symbol, underscore or itself matches a literal
percent symbol, underscore or escape character in the string, respectively. The infix
LIKE operator is implemented by calling the user function like(X,Y).

GLOB

The GLOB operator is similar to LIKE, but uses the UNIX file-globbing syntax for its
wildcards. Also, GLOB is case sensitive, unlike LIKE. Both GLOB and LIKE may be
preceded by the NOT keyword to invert the sense of the test. The infix GLOB operator is
implemented by calling the user function glob(X,Y) and can be modified by overriding
that function.

Column Names

A column name can be any of the names defined in the CREATE TABLE statement or
one of the following special identifiers: ROWID, OID, or _ROWID_. These special
identifiers all describe the unique random integer key (the row key) associated with
every row of every table. The special identifiers only refer to the row key if the
CREATE TABLE statement does not define a real column with the same name. Row
keys act like read-only columns. A row key can be used anywhere a regular column
can be used, except that you cannot change the value of a row key in an UPDATE or
INSERT statement. SELECT * ... does not return the row key.

SELECT statements

SELECT statements can appear in expressions as either the right-hand operand of the
IN operator, as a scalar quantity, or as the operand of an EXISTS operator. As a scalar
quantity or the operand of an IN operator, the SELECT should have only a single
column in its result. Compound SELECTs (connected with keywords like UNION or
EXCEPT) are allowed. With the EXISTS operator, the columns in the result set of the
SELECT are ignored and the expression returns TRUE if one or more rows exist and
FALSE if the result set is empty. If no terms in the SELECT expression refer to value in
the containing query, then the expression is evaluated once prior to any other
processing and the result is reused as necessary. If the SELECT expression does contain
variables from the outer query, then the SELECT is reevaluated every time it is needed.

When a SELECT is the right operand of the IN operator, the IN operator returns TRUE
if the result of the left operand is any of the values generated by the select. The IN
operator may be preceded by the NOT keyword to invert the sense of the test.

150 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. expressions

When a SELECT appears within an expression but is not the right operand of an IN

operator, then the first row of the result of the SELECT becomes the value used in the
expression. If the SELECT yields more than one result row, all rows after the first are
ignored. If the SELECT yields no rows, then the value of the SELECT is NULL.

CAST

A CAST expression changes the datatype of the expr into the type specified by type,
where type can be any nonempty type name that is valid for the type in a column
definition of a CREATE TABLE statement.

Functions

Both simple and aggregate functions are supported. A simple function can be used in
any expression. Simple functions return a result immediately based on their inputs.
Aggregate functions may only be used in a SELECT statement. Aggregate functions
compute their result across all rows of the result set.

Core Functions

The functions shown below are available by default.

abs(X) Return the absolute value of argument X.

coalesce(X,Y ,...) Return a copy of the first non-NULL argument. If all arguments
are NULL, then NULL is returned. There must be at least 2
arguments.

glob(X,Y) This function is used to implement the X GLOB Y syntax of
QDB.

hex(X) The argument is interpreted as a BLOB. The result is a
hexadecimal rendering of the content of that blob.

ifnull(X,Y) Return a copy of the first non-NULL argument. If both
arguments are NULL, then NULL is returned. This behaves the
same as coalesce() above.

last_insert_rowid()

Return the row ID of the last row inserted from this connection
to the database. This is the same value that would be returned
from the qdb_last_insert_rowid().

length(X) Return the string length of X in characters.

like(X,Y [,Z]) This function is used to implement the X LIKE Y [ESCAPE

Z]" syntax of SQL. If the optional ESCAPE clause is present,
then the user-function is invoked with three arguments.
Otherwise, it is invoked with two arguments only.

lower(X) Return a copy of string X will all characters converted to lower
case.

June 5, 2009 Appendix: B • QDB SQL Reference 151

expressions © 2009, QNX Software Systems GmbH & Co. KG.

ltrim(X [,Y]) Return a string formed by removing any and all characters that
appear in Y from the left side of X. If the Y argument is omitted,
spaces are removed.

max(X,Y ,...) Return the argument with the maximum value. Arguments may
be strings in addition to numbers. The maximum value is
determined by the usual sort order. Note that max() is a simple
function when it has 2 or more arguments but converts to an
aggregate function if given only a single argument.

min(X,Y ,...) Return the argument with the minimum value. Arguments may
be strings in addition to numbers. The minimum value is
determined by the usual sort order. Note that min() is a simple
function when it has 2 or more arguments but converts to an
aggregate function if given only a single argument.

nullif (X,Y) Return the first argument if the arguments are different,
otherwise return NULL.

quote(X) This routine returns a string which is the value of its argument
suitable for inclusion into another SQL statement. Strings are
surrounded by single-quotes with escapes on interior quotes as
needed. BLOBs are encoded as hexadecimal literals. The
current implementation of VACUUM uses this function. The
function is also useful when writing triggers to implement
undo/redo functionality.

random(*) Return a random integer between -2147483648 and
+2147483647.

randomblob(N) Return a N-byte blob containing pseudo-random bytes. N
should be a postive integer.

replace(X,Y ,Z) Return a string formed by substituting string Z for every
occurrance of string Y in string X. The BINARY collating
sequence is used for comparisons.

round(X[, Y]) Round off the number X to Y digits to the right of the decimal
point. If the Y argument is omitted, 0 is assumed.

rtrim(X [,Y]) Return a string formed by removing any and all characters that
appear in Y from the right side of X. If the Y argument is
omitted, spaces are removed.

soundex(X) Compute the soundex encoding of the string X. The string
"?000" is returned if the argument is NULL.

sqlite_version() Return the version string for the SQLite library that is running.
Example: "2.8.0"

152 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. expressions

substr(X,Y ,Z) Return a substring of input string X that begins with the Y-th
character and which is Z characters long. The left-most
character of X is number 1. If Y is negative the first character of
the substring is found by counting from the right rather than the
left. QDB is configured to support UTF-8, so characters indices
refer to actual UTF-8 characters, not bytes.

trim(X [,Y]) Return a string formed by removing any and all characters that
appear in Y from both sides of X. If the Y argument is omitted,
spaces are removed.

typeof (X) Return the type of the expression X. The possible return values
are

• "null"

• "integer"

• "real"

• "text"

• "blob"

QDB’s type handling is explained in the chapter Datatypes in
QDB.

upper(X) Return a copy of input string X converted to all upper-case
letters. The implementation of this function uses the C library
routine toupper() which means it may not work correctly on
UTF-8 strings.

Aggregate Functions

In any aggregate function that takes a single argument, that argument can be preceded
by the keyword DISTINCT. In such cases, duplicate elements are filtered before being
passed into the aggregate function. For example, the function count(distinct X)
will return the number of distinct values of column X instead of the total number of
non-NULL values in column X.

avg(X) Return the average value of all non-NULL X within a group. String and
BLOB values that don’t look like numbers are interpreted as 0. The
result of avg() is always a floating point value, even if all inputs are
integers.

count(X) The first form returns the number of times that X is not NULL in a group.
The second form (with no argument) returns the total number of rows in
the group.

max(X) Return the maximum value of all values in the group. The usual sort
order is used to determine the maximum.

June 5, 2009 Appendix: B • QDB SQL Reference 153

expressions © 2009, QNX Software Systems GmbH & Co. KG.

min(X) Return the minimum non-NULL value of all values in the group. The
usual sort order is used to determine the minimum. NULL is returned
only if all values in the group are NULL.

sum(X)
total(X) Return the numeric sum of all non-NULL values in the group. If there

are no non-NULL input rows or all values are NULL, then sum() returns
NULL, and total() returns 0.0. NULL is not normally a helpful result for
the sum of now rows, but the SQL standard requires it, and most other
SQL database engines implement sum() that way, so QDB does it in the
same way in order to be compatible. The total() function is provided as a
convenient way to work around this design problem in the SQL
language.

The result of total() is always a floating point value. The result of sum()
is an integer value if all non-NULL inputs are integers. If any input to
sum() is neither an integer or a NULL, then sum() returns a floating point
value which might be an approximation to the true sum.

The sum() function throws an “integer overflow” exception if all inputs
are integers or NULL and an integer overflow occurs at any point during
the computation. The total() function never throws an exception.

154 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. QDB Keywords
SQL keywords recognized by QDB

Description:
The SQL standard specifies a huge number of keywords that you can not use as the
names of tables, indexes, columns, databases, user-defined functions, collations,
virtual table modules, or any other named object. The list of keywords is so long that
few people can remember them all. For most SQL code, your safest bet is to never use
any word in the English language as the name of a user-defined object.

If you want to use a keyword as a name, you need to quote it. There are three ways of
quoting keywords in QDB:

’keyword’ A keyword in single quotes is interpreted as a literal string if it
occurs in a context where a string literal is allowed, otherwise it is
understood as an identifier.

"keyword" A keyword in double-quotes is interpreted as an identifier if it
matches a known identifier. Otherwise it is interpreted as a string
literal.

[keyword] A keyword enclosed in square brackets is always understood as an
identifier. This is not standard SQL. This quoting mechanism is used
by MS Access and SQL Server and is included in QDB for
compatibility.

Quoted keywords are unaesthetic. To help you avoid them, QDB allows many
keywords to be used unquoted as the names of databases, tables, indices, triggers,
views, columns, user-defined functions, collations, attached databases, and virtual
function modules. In the list of keywords that follows, keywords that can be used as
identifiers are shown in italics. Keywords that must be quoted in order to be used as
identifiers are shown in bold.

QDB adds new keywords from time to time when it take on new features. So to
prevent your code from being broken by future enhancements, you should normally
quote any identifier that is a word in English, even if you do not have to.

The following are the keywords currently recognized by QDB:

ABORT
ADD
AFTER
ALL
ALTER
ANALYZE
AND
AS
ASC
ATTACH

AUTOINCREMENT
BEFORE
BEGIN
BETWEEN
BY
CASCADE
CASE
CAST
CHECK
COLLATE

COMMIT
CONFLICT
CONSTRAINT
CREATE
CROSS
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
DATABASE
DEFAULT

June 5, 2009 Appendix: B • QDB SQL Reference 155

QDB Keywords © 2009, QNX Software Systems GmbH & Co. KG.

DEFERRABLE
DEFERRED
DELETE
DESC
DETACH
DISTINCT
DROP
EACH
ELSE
END
ESCAPE
EXCEPT
EXCLUSIVE
EXPLAIN
FAIL
FOR
FOREIGN
FROM
FULL
GLOB
GROUP
HAVING
IF
IGNORE
IMMEDIATE
IN
INDEX
INITIALLY

INNER
INSERT
INSTEAD
INTERSECT
INTO
IS
ISNULL
JOIN
KEY
LEFT
LIKE
LIMIT
MATCH
NATURAL
NOT
NOTNULL
NULL
OF
OFFSET
ON
OR
ORDER
OUTER
PLAN
PRAGMA
PRIMARY
QUERY
RAISE

REFERENCES
REINDEX
RENAME
REPLACE
RESTRICT
RIGHT
ROLLBACK
ROW
SELECT
SET
TABLE
TEMP
TEMPORARY
THEN
TO
TRANSACTION
TRIGGER
UNION
UNIQUE
UPDATE
USING
VACUUM
VALUES
VIEW
VIRTUAL
WHEN
WHERE

Special names

The following words are not keywords in QDB, but are used as names of system
objects. They can be used as identifiers for a different type of object.

• _ROWID_

• MAIN

• OID

• ROWID

• SQLITE_MASTER

• SQLITE_SEQUENCE

• SQLITE_TEMP_MASTER

• TEMP

156 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ALTER TABLE
Rename or add a new column to an existing table

Synopsis:
ALTER TABLE [database-name .] table-name {RENAME TO new-table-name} |

{ADD [COLUMN] column-def}

Description:
QDB’s version of the ALTER TABLE command lets you add a new column to or
rename an existing table. It isn’t possible to remove a column from a table.

The RENAME TO syntax is used to rename the table identified by
[database-name.]table-name to new-table-name. This command cannot be used to
move a table between attached databases, only to rename a table within the same
database.

If the table being renamed has triggers or indexes, then these remain attached to the
table after it has been renamed. However, if there are any view definitions or
statements executed by triggers that refer to the table being renamed, these are not
automatically modified to use the new table name. If this is required, the triggers or
view definitions must be dropped and recreated to use the new table name by hand.

The ADD [COLUMN] syntax is used to add a new column to an existing table. The new
column is always appended to the end of the list of existing columns. The column-def
may take any of the forms permissible in a CREATE TABLE statement, with the
following restrictions:

• The column may not have a PRIMARY KEY or UNIQUE constraint.

• The column may not have a default value of CURRENT_TIME, CURRENT_DATE or
CURRENT_TIMESTAMP.

• If a NOT NULL constraint is specified, then the column must have a default value
other than NULL.

The execution time of the ALTER TABLE command is independent of the amount of
data in the table. The ALTER TABLE command runs as quickly on a table with 10
million rows as it does on a table with one row.

After ADD COLUMN has been run on a database, that database will not be readable by
QDB until the database is VACUUMed.

June 5, 2009 Appendix: B • QDB SQL Reference 157

ANALYZE © 2009, QNX Software Systems GmbH & Co. KG.

Analyze indexes to optimize queries

Synopsis:
ANALYZE [database-name .] [table-name]

Description:
The ANALYZE command gathers statistics about indexes and stores them in a special
tables in the database where the query optimizer can use them to help make better
index choices. If no arguments are given, all indexes in all attached databases are
analyzed. If a database name is given as the argument, all indexes in that database are
analyzed. If the argument is a table name, then only indexes associated with that table
are analyzed.

The database-name can be the name of any attached database. You don’t have to
supply the database name of non-attached database; if you do, use main.

The initial implementation stores all statistics in a single table named sqlite_stat1.
Future enhancements may create additional tables with the same name pattern except
with the 1 changed to a different digit. The sqlite_stat1 table cannot be DROPped,
but all the content can be DELETEd, which has the same effect.

158 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ATTACH DATABASE
Add a database to the current connection

Synopsis:
ATTACH [DATABASE] database-filename AS database-name

Description:
The ATTACH DATABASE statement adds another database file to the current database
connection. If the filename contains punctuation characters, it must be placed inside
quotation marks. The names main and temp refer to the main database and the
database used for temporary tables. These cannot be detached. Attached databases are
removed using the DETACH DATABASE statement.

You can read from and write to an attached database, and you can modify the schema
of the attached database.

You cannot create a new table with the same name as a table in an attached database,
but you can attach a database which contains tables whose names are duplicates of
tables in the main database. It is also permissible to attach the same database file
multiple times.

Tables in an attached database can be referred to using the syntax
database-name.table-name. If an attached table doesn’t have a duplicate table name in
the main database, it doesn’t require a database name prefix. When a database is
attached, all of its tables which don’t have duplicate names become the default table of
that name. Any tables of that name attached afterwards require the table prefix. If the
default table of a given name is detached, then the last table of that name attached
becomes the new default.

Transactions involving multiple attached databases are atomic. There is a
compile-time limit of 10 attached database files.

June 5, 2009 Appendix: B • QDB SQL Reference 159

CREATE INDEX © 2009, QNX Software Systems GmbH & Co. KG.

Create an index

Synopsis:
CREATE [UNIQUE] INDEX [IF NOT EXISTS] [database-name .] index-name
ON table-name (column-name [, column-name]*)
column-name =
name [COLLATE collation-name] [ASC | DESC]

Description:
The CREATE INDEX command consists of the keywords CREATE INDEX followed by
the name of the new index, the keyword ON, the name of a previously created table that
is to be indexed, and a parenthesized list of names of columns in the table that are used
for the index key. Each column name can be followed by one of the ASC or DESC
keywords to indicate sort order, but the sort order is ignored in the current
implementation. Sorting is always done in ascending order.

The COLLATE clause following each column name defines a collating sequence used
for text entires in that column. The default collating sequence is the collating sequence
defined for that column in the CREATE TABLE statement. If no collating sequence is
otherwise defined, the built-in BINARY collating sequence is used.

There are no arbitrary limits on the number of indexes that can be attached to a single
table, nor on the number of columns in an index.

If the UNIQUE keyword appears between CREATE and INDEX, then duplicate index
entries are not allowed. Any attempt to insert a duplicate entry will result in an error.

The exact text of each CREATE INDEX statement is stored in the sqlite_master or
sqlite_temp_master table, depending on whether the table being indexed is
temporary. Every time the database is opened, all CREATE INDEX statements are read
from the sqlite_master table and used to regenerate QDB’s internal representation
of the index layout.

If the optional IF NOT EXISTS clause is present and another index with the same
name aleady exists, then this command becomes a no-op.

Indexes are removed with the DROP INDEX command.

160 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. CREATE TABLE
Create a table

Synopsis:

CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS] [database-name.]
table-name (

column-def [, column-def]*
[, constraint]*

)

CREATE [TEMP | TEMPORARY] TABLE [database-name.]
table-name AS select-statement

column-def =
name [type] [[CONSTRAINT name] column-constraint]*

type =
typename |
typename (number) |
typename (number , number)

column-constraint =
NOT NULL [conflict-clause] |
PRIMARY KEY [sort-order] [conflict-clause] [AUTOINCREMENT] |
UNIQUE [conflict-clause] |
CHECK (expr) |
DEFAULT value |
COLLATE collation-name

constraint =
PRIMARY KEY (column-list) [conflict-clause] |
UNIQUE (column-list) [conflict-clause] |
CHECK (expr) [conflict-clause]

conflict-clause =
ON CONFLICT conflict-algorithm

Description:
A CREATE TABLE statement is followed by the name of a new table and a
parenthesized list of column definitions and constraints. The table name can be either
an identifier or a string. Tables names that begin with sqlite_ are reserved for use by
the engine.

Each column definition is the name of the column followed by the datatype for that
column, then one or more optional column constraints. The datatype for the column
does not restrict what data may be put in that column. See the chapter Datatypes in
QDB for additional information. The UNIQUE constraint causes an index to be created
on the specified columns. This index must contain unique keys. The COLLATE clause
specifies what text-collating function to use when comparing text entries for the
column. The built-in BINARY collating function is used by default.

June 5, 2009 Appendix: B • QDB SQL Reference 161

CREATE TABLE © 2009, QNX Software Systems GmbH & Co. KG.

The DEFAULT constraint specifies a default value to use when doing an INSERT. The
value may be NULL, a string constant or a number. The default value may also be one
of the special case-independant keywords CURRENT_TIME, CURRENT_DATE or
CURRENT_TIMESTAMP. If the value is NULL, a string constant or number, it is literally
inserted into the column whenever an INSERT statement that does not specify a value
for the column is executed.

If the value is CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP, then the
current UTC date and/or time is inserted into the columns. For CURRENT_TIME, the
format is HH:MM:SS. For CURRENT_DATE, the format is YYYY-MM-DD. The format
for CURRENT_TIMESTAMP is YYYY-MM-DD HH:MM:SS.

Specifying a PRIMARY KEY normally just creates a UNIQUE index on the
corresponding columns. However, if primary key is on a single column that has
datatype INTEGER, then that column is used internally as the actual key of the B-Tree
for the table. This means that the column may only hold unique integer values.
(Except for this one case, QDB ignores the datatype specification of columns and
allows any kind of data to be put in a column regardless of its declared datatype.)

If a table does not have an INTEGER PRIMARY KEY column, then the B-Tree key will
be a automatically generated integer. The B-Tree key for a row can always be accessed
using one of the special names ROWID, OID, or _ROWID_. This is true regardless of
whether or not there is an INTEGER PRIMARY KEY. An INTEGER PRIMARY KEY
column can also include the keyword AUTOINCREMENT. The AUTOINCREMENT
keyword modifies the way that B-Tree keys are automatically generated. Additional
detail on automatic B-Tree key generation is available separately.

According to the SQL standard, PRIMARY KEY should imply NOT NULL.
Unfortunately, due to a long-standing coding oversight, this is not the case in SQLite.
SQLite allows NULL values in a PRIMARY KEY column. We could change SQLite to
conform to the standard (and we might do so in the future), but by the time the
oversight was discovered, SQLite was in such wide use that we feared breaking legacy
code if we fixed the problem. So for now we have chosen to contain allowing NULLs
in PRIMARY KEY columns. Developers should be aware, however, that we may
change SQLite to conform to the SQL standard in future and should design new
programs accordingly.

If the TEMP or TEMPORARY keyword is used, then the created table is visible only
within that same database connection and is automatically deleted when the database
connection is closed. Any indexes created on a temporary table are also temporary.
Temporary tables and indexes are stored in a separate file distinct from the main
database file.

If a database-name is specified, then the table is created in the named database. It is an
error to specify both a database-name and the TEMP keyword, unless the
database-name is temp. If no database name is specified, and the TEMP keyword is not
present, the table is created in the main database.

The optional conflict-clause following each constraint allows the specification of an
alternative default constraint conflict resolution algorithm for that constraint. The

162 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. CREATE TABLE

default is ABORT. Different constraints within the same table may have different
default conflict resolution algorithms. If a COPY, INSERT, or UPDATE command
specifies a different conflict resolution algorithm, then that algorithm is used in place
of the default algorithm specified in the CREATE TABLE statement. See the section ON

CONFLICT for additional information.

CHECK constraints are now supported and enforced.

There are no arbitrary limits on the number of columns or on the number of constraints
in a table. As well, there is no arbitrary limit on the amount of data in a row.

The CREATE TABLE AS form defines the table to be the result set of a query. The
names of the table columns are the names of the columns in the result.

The exact text of each CREATE TABLE statement is stored in the sqlite_master
table. Every time the database is opened, all CREATE TABLE statements are read from
the sqlite_master table and used to regenerate QDB’s internal representation of the
table layout. If the original command was a CREATE TABLE AS, then an equivalent
CREATE TABLE statement is synthesized and stored in sqlite_master in place of
the original command. The text of CREATE TEMPORARY TABLE statements is stored
in the sqlite_temp_master table.

If the optional IF NOT EXISTS clause is present and another table with the same
name aleady exists, then this command becomes a no-op.

Tables are removed using the DROP TABLE statement.

June 5, 2009 Appendix: B • QDB SQL Reference 163

CREATE TRIGGER © 2009, QNX Software Systems GmbH & Co. KG.

Create a trigger

Synopsis:
CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] trigger-name

[BEFORE | AFTER] database-event ON [database-name .]
table-name trigger-action

CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] trigger-name
INSTEAD OF database-event ON [database-name .]
view-name trigger-action

database-event =
DELETE |
INSERT |
UPDATE |
UPDATE OF column-list

trigger-action =
[FOR EACH ROW] [WHEN expression]
BEGIN

trigger-step ; [trigger-step ;]*
END

trigger-step =
update-statement | insert-statement |
delete-statement | select-statement

Description:
The CREATE TRIGGER statement is used to add triggers to the database schema.
Triggers are database operations (the trigger-action) that are automatically performed
when a specified database event (the database-event) occurs.

A trigger may be specified to fire whenever a DELETE, INSERT or UPDATE of a
particular database table occurs, or whenever an UPDATE of one or more specified
columns of a table are updated.

At this time, QDB supports only FOR EACH ROW triggers, not FOR EACH

STATEMENT triggers. Hence explicitly specifying FOR EACH ROW is optional. FOR
EACH ROW implies that the SQL statements specified as trigger-steps may be executed
(depending on the WHEN clause) for each database row being inserted, updated or
deleted by the statement causing the trigger to fire.

Both the WHEN clause and the trigger-steps may access elements of the row being
inserted, deleted or updated using references of the form NEW.column-name and
OLD.column-name, where column-name is the name of a column from the table that the
trigger is associated with. OLD and NEW references may only be used in triggers on
trigger-events for which they are relevant, as follows:

164 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. CREATE TRIGGER

Command Valid references

INSERT NEW references are valid

UPDATE NEW and OLD references are valid

DELETE OLD references are valid

If a WHEN clause is supplied, the SQL statements specified as trigger-steps are
executed only for rows for which the WHEN clause is true. If no WHEN clause is
supplied, the SQL statements are executed for all rows.

The specified trigger-time determines when the trigger-steps will be executed relative
to the insertion, modification or removal of the associated row.

An ON CONFLICT clause may be specified as part of an UPDATE or INSERT
trigger-step. However if an ON CONFLICT clause is specified as part of the statement
causing the trigger to fire, then this conflict handling policy is used instead.

Triggers are automatically dropped when the table that they are associated with is
dropped.

Triggers may be created on views, as well as ordinary tables, by specifying INSTEAD

OF in the CREATE TRIGGER statement. If one or more ON INSERT, ON DELETE or
ON UPDATE triggers are defined on a view, then it is not an error to execute an
INSERT, DELETE or UPDATE statement on the view, respectively. Thereafter,
executing an INSERT, DELETE or UPDATE on the view causes the associated triggers
to fire. The real tables underlying the view are not modified (except possibly
explicitly, by a trigger program).

Example:

Assuming that customer records are stored in the customers() table, and that order
records are stored in the orders() table, the following trigger ensures that all associated
orders are redirected when a customer changes his or her address:

CREATE TRIGGER update_customer_address UPDATE OF address ON customers
BEGIN
UPDATE orders SET address = new.address

WHERE customer_name = old.name;
END;

With this trigger installed, executing the statement:

UPDATE customers SET address = ’1 Main St.’
WHERE name = ’Jack Jones’;

causes the following to be automatically executed:

UPDATE orders SET address = ’1 Main St.’
WHERE customer_name = ’Jack Jones’;

Note that triggers may behave oddly when created on tables with INTEGER PRIMARY

KEY fields. If a BEFORE trigger program modifies the INTEGER PRIMARY KEY field

June 5, 2009 Appendix: B • QDB SQL Reference 165

CREATE TRIGGER © 2009, QNX Software Systems GmbH & Co. KG.

of a row that will be subsequently updated by the statement that causes the trigger to
fire, then the update may not occur. The workaround is to declare the table with a
PRIMARY KEY column instead of an INTEGER PRIMARY KEY column.

A special SQL function RAISE() may be used within a trigger-program, with the
following syntax

RAISE (ABORT, error-message) |
RAISE (FAIL, error-message) |
RAISE (ROLLBACK, error-message) |
RAISE (IGNORE)

When one of the first three forms is called during trigger-program execution, the
specified ON CONFLICT processing is performed (either ABORT, FAIL or ROLLBACK)
and the current query terminates. An error code of SQLITE_CONSTRAINT is returned
to the user, along with the specified error message.

When RAISE(IGNORE) is called, the remainder of the current trigger program, the
statement that caused the trigger program to execute and any subsequent trigger
programs that would of been executed are abandoned. No database changes are rolled
back. If the statement that caused the trigger program to execute is itself part of a
trigger program, then that trigger program resumes execution at the beginning of the
next step.

Triggers are removed using the DROP TRIGGER statement.

166 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. CREATE VIEW
Create a view

Synopsis:
CREATE [TEMP | TEMPORARY] VIEW [IF NOT EXISTS] [database-name.]

view-name AS select-statement

Description:
The CREATE VIEW command assigns a name to a prepackaged SELECT statement.
Once the view is created, it can be used in the FROM clause of another SELECT in place
of a table name.

The TEMP or TEMPORARY keyword means the view that is created is visible only to the
process that opened the database and is automatically deleted when the database is
closed.

If a database-name is specified, then the view is created in the named database. It is an
error to specify both a database-name and the TEMP keyword, unless the
database-name is temp. If no database name is specified, and the TEMP keyword is not
present, the table is created in the main database.

You cannot COPY, DELETE, INSERT or UPDATE a view. Views are read-only in QDB.
However, in many cases you can use a TRIGGER on the view to accomplish the same
thing. Views are removed with the DROP VIEW command.

June 5, 2009 Appendix: B • QDB SQL Reference 167

DELETE © 2009, QNX Software Systems GmbH & Co. KG.

Remove records from a table

Synopsis:

DELETE FROM [database-name .] table-name [WHERE expr]

Description:
The DELETE command is used to remove records from a table. The command is
followed by the name of the table from which records are to be removed.

Without a WHERE clause, all rows of the table are removed. If a WHERE clause is
supplied, only those rows that match the expression are removed.

168 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. DETACH DATABASE
Detach from a database

Synopsis:

DETACH [DATABASE] database-name

Description:
This statement detaches an additional database connection previously attached using
the ATTACH DATABASE statement. It is possible to have the same database file
attached multiple times using different names, and detaching one connection to a file
will leave the others intact.

This statement will fail if QDB is in the middle of a transaction.

June 5, 2009 Appendix: B • QDB SQL Reference 169

DROP INDEX © 2009, QNX Software Systems GmbH & Co. KG.

Remove an index

Synopsis:
DROP INDEX [IF EXISTS] [database-name .] index-name

Description:
The DROP INDEX statement removes an index added with the CREATE INDEX

statement. The index named is completely removed from the disk. The only way to
recover the index is to reenter the appropriate CREATE INDEX command.

The DROP INDEX statement does not reduce the size of the database file in the default
mode. Empty space in the database is retained for later INSERTs. To remove free
space in the database, use the VACUUM command. If AUTOVACUUM mode is enabled
for a database, then space will be freed automatically by DROP INDEX.

The optional IF EXISTS clause suppresses the error that would normally result if the
index does not exist.

170 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. DROP TABLE
Remove a table

Synopsis:
DROP TABLE [IF EXISTS] [database-name.] table-name

Description:
The DROP TABLE statement removes a table added with the CREATE TABLE

statement. The name specified is the table name. It is completely removed from the
database schema and the disk file. The table can not be recovered. All indexes
associated with the table are also deleted.

The DROP TABLE statement does not reduce the size of the database file in the default
mode. Empty space in the database is retained for later INSERTs. To remove free
space in the database, use the VACUUM command. If AUTOVACUUM mode is enabled
for a database, then space will be freed automatically by DROP TABLE.

The optional IF EXISTS clause suppresses the error that would normally result if the
table does not exist.

June 5, 2009 Appendix: B • QDB SQL Reference 171

DROP TRIGGER © 2009, QNX Software Systems GmbH & Co. KG.

Remove an index

Synopsis:
DROP TRIGGER [IF EXISTS] [database-name .] trigger-name

Description:
The DROP TRIGGER statement removes a trigger created by the CREATE TRIGGER

statement. The trigger is deleted from the database schema.

Triggers are automatically dropped when the associated table is dropped.

172 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. DROP VIEW
Remove a view

Synopsis:

DROP VIEW [IF EXISTS] view-name

Description:
The DROP VIEW statement removes a view created by the CREATE VIEW statement.
The name specified is the view name. It is removed from the database schema, but no
actual data in the underlying base tables is modified.

June 5, 2009 Appendix: B • QDB SQL Reference 173

EXPLAIN © 2009, QNX Software Systems GmbH & Co. KG.

Report VM instructions for a command

Synopsis:

EXPLAIN sql-statement

Description:
The EXPLAIN command modifier is a non-standard extension. The idea comes from a
similar command found in PostgreSQL, but the operation is completely different.

If the EXPLAIN keyword appears before any other QDB SQL command then instead
of actually executing the command, the QDB library will report back the sequence of
virtual machine instructions it would have used to execute the command had the
EXPLAIN keyword not been present. This is useful for performance analysis.

For additional information about virtual machine instructions see the documentation
on QDB opcodes for the virtual machine.

174 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. INSERT
Insert data into a table

Synopsis:

INSERT [OR conflict-algorithm] INTO [database-name .]
table-name [(column-list)] VALUES(value-list) |

INSERT [OR conflict-algorithm] INTO [database-name .]
table-name [(column-list)] select-statement

Description:
The INSERT statement comes in two basic forms. The first form (with the VALUES
keyword) creates a single new row in an existing table. If no column-list is specified,
then the number of values must be the same as the number of columns in the table. If a
column-list is specified, then the number of values must match the number of specified
columns. Columns of the table that do not appear in the column list are filled with the
default value, or with NULL if no default value is specified.

The second form of the INSERT statement takes its data from a SELECT statement.
The number of columns in the result of the SELECT must exactly match the number of
columns in the table if no column list is specified, or it must match the number of
columns named in the column list. A new entry is made in the table for every row of
the SELECT result. The SELECT may be simple or compound. If the SELECT
statement has an ORDER BY clause, the ORDER BY is ignored.

The optional conflict-clause allows the specification of an alternative
constraint-conflict resolution algorithm to use during this one command. See ON
CONFLICT for additional information. For compatibility with MySQL, the parser
allows the use of the single keyword REPLACE as an alias for INSERT OR REPLACE.

June 5, 2009 Appendix: B • QDB SQL Reference 175

ON CONFLICT © 2009, QNX Software Systems GmbH & Co. KG.

Deal with a conflict

Synopsis:

ON CONFLICT { ROLLBACK | ABORT | FAIL | IGNORE | REPLACE }

Description:
The ON CONFLICT clause is not a separate SQL command. It is a non-standard clause
that can appear in many other SQL commands. It is given its own section in this
document because it is not part of standard SQL and therefore might not be familiar.

The syntax for the ON CONFLICT clause is as shown above for the CREATE TABLE

command. For the INSERT and UPDATE commands, the keywords ON CONFLICT are
replaced by OR, to make the syntax seem more natural. For example, instead of
INSERT ON CONFLICT IGNORE we have INSERT OR IGNORE. The keywords
change but but the meaning of the clause is the same either way.

The ON CONFLICT clause specifies an algorithm used to resolve constraint conflicts:

ROLLBACK When a constraint violation occurs, an immediate ROLLBACK occurs,
thus ending the current transaction, and the command aborts with a
return code of SQLITE_CONSTRAINT. If no transaction is active (other
than the implied transaction that is created on every command) then
this algorithm works the same as ABORT.

ABORT When a constraint violation occurs, the command backs out any prior
changes it might have made and aborts with a return code of
SQLITE_CONSTRAINT. But no ROLLBACK is executed, so changes
from prior commands within the same transaction are preserved. This
is the default behavior.

FAIL When a constraint violation occurs, the command aborts with a return
code of SQLITE_CONSTRAINT. Any changes to the database that the
command made prior to encountering the constraint violation are
preserved and are not backed out. For example, if an UPDATE

statement encountered a constraint violation on the 100th row that it
attempts to update, then the first 99 row changes are preserved but
changes to rows 100 and beyond never occur.

IGNORE When a constraint violation occurs, the one row that contains the
constraint violation is not inserted or changed. But the command
continues executing normally. Other rows before and after the row that
contained the constraint violation continue to be inserted or updated
normally. No error is returned.

REPLACE When a UNIQUE constraint violation occurs, the pre-existing rows that
are causing the constraint violation are removed prior to inserting or

176 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ON CONFLICT

updating the current row. Thus, the insertion or update always occurs.
The command continues executing normally. No error is returned. If a
NOT NULL constraint violation occurs, the NULL value is replaced by
the default value for that column. If the column has no default value,
then the ABORT algorithm is used. If a CHECK constraint violation
occurs, then the IGNORE algorithm is used.

When this conflict resolution strategy deletes rows in order to satisfy a
constraint, it does not invoke delete triggers on those rows. This may
change in a future release.

The algorithm specified in the OR clause of a INSERT or UPDATE overrides any
algorithm specified in a CREATE TABLE. If no algorithm is specified anywhere, the
ABORT algorithm is used.

June 5, 2009 Appendix: B • QDB SQL Reference 177

PRAGMA © 2009, QNX Software Systems GmbH & Co. KG.

Modify or query the library

Synopsis:

PRAGMA name [= value] | function(arg)

Description:
The PRAGMA command is a special command used to modify the operation of the QDB
process or to query the library for internal (non-table) data. The PRAGMA command is
issued using the same interface as other QDB commands (e.g. SELECT or INSERT),
but is different in the following important respects:

• Specific pragma statements may be removed and others added in future releases of
QDB. Use with caution!

• No error messages are generated if an unknown pragma is issued. Unknown
pragmas are simply ignored. This means if there is a typo in a pragma statement
the library does not inform the user of the fact.

• Some pragmas take effect during the SQL compilation stage, not the execution
stage. This means if using the C-language sqlite3_prepare(), sqlite3_step(),
sqlite3_finalize() API (or similar in a wrapper interface), the pragma may be
applied to the library during the sqlite3_prepare() call.

• The pragma command is unlikely to be compatible with any other SQL engine.

The pragmas that take an integer value also accept symbolic names. The strings on,
true, and yes are equivalent to 1. The strings off, false, and no are equivalent to
0. These strings are case-insensitive, and do not require quotes. An unrecognized
string will be treated as 1, and will not generate an error. When the value is returned, it
is as an integer.

The available pragmas fall into four basic categories:

1 Pragmas used to modify the operation of the QDB process in some manner, or
to query for the current mode of operation:

• Auto Vacuum

• Cache Size

• Case Sensitivity

• Count Changes

• Default Cache Size

• Full Column Names

• Full Column Names

• Legacy File Format

• Page Size

178 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PRAGMA

• Short Column Names

• Synchronous

• Temp Store

2 Pragmas used to query the schema of the current database:

• Foreign Key List

• Index Info

• Index List

• Table Info

3 Pragmas used to query or modify the databases two version values, the
schema-version and the user-version:

• Schema and User Version

4 Pragmas used to debug the library and verify that database files are not
corrupted:

• Integrity Check

Auto vacuum
PRAGMA auto_vacuum;
PRAGMA auto_vacuum = 0 | 1;

Query or set the auto-vacuum flag in the database.

Normally, when a transaction that deletes data from a database is committed, the
database file remains the same size. Unused database file pages are marked as such
and reused later on, when data is inserted into the database. In this mode the VACUUM
command or qdb_vacuum() is used to reclaim unused space.

When the auto-vacuum flag is set, the database file shrinks when a transaction that
deletes data is committed (The VACUUM command is not useful in a database with the
auto-vacuum flag set). To support this functionality, the database stores extra
information internally, resulting in slightly larger database files than would otherwise
be possible.

It is possible to modify the value of the auto-vacuum flag only before any tables have
been created in the database. No error message is returned if an attempt to modify the
auto-vacuum flag is made after one or more tables have been created.

Auto vacuum mode is off by default. Frequent vacuum operations can be costly on
storage media with slow write-access times (such as NOR flash memory); when
databases are stored on such media, you should consider using qdb_vacuum (or the
VACUUM SQL statement) rather than turning on auto-vacuum mode.

June 5, 2009 Appendix: B • QDB SQL Reference 179

PRAGMA © 2009, QNX Software Systems GmbH & Co. KG.

Cache size
PRAGMA cache_size;
PRAGMA cache_size = Number-of-pages;

Query or change the maximum number of database disk pages that QDB will hold in
memory at once. Each page uses about 1.5 KB of memory. The default cache size is
2000 pages. If you are doing UPDATEs or DELETEs that change many rows of a
database and you do not mind if QDB uses more memory, you can increase the cache
size for a possible speed improvement.

When you change the cache size using the cache_size pragma, the change endures
only for the current session. The cache size reverts to the default value when the
database is closed and reopened. Use the default_cache_size pragma to
permanently change the cache size.

Case sensitivity
PRAGMA case_sensitive_like;
PRAGMA case_sensitive_like = 0 | 1;

The default behavior of the LIKE operator is to ignore case for Latin1 characters.
Hence, by default ’a’ LIKE ’A’ is true. The case_sensitive_like pragma can
be turned on to change this behavior. When case_sensitive_like is enabled, ’a’
LIKE ’A’ is false, but ’a’ LIKE ’a’ is still true.

Count changes
PRAGMA count_changes;
PRAGMA count_changes = 0 | 1;

Query or change the count-changes flag. Normally, when the count-changes flag is not
set, INSERT, UPDATE and DELETE statements return no data. When count-changes is
set, each of these commands returns a single row of data consisting of one integer
value: the number of rows inserted, modified or deleted by the command. The
returned change count does not include any insertions, modifications or deletions
performed by triggers.

Default cache size
PRAGMA default_cache_size;
PRAGMA default_cache_size = Number-of-pages;

Query or change the maximum number of database disk pages that QDB will hold in
memory at once. Each page uses 1 KB on disk and about 1.5 KB in memory. This
pragma works like the cache_size pragma with the additional feature that it changes
the cache size persistently. With this pragma, you can set the cache size once and that
setting is retained and reused every time you reopen the database.

Full column names
PRAGMA full_column_names;
PRAGMA full_column_names = 0 | 1;

Query or change the full-column-names flag. This flag affects the way QDB names
columns of data returned by SELECT statements when the expression for the column is
a table-column name or the wildcard *. Normally, such result columns are named

180 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PRAGMA

table-name|alias column-name if the SELECT statement joins two or more tables
together, or simply column-name if the SELECT statement queries a single table.
When the full-column-names flag is set, such columns are always named
table-name|alias column-name regardless of whether or not a join is performed.

If both the short-column-names and full-column-names are set, then the behavior
associated with the full-column-names flag is exhibited.

Legacy file format
PRAGMA legacy_file_format;
PRAGMA legacy_file_format = ON | OFF

This pragma sets or queries the value of the legacy_file_format flag. When this flag is
on, new SQLite databases are created in a file format that is readable and writable by
all versions of SQLite going back to 3.0.0. When the flag is off, new databases are
created using the latest file format which might not be readable or writable by older
versions of SQLite.

This flag affects only newly created databases. It has no effect on databases that
already exist.

Page size
PRAGMA page_size;
PRAGMA page_size = bytes;

Query or set the page size of the database. The page size may be set only if the
database has not yet been created. The page size must be a power of two greater than
or equal to 512 and less than or equal to 8192.

Short column names
PRAGMA short_column_names;
PRAGMA short_column_names = 0 | 1;

Query or change the short-column-names flag. This flag affects the way QDB names
columns of data returned by SELECT statements when the expression for the column is
a table-column name or the wildcard *. Normally, such result columns are named
table-name|alias column-name if the SELECT statement joins two or more tables
together, or simply column-name if the SELECT statement queries a single table.
When the short-column-names flag is set, such columns are always named
column-name regardless of whether or not a join is performed.

If both the short-column-names and full-column-names are set, then the behavior
associated with the full-column-names flag is exhibited.

Synchronous
PRAGMA synchronous;
PRAGMA synchronous = FULL; (2)
PRAGMA synchronous = NORMAL; (1)
PRAGMA synchronous = OFF; (0)

Query or change the setting of the synchronous flag. The first (query) form will return
the setting as an integer. When synchronous is FULL (2), the QDB database engine
will pause at critical moments to make sure that data has actually been written to the

June 5, 2009 Appendix: B • QDB SQL Reference 181

PRAGMA © 2009, QNX Software Systems GmbH & Co. KG.

disk surface before continuing. This ensures that if the operating system crashes or if
there is a power failure, the database will be uncorrupted after rebooting. FULL
synchronous is very safe, but it is also slow. When synchronous is NORMAL, the QDB
database engine will still pause at the most critical moments, but less often than in
FULL mode. There is a very small (though non-zero) chance that a power failure at
just the wrong time could corrupt the database in NORMAL mode. But in practice, you
are more likely to suffer a catastrophic disk failure or some other unrecoverable
hardware fault. With synchronous OFF (0), QDB continues without pausing as soon as
it has handed data off to the operating system. If the application running QDB crashes,
the data will be safe, but the database might become corrupted if the operating system
crashes or the computer loses power before that data has been written to the disk
surface. On the other hand, some operations are as much as 50 or more times faster
with synchronous OFF.

The default seting is FULL.

Temp store
PRAGMA temp_store;
PRAGMA temp_store = DEFAULT; (0)
PRAGMA temp_store = FILE; (1)
PRAGMA temp_store = MEMORY; (2)

Query or change the setting of the temp_store parameter. When temp_store is
DEFAULT (0), the compile-time C preprocessor macro TEMP_STORE is used to
determine where temporary tables and indexes are stored. When temp_store is
MEMORY (2), temporary tables and indexes are kept in memory. When temp_store is
FILE (1), temporary tables and indexes are stored in a file. The
temp_store_directory pragma can be used to specify the directory containing this
file. When the temp_store setting is changed, all existing temporary tables, indexes,
triggers and views are immediately deleted.

It is possible for the library compile-time C preprocessor symbol TEMP_STORE to
override this pragma setting. The following table summarizes the interaction of the
TEMP_STORE preprocessor macro and the temp_store pragma. It shows the
storage used for TEMP tables and indexes:

TEMP_STORE PRAGMAtemp_store Storage

0 Any File

1 0 File

1 1 File

1 2 Memory

2 0 Memory

2 1 File

continued. . .

182 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PRAGMA

TEMP_STORE PRAGMAtemp_store Storage

2 2 Memory

3 Any Memory

Foreign key list
PRAGMA foreign_key_list(table-name);

For each foreign key that references a column in the argument table, invoke the
callback function with information about that foreign key. The callback function will
be invoked once for each column in each foreign key.

Index info
PRAGMA index_info(index-name);

For each column that the named index references, invoke the callback function once
with information about that column, including the column name and the column
number.

Index list
PRAGMA index_list(table-name);

For each index on the named table, invoke the callback function once with information
about that index. Arguments include the index name and a flag to indicate whether or
not the index must be unique.

Table info
PRAGMA table_info(table-name);

For each column in the named table, invoke the callback function once with
information about that column, including the column name, data type, whether or not
the column can be NULL, and the default value for the column.

Schema and user version
PRAGMA [database.]schema_version;
PRAGMA [database.]schema_version = integer ;
PRAGMA [database.]user_version;
PRAGMA [database.]user_version = integer ;

The pragmas schema_version and user_version are used to set or get the value
of the schema-version and user-version, respectively. Both the schema-version and the
user-version are 32-bit signed integers stored in the database header.

The schema-version is usually manipulated only internally by QDB. It is incremented
by QDB whenever the database schema is modified (by creating or dropping a table or
index). The schema version is used by QDB each time a query is executed to ensure
that the internal cache of the schema used when compiling the SQL query matches the
schema of the database against which the compiled query is actually executed.

June 5, 2009 Appendix: B • QDB SQL Reference 183

PRAGMA © 2009, QNX Software Systems GmbH & Co. KG.

Subverting this mechanism by using PRAGMA schema_version to modify the
schema-version is potentially dangerous and may lead to program crashes or database
corruption. Use with caution!

The user-version is not used internally by QDB. It may be used by applications for any
purpose.

Integrity check
PRAGMA integrity_check;
PRAGMA integrity_check(integer)

The command does an integrity check of the entire database. It looks for out-of-order
records, missing pages, malformed records, and corrupt indexes. If any problems are
found, then strings are returned (as multiple rows with a single column per row) which
describe the problems. At most integer errors will be reported before the analysis
quits. The default value for integer is 100. If no errors are found, a single row with the
value ok is returned.

184 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. REINDEX
Recreate indexes from scratch

Synopsis:

REINDEX collation name |
([database-name .] table | index-name)

Description:
The REINDEX command is used to delete and recreate indexes from scratch. This is
useful when the definition of a collation sequence has changed.

In the first form, all indexes in all attached databases that use the named collation
sequence are recreated. In the second form, if [database-name .] { table-name |

index-name } identifies a table, then all indexes associated with the table are rebuilt. If
an index is identified, then only this specific index is deleted and recreated.

If no database-name is specified and there exists both a table or index and a collation
sequence of the specified name, then indexes associated with the collation sequence
only are reconstructed. This ambiguity may be dispelled by always specifying a
database-name when reindexing a specific table or index.

June 5, 2009 Appendix: B • QDB SQL Reference 185

REPLACE © 2009, QNX Software Systems GmbH & Co. KG.

Alias for INSERT OR REPLACE

Synopsis:
REPLACE INTO [database-name .] table-name [(column-list)]

VALUES (value-list) |
REPLACE INTO [database-name .] table-name [(column-list)]

select-statement

Description:
The REPLACE command is an alias for the INSERT OR REPLACE variant of the
INSERT command. This alias is provided for compatibility with MySQL.

186 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. SELECT
Query a database

Synopsis:

SELECT [ALL | DISTINCT] result [FROM table-list]
[WHERE expr]
[GROUP BY expr-list]
[HAVING expr]
[compound-op select]*
[ORDER BY sort-expr-list]
[LIMIT integer [(OFFSET | ,) integer]]

result =
result-column [, result-column]*

result-column =
* | table-name . * | expr [[AS] string]

table-list =
table [join-op table join-args]*

table =
table-name [AS alias] |
(select) [AS alias]

join-op =
, | [NATURAL] [LEFT | RIGHT | FULL]

[OUTER | INNER | CROSS] JOIN

join-args =
[ON expr] [USING (id-list)]

sort-expr-list =
expr [sort-order] [, expr [sort-order]]*

sort-order =
[COLLATE collation-name] [ASC | DESC]

compound_op =
UNION | UNION ALL | INTERSECT | EXCEPT

Description:
The SELECT statement is used to query the database. The result of a SELECT is zero or
more rows of data where each row has a fixed number of columns. The number of
columns in the result is specified by the expression list in between the SELECT and
FROM keywords. Any arbitrary expression can be used as a result. If a result
expression is *, then all columns of all tables are substituted for that one expression. If
the expression is the name of a table followed by .*, then the result is all columns in
that one table.

June 5, 2009 Appendix: B • QDB SQL Reference 187

SELECT © 2009, QNX Software Systems GmbH & Co. KG.

DISTINCT keyword

The DISTINCT keyword causes a subset of result rows to be returned, in which each
result row is different. NULL values are not treated as distinct from each other. The
default behavior is that all result rows be returned, which can be made explicit with the
keyword ALL.

The query is executed against one or more tables specified after the FROM keyword. If
multiple tables names are separated by commas, then the query is against the cross
join of the various tables. The full SQL-92 join syntax can also be used to specify
joins. A sub-query in parentheses may be substituted for any table name in the FROM
clause. The entire FROM clause may be omitted, in which case the result is a single row
consisting of the values of the expression list.

WHERE clause

The WHERE clause can be used to limit the number of rows over which the query
operates.

GROUP BY clauses

The GROUP BY clauses causes one or more rows of the result to be combined into a
single row of output. This is especially useful when the result contains aggregate
functions. The expressions in the GROUP BY clause do not have to be expressions that
appear in the result. The HAVING clause is similar to WHERE except that HAVING
applies after grouping has occurred. The HAVING expression may refer to values, even
aggregate functions, that are not in the result.

ORDER BY clauses

The ORDER BY clause causes the output rows to be sorted. The argument to ORDER

BY is a list of expressions that are used as the key for the sort. The expressions do not
have to be part of the result for a simple SELECT, but in a compound SELECT each
sorting expression must exactly match one of the result columns. Each sorting
expression may be optionally followed by a COLLATE keyword and the name of a
collating function used for ordering text and/or keywords ASC or DESC to specify the
sort order.

LIMIT clauses

The LIMIT clause places an upper bound on the number of rows returned in the result.
A negative LIMIT indicates no upper bound. The optional OFFSET following LIMIT

specifies how many rows to skip at the beginning of the result set. In a compound
query, the LIMIT clause may appear only on the final SELECT statement. The limit is
applied to the entire query, not to the individual SELECT statement to which it is
attached. Note that if the OFFSET keyword is used in the LIMIT clause, then the limit
is the first number and the offset is the second number. If a comma is used instead of
the OFFSET keyword, then the offset is the first number and the limit is the second
number. This seeming contradiction is intentional — it maximizes compatibility with
legacy SQL database systems.

188 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. SELECT

Compund SELECT statements

A compound SELECT is formed from two or more simple SELECTs connected by one
of the operators UNION, UNION ALL, INTERSECT, or EXCEPT. In a compound
SELECT, all the constituent SELECTs must specify the same number of result columns.
There may be only a single ORDER BY clause at the end of the compound SELECT.
The UNION and UNION ALL operators combine the results of the SELECTs to the right
and left into a single big table. The difference is that in UNION all result rows are
distinct, whereas in UNION ALL there may be duplicates. The INTERSECT operator
takes the intersection of the results of the left and right SELECTs. EXCEPT takes the
result of left SELECT after removing the results of the right SELECT. When three or
more SELECTs are connected into a compound, they group from left to right.

June 5, 2009 Appendix: B • QDB SQL Reference 189

TRANSACTION © 2009, QNX Software Systems GmbH & Co. KG.

Manually start, end, commit, or rollback a transaction

Synopsis:
BEGIN [DEFERRED | IMMEDIATE | EXCLUSIVE] [TRANSACTION [name]]

END [TRANSACTION [name]]

COMMIT [TRANSACTION [name]]

ROLLBACK [TRANSACTION [name]]

Description:
QDB supports transactions with rollback and atomic commit. The optional transaction
name is ignored. QDB currently doesn’t allow nested transactions.

No changes can be made to the database except within a transaction. Any command
that changes the database (basically, any SQL command other than SELECT) will
automatically start a transaction if one is not already in effect. Automatically started
transactions are committed at the conclusion of the command.

Transactions can be started manually using the BEGIN command. Such transactions
usually persist until the next COMMIT or ROLLBACK command. But a transaction will
also ROLLBACK if the database is closed or if an error occurs and the ROLLBACK
conflict-resolution algorithm is specified. See the documentation on the ON
CONFLICT clause for additional information about the ROLLBACK conflict-resolution
algorithm.

In QDB, transactions can be deferred, immediate, or exclusive. Deferred means that
no locks are acquired on the database until the database is first accessed. Thus with a
deferred transaction, the BEGIN statement itself does nothing. Locks are not acquired
until the first read or write operation. The first read operation against a database
creates a SHARED lock and the first write operation creates a RESERVED lock.
Because the acquisition of locks is deferred until they are needed, it is possible that
another thread or process could create a separate transaction and write to the database
after the BEGIN on the current thread has executed. If the transaction is immediate,
then RESERVED locks are acquired on all databases as soon as the BEGIN command is
executed, without waiting for the database to be used.

After a BEGIN IMMEDIATE, you are guaranteed that no other thread or process will be
able to write to the database or do a BEGIN IMMEDIATE or BEGIN EXCLUSIVE.
Other processes can continue to read from the database, however. An exclusive
transaction causes EXCLUSIVE locks to be acquired on all databases. After a BEGIN
EXCLUSIVE, you are guaranteed that no other thread or process will be able to read or
write the database until the transaction is complete.

190 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. TRANSACTION

Locks

This is a description of the meaning of SHARED, RESERVED, and EXCLUSIVE locks:

SHARED The database may be read but not written. Any number of processes
can hold SHARED locks at the same time, hence there can be many
simultaneous readers. But no other thread or process is allowed to
write to the database file while one or more SHARED locks are
active.

RESERVED A RESERVED lock means that the process is planning on writing to
the database file at some point in the future but that it is currently
just reading from the file. Only a single RESERVED lock may be
active at one time, though multiple SHARED locks can coexist with a
single RESERVED lock.

EXCLUSIVE An EXCLUSIVE lock is needed in order to write to the database file.
Only one EXCLUSIVE lock is allowed on the file and no other locks
of any kind are allowed to coexist with an EXCLUSIVE lock. In
order to maximize concurrency, QDB works to minimize the amount
of time that EXCLUSIVE locks are held.

The default behavior for QDB is a deferred transaction.

The COMMIT command does not actually perform a commit until all pending SQL
commands finish. Thus if two or more SELECT statements are in the middle of
processing and a COMMIT is executed, the commit will not actually occur until all
SELECT statements finish.

Returns:
An attempt to execute COMMIT might result in an SQLITE_BUSY return code. This
indicates that another thread or process has a read lock on the database that prevented
the database from being updated. When COMMIT fails in this way, the transaction
remains active and the COMMIT can be retried later after the reader has had a chance to
clear.

June 5, 2009 Appendix: B • QDB SQL Reference 191

UPDATE © 2009, QNX Software Systems GmbH & Co. KG.

Change the value of columns

Synopsis:

UPDATE [OR conflict-algorithm] [database-name.] table-name
SET column-name = expr [, column-name = expr]*
[WHERE expr]

Description:
The UPDATE statement is used to change the value of columns in selected rows of a
table. Each assignment in an UPDATE specifies a column name to the left of the equals
sign and an arbitrary expression to the right. The expressions may use the values of
other columns. All expressions are evaluated before any assignments are made. A
WHERE clause can be used to restrict which rows are updated.

The optional conflict-clause allows the specification of an alternative constraint
conflict resolution algorithm to use during this one command. See ON CONFLICT for
additional information.

192 Appendix: B • QDB SQL Reference June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. VACUUM
Clean up a table or index

Synopsis:

VACUUM [index-or-table-name]

Description:
The VACUUM command is a QDB extension modeled after a similar command found in
PostgreSQL. If VACUUM is invoked with the name of a table or index, then it is
supposed to clean up the named table or index. The index or table name argument is
ignored.

When an object (table, index, or trigger) is dropped from the database, it leaves behind
empty space. This makes the database file larger than it needs to be, but can speed up
insertions. In time, insertions and deletions can leave the database file structure
fragmented, which slows down disk access to the database contents.

The VACUUM command cleans the main database by copying its contents to a
temporary database file and reloading the original database file from the copy. This
eliminates free pages, aligns table data to be contiguous, and otherwise cleans up the
database file structure. It is not possible to perform the same process on an attached
database file.

This command will fail if there is an active transaction. This command has no effect
on an in-memory database.

An alternative to using the VACUUM command is the auto-vacuum mode. You can set
the auto-vacuum mode using the PRAGMA SQL extension:

qdb_statement(&db, "PRAGMA auto_vacuum = 1;"); // on
qdb_statement(&db, "PRAGMA auto_vacuum = 0;"); // off

See also:
qdb_vacuum(), PRAGMA

June 5, 2009 Appendix: B • QDB SQL Reference 193

Index

!

ROWID 145

A

ABORT 176
abs() 151
administration

QDB 27
affinity

column 37
aggregate

functions 71, 153
ALTER TABLE 157
ANALYZE 158
analyze

database 158
asynchronous mode 97
ATTACH DATABASE 159
attached database

analyze 158
auto

vacuum 179
auto-vacuum mode 193
AUTOINCREMENT

keyword 145
avg() 153

B

backing up

databases 27
backup 19
backup

database 82
cancelling 84

busy
timeout 18

busy timeout
setting 124

C

C++ API 75
cache

default
size 180

shared 16
size 180

default 180
cancel 19
case sesitivity 180
CAST 151
cell

data 32
getting 85

changes
count 180

check
integrity 184

classes
storage 37

clause
GROUP BY 188

June 5, 2009 Index 195

Index © 2009, QNX Software Systems GmbH & Co. KG.

LIMIT 188
ORDER BY 188
WHERE 188

client
QDB 23

clients
sharing connections 15

coalesce() 151
collation

functions 71
user-defined 91

collation routines
user 72

collation sequences
assigning from SQL 41
user-defined 41

column
affinity 37
determining affinity 38
full names 180
name 93, 94
names 150
short names 181

comments
SQL 147

comparison
expressions 39

compound
SELECT statements 189

compound SELECT statments 40
configuration file 12
connecting to the database

example 31
connections

sharing between clients 15
conventions

typographical ix
corrupt database

recovering from 18
count changes 180
count() 153
CREATE INDEX 160
CREATE TABLE 161
CREATE TRIGGER 164
CREATE VIEW 167

D

data
cell 32

getting 85
maximum that can be sent

withqdb_stmt_exec() 133
data source

extracting 98
database

analyse 158
attach 159
backing up 27
busy timeout 18
connecting 96
detach from 169
directory 9
disconnecting 100
maintenance commands 19
recovering from corrupt 18
recovery 17
recovery script 18
restoring up 27

database size
getting 102

datatypes 37
DELETE 168
DETACH DATABASE 169
disconnecting

server (example) 33
DISTINCT

keyword 188
DROP INDEX 170
DROP TABLE 171
DROP TRIGGER 172
DROP VIEW 173

E

error message
getting 104

example
using a result 32

examples
connecting to the database 31, 33

196 Index June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

disconnecting the server 33
executing a statement 31
getting result of a query 32
inserting 33
program 33
QDB 31

EXCEPT

operator 189
EXCLUSIVE

lock 191
executing a statement

example 31
EXPLAIN 174
expressions

comparison 39
non-standard 174
SQL 148

F

FAIL 176
features

QDB 3
file

legacy format 181
filesystem

temporary storage 10
filesystems

NFS 9
supported 9

flag
synchronous 181

foreign
key list 183

format
legacy file 181

full
column names 180

functions
aggregate 71, 153
collation 71
default 151
scalar 71
writing user-defined 71

G

generated
programs (viewing) 48

GLOB operator 150
glob() 151
GROUP BY

clause 188
grouping 40

H

hex() 151

I

ifnull() 151
IGNORE 176
index

create 160
drop 170

index info 183
index list 183
indexes

recreate 185
indices

cleaning up 193
INSERT 175
INTEGER PRIMARY KEY AUTOINCREMENT

145
integrity

check 184
INTERSECT

operator 189

K

key list
foreign 183

keyword
DISTINCT 188

keywords

June 5, 2009 Index 197

Index © 2009, QNX Software Systems GmbH & Co. KG.

QDB 155

L

last_insert_rowid() 151
legacy format

file 181
length() 151
LIKE operator 149
like() 151
LIMIT

clause 188
list

foreign key 183
literal values 149
lock

EXCLUSIVE 191
RESERVED 191
SHARED 191

lower() 151
ltrim() 151

M

maintenance
commands 19

max() 151, 153
min 153
min() 151
modes

auto-vacuum 193

N

names
column 150, 180, 181

NFS
filesystems 9

non-attached database
analyze 158

non-standard

expressions 174
nullif() 151

O

objects
system 156

OID 145
ON CONFLICT 176
opcodes

QDB virtual machine 47
operator

GLOB 150
LIKE 149

operators 40
EXCEPT 189
INTERSECT 189
UNION 189
UNION ALL 189

options
getting 106
QDB 7
QDB client 23
setting 126

ORDER BY

clause 188

P

page
size 181

parameters
getting 115
SQL 149

pathname delimiter in QNX documentation x
PRAGMA 178
pre-compiled statements

freeing 134
prepared statements

executing 132
initializing 136

programs
viewing QDB-generated 48

198 Index June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

Q

QDB
administration 27
examples 31

qdb_backup() 82
qdb_bkcancel() 84
qdb_cell_length() 32, 87
qdb_cell_type() 32, 89
qdb_cell() 32, 85
qdb_collation() 91
qdb_column_index() 32, 93
qdb_column_name() 32, 94
qdb_columns() 32
QDB_CONN_BLOCK_FOREVER 115
QDB_CONN_DFLT_SHARE 115
QDB_CONN_NONBLOCKING 124
QDB_CONN_STMT_ASYNC 115
qdb_connect() 96
qdb_data_source() 98
qdb_disconnect() 100
qdb_freeresult() 101
qdb_getdbsize() 102
qdb_geterrmsg() 104
qdb_getoption() 106
qdb_getresult() 107
qdb_gettransstate() 109
qdb_last_insert_rowid() 111
qdb_mprintf() 113
QDB_OPTION_COLUMN_NAMES 126
QDB_OPTION_LAST_INSERT_ROWID 111,

126
QDB_OPTION_ROW_CHANGES 121, 126
qdb_parameters() 115
qdb_printmsg() 32, 117
qdb_query() 119
qdb_result_t 95, 101, 123
qdb_rowchanges() 121
qdb_rows() 32
qdb_setbusytimeout() 124
qdb_setoption() 126
qdb_snprintf() 128
qdb_statement() 130
qdb_stmt_exec() 132

maximum data 133
qdb_stmt_free() 134

qdb_stmt_init() 136
QDB_TIMEOUT_BLOCK 124
QDB_TIMEOUT_NONBLOCK> 124
qdb_vacuum() 138
qdb_vmprintf() 140
QDB client

description 24
options 23

QDB configuration file 12
qdbc 23
query

convenience function 119
example of how to get result 32
getting result 32

quote() 151

R

random() 151
randomblob() 151
records

delete from tables 168
recovery

database 17
recreate

indexes 185
REINDEX 185
REPLACE 176, 186
replace() 151
RESERVED

lock 191
restoring up

databases 27
result (using)

example 32
results

columns in 95
datatype 89
freeing 101
length 87
printing 117
rows in 123

ROLLBACK 176
round() 151
row ID 145

June 5, 2009 Index 199

Index © 2009, QNX Software Systems GmbH & Co. KG.

last 111
ROWID 145
rows

affected by statement 121
rtrim() 151

S

scalar
functions 71

schema
version 183

schema files 9
SELECT 187

column 150
compound statements 189

SELECT statement
results 107

sequences
collation 41

server
example of how to disconnect 33

SHARED
lock 191

shared
cache 16

sharing
connections between clients 15

short
column names 181

size
page 181

sorting 40
soundex() 151
SQL

comments 147
errors 104
expressions 148
REPLACE 186
results, printing 117

SQL statement
running 130

sqlite_version() 151
SQLite C 75
sqlite3_result_* 75

sqlite3_user_data 77
sqlite3_value_* 75
sqlite3_value_type() 75
starting the QDB 10
statement (executing)

example 31
statements

SELECT 150
storage

classes 37
store

temp 182
strings

formatting 113, 128, 140
substr() 151
sum() 153
support x
synchronous

flag 181
system

objects 156

T

table
create 161
drop 171

table info 183
tables

cleaning up 193
technical support x
temp

store 182
temp_store parameter 182
temporary storage

filesystem 10
timeout

busy 18
setting for busy 124

total() 153
TRANSACTION 190
transaction state

getting 109
trigger

create 164

200 Index June 5, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

drop 172
trim() 151
typeof() 151
typographical conventions ix

U

UNION

operator 189
UNION ALL

operator 189
UPDATE 192
upper(X)() 151
user

collation routines 72
version 183

user-defined functions
writing 71

V

VACUUM 193
vacuum 19
vacuum

auto 179
vacuuming 138
values

literal 149
verify 19
version

schema 183
user 183

view
create 167
drop 173

viewing
QDB-generated 48

virutal machine
opcodes 47

W

WHERE

clause 188

June 5, 2009 Index 201

