
QNX® Aviage Multimedia Suite 1.2.0
MME Technotes

For QNX® Neutrino® 6.4.x

© 2009, QNX Software Systems GmbH & Co. KG.

© 2007–2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published May 13, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Reference v
Typographical conventions vii

Note to Windows users viii

Technical support options ix

User-specified MTP Commands to PFS Devices 11
PFS_ExecuteCommand() 3

Synopsis 3

Arguments 3

Library 4

Description 4

Returns 5

Classification 6

Examples 6

MME Support for Texas Instruments ADE 112
Overview 13

Requirements 13

Version compatibility 13

Installation 15

Build the dsplink resource manager 15

Build the Jacinto image 15

Modify the MME for Jacinto 16

Startup 17

May 13, 2009 Contents iii

About this Reference

May 13, 2009 About this Reference v

© 2009, QNX Software Systems GmbH & Co. KG. Typographical conventions

The MME Technotes accompanies the QNX Aviage multimedia suite, release 1.2.0. It
is intended for application developers who require additional, specific reference
materials for their multimedia projects.
The table below may help you find what you need in this book:

For information about: See:

The QNX PFS driver access function
provided with the QNX Aviage
Multimedia Interface for PlaysForSure.

User-specified MTP commands to PFS
devices

How to set up the MME ADE (Audio
Decoder Engine) to work with the Texas
Instruments ADE 5.1.3.

MME support for Texas Instruments
ADE

Other MME documentation available to application developers includes:

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME Developer’s Guide How to use the MME to program client
applications.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Utilities Utilities used by the MME.

MME Configuration Guide How to configure the MME.

MediaFS Developer’s Guide Developer’s guide for implementing MediaFS.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

May 13, 2009 About this Reference vii

Typographical conventions © 2009, QNX Software Systems GmbH & Co. KG.

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

viii About this Reference May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Technical support options

Technical support options
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

May 13, 2009 About this Reference ix

Chapter 1

User-specified MTP Commands to PFS
Devices

In this chapter. . .
PFS_ExecuteCommand() 3

May 13, 2009 Chapter 1 • User-specified MTP Commands to PFS Devices 1

© 2009, QNX Software Systems GmbH & Co. KG. PFS_ExecuteCommand()

This document describes PFS_ExecuteCommand(), the QNX PFS driver access
function provided with the QNX Aviage Multimedia Interface for PlaysForSure. This
function provides client application developers:

• a single function to handle non-POSIX-based, user-specified MTP (Media Transfer
Protocol) commands to a PFS device

• extensibility, by allowing user applications to support new MTP commands without
having to update their system’s PFS driver

PFS_ExecuteCommand()
Support user-specified MTP commands to a PFS device

Synopsis
#include <pfs_userx.h>

MTP_RESULT PFS_ExecuteCommand(int fd,
OPCODE opCode,
int nSendParams,
MTP_UINT32 *pSendParams,
int handleParamNumber,
int nSendDataBytes,
MTP_UINT8 *pSendDataBytes,
int *pnRecvParams,
MTP_UINT32 *pRecvParams,
int *pnRecvDataBytes,
MTP_UINT8 *pRecvDataBytes,
RESPONSECODE *pResponseCode);

Arguments
fd An open file descriptor that determines the PFS device to

which the command is sent. The opened file must be a file in
the PFS file system.

opCode The 16-bit MTP operation code (see MTP specification).

nSendParams The number of 32-bit operation parameters to send with the
designated operation code. The maximum value is 5.

pSendParams The address of an array of 32-bit operation parameters. This
address is the source of the operation parameters. The number
of operation parameters is indicated by nSendParams. If
nSendParams is 0, then pSendParams may be NULL.

handleParamNumber

Use this parameter to have one of the operation parameters
automatically set to the MTP object handle associated with the
open file. Set to 0 to disable this feature. Set to 1 to cause the

May 13, 2009 Chapter 1 • User-specified MTP Commands to PFS Devices 3

PFS_ExecuteCommand() © 2009, QNX Software Systems GmbH & Co. KG.

first operation parameter to be overwritten by the MTP handle
(in general, pSendParms[handleParamNumber-1] = handle).

nSendDataBytes The number of data bytes to send in the transfer phase. If there
is no data to send, set to 0.

pSendDataBytes The address of the buffer with the data bytes to send in the data
transfer phase. If there is no data to send, this argument must
be set to NULL.

pnRecvParams A pointer to an integer specifying the maximum number of
parameters expected. During input, this number is the
maximum number of receive parameters expected. During
output, this argument is updated to the actual number of
parameters received. The maximum value for this parameter
is 5.

pRecvParams The address of an array to hold the received 32-bit response
parameters. The the number of bytes written in this array is
four times either the maximum number of parameters expected
or the actual number of parameters received, whichever is less.

pnRecvDataBytes A pointer to an integer specifying the maximum number of
data bytes expected in the data transfer phase of the operation.
During input, this number is the maximum number of data
bytes to receive. During output, this number is updated to the
actual number of data bytes transfer to the receive buffer. If
there is no data to receive, this argument must be set to NULL.

pRecvDataBytes The address of the buffer to receive data transferred from the
PFS device. If there is no data to receive, this argument must be
set to NULL.

pResponseCode A pointer to the location where the response code received
from the device is written.

Library
pfs_userx.h

Description
The function PFS_ExecuteCommand() allows applications to execute atomic MTP on
PFS devices. An atomic MTP command is executed as a single transaction, which
consists of the following:

1 Send the operation code and parameters to the device.

2 Optionally, transfer data to or from the device.

3 Receive a response code and response parameters from the device.

4 Chapter 1 • User-specified MTP Commands to PFS Devices May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PFS_ExecuteCommand()

PFS_ExecuteCommand() is not intended for reading of media content (i.e. execute
OPCODE_GETOBJECT), and its data transfers are expected to be less than 64
kilobytes. To read media content, use the POSIX read() function.

• The source for PFS_ExecuteCommand() is available with the function, in the file
pfs_readme.txt.

• PFS_ExecuteCommand() is not included in any QNX object libraries.

Events

None delivered.

Blocking and validation

This function validates that at least one of the data buffers (read or write) is set to
NULL. It executes to completion.

Returns
MTP_RESULT_OK

Success.

MTP_ERROR_* An error occurred. See MTP error codes below for more
information.

< 0 An error occurred in a call to the system function MsgSendv(),
indicating a communication error with the PFS driver (return is
-errno).

MTP error codes

PFS_ExecuteCommand() relays to the client application any errors it receives from
the PFS driver. The function does some parameter validation, and only explicitly
returns the MTP_ERROR_INVALIDARG error code; all other error codes are generated
by either the PFS driver or the PFS device itself.

The enumerated values listed below define the most common errors returned or
relayed by PFS_ExecuteCommand(). For a complete list, see the MTP specification.

• MTP_RESULT_SPECIFIC — The operation was not successful. Check the response
code for more information about what type of error occurred.

• MTP_ERROR_BAD_TRANSACTION_ID — the response transaction ID was
incorrect.

• MTP_ERROR_DATATYPE_MISMATCH — the expected transfer phase did not
occur, or the transfer phase occurred when it was not expected.

• MTP_ERROR_DEVICE_NOT_CONNECTED — the PFS device has been
disconnected.

May 13, 2009 Chapter 1 • User-specified MTP Commands to PFS Devices 5

PFS_ExecuteCommand() © 2009, QNX Software Systems GmbH & Co. KG.

• MTP_ERROR_EMPTY — the expected data transfer did not occur.
• MTP_ERROR_INVALIDARG — the two buffers specified (send and receive), or

some other parameter value is not valid.

• MTP_ERROR_IO_INCOMPLETE — a USB transaction did not complete for an
unspecified reason.

• MTP_ERROR_MTP_SPECIFIC — An MTP error occurred. Check the value
referenced by pResponseCode for more information.

• MTP_ERROR_OUTOFMEMORY — the PFS driver was unable to allocate the
memory needed for the receive buffer.

• MTP_ERROR_READ_FAULT — a USB read stalled (see the USB specification).

• MTP_ERROR_TIMEOUT — a USB operation took too long.

• MTP_ERROR_WRITE_FAULT — a USB write stalled (see the USB specification).

Classification
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

Examples
The following examples show how you can use PFS_ExecuteCommand() to execute:

• an MTP command with no data transfer

• an MTP command with a transfer from the device

• an MTP command with a transfer to the device

#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <sys/iomsg.h>
#include <fcntl.h>
#include "pfs_userx.h"

#ifndef MTP_RESULT_OK
#define MTP_RESULT_OK 0
#endif

int main(int argc, char *argv[])
{

6 Chapter 1 • User-specified MTP Commands to PFS Devices May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PFS_ExecuteCommand()

char *music = "/fs/pfs0/Music";
int i, n, fd;
MTP_RESULT hr;
MTP_UINT32 send_params[5];
MTP_UINT32 recv_params[5];
MTP_UINT32 nRecvParams = 1;
MTP_UINT32 nRecvDataBytes = 0;
MTP_UINT8 *pSendDataBytes;
MTP_UINT8 *pRecvDataBytes;
RESPONSECODE ResponseCode = 0;

MTP command with no data transfer

// example 1: no data transfer, get number of objects under Music folder
fd = open(music, O_RDONLY);
if (fd > 0) {

send_params[0] = 0xffffffff; // StorageID
send_params[1] = 0; // ObjectFormat
send_params[2] = 0; // ObjectHandle (pararameter 3 to be overwritten with handle)
nRecvParams = 1;

hr = PFS_ExecuteCommand(fd, 0x1006, // OPCODE_GETNUMOBJECTS

3, // number of 32- bit send parameters
send_params, // address of array of 32-bit send parameters

3, // operation parameter to contain the object handle

0, // number of data bytes to send in transfer phase
NULL, // address of buffer with data bytes to send

&nRecvParams, // input: maximum number of receive parameters expected,
// output: actual received

recv_params, // address of array to hold response parameters

NULL, // input: max data bytes to receive, output: actual received
NULL, // address of buffer to receive data

&ResponseCode); // the response code received

printf("\nexample 1: hr=%d, RC=%04x, num_recv_parms=%d, num_objects=%d\n",
hr, ResponseCode, nRecvParams, recv_params[0]);

close(fd);
}

MTP command with a transfer from the device

// example 2: receive data, get object handles from Music directory
fd = open(music, O_RDONLY);
pRecvDataBytes = (MTP_UINT8 *) alloca(n = sizeof(MTP_UINT32) * 1000);
if (pRecvDataBytes != NULL && fd > 0) {

send_params[0] = 0xffffffff; // StorageID
send_params[1] = 0; // ObjectFormat
send_params[2] = 0; // ObjectHandle (pararameter 3 to be overwritten with handle)
nRecvParams = 0;
nRecvDataBytes = n;

hr = PFS_ExecuteCommand(fd, 0x1007, // OPCODE_GETOBJECTHANDLES

May 13, 2009 Chapter 1 • User-specified MTP Commands to PFS Devices 7

PFS_ExecuteCommand() © 2009, QNX Software Systems GmbH & Co. KG.

3, // number of 32-bit send parameters
send_params, // address of array of 32-bit send parameters

3, // operation parameter to contain the object handle

0, // number of data bytes to send in transfer phase
NULL, // address of buffer with data bytes to send

NULL, // input: maximum number of receive parameters expected,
// output: actual received

NULL, // address of array to hold response parameters

&nRecvDataBytes, // input: maximum data bytes to receive, output:
// actual received

pRecvDataBytes, // address of buffer to receive data

&ResponseCode); // the response code received

printf("\nexample 2: hr=%d, RC=%04x, num_recv_bytes=%d\n", hr, ResponseCode, nRecvDataBytes);
n = (nRecvDataBytes - sizeof(MTP_UINT32)) / sizeof(MTP_UINT32);
if (hr == MTP_RESULT_OK && n != 0 && n == pRecvDataBytes[0]) {

for (i = 1; i <= n; ++i)
printf("\n %3d %#10x", i, ((MTP_UINT32 *) pRecvDataBytes)[i]);

}
printf("\n");
close(fd);

}

MTP command with a transfer to the device

// example 3: send data, update the "Friendly Name" device property
fd = open(music, O_RDONLY);
n = 5; // write five UNICODE16 characters
pSendDataBytes = (MTP_UINT8 *) alloca(2*(n+1));
if (pSendDataBytes != NULL && fd > 0) {

send_params[0] = 0xD402; // DEVICEPROPCODE_DEVICEFRIENDLYNAME
pSendDataBytes[0] = n; // "NAME" with null has total of 5 characters
pSendDataBytes[1] = ’N’; // 16-bit characters
pSendDataBytes[2] = 0; // - high bits are zero
pSendDataBytes[3] = ’A’;
pSendDataBytes[4] = 0;
pSendDataBytes[5] = ’M’;
pSendDataBytes[6] = 0;
pSendDataBytes[7] = ’E’;
pSendDataBytes[8] = 0;
pSendDataBytes[9] = 0; // 16-bit null
pSendDataBytes[10] = 0;

hr = PFS_ExecuteCommand(fd, 0x1016, // OPCODE_SETDEVICEPROPVALUE

1, // number of 32-bit send parameters
send_params, // address of array of 32-bit send parameters

0, // operation parameter to contain the object handle

1+2*n, // number of data bytes to send in transfer phase
pSendDataBytes, // address of buffer with data bytes to send

NULL, // input: maximum number of receive parameters expected,

8 Chapter 1 • User-specified MTP Commands to PFS Devices May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PFS_ExecuteCommand()

// output: actual received
NULL, // address of array to hold response parameters

NULL, // input: maximum data bytes to receive, output: actual received
NULL, // address of buffer to receive data

&ResponseCode); // the response code received

printf("\nexample 3: hr=%d, RC=%04x\n", hr, ResponseCode);
close(fd);

}
return 0;

}

May 13, 2009 Chapter 1 • User-specified MTP Commands to PFS Devices 9

Chapter 2

MME Support for Texas Instruments ADE

In this chapter. . .
Overview 13
Requirements 13
Installation 15
Startup 17

May 13, 2009 Chapter 2 • MME Support for Texas Instruments ADE 11

© 2009, QNX Software Systems GmbH & Co. KG. Overview

This document describes how to set up the MME ADE (Audio Decoder Engine) to
work with the Texas Instruments ADE. The Texas Instruments ADE supports
decoding of files in WMA9, AAC, MP3, PCM and WAV formats. It runs on the Texas
Instruments Jacinto EVM.

Overview
When your system uses the ADE, a writer in the MME sends the compressed format
to the ADE running on the DSP for decoding. The decoded PCM is then sent directly
from the DSP to one of the three DACs on the Jacinto EVM.

For more information about the MME, see the Introduction to the MME, and the MME
Developer’s Guide. For more information about the Texas Instruments ADE, see the
documentation provided by the manufacturer.

Requirements
The Texas Instruments ADE release package contains the following required items:

• Audio_init — a binary that initializes the external audio codecs using I2C and
SPI.

• loaddspimage— a binary that loads and starts the DSP image.

• audio_app.out— a DSP executable.

The dsplink 1.40.05 package contains:

• CFG_Jacinto.c— specific configuration file for building dsplink 1.40.05 for
the ADE writer.

The dsplink 1.61 package contains:

• CFG_ARM.c and CFG_DRA44XGEM_SHMEM.c— specific configuration files for
building dsplink 1.61 for the ADE writer.

You must also ensure that your installation of io-media-generic includes
ade3_writer.so. This writer is only available for ARMLE targets.

Version compatibility
The tables below shows component compatibility, and where components can be
obtained. Component versions listed in a table are compatible only with other
components listed in the same table:

• MME 1.1 with dsplink 1.40.05 patch 3.0

• MME 1.1 with dsplink 1.40.05 patch 3.3

• MME 1.1 with dsplink 1.61

• MME 1.2 with dsplink 1.61

May 13, 2009 Chapter 2 • MME Support for Texas Instruments ADE 13

Requirements © 2009, QNX Software Systems GmbH & Co. KG.

MME 1.1 with dsplink 1.40.05 patch 3.0

The table below lists the components required for the MME 1.1 with
dsplink 1.40.05 patch 3.0.

Component Version Availability

dsplink 1.40.05 patch 3.0 Foundry27 — BSPs

ade3_writer.so Compiled for dsplink 1.40.05 patch 3.0. Foundry27 — included in MME 1.1

TI ADE 1.01.00 — compiled for
dsplink 1.40.05 patch 3.0.

Request from Texas Instruments.

MME 1.1 with dsplink 1.40.05 patch 3.3

The table below lists the components required for the MME 1.1 with
dsplink 1.40.05 patch 3.3.

Component Version Availability

dsplink 1.40.05 patch 3.3 Foundry27 — BSPs

ade3_writer.so Compiled for dsplink 1.40.05 patch 3.3. Request from QNX.

TI ADE 1.01.03 — compiled for
dsplink 1.40.05 patch 3.3.

Request from Texas Instruments.

MME 1.1 with dsplink 1.61

The table below lists the components required for the MME 1.1 with dsplink 1.61.

Component Version Availability

dsplink 1.61 Foundry27 — BSPs

ade3_writer.so Compiled for dsplink 1.61. Request from QNX.

TI ADE 1.02.02 — compiled for dsplink 1.61. Request from Texas Instruments.

MME 1.2 with dsplink 1.61

The table below lists the components required for the MME 1.2 with dsplink 1.61.

Component Version Availability

dsplink 1.61 Foundry27 — BSPs

continued. . .

14 Chapter 2 • MME Support for Texas Instruments ADE May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Installation

Component Version Availability

ade3_writer.so Compiled for dsplink 1.61. Foundry27 — included in MME 1.2

TI ADE 1.02.02 — compiled for dsplink 1.61. Request from Texas Instruments.

The QNX Foundry27 web site is at: www.foundry27.com.

Installation
Installation of the ADE requires the following tasks:

• Build the dsplink resource manager

• Build the Jacinto image

• Modify the MME for Jacinto

For installation instructions, see the dsplink project Installation Notes on Foundry27.

Build the dsplink resource manager
To build the dsplink resource manager:

1 For dsplink 1.40.05 only, replace the QNX CFG_Jacinto.c found in
/lib/dsplink14005/config/all/with the Texas Instruments
CFG_Jacinto.c from the 64M directory.
For dsplink 1.6n only, replace the CFG_ARM.c and
CFG_DRA44XGEM_SHMEM.c files in lib/dsplink160/config/all/with
the configuration files from the Texas Instruments release package.

2 For all dsplink versions, build the following to create the dsplink resource
manager:

• /lib/dsplink14005, /lib/dsplink161or other dsplink version, as
required

• /services/dsplink

This build changes the ARM/DSP memory split.

Build the Jacinto image
To build the Jacinto image:

1 Ensure that the build has the 64-megabyte memory configuration for dsplink,
by commenting out the default configuration line:

#Startup for dsplink config 8M ---CURRENT DEFAULT---
#startup-jacinto -L 0x67800000,0x800000 -vvvvv

and uncommenting the line for the 64-megabyte memory configuration:

#Startup for dsplink config 64M
startup-jacinto -L 0x64000000,0x4000000 -vvvv

May 13, 2009 Chapter 2 • MME Support for Texas Instruments ADE 15

Installation © 2009, QNX Software Systems GmbH & Co. KG.

2 Initialize the drivers — most of this information is also available in the
documentation supplied by Texas Instruments with the ADE release:

i2c-dm6446 -p0x01C21000 -i39
waitfor /dev/i2c0
i2c-dm6446 -p0x01C21800 -i41 --u 2
waitfor /dev/i2c2
spi-master -d dra446 base=0x01c24c00,irq=37,edmairq=0xc128,edmachannel=40,edma=1
waitfor /dev/spi0
regaccess -v0xE08cc5F1 -p0x01C48100 -l32
regaccess -v0x114cc450 -p0x01C48104 -l32
regaccess -v0x022aa02f -p0x01C48108 -l32
regaccess -v0xffffffff -p0x01c4800c -l32
regaccess -v0x0F000000 -p0x01C48034 -l32
regaccess -v0x00000018 -p0x01C4812C -l32
regaccess -v0x12 -p0x18000020 -l32
regaccess -v0x12 -p0x18001020 -l32
Audio_init -v

3 Start dsplink:

/proc/boot/dsplink &
waitfor /dev/dsplink

4 Load the DSP image:

loaddspimage /proc/boot/audio_app.out &

5 Make sure the following binaries are available to the system:

• regaccess

• dsplink

• loaddspimage

• audio_app.out

• Audio_init

Modify the MME for Jacinto
To modify the MME for Jacinto support, do the following:

1 Modify the mme_data.sql file to not use the default configuration by
commenting out the following lines, as shown below:

-- This example configures one output device in one zone, for one control context
--INSERT INTO outputdevices(type, permanent, name, devicepath)
-- VALUES(1, 1, ’defaultoutput’, ’/dev/snd/pcmC0D1p’);
--INSERT INTO zones(zoneid, name) SELECT 1, ’defaultzone’;
--INSERT INTO zoneoutputs(zoneid, outputdeviceid)
-- SELECT 1, outputdeviceid FROM outputdevices
-- WHERE name=’defaultoutput’;
--INSERT INTO renderers(path) VALUES(’/dev/io-media’);
--INSERT INTO controlcontexts(zoneid, rendid, name)
-- VALUES(1, 1, ’default’);

2 Modify the mme_data.sql file to use the Jacinto multi-zone configuration
example by uncommenting or adding, as required, the following:

16 Chapter 2 • MME Support for Texas Instruments ADE May 13, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Startup

-- Jacinto multi-zone configuration example.
-- Three Control Contexts, three Zones, one output device each.
-- One io-media for all:
INSERT INTO renderers(path)

VALUES(’/dev/io-media’);

-- zone0:
INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’appe_0’, ’appe_output_0’);
INSERT INTO zones(zoneid, name)

SELECT 1, ’zone0’;
INSERT INTO zoneoutputs(zoneid, outputdeviceid)

SELECT 1, outputdeviceid FROM outputdevices
WHERE name=’appe_0’;

INSERT INTO controlcontexts(zoneid, rendid, name)
VALUES(1, 1, ’cc0’);

-- zone1:
INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’appe_1’, ’appe_output_1’);
INSERT INTO zones(zoneid, name)

SELECT 2, ’zone1’;
INSERT INTO zoneoutputs(zoneid, outputdeviceid)

SELECT 2, outputdeviceid FROM outputdevices
WHERE name=’appe_1’;

INSERT INTO controlcontexts(zoneid, rendid, name)
VALUES(2, 1, ’cc1’);

-- zone2:
INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’appe_2’, ’appe_output_2’);
INSERT INTO zones(zoneid, name)

SELECT 3, ’zone2’;
INSERT INTO zoneoutputs(zoneid, outputdeviceid)

SELECT 3, outputdeviceid FROM outputdevices
WHERE name=’appe_2’;

INSERT INTO controlcontexts(zoneid, rendid, name)
VALUES(3, 1, ’cc2’);

3 In the QDB configuration file (qdb.cfg), use tmpfs for mme_library,
mme_temp and mme. For example:

[mme_temp]
Filename = /fs/tmpfs/mme_temp.db
Schema File = /db/mme_temp.sql

Startup
To start the MME, use the standard MME startup procedure described in the MME
Quickstart Guide in Introduction to the MME, but start io-fs-media as follows:

io-fs-media -d tmp,noglob -cpages=4 -cbundles=0

and start io-media-generic as follows:

io-media-generic -Mmmf,dlldir=$QNX_TARGET/armle/lib/dll/mmedia \
-Mmmf,audio_writer=ade3_writer -Mmmf,keepdlls=all

May 13, 2009 Chapter 2 • MME Support for Texas Instruments ADE 17

Startup © 2009, QNX Software Systems GmbH & Co. KG.

When using mmecli, you need to specify which control context to use: cc0, cc1 or
cc2. Each control context plays to a different headphone output port on the Jacinto
EVM. For example, to play to two different output zones do the following:

mmecli -c /dev/mme/cc0 newtrksession l "select fid from library"
mmecli -c /dev/mme/cc0 settrksession 1
mmecli -c /dev/mme/cc0 play 1
mmecli -c /dev/mme/cc1 newtrksession l "select fid from library"
mmecli -c /dev/mme/cc1 settrksession 2
mmecli -c /dev/mme/cc1 play 2

Note that the newtrksession option is the letter “l”, for a library mode track
session; while the settrksession option is the numeral one, which is the track
session number.

Audio routing

Audio routing is outside the scope of the MME for controlling the APPE audio
routing, mixing, and post processing on the DSP. You must develop a separate audio
management application to support these capabilities.

18 Chapter 2 • MME Support for Texas Instruments ADE May 13, 2009

