
QNX Aviage Multimedia Suite
MediaFS Developer’s Guide

For QNX Neutrino 6.4.x

 2009, QNX Software Systems GmbH & Co. KG.

 2008-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published April 30, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Guide vii
Typographical conventions x

Note to Windows users xi

Technical support options xi

MediaFS Overview 11

MediaFS Structure 52
Filesystem location 7

The MediaFS filesystem structure 7

Required POSIX function support 8

MediaFS Entities 113
The .FS_info. directory and its contents 13

The info.xml file 13

The control file 14

The devsymbolic link 15

The currentsymbolic link 15

The playback directory 16

Directories and files outside the .FS_info. directory 16

Directory behavior 17

File behavior 17

Playlist files and directories 18

MediaFS playlists 18

Media Changers 194
Representing media changers and mediastores 21

MediaFS instances for slots 21

Informing MediaFS of state changes 23

Changer states 24

Managing Playback 275
Requested playback control sequences 29

Start playback — file or directory 29

April 30, 2009 Contents iii

 2009, QNX Software Systems GmbH & Co. KG.

Start playback — media device 30

Fast forward and reverse 31

Pause and resume playback 32

Managing autonomous playback state changes 33

Track change 33

Playback state change 33

Metadata update 34

Device Messages 356
Using device control messages 37

Device configuration messages 38

iPod, UPnP device and streaming messages 39

Common messages 39

iPod device messages 40

UPnP device messages 40

Media stream messages 40

Playback Messages 437

Metadata Messages 518

Playback Structures and Constants 579
Playback structures 59

_media_date 59

_media_play 60

_media_playback 60

_media_playback_status 61

_media_settings 63

_media_speed 63

_media_stream_info 63

Playback constants 64

Media playback constants 64

Repeat and random mode setting constants 65

Media stream constants 66

Media type strings 66

iPod structures 67

_media_ipod_daudio 67

Getting Album Art 6910
How to retrieve album art 71

Album art messages 71

iv Contents April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

Album art structures 73

_media_albart 73

_media_albart_entry 73

_media_img_desc 74

Album art constants 74

MediaFS Events 7711
Working with MediaFS events 79

The MediaFS event queue 79

Reading MediaFS events 80

Event types 81

MediaFS events and their structures 81

The _media_event data structure 81

Track, time and other information update events 82

Metadata update events 84

Error and warning events 85

MediaFS Examples 89A
MediaFS structure 91

info.xml file 91

Index 95

April 30, 2009 Contents v

About this Guide

April 30, 2009 About this Guide vii

 2009, QNX Software Systems GmbH & Co. KG.

The MediaFS Developer’s Guidepresents how the media filesystem (MediaFS)
module expects device drivers to describe media devices and mediastores, and the
devctl()messages that these drivers need to support.
This Guideis intended for:

• developers who design and write device drivers for use with MediaFS

• developers who integrate support for these devices into higher-level applications
that use the MediaFS interface — applications such as the QNX Aviage
Multimedia Suite’s Multimedia Engine (MME)

For more information about the MME, see Introduction to the MMEand the other
books in the MME documentation set.

The table below may help you find what you need in this book:

For information about: See:

The MediaFS standardized interface MediaFS Overview

The structure of MediaFS, and required
POSIX function support

MediaFS Structure

MediaFS entities, including files,
directories and symbolic links

MediaFS Entities

Media changer presentation to MediaFS Media Changers

How to present playback states and
controls to MediaFS

Managing Playback

Device management messages
supported by MediaFS

Device Management Messages

Playback and status update supported by
MediaFS

Playback Messages

Metadata retrieval messages supported
by MediaFS

Metadata Messages

Playback structures and constants used
by MediaFS

Playback Structures and Constants

How to retrieve album art Getting Album Art

MediaFS events and their structures MediaFS Events

Examples of code used to work with
MediaFS

Appendix A: Examples

Other MME documentation available to application developers includes:

April 30, 2009 About this Guide ix

Typographical conventions  2009, QNX Software Systems GmbH & Co. KG.

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME Developer’s Guide How to use the MME to program client
applications.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Technotes MME technical notes.

MME Utilities Utilities used by the MME.

MME Configuration Guide How to configure the MME.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

continued. . .

x About this Guide April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Technical support options

Reference Example

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

April 30, 2009 About this Guide xi

Chapter 1

MediaFS Overview

April 30, 2009 Chapter 1 • MediaFS Overview 1

 2009, QNX Software Systems GmbH & Co. KG.

MediaFS presents a POSIX-compliant filesystem view of media devices. This
filesystem view of media devices can be used by higher-level applications, such the
MME, to browse and control media devices. These higher-level applications can use
the MediaFS standarardized interface to query and control media playback on a wide
range of media devices, including portable music devices such as iPods and
PlaysForSure devices, and UPnP devices that attach to a network.

For more information about the MME, start with Introduction to the MME.

The following diagram shows the MediaFS module in relation to the user application
and media devices.

User application

MediaFS high-level POSIX interface

MediaFS low-level interface

iPod
device

PFS
device

Device access layer

Serial port
driver

USB driver TCP/IP

UPnP
device

MediaFS

MediaFS in a multimedia implementation

The MediaFS standardized interface allows higher-level multimedia applications, such
as the MME, to use POSIX functions related to file and directory operations to access
audio and video content along with associated metadata on media devices and
mediastores.

To add a new device to a multimedia environment that uses MediaFS, all you need to
do is:

• create a MediaFS implementation to represent the device according to the MediaFS
requirements

• make adjustments to the client application (the MME or the HMI, or both) to
ensure that they are aware of and able to handle new situations that might arise due
to the presence of the new device

April 30, 2009 Chapter 1 • MediaFS Overview 3

 2009, QNX Software Systems GmbH & Co. KG.

To create a MediaFS implementation you can use io-fs, a resource manger, or some
other component as you require.

4 Chapter 1 • MediaFS Overview April 30, 2009

Chapter 2

MediaFS Structure

In this chapter. . .
Filesystem location 7
The MediaFS filesystem structure 7
Required POSIX function support 8

April 30, 2009 Chapter 2 • MediaFS Structure 5

 2009, QNX Software Systems GmbH & Co. KG. Filesystem location

This chapter describes:

• Filesystem location

• The MediaFS filesystem structure

• Required POSIX function support

Filesystem location
When a MediaFS implementation learns of a new media device, it registers a path with
the path space manager to the location of the MediaFS filesystem; this path is called
the mountpoint. The MediaFS implementation then:

• creates the MediaFS standarized filesystem structure for the device

• creates a filesystem representing the device under /fs

• makes available the contents of the device as a filesystem with the root directory of
the device mounted on /fs/dev_id, where dev_id is a name that indicates the type of
device with a numeric suffix representing the device’s instance number

The first device discovered has an instance number of 0. For example, if a device is an
iPod it is mounted as /fs/ipod0; while a PFS/MTP device is mounted as /fs/pfs0.

Multiple instances of a device are identified by their numeric suffixes. Thus, for
example two iPods, one PFS device, and one UPnP device would be mounted as
follows:

/fs/ipod0
/fs/ipod1
/fs/pfs0
/fs/upnp0

For more information about how to represent a media device to MediaFS, see the
chapter MediaFS Entities.

For more information about resource managers, see the Writing a Resource Manager
in the QNX Neutrino documentation set.

The MediaFS filesystem structure
Located under the MediaFS mountpoint, the .FS_info. directory is the MediaFS
standardized structure of files and directories that contain the control and state
information of a media device. Every device instance has its own MediaFS filesystem
structure.

The basic MediaFS filesystem structure is as follows:

Directories
Files
mountpoint

April 30, 2009 Chapter 2 • MediaFS Structure 7

Required POSIX function support  2009, QNX Software Systems GmbH & Co. KG.

mountpoint/.FS_info.
mountpoint/.FS_info./info.xml
mountpoint/.FS_info./dev
mountpoint/.FS_info./current
mountpoint/.FS_info./control
mountpoint/.FS_info./playback

Media device controllers must populate the the device-specific files in the .FS.info.
directory, according to the specifications presented in the chapter MediaFS Entities.

The figure below shows a MediaFS hierarchy with a Bluetooth device.

/fs/avrcp0

.FS_info.

info.xml

The MediaFS module hierarchy with a Bluetooth device

Files and directories outside the .FS_info. directory are device dependent and,
therefore, do not have a standardized, defined structure in MediaFS. See “Directories
and files outside the .FS_info. directory” in the chapter MediaFS Entities.

Required POSIX function support
All files and folders in the MediaFS representation adhere to the POSIX standard, and
the following POSIX functions must be supported on all directories and files in the
MediaFS representation:

• close()— close a file

• closedir()— close a directory

• devctl()— control a device

• dircntl() — control an open directory

• fstat()— get file information, given a file description

• open()— open a file

• opendir()— open a directory

• readdir() — read a directory entry

8 Chapter 2 • MediaFS Structure April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Required POSIX function support

• stat()— get information about a file or directory, given a path

Directories and files can be identified by using the standard POSIX stat()function, and
the S_ISDIR and S_ISREG macros on the returned stat structure.

For speed optimizations, MediaFS should support the ability to retrieve extra stat()
information as part of the readdir() operation, if the D_FLAG_STAT flag is set.

For more information about these functions and data structures, see the QNX Neutrino
Library Reference.

April 30, 2009 Chapter 2 • MediaFS Structure 9

Chapter 3

MediaFS Entities

In this chapter. . .
The .FS_info. directory and its contents 13
Directories and files outside the .FS_info. directory 16
Playlist files and directories 18

April 30, 2009 Chapter 3 • MediaFS Entities 11

 2009, QNX Software Systems GmbH & Co. KG. The .FS_info. directory and its contents

This chapter describes:
• The .FS_info. directory and its contents

• Files outside the .FS_info. directory

• Playlist files and directories

The .FS_info. directory and its contents
When a MediaFS implementation learns of a device, it creates a .FS_info. directory
for the media device with device-specific playback and metadata interface items. The
table below lists these items:

Item Type Required? Description

info.xml file Yes XML file with device-specific information.

control file Optional File in which device-specific playback actions are issued to a
media device.

dev symbolic link Optional Symbolic link to device identified by the <uuid> element in the
info.xml file.

current symbolic link Optional Symbolic link pointing to the currently playing file in MediaFS.

playback directory Optional Directory with symbolic links, listed in the same order as the
media device will complete playback of the files.

See the sections below for complete descriptions of the .FS_info. items.

The info.xml file
The info.xml device information file is an XML version 1.0 file that contains
device-specific information. The MediaFS implementation creates this file when it
creates the .FS_info. directory for a media device, placing it in the root directory
for the device as .FS_info./info.xml. This file is static and persists for the
lifetime of the MediaFS instance that created it.

To the client application, the info.xml file is a read onlyfile. Client applications can
not write to this file.

When it creates the info.xml file, MediaFS does not populate it with device
information. To enable MediaFS to present to higher level software layers a standard
interface to all media devices, device controllers must populate the info.xml file for
each device with XML-formatted, device-specific information. This XML-formatted
information can be used by higher-level software, such as the MME, and may also be
useful for human viewing.

The table below lists the basic elements of an info.xml file:

April 30, 2009 Chapter 3 • MediaFS Entities 13

The .FS_info. directory and its contents  2009, QNX Software Systems GmbH & Co. KG.

XML Key Required? Description

<media> Yes Root XML key for the media

<media>/<device> Yes A name used to indicate to upper layer components the device
below the MediaFS.

<media>/<serial> Yes Device serial number

<media>/<model>/<*> Optional Device model information

<media>/<protocol>/<*> Optional Device protocol information

<media>/<swversion> Optional Device software revision

<uuid> Optional A unique identifier for the media device; upper layer
components, such as the MME, must be able to use this key to
associate the media device with its settings and remember
these settings. A <uuid> number must be static, and unique to
a media device.

Example info.xml file

The example below presents the minimum required content of a info.xml file:

<?xml version="1.0" standalone="yes"?>
<uuid>unique_media_identifier</uuid>
<media>
<device>devicename</device>
<serial>8N838BUH2C7</serial>
</media>

Mediastore changer devices, such as CD or DVD changers, require different elements
in their info.xml file. For more information, see “The info.xml file for mediastore
changers” in the chapter Working with Media Changers.

The control file
The control file in the .FS_info. directory is the file where device-specific
playback actions are issued to a media device. This MediaFS control file is a file
interface that supports the following I/O capabilities:

• Accept playback and state information device control messages.

• Set a state via device control messages.

• Provide asynchronous change notifications via out-of-band messaging.

• Get events from the MediaFS event queue; see also the
DCMD_MEDIA_READ_EVENTS device control message, and the chapter MediaFS
Events.

14 Chapter 3 • MediaFS Entities April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. The .FS_info. directory and its contents

The MediaFS control file provides state information and metadata for the current
device. That is:

• state and metadata device control messages issued on the control file return
information about the device at the time of the execution

• metadata obtained from the control filet is the metadata for the currently active
(playing) track

The control file is required for devices, such as iPods, that use serial (“two-wire”)
connections. It is not required for devices, such as PFS devices and certain iPods, that
use USB (“one-wire”) connections.

Conditions for sending a notification

If the state or the metadata of the currently active device changes, the MediaFS control
file should send a notification via an out-of-band message to all registered listeners,
such as, for example, the MME.

The MediaFS control file sends a notification if anyof the following conditions is met:

• Any data that that will be returned in the _media_playback_status structure
has changed.

• An event has been added to the MediaFS event queue.

• The current file has been updated.

• The content of the playback directory has changed.

• The device playback speed or state has changed.

To receive asynchronous notifications, a client application must use the QNX
io_notify() function to register for these notifications.

The dev symbolic link
The develement in the .FS_info. directory is a symbolic link to the media device
identified by the <uuid> element. It should be an entry in the /dev directory and
provide access directly to the media device.

Devices such as an HTTP client driver may not have a deventry.

The current symbolic link
The current symbolic link is optional. If it is present, this symbolic link is a relative
path from the .FS_info. directory which, when it is resolved, points to the currently
active file. This active file is in the MediaFS file system.

April 30, 2009 Chapter 3 • MediaFS Entities 15

Directories and files outside the .FS_info. directory  2009, QNX Software Systems GmbH & Co. KG.

If the playback directory is present, the symbolic link points to an entry in this
directory. If no file on the media device is currently active, the current symbolic link is
removed or deleted.

Metadata retrieval commands issued on the current symbolic link return the specified
metadata for the currently playing file.

The MediaFS control file sends a notification to registered clients via an out-of-band
message whenever the current symbolic link is updated.

A system must support the POSIX readlink() function in order to resolve the current
symbolic link.

The playback directory
The playback directory is optional. If it is present, this directory contains symbolic
links to files that the media device will play. When it writes these symbolic links to the
playback directory, the device controller should organize them in the same order as
the media device will play the files referenced by the links.

Whenever possible, symbolic links in the playback directory should point to the files
that they represent in the main media filesystem. However, for some operational
modes on some devices, the device may not be able to guarantee the accuracy of these
pointers. Client applications should, therefore, treat the links as hints and not as
guarantees of a file’s location in the main media filesystem.

Metadata retrieval

Client applications can use metadata retrieval messages to execute metadata extraction
calls against the files listed in the playback directory. If the links point into the
MediaFS hierarchy, the results of a call to one of these symbolic links is the same as
the result of a call to retrieve metadata directly from a file in MediaFS.

For more information about metadata retrieval messages, see the chapter Metadata
Messages.

Changes to the playback directory

When the content of the playback directory changes (because, for example, the
client has selected a play operation against a new set of media files), the control file
sends a notification of the change to all applications registered for out-of-band
messages on the control file.

Directories and files outside the .FS_info. directory
The behavior of MediaFS entities located outside the .FS_info. directory structure
varies according to the capabilities and behaviors of each underlying media device.
However, MediaFS maintains some behaviors throughout for these directories and
files, as described in this section.

16 Chapter 3 • MediaFS Entities April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Directories and files outside the .FS_info. directory

Directory behavior
MediaFS directories outside the .FS_info. directory represent the data hierarchy of
the target device. For example, directories on an Apple iPod could be represented
using the following structure:

/ipod0
/ipod0/.FS_info.
/ipod0/Music
/ipod0/Music/Artists
/ipod0/Music/Songs
...

Directory characteristics

To be usable by MediaFS, a directory outside the .FS_info. directory structure must
have the following characteristics:

• The directory must be of the type S_ISDIR.

• The directory must support the DCMD_FSYS_DIR_NFILES command message, to
indicate the number of files present in the directory.

• All directory attributes (name, size, etc.) must adhere to the QNX filesystem
specifications and POSIX specifications.

Additionally, directories outside the .FS_info. directory structure may need to
accept the DCMD_MEDIA_PLAY command, if the associated media device supports
playback of all items in a directory; that is, if the device supports using a directory as a
playlist.

File behavior
MediaFS files outside the .FS_info. directory represent files or tracks that can used
with the media device.

The POSIX filesystem representation for these files is free-form, with the following
restrictions:

• Files must be of the type S_ISREG.

• Files should use a file extension to aid in file type detection.

• All file attributes (name, size, etc.) must adhere to QNX filesystem specifications
and POSIX specifications.

Supported device control messages

MediaFS files outside the .FS_info. directory structure must support state change
and metadata query device control messages.

Messages issued directly to a file outside this directory structure must apply to the
specified file. For example, the device control message DCMD_MEDIA_SONG issued

April 30, 2009 Chapter 3 • MediaFS Entities 17

Playlist files and directories  2009, QNX Software Systems GmbH & Co. KG.

directly to a file outside the .FS_info. directory structure returns the song title for
that file, not the song title of the currently playing file.

If a device control message cannot be completed due to media device limitations, the
call that issues the control message returns an ENOTSUP error.

For a complete list of device control messages used with MediaFS and descriptions of
these messages, see the chapters Playback Messages and Metadata Messages.

Playlist files and directories
A playlist can be either of:

• a standardized playlist file, such as an M3U or PLS file, stored in the MediaFS
hierarchy; entries in the these playlist files must be filesystem paths pointing to
entries in MediaFS

• a MediaFS playlist, which is a collection of files inside a directory

Playlist support is subject to upper layer component (MME) support.

MediaFS playlists
Note the following about MediaFS playlists:

• A MediaFS playlist directory can be present only outsideof the .FS_info.
directory.

• For a directory to be identified as a MediaFS playlist, the directory must have the
othersexecute bit cleared in the st_modemember of its stat structure.

Indentifying a MediaFS playlist

The code snippet below shows how to determine if a directory is a MediaFS playlist:

stat(path, &statbuf);
if ((S_ISDIR ! S_IXOTH) & statbuf.st_mode)==S_ISDIR) {

//This is a MediaFS playlist
}

For more information about the stat structure, see stat(), stat64()in the the QNX
Neutrino Library Reference.

18 Chapter 3 • MediaFS Entities April 30, 2009

Chapter 4

Media Changers

In this chapter. . .
Representing media changers and mediastores 21
Informing MediaFS of state changes 23

April 30, 2009 Chapter 4 • Media Changers 19

 2009, QNX Software Systems GmbH & Co. KG. Representing media changers and mediastores

Media changer devices — essentially CD and DVD changers — differ from other
media devices because they contain and change removable mediastores.

A removable mediastore is a physical storage medium, such as a CD or DVD, with
one of more media files that can be synchronized and played. Media changer devices
can load and unload these mediastores as required, changing their states from
“unavailable” to “available” to “active”.

This chapter describes how these devices and their mediastores can be represented to
MediaFS, and how state changes on these devices should be communicated to
MediaFS:

• Representing media changers and mediastores

• Informing MediaFS of state changes

Representing media changers and mediastores
MediaFS uses extensions to offer a common representation of devices with multiple
mediastores — devices such as CD and DVD changers. It represents a media changer
device as a single changercontainer. This changer container includes multiple slot
items. Each slot represents one mediastore (such as a CD or a DVD), and is described
by a separate MediaFS instance.

For example, the following illustration represents the hierarchy of one media changer
device with three slots, each slot described by a MediaFS instance:

MediaFS changer device and mediastore hierarchy representation

MediaFS instances for slots
A slot represents a single mediastore. Each slot has a MediaFS instance, which
adheres to the MediaFS specifications for media device representation. That is, each
slot has a MediaFS instance with its own info.xml file, control file, optional
playback directory, devsymbolic link, and optional current symbolic link.

The info.xml file for mediastore changers

MediaFS info.xml files for changer devices and slots differ from info.xml files for
other media devices in order to accurately represent the devices as containers for the
mediastores, and the mediastores as dependent on a device. That is, the info.xml
files for changer devices and slots must indicate that the changer device can hold one,
many or no mediastores, and that these mediastores can only be accessed inside a
changer.

April 30, 2009 Chapter 4 • Media Changers 21

Representing media changers and mediastores  2009, QNX Software Systems GmbH & Co. KG.

The table below lists the elements required in an info.xml file use to describe media
changer devices and slots:

XML Key Required? Description

<media> Yes Root XML key for the media

<media>/<driver> Yes Description of the device as a MediaFS
changer device

<media>/<name> Yes Name of the mediastore

<media>/<serial> Yes Device serial number

<media>/<slot> Yes Slot number for the mediastore

<media>/<type> Yes Description of the mediastore type

Required XML keys

The keys listed below are required in the info.xml file for a media changer device
slot:

<media>/<driver>

A user-defined name for the device; for slots this value mustbe set to
mediafs-changer.

<media>/<name>

The mediastore name that can be passed to the upper software layers (such as
the MME and an HMI) for display to the user. In most cases this name is the
volume name of the mediastore.

<media>/<serial>

A unique identifier for the mediastore represented by the slot. It must be set to a
value , such as the freeDB hash, that uniquely identifies the mediastore.

<media>/<slot>

The slot position of the mediastore in the changer device. The value of this key
must be the same as the offset returned by a call to the device with the
DCMD_CAM_MECHANISM_STATUS control message. This offset (and
therefore the value of the <slot> key) is a single-digit string representing the
slot with the mediastore.

<media>/<type>

A predefined text value identifying the kind of mediastore present in the media
changer device slot. Permitted values are:

• FS — basic filesystem

• AUDIOCD — CDDA disc

• DVDVIDEO — DVD-video disc

22 Chapter 4 • Media Changers April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

• DVDAUDIO — DVD-audio disc

• VCD — Video CD disc

• UNKNOWN — unknown mediastore type

Example info.xml file

The example below shows an info.xml file for a MediaFS slot representing a
mediastore changer device:

<?xml version="1.0" standalone="yes"?>
<info>

<media>
<device>mediafs-changer</device>
<slot>1</slot>
<serial>280a1752</serial>
<name>MIXED</name>
<type>FS</type>

</media>
<device>

<driver>mediafs-changer</driver>
<catagory>media</catagory>

</device>
</info>

For more information about the info.xml file, see “The info.xml file” in the
chapter MediaFS Entities.

Informing MediaFS of state changes
MediaFS expects a slot to have one of the following states:

• unavailable — the slot is not represented in MediaFS

• available — the slot is represented in MediaFS, inside the changer container

• active — the slot is available anda mediastore that can be synchronized and played
is physically present

For example, if a CD changer has six possible mediastore locations, it can be
represented by a changer with any one of slots 0 to 5. If a mediastore is loaded into
slot 0, MediaFS represents it as shown in the figure below:

MediaFS changer representation of a mediastore in slot 0

If the mediastore is ejected from the changer, MediaFS removes its slot representation:

April 30, 2009 Chapter 4 • Media Changers 23

Informing MediaFS of state changes  2009, QNX Software Systems GmbH & Co. KG.

MediaFS changer representation of device with no available mediastores

For files on a mediastore to be synchronized or played, the slot representing the
mediastore in MediaFS must by marked activeas well as available. That is, the device
controller must use the slot’s control file to inform MediaFS not only that the slot is
present, but that a readable disc is physically loaded in the changer and is ready to be
read. Thus, only one changer slot can be active at any one time.

Changer states
To get the current changer state from MediaFs, the client application or the device
controller must issue the DCMD_CAM_CDROM_MECHANISM_STATUS device
control message to each changer slot’s control file, as appropriate.

DCMD_CAM_CDROM_MECHANISM_STATUS is a standard control defined in the
sys/cdrom.h header file. The example below shows one way to implement the
DCMD_CAM_CDROM_MECHANISM_STATUS device control command:

#define CDROM_MSH_CHANGER_SET_CURRENT_SLOT(cdrom_status, slot)\
cdrom_status.mech_state &= ˜0x07 ; \
cdrom_status.changer_state_slot &= ˜0x1F ; \
cdrom_status.mech_state |= (slot >> 5) ; \
cdrom_status.changer_state_slot |= (slot & 0x1F) ;

struct _cdrom_mechanism_status cdrom_status ;
struct _cdrom_exchange cdrom_exchange ;

switch(changer.status)
{
case STATUS_EMPTY:

cdrom_status.hdr.mech_state = CDROM_MSH_MECHANISM_IDLE ;
break;

case STATUS_RETRACT:
case STATUS_LOAD:

cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_LOADING ;
break;

case STATUS_UNLOAD:
cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_UNLOADING ;
break;

default:
cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_READY ;
break;

}

cdrom_status.hdr.num_slots_avail = changer.num_slots ;
cdrom_status.hdr.slot_table_len = changer.num_slots ;

for(index=0; index < changer.num_slots; index++) {
if(changer.slotInfo[index].status == DISCIN) {

24 Chapter 4 • Media Changers April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

cdrom_status.str[index].flags |= CDROM_STR_DISC_PRESENT;
}

}

CDROM_MSH_CHANGER_SET_CURRENT_SLOT(cdrom_status.hdr,
changer.active_slot);

April 30, 2009 Chapter 4 • Media Changers 25

Chapter 5

Managing Playback

In this chapter. . .
Requested playback control sequences 29
Managing autonomous playback state changes 33

April 30, 2009 Chapter 5 • Managing Playback 27

 2009, QNX Software Systems GmbH & Co. KG. Requested playback control sequences

Playback on media devices may be initiated or changed by:

• a user; that is, a high-level application, such as the MME

• a media device, such as an iPod

This chapter presents the control message sequences and the settings that a device
controller may need to support to monitor and manage media playback through
devctl()calls to MediaFS entities. It contains the following sections:

• Requested playback control sequences

• Managing autonomous playback state changes

For a list of MediaFS control messages, see the chapters Playback Messages and
Metadata Messages.

Requested playback control sequences
A media device controller using MediaFS should support client applications issuing
commands to MediaFS entities to start playback of:

• a media file (track), at the start of the track or at an offset, if the media device
supports playback from an offset

• a directory

• a media device, if the media device supports this action

This section presents the control message sequences and settings required to effect a
playback state change through a devctl()call to a MediaFS entity. It contains:

• Start playback — file or directory

• Start playback — media device

• Fast forward and reverse

• Pause and resume playback

Start playback — file or directory
To start playback for a specific file or directory, the client application should issue, as
required, either the DCMD_MEDIA_PLAY or the DCMD_MEDIA_PLAY_AT device
control message to the MediaFS file or directory to play.

If the file or directory is valid for the media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Start playback of the requested track on the media device.

3 Update the following _media_playback structure members:

April 30, 2009 Chapter 5 • Managing Playback 29

Requested playback control sequences  2009, QNX Software Systems GmbH & Co. KG.

• count— set to the number of tracks that will be played

• index— set to the index of the requested track

• state— set to PLAYBACK_STATE_PLAY

• flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; if the device does not support this
feature, set to 0 (zero)

• metaseq— set to 0 (zero)

• length— set to the length of the track, or to 0 (zero) if the track length is not
available

• elapsed— set to 0 (zero) if the DCMD_MEDIA_PLAY message was issued,
or to the track start offset, in seconds, if the DCMD_MEDIA_PLAY_AT
message was issued and is supported

• speed— if the the flagsmember is set to
PLAYBACK_FLAG_SPEED_EXACT, set to 1 (one) only; no other value is
permitted

4 Update the MediaFS current symbolic link (if it is present) to point to the
requested media file.

5 Send an out-of-band notification on the control file.

6 If all operations are successful, reply to the device control message with EOK.

Start playback — media device
Some media devices support playback of the entire device, starting with the first track
in the device, a random track, or at the point where playback was previously stopped.
To start or resume playback of a device, a client application should issue the
DCMD_MEDIA_PLAY device control message to the MediaFS control file.

If this action is valid for the current media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Start playback of the media device.

3 Update the following _media_playback structure members:

• count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

• index— set to the currently playing track if the device provides this
information immediately, or to 0 (zero) if the information is not provided at
this time

• state— set to PLAYBACK_STATE_PLAY

• flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; no other value is permitted

30 Chapter 5 • Managing Playback April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Requested playback control sequences

• metaseq— set to 0 (zero)

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to 0 (zero)

• speed— set to 1 (one), only if the PLAYBACK_FLAG_SPEED_EXACT flag is
set; no other value is permitted

4 Update the current symbolic link to point to the requested media file. If the
currently playing file is not known at this time, clear the symbolic link.

5 Send an out-of-band notification on the control file.

6 If all operations are successful, reply to the device control message with EOK.

Track information updates

If a device autonomously indicates the playing track after MediaFS has replied to the
DCMD_MEDIA_PLAY device control message that started playback, the device
controller must perform the following operations, in sequence:

1 Update the following _media_playback structure members:

• count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

• index— set to the currently playing track

• metaseq— increment by 1 (one), if metadata is now available

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to the current track time received from the media device

2 Send an out-of-band notification on the control file.

Fast forward and reverse
The playback speed or direction of a media device represented through MediaFS can
be changed only while the device is in the playing state. To change the playback speed
or direction, or both, the client application should issue the appropriate messages to
the the MediaFS control file.

If the action is valid for the current media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Change the playback speed on the media device, as requested.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PLAY (1)

• flags— set to PLAYBACK_FLAG_FASTFWD or
PLAYBACK_FLAG_FASTRWD, and set to
PLAYBACK_FLAG_SPEED_EXACT if the device supports this feature

April 30, 2009 Chapter 5 • Managing Playback 31

Requested playback control sequences  2009, QNX Software Systems GmbH & Co. KG.

• speed— set to the playback speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

For more information about fast forward and reverse control messages, see the chapter
Playback and Status Messages.

Pause and resume playback
The client application should pause and resume playback on MediaFS devices by
issuing messages to the MediaFS control file. If these actions are valid for the
current media device, the device control should apply them to the device.

Pause playback

Playback can only be paused while a device is in the playing state. To pause playback,
a client application should issue the DCMD_MEDIA_PAUSE message to the MediaFS
control file. If this action is valid for the current media device, the device controller
must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Pause playback on the media device.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PAUSE

• speed— set to 0 (zero), only if the PLAYBACK_FLAG_SPEED_EXACT flag
is set

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

Resume playback

Playback can only be resumed while the device is in the paused state. To resume
playback, the client application should issue the DCMD_MEDIA_RESUME message to
the MediaFS control file. If this action is valid for the current media device, the
device controller must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Resume playback paused on the media device.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PLAY

• speed— set to the device speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

32 Chapter 5 • Managing Playback April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Managing autonomous playback state changes

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

Managing autonomous playback state changes
During playback, a media device may change playback or metadata states
autonomously, independently of any user request. This section describes the actions
that a device controller must perform when it encounters a device-initiated state
change:

• Track change

• Playback state change

• Metadata update

Track change
If a media device autonomously changes tracks, the device controller must perform the
following operations, in sequence:

1 Update the following _media_playback structure members:

• count— set to the number of tracks that will be played

• index— set to the new currently playing track

• metaseq— set to 0

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to 0 (zero)

2 Update the current symbolic link to point to the new currently playing MediaFS
file.

3 Send an out-of-band notification on the control file.

Playback state change
Some media devices may autonomously pause, stop, or resume playback. If these state
changes occur on a media device, the device controller must perform the following
operations, in sequence:

1 Update the following _media_playback structure members:

• state— set to the new playback state

• speed— set to the device speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

2 Send an out-of-band notification on the control file.

April 30, 2009 Chapter 5 • Managing Playback 33

Managing autonomous playback state changes  2009, QNX Software Systems GmbH & Co. KG.

Metadata update
If a media device supports asynchronous metadata updates, it may update the metadata
for the current playing track. If an update of this type occurs, the device controller
must perform the following operations, in sequence:

1 Update the following _media_playback structure member:

• metaseq— increment by 1 (one)

2 Send an out-of-band notification on the control file.

Subsequent client application requests for metadata (made through a device control
message to a MediaFS entity) will retrieve the new metadata that was received from
the media device.

34 Chapter 5 • Managing Playback April 30, 2009

Chapter 6

Device Messages

In this chapter. . .
Using device control messages 37
Device configuration messages 38
iPod, UPnP device and streaming messages 39

April 30, 2009 Chapter 6 • Device Messages 35

 2009, QNX Software Systems GmbH & Co. KG. Using device control messages

This chapter describes the MediaFS device control messages and how to use them. It
contains the following sections:

• Using device control messages

• Device configuration messages

• iPod, UPnP device, and streaming messages

• The MediaFS device control messages, constants and data structures are defined in
the header file io-fs/lib/public/sys/dcmd_media.h.

• If a buffer is required for a command message, this documentation includes a buffer
description with the message description; the buffer description follows the
template: “Buffer: description”. If the control message does not require a buffer,
then no buffer description is presented with the message description.

• For information about how to use MediaFS device control messages, see “Using
device control messages” below.

• For information about the messages used to retrieve album art, see “Album art
retrieval messages” in the chapter Getting Album Art.

Using device control messages
MediaFS device control messages can be applied to open files and directories in the
MediaFS filesystem to:

• query media devices for their states and playback information

• initiate actions against media files, such as start, pause and stop playback, skip to
the next or previous file, or change random and repeat mode settings

• retrieve file metadata

• extract album art and other images

Control messages are applied by calls to the devctl()function. When a control
message is applied to a MediaFS entity, the filesystem routes the message to the
appropriate device driver. The device driver must:

• apply the requested action to the underlying media device

• return to the calling application the the result of the action

All state modification control messages must be synchronous. A requested action must
either complete or fail before returning. For example, if the state modifier
DCMD_MEDIA_PLAY message is issued, upon return of the devctl()call, the
underlying device must be in a playing state, or have returned a POSIX error
indicating why the command failed.

April 30, 2009 Chapter 6 • Device Messages 37

Device configuration messages  2009, QNX Software Systems GmbH & Co. KG.

As with other directories and files, an application must open a MediaFS directory or
file with, respectively, the opendir()and the open()functions before it can use the
devctl()function to issue control messages to them.

To pass data to and receive data from media devices, a client application should use
the devctl()function’s dev_data_ptr and dev_info_ptr arguments to point to the
appropriate _media_* data structures. These _media_* structures are described in
the chapter Playback Structures and Constants.

For a list of POSIX functions that MediaFS supports, see “Required POSIX function
support” in the chapter MediaFS Structure. For more information about the functions,
such as open()and devctl(), used to control devices, see the QNX Neutrino Library
Reference.

Device configuration messages
This section describes the device messages defined to get and set device
configurations. These message are:

• DCMD_MEDIA_GET_XML

• DCMD_MEDIA_SET_XML

DCMD_MEDIA_GET_XML

DCMD_MEDIA_GET_XML returns an XML configuration string (UTF-8) with the
device configuration information. See also the chapter MediaFS Entities.

Buffer: char[1]

DCMD_MEDIA_SET_XML

DCMD_MEDIA_SET_XML expects a buffer containing a terminated xpath string
followed by a terminated value string; that is, the element or attribute to modify, and
its new value.

Buffer: char[1]

38 Chapter 6 • Device Messages April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

DCMD_MEDIA_GET_XML and DCMD_MEDIA_SET_XML use a common
configuration layout that becomes specific for each device. For example:

<device api_version="1">
<media>

<interface type="usb" ... />
<DeviceSpecificString>
.... Device specific settings
</DeviceSpecificString>

</media>
</device>

See also the chapter MediaFS Entities.

iPod, UPnP device and streaming messages
This section describes the device control messages defined to obtain information from
and manage iPod and UPnP devices, and media streams. These message are:

• Common messages

• iPod device messages

• UPnP device messages

• Media stream messages

Most devices do not support the full set of control messages. If a device does not
support a requested action, the device controller must return the error code ENOTSUP
(command invalid for this device).

Common messages
This section describes the device control messages that can be used to obtain
information from and manage iPod devices, UPnP devices, DRM, and media streams.
These messages are:

• DCMD_MEDIA_CONFIG

• DCMD_MEDIA_GET_DEVINFO

DCMD_MEDIA_CONFIG

DCMD_MEDIA_CONFIG issues a configuration setting to a media device.

Buffer: char[1]

April 30, 2009 Chapter 6 • Device Messages 39

iPod, UPnP device and streaming messages  2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_GET_DEVINFO

DCMD_MEDIA_GET_DEVINFO requests information about a media device.

Buffer: char[8*1024]

iPod device messages
This section describes the device control messages defined to obtain information from
and manage iPod devices. These message are:

• DCMD_MEDIA_IPOD_DAUDIO

• DCMD_MEDIA_IPOD_CAP

• DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_DAUDIO

DCMD_MEDIA_IPOD_DAUDIO is used to retrieve iPod audio settings from an iPod
device. This information is carried in the _media_ipod_daudio data structure

Buffer: struct _media_ipod_daudio

DCMD_MEDIA_IPOD_CAP

DCMD_MEDIA_IPOD_CAP retrieves capabilities information from an iPod device.

Buffer: char[1]

DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_TAG is used to add an iTunes tag to a file on an iPod device.

Buffer: uint8_t[1]

UPnP device messages
This section describes the device control messages defined to obtain information from
and manage UPnP devices. These message are:

• DCMD_MEDIA_UPNP_CDS_BROWSE

DCMD_MEDIA_UPNP_CDS_BROWSE

DCMD_MEDIA_UPNP_CDS_BROWSE browses a mediastore on a device that uses the
UPnP protocol.

Buffer: char[8]

Media stream messages
This section describes the device control messages defined to obtain information from
and manage media streams. These message are:

• DCMD_MEDIA_CLOSE_STREAM

40 Chapter 6 • Device Messages April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

• DCMD_MEDIA_INFO_STREAM

• DCMD_MEDIA_OPEN_STREAM

• DCMD_MEDIA_READ_STREAM

• DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_CLOSE_STREAM

DCMD_MEDIA_CLOSE_STREAM closes a media stream.

DCMD_MEDIA_INFO_STREAM

DCMD_MEDIA_INFO_STREAM retrieves information about a media stream. This
information must be placed in a _media_stream_info structure.

Buffer: struct _media_stream

DCMD_MEDIA_OPEN_STREAM

DCMD_MEDIA_OPEN_STREAM opens a media stream.

DCMD_MEDIA_READ_STREAM

DCMD_MEDIA_READ_STREAM reads a media stream into a buffer. Before a stream
can be read, it must be opened with a DCMD_MEDIA_OPEN_STREAM message and
set with a DCMD_MEDIA_SET_STREAM message.

Buffer: char[16*1024-1]

DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_SET_STREAM sets the media stream that will be read by calls to
devctl()with the DCMD_MEDIA_READ_STREAM message.

Buffer: unsigned int

April 30, 2009 Chapter 6 • Device Messages 41

Chapter 7

Playback Messages

April 30, 2009 Chapter 7 • Playback Messages 43

 2009, QNX Software Systems GmbH & Co. KG.

This chapter describes the MediaFS device control messages defined to retrieve state
information from and control playback on a media device accessed and managed
through MediaFS, or that are outside MediaFS. These message are:

• DCMD_MEDIA_ACCESS_TYPE

• DCMD_MEDIA_FASTFWD

• DCMD_MEDIA_FASTRWD

• DCMD_MEDIA_GET_REPEAT

• DCMD_MEDIA_GET_SHUFFLE

• DCMD_MEDIA_GET_STATE

• DCMD_MEDIA_NEXT_CHAP

• DCMD_MEDIA_NEXT_TRACK

• DCMD_MEDIA_PAUSE

• DCMD_MEDIA_PLAY

• DCMD_MEDIA_PLAY_AT

• DCMD_MEDIA_PLAYBACK_INFO

• DCMD_MEDIA_PLAYBACK_STATUS

• DCMD_MEDIA_PREV_CHAP

• DCMD_MEDIA_PREV_TRACK

• DCMD_MEDIA_RESUME

• DCMD_MEDIA_SEEK_CHAP

• DCMD_MEDIA_SET_REPEAT

• DCMD_MEDIA_SET_SHUFFLE

• DCMD_MEDIA_SET_STATE

Playback control and device status messages can be issued to the MediaFS control

file only.

The exceptions to this rule are:

• the DCMD_MEDIA_PLAY message, which can be issued to:

- the MediaFS control file

- a MediaFS file or directory

- any other file

April 30, 2009 Chapter 7 • Playback Messages 45

 2009, QNX Software Systems GmbH & Co. KG.

- a directory, if the device supports directory playback
• the DCMD_MEDIA_PLAY_AT message, which can be issued to:

- a MediaFS file

• Most devices do not support the full set of control messages. If a message is not
supported by the media device the requested action, the device controller must
return the error code ENOTSUP (command invalid for this device).

• All state modification control messages must be synchronous; the requested action
must either complete or fail before returning.

For example, if the state modifier DCMD_MEDIA_PLAY is issued, upon return of
the devctl()call, the underlying device must be in a playing state, or have returned a
POSIX error indicating why the command failed.

DCMD_MEDIA_ACCESS_TYPE

DCMD_MEDIA_ACCESS_TYPE retrieves information about how a file is to be
accessed. The status values may indicate that the file is known to be either DRM
protected or not DRM protected, as well as whether a POSIX read()function can be
used to access the file’s media content.

This command does not use a data transfer buffer. If the devctl()status is EOK, the
integer return value (obtained using the last parameter of the devctl()function) may
contain a combination of the following values:

Type Value Description

ACCESS_TYPE_DRM_PROTECTED 1 The file is known to be DRM
protected. May not be combined
with
ACCESS_TYPE_DRM_UNPROTECTED.

ACCESS_TYPE_DRM_UNPROTECTED 2 The file is known to not be
DRM protected. May not be
combined with
ACCESS_TYPE_DRM_PROTECTED.

ACCESS_TYPE_READ_SUPPORTED 4 The file can be read using
POSIX read functions (the file is
not Zune). May be combined
with
ACCESS_TYPE_DRM_UNPROTECTED
or with
ACCESS_TYPE_DRM_PROTECTED.

46 Chapter 7 • Playback Messages April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_FASTFWD

DCMD_MEDIA_FASTFWD instructs the media device to go to the fast forward speed
specified by the rate member of the _media_speed structure. Behavior when this
message is issued to a media device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device’s capabilities and
characteristics.

Buffer: struct _media_speed

DCMD_MEDIA_FASTRWD

DCMD_MEDIA_FASTRWD instructs the media device to go to the fast reverse speed
specified by the _media_speed data structure’s rate member. Behavior when this
message is issued to a media device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device’s capabilities and
characteristics.

Buffer: struct _media_speed

DCMD_MEDIA_GET_REPEAT

DCMD_MEDIA_GET_REPEAT queries the media device for its current repeat
playback mode. Defined repeat modes are:

• REPEAT_OFF

• REPEAT_ONE_TRACK

• REPEAT_ALL_TRACKS

• REPEAT_FOLDER

• REPEAT_SUBFOLDER

On success, the call must return the current device repeat mode, in the
_media_settings data structure’s valuemember.

Buffer: struct _media_settings

DCMD_MEDIA_GET_SHUFFLE

DCMD_MEDIA_GET_SHUFFLE queries the media device for its current random
playback mode. Defined random modes are:

• SHUFFLE_OFF

• SHUFFLE_TRACKS

• SHUFFLE_ALBUMS

• SHUFFLE_FOLDER

• SHUFFLE_SUBFOLDER

April 30, 2009 Chapter 7 • Playback Messages 47

 2009, QNX Software Systems GmbH & Co. KG.

On success, the call must return the current device random mode, in the
_media_settings data structure’s valuemember.

Buffer: struct _media_settings

DCMD_MEDIA_GET_STATE

DCMD_MEDIA_GET_STATE queries the media device for its current settings and
returns the data in the _media_settings data structure. This data can be used at a
later time to restore playback to the state at the time of the query.

Buffer: uint8_t[1]

DCMD_MEDIA_NEXT_CHAP

DCMD_MEDIA_NEXT_CHAP instructs the media device to skip forward to the next
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

DCMD_MEDIA_NEXT_TRACK

DCMD_MEDIA_NEXT_TRACK instructs the media device to skip forward to the next
file in its playlist. Behavior when this message is issued to a media device that is not in
a playing state is device dependent: the request may succeed or fail, depending on the
media device’s capabilities and characteristics.

DCMD_MEDIA_PAUSE

DCMD_MEDIA_PAUSE instructs the media device to pause playback of the current
file. Issuing this message always causes a “pause” instruction to be sent to the media
device, even when playback is already in a paused state.

DCMD_MEDIA_PLAY

DCMD_MEDIA_PLAY directs a media device to start playback. Behavior depends on
the entity to which this message is issued, as follows:

• file — start or resume playback of the current file

• directory — start or resume playback of the file in the directory, as specified by the
media device

• control file — start or resume playback of a track determined by the media device

DCMD_MEDIA_PLAY_AT

DCMD_MEDIA_PLAY_AT instructs the media device to start playback at a specified
time offset in a file. This play time offset is set in the _media_play data structure.

Buffer: struct _media_play

48 Chapter 7 • Playback Messages April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_PLAYBACK_INFO

DCMD_MEDIA_PLAYBACK_INFO queries the media device for its current playback
information and returns the data in the _media_playback data structure.

All media devices must support this capability, as it is fundamental to executing
playback.

Buffer: struct _media_playback

DCMD_MEDIA_PLAYBACK_STATUS

DCMD_MEDIA_PLAYBACK_STATUS queries the media device for its current
playback status and returns the data in the _media_playback_status data
structure.

All media devices must support this capability, as it is fundamental to executing
playback.

Buffer: struct _media_playback_status

DCMD_MEDIA_PREV_CHAP

DCMD_MEDIA_PREV_CHAP instructs the media device to skip back to the previous
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

DCMD_MEDIA_PREV_TRACK

DCMD_MEDIA_PREV_TRACK instructs the media device to skip backward to the
previous file in its playlist. Behavior when this message is issued to a media device
that is not in a playing state is device dependent: the request may succeed or fail,
depending on the media device’s capabilities and characteristics.

DCMD_MEDIA_RESUME

DCMD_MEDIA_RESUME instructs the media device to resume the playback of the
current file. Issuing this message always causes a “resume” instruction to be sent to
the media device, even when playback has already resumed.

DCMD_MEDIA_SEEK_CHAP

DCMD_MEDIA_SEEK_CHAP instructs the media device to seek to the specified
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

Buffer: uint32_t

April 30, 2009 Chapter 7 • Playback Messages 49

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_SET_REPEAT

DCMD_MEDIA_SET_REPEAT sets the repeat mode on the media device. For a list of
defined repeat modes, see DCMD_MEDIA_GET_REPEAT above.

Buffer: struct _media_settings

DCMD_MEDIA_SET_SHUFFLE

DCMD_MEDIA_SET_SHUFFLE sets the random (shuffle) mode on the media device,
changing the playback order. For a list of defined random modes, see
DCMD_MEDIA_GET_SHUFFLE above.

Buffer: struct _media_settings

DCMD_MEDIA_SET_STATE

DCMD_MEDIA_SET_STATE restores the playback settings on the media device to the
values stored in the _media_settings data structure by a devctl()call with the
DCMD_MEDIA_GET_STATE message.

Buffer: uint8_t[1]

50 Chapter 7 • Playback Messages April 30, 2009

Chapter 8

Metadata Messages

April 30, 2009 Chapter 8 • Metadata Messages 51

 2009, QNX Software Systems GmbH & Co. KG.

This chapter describes the MediaFS device control messages defined to obtain media
file metadata from a media device accessed and managed through MediaFS, or that are
outside MediaFS. These message are:

• DCMD_MEDIA_ALBUM

• DCMD_MEDIA_ARTIST

• DCMD_MEDIA_COMMENT

• DCMD_MEDIA_COMPOSER

• DCMD_MEDIA_DURATION

• DCMD_MEDIA_GENRE

• DCMD_MEDIA_NAME

• DCMD_MEDIA_PUBLISHER

• DCMD_MEDIA_RELEASE_DATE

• DCMD_MEDIA_SONG

• DCMD_MEDIA_TRACK_NUM

• DCMD_MEDIA_URL

Metadata retrieval messages to can be issued to:

• the MediaFS control file

• files entries in the MediaFS playback directory

• the current symbolic link

• any file not in the .FS_info. directory

Behavior of metadata requests

Metadata retrieved by a call to devctl()with a DCMD_MEDIA_* metadata retrieval
message is returned as a NULL-terminated string.

Return

If the queried media device does no support the requested metadata query, the devctl()
call with the DCMD_MEDIA_* metadata query message returns ENOTSUP.

Metadata for the currently playing file

To request metadata for the currently playing media file, use a metadata retrieval
message with a call to the MediaFS control file, or to the current symbolic link.

Successful completion of a devctl()call with a metadata retrieval device control
message to the control file or to the current symbolic link retrieves the requested
metadata for the currently playingfile.

April 30, 2009 Chapter 8 • Metadata Messages 53

 2009, QNX Software Systems GmbH & Co. KG.

Metadata for a specified file

To request metadata for a specific media file, use a metadata retrieval message with a
call to that file.

Successful completion of a devctl()call with a metadata retrieval device control
message to a file that is not the MediaFS control file or the current symbolic link
retrieves the requested metadata for the specifiedfile.

DCMD_MEDIA_ALBUM

DCMD_MEDIA_ALBUM queries a file for its album metadata, which the call returns
in a NULL-terminated string. An empty string is valid if the album metadata is not
known.

Buffer: char[1]

DCMD_MEDIA_ARTIST

DCMD_MEDIA_ARTIST queries a file for its artist metadata, which the call returns in
a NULL-terminated string. An empty string is valid if the artist metadata is not knowm.

Buffer: char[1]

DCMD_MEDIA_COMMENT

DCMD_MEDIA_COMMENT queries a file for its comment metadata, which the call
returns in a NULL-terminated string. An empty string is valid if there is no track
comment metadata.

Buffer: char[1]

DCMD_MEDIA_COMPOSER

DCMD_MEDIA_COMPOSER

DCMD_MEDIA_COMPOSER queries a file for its composer metadata, which the call
returns in a NULL-terminated string. An empty string is valid if the composer
metadata is not known.

Buffer: char[1]

DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION queries a file for its duration, which the call returns as an
unsigned integer indicating the track duration, in seconds.

Buffer: char[1]

DCMD_MEDIA_GENRE

DCMD_MEDIA_GENRE queries a file for its genre metadata, which the call returns in
a NULL-terminated string. An empty string is valid if the genre metadata is not known.

Buffer: char[1]

54 Chapter 8 • Metadata Messages April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_NAME

DCMD_MEDIA_NAME queries a file for its name, which the call returns in a
NULL-terminated string. An empty string is valid if the name is not known.

Buffer: char[1]

DCMD_MEDIA_PUBLISHER

DCMD_MEDIA_PUBLISHER queries a file for its publisher metadata, which the call
returns in a NULL-terminated string. An empty string is valid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_RELEASE_DATE

DCMD_MEDIA_RELEASE_DATE queries a file for its release data metadata, which
the call returns in the _media_date data structure.

Buffer: char[1]

DCMD_MEDIA_SONG

DCMD_MEDIA_SONG queries a file for the song title, which the call returns in a
NULL-terminated string.

Buffer: char[1]

DCMD_MEDIA_TRACK_NUM

DCMD_MEDIA_TRACK_NUM queries a file for its track number, which the call
returns in a NULL-terminated string. An empty string is valid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_URL

DCMD_MEDIA_URL gets the URL for a media file.

Buffer: char[1]

April 30, 2009 Chapter 8 • Metadata Messages 55

Chapter 9

Playback Structures and Constants

In this chapter. . .
Playback structures 59
Playback constants 64
iPod structures 67

April 30, 2009 Chapter 9 • Playback Structures and Constants 57

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

Thsi chapter describes MediaFS structures and constants used for playback monitoring
and control:

• Playback structures

• Playback constants

• iPod structures

Playback structures
MediaFS uses the following data structures to report and control playback information
of files in the MediaFS framework:

• _media_date

• _media_play

• _media_playback

• _media_playback_status

• _media_settings

• _media_speed

• _media_stream_info

_media_date
struct _media_date {

uint16_t year;
uint8_t second;
uint8_t minutes;
uint8_t hours;
uint8_t day;
uint8_t month;
uint8_t weekday;
char text[40];

}

The _media_date structure contains track date information. It is populated and
returned by devctl()when this function successfully issues a
DCMD_MEDIA_RELEASE_DATE message to a MediaFS file.

Member Type Description

year uint16_t The release date year (0000-9999).

second uint8_t The release date second (00-59).

continued. . .

April 30, 2009 Chapter 9 • Playback Structures and Constants 59

Playback structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

minutes uint8_t The release date minute (00-59).

hours uint8_t The release date hour (00-59).

day uint8_t The release date day (01-31).

month uint8_t The release date month (01-12).

weekday uint8_t The release date day of the week (0-6), starting with 0 for
Sunday and going to 6 for Saturday.

text char A free-form, NULL text field for date information for use
with devices that cannot store date specifics. Maximum
length is 39 characters. If this field is used, all other fields
in this structure must be set to 0 (zero).

_media_play
struct _media_play {

unsigned pos;
};

The _media_play structure is used in combination with the
DCMD_MEDIA_PLAY_AT command to set the starting play position. It includes at
least the members described in the table below.

Member Type Description

pos unsigned The offset from time zero, in seconds, at which to start
playback.

_media_playback
struct _media_playback {

uint32_t count;
uint32_t index;
uint8_t state;
uint8_t flags;
uint16_t metaseq;
uint32_t length;
uint32_t elapsed;
uint32_t speed

};

The _media_playback structure has been deprecated and replaced by
_media_playback_status.

60 Chapter 9 • Playback Structures and Constants April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

_media_playback_status
struct _media_playback_status {

uint32_t flags;
uint32_t state;
uint32_t speed;
uint32_t trkidx_total;
uint32_t trkidx_current;
uint32_t trkpos_total;
uint32_t trkpos_current;
uint32_t chpidx_total;
uint32_t chpidx_current;
uint32_t chppos_total;
uint32_t chppos_start;
uint32_t metaseq;
uint32_t reserved[4];

};

The _media_playback_status structure contains information about the current
playback state of the device. It is returned when a DCMD_MEDIA_PLAYBACK
message is sent to the control file. Any change to any element in this structure must
trigger a notification event on the MediaFS control file. The
_media_playback_status structure includes at least the members described in the
table below.

For more information about possible values for playback states and flags values, see
“Media playback constants” below.

Member Type Description

flags uint32_t Flags to indicate the playback speed status as well
as other information about a media file. See “The
flagsand speedmembers” and “Media playback
constants” below.

state uint32_t The current playback state of the device. Must be
one of PLAYBACK_STATE_STOP,
PLAYBACK_STATE_PLAY or
PLAYBACK_STATE_PAUSE. This value must be
updated on a device playback state change. See
“Media playback constants” below.

speed uint32_t The playback speed. This value is valid only if the
PLAYBACK_FLAG_FASTFWD or the
PLAYBACK_FLAG_FASTRWD flag is set. See “The
flagsand speedmembers” below.

trkidx_total uint32_t The total number of tracks in the playback list.

trkidx_current uint32_t The index reference for the currently playing track.

continued. . .

April 30, 2009 Chapter 9 • Playback Structures and Constants 61

Playback structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

trkpos_total uint32_t The length of the currently playing track, in
milliseconds. Set to 0 if the track length is not
known.

trkpos_current uint32_t The current position in the currently playing track,
in milliseconds.

chpidx_total uint32_t The total number of chapters in the current media
item. Set to 0 (zero) if there are no chapters.

chpidx_current uint32_t The index reference for the currently playing
chapter.

chppos_total uint32_t The length of the currently playing chapter, in
milliseconds. Set to 0 (zero) if the chapter length is
not known.

chppos_start uint32_t The offset, in milliseconds, from the start of the
chapter from which to start playback of the chapter.
Set to 0 (zero) if this offset is not known.

metaseq uint32_t A sequence number that changes if metadata values
have changed during playback of the current track.

reserved[4] uint32_t Reserved for future use.

The flags and speed members

The value of the flagsmember can be a combination of:

• 0 (zero)

• PLAYBACK_FLAG_FASTFWD (0x01)

• PLAYBACK_FLAG_FASTRWD (0x02)

• PLAYBACK_FLAG_SPEED_EXACT (0x04)

• PLAYBACK_FLAG_EVENTS (0x08)

• PLAYBACK_FLAG_ALBART (0x10)

• PLAYBACK_FLAG_IS_VIDEO (0x20)

The PLAYBACK_FLAG_FASTFWD and PLAYBACK_FLAG_FASTRWD flag values are
exclusive. If you set one, you must not set the other.

If flagsis non-zero and the media device supports an indication of the exact playback
speed, then PLAYBACK_FLAG_SPEED_EXACT flag can be set.

The speedmember is updated on a playback speed change: 0 means paused, and 1
(one) means normal playback speed. The value of speedis only valid if the
PLAYBACK_FLAG_SPEED_EXACT flag is set. If the

62 Chapter 9 • Playback Structures and Constants April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

PLAYBACK_FLAG_SPEED_EXACT flag is not set in the flagsmember, speedshould
be set to 0 (zero).
You should combine the PLAYBACK_FLAG_* values to set the flagsmember.

See also “Media playback constants” below.

_media_settings
struct _media_settings {

uint8_t value
};

The _media_setting structure is used in conjunction with the
DCMD_MEDIA_GET_SHUFFLE, DCMD_MEDIA_SET_SHUFFLE,
DCMD_MEDIA_GET_REPEAT and DCMD_MEDIA_SET_REPEAT device control
messages. It contains the repeat or random mode setting for the device, and includes at
least the members described in the table below.

Member Type Description

value uint8_t The repeat or random mode value for the device.

Separate messages must be issued for getting and setting random and repeat modes;
that is, it is not possible to get or set both the random and the repeat mode with one
devctl()call. See also “Repeat and random mode setting constants” below.

_media_speed
struct _media_speed {

unsigned rate;
};

The _media_speed structure is used to set the current playback speed of the media
device. The rate is a multiplication factor, where 1 (one) is normal playback speed.
Valid values are 1, 2, 4, 8, 16 and 32.

This structure is used in conjunction with the DCMD_MEDIA_FASTFWD and
DCMD_MEDIA_FASTRWD commands. It includes at least the members described in
the table below.

Member Type Description

rate unsigned The playback speed multiplication factor; 1
(one) is normal speed.

_media_stream_info
struct _media_stream_info {

unsigned char is_DRM;
unsigned char seek_supported;
unsigned char unused[2];

April 30, 2009 Chapter 9 • Playback Structures and Constants 63

Playback constants  2009, QNX Software Systems GmbH & Co. KG.

uint32_t reserved;
uint64_t stream_length;

};

The _media_stream_info structure is used to carry information that affects how a
media stream can be played. It includes at least the members described in the table
below:

Member Type Description

is_DRM char Indicate if the media stream is DRM (Digital
Rights Management) protected. Set to either Y
(protected) or N (not protected).

seek_supported char Indicate if the media stream supports seek
capabilities. Set to either Y (supported) or N (not
supported).

unused[2] char Reserved for future use.

reserved uint32_t Reserved for future use.

stream_length uint64_t The length of the media stream, in bytes. Set to
MEDIA_STREAM_LENGTH_UNKNOWN if the
media stream length is not known.

Playback constants
The tables below list the constants defined in dcmd_media.h for playback monitoring
and control.

Media playback constants
The PLAYBACK_FLAG_* and PLAYBACK_STATE_* constants are defined in the
structure _media_playback_status; they set or describe playback states.

Constant Value Description

PLAYBACK_FLAG_FASTFWD 0x01 Playback is in fast forward mode;
the DCMD_MEDIA_FASTFWD
control message has been applied,
and playback speed is set to a
number other than 1 (one).

continued. . .

64 Chapter 9 • Playback Structures and Constants April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback constants

Constant Value Description

PLAYBACK_FLAG_FASTRWD 0x02 Playback is in fast rewind mode; the
DCMD_MEDIA_FASTRWD control
message has been applied, and
playback speed is set to a number
other than 1 (one).

PLAYBACK_FLAG_SPEED_EXACT 0x04 The playback speed is the exact
device speed; otherwise the
playback speed is the value set with
a DCMD_MEDIA_FAST*WD
control message.

PLAYBACK_FLAG_EVENTS 0x08 Events are waiting to be retrieved
from the event queue.

PLAYBACK_FLAG_ALBART 0x10 Album art is available to be read by
a call with the
DCMD_MEDIA_ALBART_READ
control message.

PLAYBACK_FLAG_IS_VIDEO 0x20 Video is currently playing.

PLAYBACK_STATE_STOP 0 Playback is stopped.

PLAYBACK_STATE_PLAY 1 Playback is underway (not paused
or stopped).

PLAYBACK_STATE_PAUSE 2 Playback is paused.

Repeat and random mode setting constants
The REPEAT_* and SHUFFLE_* constants set or describe playback repeat and random
mode settings. The REPEAT_* values should be used with the
DCMD_MEDIA_*_REPEAT messages, and the SHUFFLE_* should be used with the
DCMD_MEDIA_*_SHUFFLE messages.

Constant Value Description

REPEAT_OFF 0 Repeat mode is off.

REPEAT_ONE_TRACK 1 Repeat the current track only.

REPEAT_ALL_TRACKS 2 Repeat all tracks.

REPEAT_FOLDER 3 Repeat all tracks in the folder.

REPEAT_SUBFOLDER 4 Repeat all tracks in the subfolder.

SHUFFLE_OFF 0 Random mode is off.

continued. . .

April 30, 2009 Chapter 9 • Playback Structures and Constants 65

Playback constants  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

SHUFFLE_TRACKS 1 Play all tracks in pseudo-random order.

SHUFFLE_ALBUMS 2 Play all albums in pseudo-random order. The
playback order of the tracks depends on
whether SHUFFLE_TRACKS is set.

SHUFFLE_FOLDER 3 Play all tracks in the folder in pseudo-random
order.

SHUFFLE_SUBFOLDER 4 Play all tracks in the subfolder in
pseudo-random order.

Media stream constants
The MEDIA_STREAM_* constants set or describe media streams.

Constant Value Description

MEDIA_STREAM_LENGTH_UNKNOWN -1 The media stream length is
not known.

Media type strings
The table below lists common media type strings used in the info.xml file’s
<media>/<type> element to describe the mediastore. These mediastore types are
consistent with the mediastore types defined by the MME’s MME_STORAGETYPE_*
constants in order to map type to string.

Constant Value Description

MEDIA_TYPE_UNKNOWN “UNKNOWN” Unknown storage type

MEDIA_TYPE_AUDIOCD “AUDIOCD” Audio CD

MEDIA_TYPE_VCD “VCD” Video CD

MEDIA_TYPE_SVCD “SVCD” Super Video CD

MEDIA_TYPE_FS “FS” RAM disc

MEDIA_TYPE_DVDAUDIO “DVDAUDIO” Audio DVD

MEDIA_TYPE_DVDVIDEO “DVDVIDEO” Video DVD

MEDIA_TYPE_IPOD “IPOD” iPod device

MEDIA_TYPE_KODAKCD “KODAKCD” Kodak picture CD

continued. . .

66 Chapter 9 • Playback Structures and Constants April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. iPod structures

Constant Value Description

MEDIA_TYPE_PICTURECD “PICTURECD” Other picture CD

MEDIA_TYPE_A2DP “A2DP” A2DP protocol for Bluetooth

MEDIA_TYPE_SMB “SMB” MEDIA_TYPE_FS

MEDIA_TYPE_FTP “FTP” Internet FTP connection

MEDIA_TYPE_HTTP “HTTP” Internet HTTP connection

MEDIA_TYPE_NAVIGATION “NAVIGATION” Navigation CD or DVD.

MEDIA_TYPE_PLAYSFORSURE “PFS” PlaysForSure and similar
devices.

MEDIA_TYPE_UPNP “UPNP” Devices using UPnP protocol.

iPod structures
MediaFS uses the following data structures to manage iPod devices:

• _media_ipod_daudio

_media_ipod_daudio
struct _media_ipod_daudio {

unsigned rate;
int sndchk;
int voladj;
unsigned reserved;

};

The _media_ipod_daudio structure is used to carry information about an iPod’s
capabilities, and instructions to be applied to the iPod. It includes at least the
following members:

Member Type Description

rate unsigned The sample rate, in Hertz, for the media on the device.
Standard values are 32000, 44100 and 48000; some
devices also support 8000, 11025, 12000, 16000, 22050
or 24000 Hertz.

sndchk int The device sound check value, as gain in decibels plus or
minus. If the sound check capabilitiy is disabled on the
device, this value must be set to 0.

voladj int The device volume adjustment, a gain in decibels plus or
minus.

continued. . .

April 30, 2009 Chapter 9 • Playback Structures and Constants 67

iPod structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

reserved unsigned Reserved for future use.

68 Chapter 9 • Playback Structures and Constants April 30, 2009

Chapter 10

Getting Album Art

In this chapter. . .
How to retrieve album art 71
Album art messages 71
Album art structures 73
Album art constants 74

April 30, 2009 Chapter 10 • Getting Album Art 69

 2009, QNX Software Systems GmbH & Co. KG. How to retrieve album art

MediaFS supports retrieval of album art associated with media files, if this capability
is supported by the media device:

• How to retrieve album art

• Album art messages

• Album art structures

• Album art constants

How to retrieve album art
To retrieve album art associated with a media file, a high-level multimedia application,
such as the MME, and the device driver must perform the following steps in sequence:

1 Client application: Issue a DCMD_MEDIA_ALBART_INFO message to the
MediaFS control file, or to another specified file to find out if there is artwork
associated with the file.

Device controller: Retrieve the required information from the device and return
it in the _media_albart_entry data structure. If artwork is available, set the
appropriate values in this structure’s flag and posmembers.

2 Client application: If artwork is available, issue a
DCMD_MEDIA_ALBART_LOAD message.

Device controller: Complete and return the _media_albart_entry structure
with the image description, so that the client application can know the size of
the image and prepare to read it.

3 Client application: Issue DCMD_MEDIA_ALBART_READ messages to read
the artwork and place it in a buffer, managing the returned image blocks and
using them to reconstruct the image after the complete image has been read.

Device controller: Retrieve as requested the artwork in blocks from the media
device, returning to the client application, as appropriate, one of:

• the number of bytes sent, if part of the image data was sent

• EAGAIN, if the device is still in the process of sending the image block and
the client application needs to try again to get the next image block

• ENODATA, if the entire image has been read and there is no more data to send

Album art messages
To support album art retrieval, a device controller must support the following control
messages from a higher-level application:

• DCMD_MEDIA_ALBART_INFO

• DCMD_MEDIA_ALBART_LOAD

April 30, 2009 Chapter 10 • Getting Album Art 71

Album art messages  2009, QNX Software Systems GmbH & Co. KG.

• DCMD_MEDIA_ALBART_READ

If the queried media device does no support the album art retrieval, the devctl()call
with the DCMD_MEDIA_ALBART_* message returns ENOTSUP.

DCMD_MEDIA_ALBART_INFO

The DCMD_MEDIA_ALBART_INFO message is used to query a media file for the
presence of album artwork. The album art information for the file is placed in the
_media_albart_entry data structure.

On success, a call to devctl()with this message returns EOK; the devctl() dev_info_ptr
parameter points to the number or entries in the array with the album artwork.

Buffer: _media_albart_entry

DCMD_MEDIA_ALBART_LOAD

The DCMD_MEDIA_ALBART_LOAD message is used to retrieve the index
information for a file whose album artwork is to be retrieved. The requested
information is placed in the _media_albart_entry data structure.

On success, a call to devctl()with this message returns EOK; the devctl() dev_info_ptr
parameter points to the index for the specified file.

Buffer: _media_albart_entry

DCMD_MEDIA_ALBART_READ

The DCMD_MEDIA_ALBART_READ message is used to read an album artwork
image. The read process starts with the devctl()call with the
DCMD_MEDIA_ALBART_READ message and ends when the entire image has been
read.

Image data is read only once and returned; once a portion of an image has been read
and returned, it is not returned again. The device controller must manage reading data
blocks from the device, and the calling application must manage the returned data
blocks until the entire image has read and can be passed up to an HMI application for
display.

The total size of the image, in bytes, and other image information is placed in the
_media_img_desc data structure.

When a call to devctl()with the DCMD_MEDIA_ALBART_READ message completes
the device controller must return one of:

• ENODATA — the entire image has been read

• EAGAIN — the image is still being received

In addition, on completion of a successful call the dev_info_ptr parameter must point
to the number of bytes received.

Buffer: _media_albart

72 Chapter 10 • Getting Album Art April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Album art structures

Album art structures
MediaFS uses the following data structures to process the album art for media files:
• _media_albart

• _media_albart_entry

• _media_img_desc

_media_albart
struct _media_albart {

uint32_t flags;
uint32_t pos;
uint32_t reserved[6];
struct _media_img_desc desc;
uint8_t data[1];

};

The _media_albart structure contains the album art data retrieved from a media file.
It is populated and returned by devctl()when it successfully issues a
DCMD_MEDIA_ALBART_READ message to a MediaFS file.

The data in this structure may not be the complete requested image, and multiple reads
may be required to read a complete image. See DCMD_MEDIA_ALBART_READ in
the chapter MediaFS Messages.

Member Type Description

flags uint32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS_* constants under “Album art
constants” below.

pos uint32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS is set; or the chapter,
if ALBART_FLAG_POS_CHPIDX is set.

reserved[6] uint32_t Reserved for future use.

desc struct The _media_img_desc structure with the image
description.

data[1] uint8_t An array for the album art data.

_media_albart_entry
struct _media_albart_entry {

uint16_t index;
uint16_t reserved[3];
uint32_t flags;
uint32_t pos;

April 30, 2009 Chapter 10 • Getting Album Art 73

Album art constants  2009, QNX Software Systems GmbH & Co. KG.

struct _media_img_desc desc;
};

Member Type Description

index uint16_t The index to match for this album art entry.

reserved[3] uint16_t Reserved for future use.

flags uint32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS_* constants under “Album art
constants” below.

pos uint32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS is set; or the chapter,
if ALBART_FLAG_POS_CHPIDX is set.

desc struct The _media_img_desc structure with the image
description.

_media_img_desc
struct _media_img_desc {

uint32_t width;
uint32_t height;
uint32_t size;
uint32_t reserved;
char mimetype[64];

};

Member Type Description

width uint32_t The album art image width, in pixels.

height uint32_t The album art image height, in pixels.

size uint32_t The album art image size, in bytes.

reserved uint32_t Reserved for future use.

mimetype[64] char A string with the album art MIME type.

Album art constants
The table below lists the constants defined in dcmd_media.h for album artwork
processing.

74 Chapter 10 • Getting Album Art April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Album art constants

Constant Value Description

ALBART_FLAG_POS_NONE 0x00000000 No position information is
available.

ALBART_FLAG_POS_TRKPOS 0x00000001 The position is expressed in
milliseconds from the start of the
track.

ALBART_FLAG_POS_CHPIDX 0x00000002 The position is the chapter
number.

ALBART_FLAG_POS_MASK 0x0000000F A mask for stripping out bits not
relevant to the flagsmember of
the _media_img_desc data
structure.

ALBART_INDEX_NONE 0xFFFF Indicate that no specific index is
used, so that a call to devctl()with
the
DCMD_MEDIA_ALBART_LOAD
message attempts to load the best
match rather than a specific file.

April 30, 2009 Chapter 10 • Getting Album Art 75

Chapter 11

MediaFS Events

In this chapter. . .
Working with MediaFS events 79
Event types 81
MediaFS events and their structures 81

April 30, 2009 Chapter 11 • MediaFS Events 77

 2009, QNX Software Systems GmbH & Co. KG. Working with MediaFS events

This chapter describes MediaFS events and the data structures they use.

• Working with MediaFS events

• MediaFS event types

• MediaFS events and their structures

Working with MediaFS events
MediaFS supports events for communication between devices and upper-level
applications. A device driver should, therefore, be designed to write, whenever the
underlying device changes state, the appropriate MediaFS events and their payloads to
the MediaFS event queue so that they can be read by client applications.

This section presents:

• The MediaFS event queue

• Reading MediaFS events

For a complete list of supported MediaFS event types, events and event data structures,
see “MediaFS events and their structures” below.

The MediaFS event queue
The MediaFS event queue is the means by which a device driver can communicate
playback status changes and updates, and device state changes to client applications in
the sequence in which they occur.

The MediaFS event queue:

• is a fixed-size, circular queue

• implements FIFO (first in, first out) behavior

The MediaFS queue’s FIFO behavior means that a client reading items from the queue
will always receive events in chronological order.

Writing events to the queue

When the device controller writes an event to the MediaFS queue, it must:

• Set to PLAYBACK_FLAG_EVENTS the flagsmember of the
_media_playback_status structure.

• Send an asynchronous notification to all clients registered on the control file.

Event queue management

The device controller should ensure the following event queue behavior:

• If the event queue is full when the device driver writes an event to it, the new event
should overwrite the oldest event in the queue.

April 30, 2009 Chapter 11 • MediaFS Events 79

Working with MediaFS events  2009, QNX Software Systems GmbH & Co. KG.

• When all items in the queue have been removed, the device controller should clear
the PLAYBACK_FLAG_EVENTS flag in the _media_playback_status data
structure’s flagsmember.

In order to assure backwards compatibility with MediaFS 1.0, which did not support
events, the MediaFS event queue is optional.

Reading MediaFS events
Multimedia applications using MediaFS should be designed to use devctl()calls with
the DCMD_MEDIA_READ_EVENTS to read events from the MediaFS event queue,
and to use the information provided by these events to manage media playback and
other activities. To read MediaFS events, an application must call the devctl()function
with the DCMD_MEDIA_READ_EVENTS message.

DCMD_MEDIA_READ_EVENTS

DCMD_MEDIA_READ_EVENTS instructs MediaFS to populate the client
application’s data buffer with data from the MediaFS event queue.

Buffer: char[1]

Managing your buffer when using DCMD_MEDIA_READ_EVENTS

The DCMD_MEDIA_READ_EVENTS is used to instruct MediaFS to populate the
client application’s data buffer with data from the MediaFS event queue. It is the
responsibility of the client application to ensure that it has a buffer large enough for
the events in the MediaFS event queue.

Behavior when the queue is larger than the client application buffer

If the number of bytes of data in the event queue is greater thanthe size of the client
application’s data buffer, a call to devctl()with the DCMD_MEDIA_READ_EVENTS
message will:

• not write any data to the client application’s data buffer

• set the _media_event structure’s len member to the number of bytes requiredin
the data buffer

• return EOK

In this case, the client application should:

1 Increase the size of the buffer it uses for the MediaFS events to at least the size
returned in len.

2 Call devctl()with the DCMD_MEDIA_READ_EVENTS message again to read
the events from the queue.

80 Chapter 11 • MediaFS Events April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

Behavior when the queue is smaller than or equal to the client application buffer

If the number of bytes of data in the event queue is less than or equalto the size of the
client application’s data buffer, a call to devctl()with the
DCMD_MEDIA_READ_EVENTS message will:
• fill the buffer

• set the _media_event structure’s lenmember to the number of bytes of data in the
buffer to the number of bytes of data in the data buffer

Event types
MediaFS uses five types of events. Values for these event types are carried in the
_media_event structure’s typemember. They are described in the table below:

Event type Value Description

MEDIA_EVENT_ERROR 0 Error

MEDIA_EVENT_WARNING 1 Warning

MEDIA_EVENT_TRACK 2 Communicate a track information change.

MEDIA_EVENT_TIME 3 Communicate a time update.

MEDIA_EVENT_METADATA 4 Communicate changes to metadata.

MediaFS events and their structures
This section describes MediaFS events, organized by event type. It includes:

• The _media_event data structure

• Track, time and other information update events

• Metadata update events

• Error and warning events

The _media_event data structure
_media_event
struct _media_event {

uint32_t type;
uint32_t len;

};

The _media_event structure is a included in all other MediaFS event structures. It
specifies the event type, and the length of the event data. This structure includes at
least the members described in the table below.

April 30, 2009 Chapter 11 • MediaFS Events 81

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

type uint32_t The event type; see “Event types” above.

len uint32_t The length of the event data, in bytes (including padding
to 8-byte alignment).

Track, time and other information update events
MediaFS information events signal an update to track or time information for the
specified media track or file. Depending on the type of information they communicate,
these events carry either the _media_event_info, the _media_event_time or the
_media_event_track data structure.

The table below describes the MediaFS track and time update events:

Event Value Description

MEDIA_EVENT_INFO_UNKNOWN 0 Events carrying information, such
as time or track updates, about a
track or media file.

_media_event_info
struct _media_event_info {

struct _media_event event;
uint32_t index;
uint32_t type;
char value[1];

};

The _media_event_info structure contains track or media file information. It
should be populated when track or media file information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

type uint32_t The type of information event; see “Track, time and other
information update events” above.

value[1] char A character string with the changed track information.

82 Chapter 11 • MediaFS Events April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

_media_event_time
struct _media_event_time {

struct _media_event event;
uint32_t index;
uint32_t elapsed;
uint32_t duration;

};

The _media_event_time structure contains track or media file time information. It
should be populated when track or media file time information changes, and, if
relevant, included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

elapsed uint32_t The elapsed time for the current track, in milliseconds.

duration uint32_t The track duration (total time) of the current track, in
milliseconds.

_media_event_track
struct _media_event_track {

struct _media_event event;
uint32_t index;
uint32_t duration;
char trackpath[1];

};

The _media_event_track structure contains track or media file information. It
should be populated when track or media file information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

duration uint32_t The track duration (total time) of the current track, in
milliseconds.

trackpath char A character string with the path (relative to the
mountpoint) of the current media file or track.

April 30, 2009 Chapter 11 • MediaFS Events 83

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

Metadata update events
MediaFS metadata events signal an update or other change to metadata for the
specified media track or file. These events carry the data structure
_media_event_metadata.
The table below describes the MediaFS metadata update events:

Event Value Description

MEDIA_EVENT_METADATA_UNKNOWN 0 An unspecified change
has been made to the
file’s metadata.

MEDIA_EVENT_METADATA_SONG 1 Change to the file’s
song metadata.

MEDIA_EVENT_METADATA_ALBUM 2 Change to the file’s
album metadata.

MEDIA_EVENT_METADATA_ARTIST 3 Change to the file’s
artist metadata.

MEDIA_EVENT_METADATA_GENRE 4 Change to the file’s
genre metadata.

MEDIA_EVENT_METADATA_COMPOSER 5 Change to the file’s
composer metadata.

MEDIA_EVENT_METADATA_RELEASE_DATE 6 Change to the file’s
release date metadata.

MEDIA_EVENT_METADATA_TRACK_NUM 7 Change to the file’s
track number metadata.

MEDIA_EVENT_METADATA_PUBLISHER 8 Change to the file’s
publisher metadata.

MEDIA_EVENT_METADATA_DURATION 9 Change to the file’s
duration metadata.

MEDIA_EVENT_METADATA_NAME 10 Change to the file’s
name metadata.

MEDIA_EVENT_METADATA_COMMENT 11 Change to the file’s
comment metadata.

84 Chapter 11 • MediaFS Events April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

_media_event_metadata
struct _media_event_metadata {

struct _media_event event;
uint32_t type;
uint32_t index;
uint32_t duration;
struct _media_date date;
char value[1];

};

The _media_event_metadata structure contains track metadata. It should be
populated whenever metadata for a track or media file changes, and included with the
metadata update events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

type uint32_t The type of metadata event; see “Metadata update events”
above.

index uint32_t The index number for the track to which the event is
associated.

duration uint32_t The track date.

date struct The _media_date structure with the track date
information.

value[1] char A UTF-8 encoded character string for character-based
metadata types.

Error and warning events
MediaFS error and warning events signal an error or other condition that requires
attention from the client application. These events carry, respectively, the data
structure _media_event_error or _media_event_warning.

The table below describes the MediaFS error and warning events:

Event Value Description

MEDIA_EVENT_ERROR_UNKNOWN 0 An unspecified error condition
has occurred.

MEDIA_EVENT_ERROR_DRM 1 A DRM error has occurred.

MEDIA_EVENT_ERROR_CORRUPT 2 The media file is corrupt.

continued. . .

April 30, 2009 Chapter 11 • MediaFS Events 85

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

Event Value Description

MEDIA_EVENT_WARNING_UNKNOWN 0 An unspecified condition that
requires attention has
occurred.

_media_event_error
struct _media_event_error {

struct _media_event event;
uint32_t index;
uint32_t type;

};

The _media_event_error structure contains track or media file error information.
It should be populated when an error is encountered with a track or media file, and
included with the error events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

type uint32_t The type of error event; see “Error and warning events”
above.

_media_event_warning
struct _media_event_warning {

struct _media_event event;
uint32_t index;
uint32_t type;

};

The _media_event_warning structure contains track or media file error
information. It should be populated when a warning situation is encountered with a
track or media file, and included with the error events that MediaFS places in its event
queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

continued. . .

86 Chapter 11 • MediaFS Events April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

Member Type Description

type uint32_t The type of warning event; see “Error and warning
events” above.

April 30, 2009 Chapter 11 • MediaFS Events 87

Appendix A

MediaFS Examples

In this appendix. . .
MediaFS structure 91
info.xml file 91

April 30, 2009 Appendix: A • MediaFS Examples 89

 2009, QNX Software Systems GmbH & Co. KG. MediaFS structure

This appendix presents some examples that help illustrate how to use MediaFS. It
contains:

• MediaFS structure

• info.xml file

MediaFS structure
The following presents a MediaFS instance representing an iPod device:

ipod0/:
total 3
dr-xr-xr-x 3 root root 512 Jun 01 11:28 .
dr-xr-xr-x 2 root root 0 Jun 01 11:28 ..
dr-xr-xr-t 3 root root 512 Jun 01 11:28 .FS_info.
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Music

ipod0/.FS_info.:
total 6
dr-xr-xr-t 3 root root 512 Jun 01 11:28 .
dr-xr-xr-x 3 root root 512 Jun 01 11:28 ..
nrw-rw-rw- 1 root root 0 Jun 01 11:28 control
lrwxrwxrwx 1 root root 0 Jun 01 11:28 current ->
-r--r--r-- 1 root root 1127 Jun 01 11:28 info.xml
dr-xr-xr-x 2 root root 512 Jun 01 11:28 playback

ipod0/.FS_info./playback:
total 2
dr-xr-xr-x 2 root root 512 Jun 01 11:28 .
dr-xr-xr-t 3 root root 512 Jun 01 11:28 ..

ipod0/Music:
total 10
dr-xr-xr-x 10 root root 512 Jun 01 11:28 .
dr-xr-xr-x 3 root root 512 Jun 01 11:28 ..
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Albums
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Artists
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Audiobooks
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Composers
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Genres
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Playlists
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Podcasts
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Songs

info.xml file
The following presents an MediaFS info.xml file for an iPod device:

<?xml version="1.0" standalone="yes"?>
<info>

April 30, 2009 Appendix: A • MediaFS Examples 91

info.xml file  2009, QNX Software Systems GmbH & Co. KG.

<media>
<device>iPod</device>
<protocol>

<general>1.02</general>
<display_remote>1.01</display_remote>
<extended>1.09</extended>

</protocol>
<name>Yov Yovchev’s iPod</name>
<serial>JQ44915UR5S</serial>
<swversion>1.2.1</swversion>
<model>

<id>0x00060000</id>
<number>P9585LL</number>
<generation>1</generation>
<type>iPod photo</type>
<size>40GB</size>
<color>white</color>

</model>
<audio>

<eq>off</eq>
</audio>
<display>

<limit>
<type>2</type>
<format>le_rgb565</format>
<height>110</height>
<width>210</width>

</limit>
<limit>

<type>3</type>
<format>be_rgb565</format>
<height>110</height>
<width>210</width>

</limit>
<limit>

<type>1</type>
<format>mono</format>
<height>110</height>
<width>210</width>

</limit>
</display>

</media>
<fsys>

<type>ipod</type>
<mountpoint>/fs/ipod0</mountpoint>
<mountdevice>file-2-ipod-5-media</mountdevice>

</fsys>
<device>

<driver>ipod</driver>
<catagory>media</catagory>
<transport>

<type>ser_ipod</type>

92 Appendix: A • MediaFS Examples April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. info.xml file

<dev>/dev/serfpga3</dev>
</transport>

</device>
</info>

For an example from an info.xml file used for a media changer device, see “The
info.xml file for mediastore changers” in the chapter Media Changers.

April 30, 2009 Appendix: A • MediaFS Examples 93

Index

!

.FS_info.

directories outside 16
directories outside of 17
directory 13
entities outside directory 16
files outside of 17

_media__stream_info 63
_media_albart 72, 73
_media_albart_entry 72, 73
_media_date 59
_media_event 81
_media_event_error 86
_media_event_info 82, 83
_media_event_metadata 85
_media_event_time 83
_media_event_warning 86
_media_img_desc 74
_media_img_entry 72
_media_ipod_daudio 67
_media_play 60
_media_playback 29, 60
_media_playback_status 61
_media_settings 63
_media_speed 63
<driver>

XML key 22
<media>/<device> 13
<media>/<driver> 22
<media>/<name> 22
<media>/<serial> 22
<media>/<slot> 22
<media>/<type> 22
<name>

XML key 22
<serial>

XML key 22
<slot>

XML key 22
<type>

XML key 22
<uuid>

key 13

A

active
state of mediastore 23

ALBART_FLAG_POS_* 74
ALBART_INDEX_NONE 74
album art 71

constants 74
metadata 54
of a track 54
retrieval messages 71
structures 73

art
getting for albums 71
metadata 71

artist
metadata 54
of a track 54

asynchronous
notifications 14

available
state of mediastore 23

April 30, 2009 Index 95

Index  2009, QNX Software Systems GmbH & Co. KG.

B

behavior
control file 14
current symbolic link 15
playback directory> 16

buffer
events 80

C

changer
devices 21
extensions 21
info.xml 21
slots 21
states 24

changes
autonomous playback 33

close() 8
closedir() 8
comment

for a track 54
composer

metadata 54
of a track 54

constants
artwork 74
playback 64

control

file 14
with iPod devices 14
with PFS devices 14

control
MediaFS device messages 37, 45
playback sequences 29
point 14

control file
behavior 14

conventions
typographical x

current
symbolic link to currently playing file 15

current
file 15

D

date
of a track release 55

DCMD_FSYS_DIR_NFILES 17
DCMD_MEDIA_ACCESS_TYPE 46
DCMD_MEDIA_ALBART_INFO 72
DCMD_MEDIA_ALBART_LOAD 72
DCMD_MEDIA_ALBART_READ 72
DCMD_MEDIA_ALBUM 54
DCMD_MEDIA_ARTIST 54
DCMD_MEDIA_CLOSE_STREAM 41
DCMD_MEDIA_COMMENT 54
DCMD_MEDIA_CONFIG 39
DCMD_MEDIA_FASTFWD 47
DCMD_MEDIA_FASTRWD 47
DCMD_MEDIA_GENRE 54
DCMD_MEDIA_GET_DEVINFO 40
DCMD_MEDIA_GET_REPEAT 47
DCMD_MEDIA_GET_SHUFFLE 47
DCMD_MEDIA_GET_STATE 48
DCMD_MEDIA_GET_XML 38
DCMD_MEDIA_INFO_STREAM 41
DCMD_MEDIA_IPOD_* 40
DCMD_MEDIA_IPOD_CAP 40
DCMD_MEDIA_IPOD_DAUDIO 40
DCMD_MEDIA_IPOD_TAG 40
DCMD_MEDIA_NAME 55
DCMD_MEDIA_NEXT_CHAP 48
DCMD_MEDIA_NEXT_TRACK 48
DCMD_MEDIA_OPEN_STREAM 41
DCMD_MEDIA_PAUSE 48
DCMD_MEDIA_PLAY 17, 29, 30, 48
DCMD_MEDIA_PLAY_AT 29, 48
DCMD_MEDIA_PLAYBACK_INFO 14, 49
DCMD_MEDIA_PLAYBACK_STATUS 49
DCMD_MEDIA_PREV_CHAP 49
DCMD_MEDIA_PREV_TRACK 49
DCMD_MEDIA_PUBLISHER 55
DCMD_MEDIA_READ_EVENTS 80
DCMD_MEDIA_READ_STREAM 41
DCMD_MEDIA_RELEASE_DATE 55
DCMD_MEDIA_RESUME 49
DCMD_MEDIA_SEEK_CHAP 49
DCMD_MEDIA_SET_REPEAT 50
DCMD_MEDIA_SET_SHUFFLE 50

96 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

DCMD_MEDIA_SET_STATE 50
DCMD_MEDIA_SET_STREAM 41
DCMD_MEDIA_SET_XML 38
DCMD_MEDIA_SONG 55
DCMD_MEDIA_TRACK_NUM 55
DCMD_MEDIA_UPNP_CDS_BROWSE 40
DCMD_MEDIA_URL 55
dev

element in .FS_info. 15
devctl() 8

dev_data_ptr argument 37
dev_info_ptr argument 37

device
control messages 37, 45
information 13
playback 30

device-intitiated
metadata update 34
playback state change 33
track change 33

Digital Rights Management SeeDRM
dircntl() 8
directories

.FS_info. 13
behavior of outside .FS_info. directory

17
MediaFS 13
opening 37
outside .FS_info. directory 16
playback 16, 29

DRM
control messages 46
error 85
media stream 63

duration
track 54

E

ENOTSUP error 17
entities

outside the .FS_info. directory 16
error

DRM 85
event structure 86

events 85
events 79

buffer 80
error 85
error structure 86
get MediaFS 80
information structure 82
metadata 84
metadata structure 85
queue 79
reading 80
time 82
time structure 83
track 82
track structure 83
types 81
warning 85
warning structure 86

extensions
changer 21

F

fast forward 47
playback speed 31

fast reverse 47
files

behavior of outside .FS_info. directory
17

MediaFS 13
opening 37
outside the .FS_info. directory 17
playback 29

filesystem
location 7
media 3
MediaFS 3
POSIX compliance 3

flags 62
fstat() 8
functions

supported POSIX 8

April 30, 2009 Index 97

Index  2009, QNX Software Systems GmbH & Co. KG.

G

genre
metadata 54
track 54

I

images
getting 71

info.xml 13, 21
changer 21
creation 13
example 91
minimum requirement 13
persistence 13
slot 21

information
event structure 82
playback 49

interface
MediaFS standardized 3

iPod
control messages 40
data structure 67
example of info.xml file 91
example of MediaFS structure 91

iPod devices
control file 14

L

location
MediaFS filesystem 7

M

MEDIA_EVENT_* 79
MEDIA_EVENT_ERROR_* 85
MEDIA_EVENT_INFO_UNKNOWN 82
MEDIA_EVENT_METADATA_* 84

MEDIA_STREAM_LENGTH_UNKNOWN 63,
66

MEDIA_TYPE_* 66
media device

<serial> 22
<slot> 22
<uuid> 13
playback 30
unique identifier 13

media stream
control messages 40

MediaFS
album art retrieval 71
changer extensions 21
configuration messages 38
device control messages 37, 45
device messages 38
events 79
images 71
info.xml example 91
iPod management messages 39
metadata retrieval 53
mountpoint 7, 13
overview 3
playback 29
playback control 45
playlists 18
standardized interface 3
standardized structure 7, 13
state information retrieval messages 53
streaming media management messages 39
structure example 91
structures 59

mediastore
removable 21
slots 23
states 23
types 66

messages
album art retrieval 71
device control 37, 45
files outside .FS_info. directory 17
iPod management 39
metadata retrieval 53
playback control 45
state information retrieval 53

98 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

streaming media management 39
metadata

album art 54, 71
artist 54
composer 54
device-initiated update 34
event structure 85
events 84
for files referenced in playback

directory 16
genre 54
publisher 55
release date 55
retrieval messages 53
title 55
track comment 54
track duration 54
track name 55
track number 55

MME 3
MME_STORAGETYPE_* 66
mountpoint

MediaFS 7, 13
Multimedia Engine SeeMME

N

name
of a track 55

next
chapter 48
track 48

notifications
asynchronous 14
registering for 14

number
of a track 55

O

offset
playback at 48

open() 8, 37

opendir() 8, 37
out-of-band

notifications 14

P

pathname delimiter in QNX documentation xi
pause

playback 32, 48
PFS devices

control file 14
playback

directory behavior 16
playback

about 29
at offset 48
autonomous state changes 33
constants 64
control messages 45
control sequences 29
current file 15
device-initiated state change 33
directory 29
fast forward 31
file 29
file with device-specific actions 14
information 49
managing 29
media device 30
next chapter 48
next track 48
pause 32, 48
previous chapter 49
previous track 49
random 47, 50
repeat 47, 50
restore state 50
resume 32, 49
seek to chapter 49
start 48
state 48, 50
status 49
structures 59
with MediaFS 29

PLAYBACK_FLAG_* 62, 64

April 30, 2009 Index 99

Index  2009, QNX Software Systems GmbH & Co. KG.

PLAYBACK_STATE_* 64
playback directory

metadata retrieval for files referenced 16
playlists

MediaFS 18
POSIX

MediaFS compliance 3
supported functions 8

previous
chapter 49
track 49

publisher
of a track 55

Q

queue
event 79

R

random
mode 47, 50

readdir() 8
reading

events 80
readlink() 15
release

date 55
repeat

mode 47, 50
REPEAT_* 65
restore

playback state 50
resume

playback 32, 49
reverse 47

playback speed 31
rewinddir() 8

S

seek
chapter 49

seekdir() 8
SHUFFLE_* 47, 50, 65
slots

changer 21
info.xml file for 21
mediastores 23
states 23

speed 62
speed

playack 31
start

playback 48
stat() 8
state

available 23
information retrieval messages 53
playback 48, 50
slots 23
structures 59
unavailable 23

status
playback 49

stream
control messages 40
DRM 63

structure
example 91

structures
album art extraction 73
MediaFS 59
playback 59
state 59

symbolic link
current 15
dev 15
to currently playingfile 15
to media device 15

symlink Seesymbolic link

100 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

T

telldir() 8
time

event structure 83
events 82

title
metadata 55
track 55

track
comment 54
device-initiated change 33
duration 54
event structure 83
events 82
name 55
number 55
publisher 55

types
event 81
mediastore 66

typographical conventions x

U

unavailable
state of mediastore 23

UPnP
control messages 40

W

warning
event structure 86
events 85

April 30, 2009 Index 101

