QNX" Aviage Multimedia Suite
MediaFS Developer’s Guide

For QNX" Neutrind’ 6.4.x

[J 2009, QNX Software Systems GmbH & Co. KG.

[J 2008-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems I nternational Corporation
175 Terence Matthews Crescent

Kanata, Ontario

K2M 1w8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email: i nf o@nx. com

Web: htt p: // wwv. gnx. conf

Electronic edition published April 30, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Guide vii

Typographical conventions X
Note to Windows users Xi

Technical support options Xi

1 MediaFS Overview 1

2 MediaFS Structure 5
Filesystem location 7
The MediaFS filesystem structure 7
Required POSIX function support 8

3 MediaFS Entities 11

The. FS_i nfo. directory anditscontents 13
Thei nfo. xnl file 13
Thecontrol file 14
Thedevsymboliclink 15
Thecurrentsymboliclink 15
Thepl ayback directory 16

Directoriesand files outside the. FS_i nf 0. directory 16
Directory behavior 17
File behavior 17

Playlist filesand directories 18
MediaFSplaylists 18

4 Media Changers 19
Representing media changers and mediastores 21
MediaFSinstancesfor dots 21
Informing MediaFS of state changes 23
Changer states 24

5 Managing Playback 27
Requested playback control sequences 29
Start playback — file or directory 29

April 30, 2009 Contents il

[J 2009, QNX Software Systems GmbH & Co. KG.

10

Contents

Start playback — mediadevice 30
Fast forward and reverse 31
Pause and resume playback 32
Managing autonomous playback state changes 33
Track change 33
Playback statechange 33
Metadataupdate 34

Device Messages 35
Using device control messages 37
Device configuration messages 38
iPod, UPnP device and streaming messages 39
Common messages 39
iPod devicemessages 40
UPnP devicemessages 40
Media stream messages 40

Playback Messages 43
Metadata Messages 51

Playback Structures and Constants
Playback structures 59
_nedi a_date 59
_medi a_pl ay 60
nmedi a_pl ayback 60

_medi a_pl ayback_st at us 61
_nedi a_settings 63
_medi a_speed 63
_media_stream.info 63
Playback constants 64
Media playback constants 64
Repeat and random mode setting constants 65
Media stream constants 66
Mediatypestrings 66
iPod structures 67
_medi a_i pod_daudi o 67
Getting Album Art 69

How to retrieve dbum art 71
Album art messages 71

57

April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

April 30, 2009

11

Album art structures 73
_nedi a_al bart 73
_media_al bart_entry 73
_medi a_i ng_desc 74
Album art constants 74

MediaFS Events 77

Working with MediaFS events 79
The MediaFS event queue 79
Reading MediaFSevents 80

Eventtypes 81

MediaFS events and their structures 81
The nedi a_event datastructure 81
Track, time and other information update events
Metadataupdate events 84
Error and warning events 85

MediaFS Examples 89
MediaFS structure 91
i nfo.xmn file 91

Index 95

82

Contents

\Y

About this Guide

April 30, 2009 About this Guide Vii

[J 2009, QNX Software Systems GmbH & Co. KG.

The MediaFS Developer’s Guidaresents how the media filesystem (MediaFS)
modul e expects device drivers to describe media devices and mediastores, and the

devctl()messages that these drivers need to support.
This Guideis intended for:

e developers who design and write device drivers for use with MediaFS

e developers who integrate support for these devices into higher-level applications
that use the MediaFS interface — applications such as the QNX" Aviage
Multimedia Suite’'s Multimedia Engine (MME)

For more information about the MME, see Introduction to the MMEand the other
books in the MME documentation set.

The table below may help you find what you need in this book:

For information about: See:

The MediaFS standardized interface MediaFS Overview
The structure of MediaFS, and required MediaFS Structure
POSIX function support

MediaFS entities, including files, MediaFS Entities

directories and symbolic links
Media changer presentation to MediaFS Media Changers

How to present playback states and Managing Playback

controls to MediaFS

Device management messages Device Management Messages
supported by MediaFS

Playback and status update supported by Playback Messages

MediaFS

Metadata retrieval messages supported ~ Metadata M essages

by MediaFS

Playback structures and constantsused ~ Playback Structures and Constants
by MediaFS

How to retrieve album art Getting Album Art

MediaFS events and their structures MediaFS Events

Examples of code used to work with Appendix A: Examples
MediaFS

Other MME documentation available to application developers includes:

April 30, 2009 About this Guide

Typographical conventions 0 2009, QNX Software Systems GmbH & Co. KG.

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME Developer’s Guide How to use the MME to program client
applications.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Technotes MME technical notes.
MME Utilities Utilities used by the MME.
MME Configuration Guide How to configure the MME.

QDB Developer’'s Guide QDB database engine programming guide and AP
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions

X

About this Guide

Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream== NULL)
Command options -IR

Commands make

Environment variables PATH

File and pathnames / dev/ nul |

Function names exit()

Keyboard chords Ctrl-Alt-Delete
Keyboard input somet hi ng you type
Keyboard keys Enter

Program output | ogi n:

Programming constants NULL

continued. ..

April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. Technical support options

Reference Example

Programming data types unsi gned short
Programming literals OxFF, "message string"
Variable names stdin

User-interface components Cancel

We use an arrow () in directions for accessing menu items, like this:

You'll find the Other... menu item under Per spective— Show View.

We use notes, cautions, and warnings to highlight important messages:

Q Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.

WARNING: Warningstell you about commands or procedures that could be
dangerousto your files, your hardware, or even your self.

Note to Windows users

In our documentation, we use aforward slash (/) asadelimiter in all pathnames,
including those pointing to Windows files.

We aso generally follow POSIX/UNIX filesystem conventions.

Technical support options

To obtain technical support for any QNX product, visit the Support + Services area
on our website (ww. gnx. com). You'll find a wide range of support options,
including community forums.

April 30, 2009 About this Guide Xi

Chapter 1
MediaFS Overview

April 30, 2009 Chapter 1 e MediaFS Overview 1

[J 2009, QNX Software Systems GmbH & Co. KG.

April 30, 2009

MediaFS presents a POSI X-compliant filesystem view of media devices. This
filesystem view of media devices can be used by higher-level applications, such the
MME, to browse and control media devices. These higher-level applications can use
the MediaFS standarardized interface to query and control media playback on awide
range of media devices, including portable music devices such asiPods and
PlaysForSure devices, and UPnP devices that attach to a network.

For more information about the MME, start with Introduction to the MME

The following diagram shows the MediaFS module in relation to the user application
and media devices.

User application

MediaFS high-level POSIX interface

A
MediaFS
MediaFS low-level interface
Y
Device access layer
Serial port USB driver TCP/IP
driver
Y Y Y

iPod PFS UPnP
device device device

MediaFS in a multimedia implementation

The MediaFS standardized interface allows higher-level multimedia applications, such
asthe MME, to use POSIX functions related to file and directory operations to access
audio and video content along with associated metadata on media devices and
mediastores.

To add a new device to a multimedia environment that uses MediaFS, all you need to
dois:

e create a MediaFS implementation to represent the device according to the MediaFS
requirements

e make adjustments to the client application (the MME or the HMI, or both) to
ensure that they are aware of and able to handle new situations that might arise due
to the presence of the new device

Chapter 1 e MediaFS Overview 3

[J 2009, QNX Software Systems GmbH & Co. KG.

To create a MediaFS implementation you can usei o- f s, a resource manger, or some
other component as you require.

4 Chapter 1 e MediaFS Overview April 30, 2009

Chapter 2
MediaFS Structure

In this chapter...

Filesystem location 7
The MediaFS filesystem structure 7
Required POSIX function support 8

April 30, 2009 Chapter 2 e MediaFS Structure 5

0 2009, QNX Software Systems GmbH & Co. KG. Filesystem location

This chapter describes:
e Filesystem location
e The MediaFS filesystem structure

e Required POSIX function support

Filesystem location

When a MediaFS implementation learns of a new media device, it registers a path with
the path space manager to the location of the MediaFS filesystem,; this path is called
the mountpoint The MediaFS implementation then:

e creates the MediaFS standarized filesystem structure for the device
e creates afilesystem representing the device under / f s

e makes available the contents of the device as a filesystem with the root directory of
the device mounted on /fg/dev id, where dev _id is a name that indicates the type of
device with a numeric suffix representing the device's instance number

Thefirst device discovered has an instance number of 0. For example, if adeviceisan
iPod it ismounted as/ f s/ i pod0; whileaPFS/MTP device is mounted as/ f s/ pf sO.

Multiple instances of a device are identified by their numeric suffixes. Thus, for
example two iPods, one PFS device, and one UPnP device would be mounted as
follows:

/fs/lipodO
[fslipodl
[fslpfsO
/fs/upnp0

For more information about how to represent a media device to MediaFS, see the
chapter MediaFS Entities.

For more information about resource managers, see the Writing a Resource Manager
in the QNX Neutrino documentation set.

The MediaFS filesystem structure

April 30, 2009

Located under the MediaFS mountpoint, the . FS_i nf o. directory isthe MediaFS
standardized structure of files and directories that contain the control and state
information of a media device. Every device instance has its own MediaFS filesystem
structure.

The basic MediaFS filesystem structure is as follows:
Directories

Files
mountpoint

Chapter 2 e MediaFS Structure 7

Required POSIX function support 0 2009, QNX Software Systems GmbH & Co. KG.

mountpoint . FS_i nf o.
mountpoint. FS_i nfo./info.xm
mountpoint. FS_i nf 0./ dev
mountpoint. FS_i nfo. /current
mountpoint. FS_i nfo./contr ol
mountpoint . FS_i nf 0. / pl ayback

Media device controllers must populate the the device-specific filesin the . FS. i nf o.
directory, according to the specifications presented in the chapter MediaFS Entities.

The figure below shows a MediaFS hierarchy with a Bluetooth device.
/Ts/avrcpO

-FS_info.

info.xml

The MediaFS module hierarchy with a Bluetooth device

Files and directories outside the . FS_i nf o. directory are device dependent and,
therefore, do not have a standardized, defined structure in MediaFS. See “Directories
and filesoutside the. FS_i nf 0. directory” in the chapter MediaFS Entities.

Required POSIX function support

All files and folders in the MediaFS representation adhere to the POSI X standard, and
the following POSIX functions must be supported on all directories and filesin the
M ediaFS representation:

e close()— close afile

e closedir()— close a directory

e devctl()— control adevice

e dircntl() — control an open directory

e fstat()— get file information, given afile description
e open()— open afile

e opendir()— open adirectory

e readdir()— read adirectory entry

8 Chapter 2 e MediaFS Structure April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. Required POSIX function support

April 30, 2009

e stat()— get information about afile or directory, given apath

Directories and files can be identified by using the standard POSI X stat() function, and
the S_ISDIR and S_ISREG macros on the returned st at structure.

For speed optimizations, MediaFS should support the ability to retrieve extra stat()
information as part of the readdir() operation, if the D_FLAG_STAT flag is set.

For more information about these functions and data structures, see the QNX Neutrino
Library Reference

Chapter 2 e MediaFS Structure 9

Chapter 3
MediaFS Entities

In this chapter...

The. FS_i nfo. directory and itscontents 13
Directories and filesoutside the . FS_i nf o. directory 16
Playlist filesand directories 18

April 30, 2009 Chapter 3 e MediaFS Entities 11

0 2009, QNX Software Systems GmbH & Co. KG. The . FS_i nf 0. directory and its contents

This chapter describes:
e The.FS_ info. directory and its contents

e Filesoutsidethe. FS_ i nf o. directory

e Playlist filesand directories

The . FS i nf 0. directory and its contents

When a MediaFS implementation learns of adevice, it createsa. FS_i nf o. directory
for the media device with device-specific playback and metadata interface items. The
table below lists these items:

Item Type Required? Description

info.xml file Yes XML file with device-specific information.

contr ol file Optional File in which device-specific playback actions are issued to a
media device.

dev symboliclink Optiona Symbolic link to device identified by the <uui d> element in the
i nfo.xnl file

current symboliclink Optiona Symbolic link pointing to the currently playing file in MediaFS.

pl ayback directory Optional Directory with symbolic links, listed in the same order as the

media device will complete playback of the files.

See the sections below for complete descriptions of the . FS_i nf 0. items.

Thei nf o. xnl file

April 30, 2009

Thei nf 0. xml device information fileisan XML version 1.0 file that contains
device-specific information. The MediaFS implementation creates this file when it
createsthe . FS_i nf o. directory for amedia device, placing it in the root directory
for thedeviceas. FS_i nfo. /i nfo. xn . Thisfileis static and persists for the
lifetime of the MediaFS instance that created it.

To the client application, thei nf o. xml fileisaread onlyfile. Client applications can
not write to thisfile.

When it creates thei nf 0. xni file, MediaFS does not populate it with device
information. To enable MediaFS to present to higher level software layers a standard
interface to all media devices, device controllers must populate thei nf o. xni filefor
each device with XML-formatted, device-specific information. This XML-formatted
information can be used by higher-level software, such asthe MME, and may also be
useful for human viewing.

The table below lists the basic elements of ani nf o. xm file:

Chapter 3 e MediaFS Entities 13

The . FS_i nf 0. directory and its contents 0 2009, QNX Software Systems GmbH & Co. KG.

XML Key Required? Description

<nedi a> Yes Root XML key for the media

<nedi a>/<devi ce> Yes A name used to indicate to upper layer components the device
below the MediaFS.

<medi a>/<seri al > Yes Device serial number

<medi a>/<nodel >/<*> Optional Device model information

<medi a>/<pr ot ocol >/<*> Optional Device protocol information
<medi a>/<swer si on> Optional Device software revision

<uui d> Optional A unique identifier for the media device; upper layer
components, such asthe MME, must be able to use this key to
associate the media device with its settings and remember
these settings. A <uui d> number must be static, and unique to
amedia device.

Example i nf 0. xm file

The example below presents the minimum required content of ai nf o. xn file:

<?xm version="1.0" standal one="yes" ?>
<uui d>unique media identifie/ uui d>

<nmedi a>

<devi ce>devicename/ devi ce>

<seri al >8N838BUH2C7</ seri al >

</ medi a>

Mediastore changer devices, such as CD or DVD changers, require different elements
intheir i nf o. xm file. For moreinformation, see “Thei nf o. xm file for mediastore
changers’ in the chapter Working with Media Changers.

The contr ol file

Thecontrol fileinthe. FS_i nf 0. directory isthe file where device-specific
playback actions are issued to a media device. This MediaFS control fileisafile
interface that supports the following 1/O capabilities:

e Accept playback and state information device control messages.
e Set astate via device control messages.
e Provide asynchronous change notifications via out-of-band messaging.

e Get events from the MediaFS event queue; see also the
DCMD_MEDIA_READ_EVENTS device control message, and the chapter MediaFS
Events.

14 Chapter 3 o MediaFS Entities April 30, 2009

0 2009, QNX Software Systems GmbH & Co. KG. The . FS_i nf 0. directory and its contents

The MediaFS control file provides state information and metadata for the current
device. That is:

e state and metadata device control messages issued on the control file return
information about the device at the time of the execution

e metadata obtained from the control filet is the metadata for the currently active
(playing) track

Q Thecont rol fileisrequired for devices, such asiPods, that use serial (“two-wire”)
connections. It is not required for devices, such as PFS devices and certain iPods, that
use USB (“one-wire”) connections.

Conditions for sending a notification

If the state or the metadata of the currently active device changes, the MediaFS control
file should send a notification via an out-of-band message to all registered listeners,
such as, for example, the MME.

The MediaFS control file sends a notification if any of the following conditions is met:

e Any datathat that will be returned inthe _nmedi a_pl ayback_st at us structure
has changed.

e An event has been added to the MediaFS event queue.
e Thecurrent file has been updated.
e The content of the pl ayback directory has changed.

e Thedevice playback speed or state has changed.

To receive asynchronous notifications, a client application must use the QNX
io_notify() function to register for these notifications.

The dev symbolic link

Thedevelement inthe. FS_i nf o. directory isasymbolic link to the media device
identified by the <uui d> element. It should be an entry in the/ dev directory and
provide access directly to the media device.

Q Devices such asan HTTP client driver may not have adeventry.

The current symbolic link

The currentsymbolic link isoptional. If it is present, this symbolic link isarelative
path fromthe. FS_i nf 0. directory which, when it is resolved, points to the currently
activefile. Thisactivefileisin the MediaFS file system.

April 30, 2009 Chapter 3 e MediaFS Entities 15

Directories and files outside the . FS i nf 0. directory 0 2009, QNX Software Systems GmbH & Co. KG.

Y

If the pl ayback directory is present, the symbolic link points to an entry in this
directory. If no file on the media device is currently active, the currentsymbolic link is
removed or deleted.

Metadata retrieval commands issued on the current symbolic link return the specified
metadata for the currently playing file.

The MediaFS control file sends a notification to registered clients via an out-of-band
message whenever the currentsymbolic link is updated.

A system must support the POSIX readlink() function in order to resolve the current
symboalic link.

The pl ayback directory

Metadata retrieval

The pl ayback directory is optional. If it is present, this directory contains symbolic
links to files that the media device will play. When it writes these symbolic links to the
pl ayback directory, the device controller should organize them in the same order as
the media device will play the files referenced by the links.

Whenever possible, symbolic links in the pl ayback directory should point to the files
that they represent in the main media filesystem. However, for some operational
modes on some devices, the device may not be able to guarantee the accuracy of these
pointers. Client applications should, therefore, treat the links as hints and not as
guarantees of afile'slocation in the main media filesystem.

Client applications can use metadata retrieval messages to execute metadata extraction
calls against the fileslisted in the pl ayback directory. If the links point into the
MediaFS hierarchy, the results of a call to one of these symbolic links is the same as
the result of acall to retrieve metadata directly from afile in MediaFS.

For more information about metadata retrieval messages, see the chapter Metadata
Messages.

Changes to the pl ayback directory

When the content of the pl ayback directory changes (because, for example, the
client has selected a play operation against a new set of mediafiles), the control file
sends a notification of the change to all applications registered for out-of-band
messages on the cont r ol file.

Directories and files outside the . FS | nf 0. directory

The behavior of MediaFS entities located outside the . FS_i nf o. directory structure
varies according to the capabilities and behaviors of each underlying media device.
However, MediaFS maintains some behaviors throughout for these directories and
files, as described in this section.

16 Chapter 3 o MediaFS Entities April 30, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Directories and files outside the . FS i nf 0. directory

Directory behavior

MediaFS directories outside the . FS_i nf o. directory represent the data hierarchy of
the target device. For example, directories on an Apple iPod could be represented
using the following structure:

/i pod0O

/i pod0O/.FS_info.

/i pod0/ Musi c

/i podO/ Musi c/ Artists
/i podO/ Musi c/ Songs

Directory characteristics

File behavior

To be usable by MediaFS, adirectory outside the. FS_i nf o. directory structure must
have the following characteristics:

e Thedirectory must be of thetype S_ISDIR.

e Thedirectory must support the DCMD_FSYS DIR_NFILES command message, to
indicate the number of files present in the directory.

e All directory attributes (name, size, etc.) must adhere to the QNX filesystem
specifications and POSI X specifications.

Additionally, directories outside the . FS_i nf o. directory structure may need to
accept the DCMD_MEDIA_PLAY command, if the associated media device supports
playback of al itemsin adirectory; that is, if the device supports using adirectory as a

playlist.

MediaFS files outside the . FS_i nf o. directory represent files or tracks that can used
with the media device.

The POSIX filesystem representation for these filesis free-form, with the following
restrictions:

e Filesmust be of thetype S_ISREG.
e Filesshould use afile extension to aid in file type detection.

e All file attributes (name, size, etc.) must adhere to QNX filesystem specifications
and POSI X specifications.

Supported device control messages

April 30, 2009

MediaFSfiles outside the. FS_i nf o. directory structure must support state change
and metadata query device control messages.

Messages issued directly to afile outside this directory structure must apply to the
specified file. For example, the device control message DCMD_MEDIA_SONG issued

Chapter 3 e MediaFS Entities 17

Playlist files and directories 0 2009, QNX Software Systems GmbH & Co. KG.

directly to afile outside the . FS_i nf 0. directory structure returns the song title for
that file, not the song title of the currently playing file.

If adevice control message cannot be completed due to media device limitations, the
call that issues the control message returns an ENOTSUP error.

For acomplete list of device control messages used with MediaFS and descriptions of
these messages, see the chapters Playback Messages and M etadata M essages.

Playlist files and directories
A playlist can be either of:

e astandardized playlist file, such asan M3U or PLSfile, stored in the MediaFS

hierarchy; entries in the these playlist files must be filesystem paths pointing to
entriesin MediaFS

e aMediaFS playlist, which isacollection of filesinside a directory

Q Playlist support is subject to upper layer component (MME) support.

MediaFS playlists
Note the following about MediaFS playlists:

e A MediaFS playlist directory can be present only outsideof the . FS_i nf o.
directory.

e For adirectory to beidentified as a MediaFS playlist, the directory must have the
othersexecute hit cleared in the st modemember of itsst at structure.

Indentifying a MediaFS playlist
The code snippet below shows how to determine if adirectory is aMediaFS playlist:
stat (path, &statbuf);

if ((SISDIR! S IXOTH) & statbuf.st _node)==S I SDIR) {
/1 This is a MediaFS playli st
}

For more information about the st at structure, see stat(), stat64()in the the QNX
Neutrino Library Reference

18 Chapter 3 o MediaFS Entities April 30, 2009

Chapter 4
Media Changers

In this chapter...

Representing media changersand mediastores 21
Informing MediaFS of state changes 23

April 30, 2009 Chapter 4 e Media Changers 19

[2009, QNX Software Systems GmbH & Co. KG. Representing media changers and mediastores

Media changer devices — essentially CD and DV D changers — differ from other
media devices because they contain and change removable mediastores

A removable mediastore is a physical storage medium, such asa CD or DVD, with
one of more mediafiles that can be synchronized and played. Media changer devices
can load and unload these mediastores as required, changing their states from
“unavailable’ to “available” to “active’.

This chapter describes how these devices and their mediastores can be represented to
MediaFS, and how state changes on these devices should be communicated to
MediaFS:

e Representing media changers and mediastores

e Informing MediaFS of state changes

Representing media changers and mediastores

MediaFS uses extensions to offer acommon representation of devices with multiple
mediastores — devices such as CD and DVD changers. It represents a media changer
device as asingle changercontainer. This changer container includes multiple slot
items. Each slot represents one mediastore (such asa CD or aDVD), and is described
by a separate MediaFS instance.

For example, the following illustration represents the hierarchy of one media changer
device with three dats, each slot described by a MediaFS instance:

ffsfchanger
slot 0
slot 1
shat 2

MediaFS changer device and mediastore hierarchy representation

MediaFS instances for slots

A slot represents a single mediastore. Each slot has a MediaFS instance, which
adheres to the MediaFS specifications for media device representation. That is, each
dlot has a MediaFS instance with itsown i nf o. xm file, cont r ol file, optional

pl ayback directory, devsymbolic link, and optional currentsymbolic link.

Thei nf o. xm file for mediastore changers

April 30, 2009

MediaFSi nf o. xm files for changer devices and slots differ fromi nf o. xmi filesfor
other media devices in order to accurately represent the devices as containers for the
mediastores, and the mediastores as dependent on adevice. That is, thei nf 0. xni
filesfor changer devices and slots must indicate that the changer device can hold one,
many or no mediastores, and that these mediastores can only be accessed inside a
changer.

Chapter 4 e Media Changers 21

Representing media changers and mediastores 0 2009, QNX Software Systems GmbH & Co. KG.

The table below lists the elements required in ani nf o. xml file use to describe media
changer devices and dlots:

XML Key Required? Description

<nedi a> Yes Root XML key for the media

<medi a>/<dri ver > Yes Description of the device as aMediaFS
changer device

<nmedi a>/<nanme> Yes Name of the mediastore

<medi a>/<seri al > Yes Device seria number

<nmedi a>/<sl ot > Yes Slot number for the mediastore

<nmedi a>/<t ype> Yes Description of the mediastore type

Required XML keys

The keys listed below arerequired inthei nf o. xnd file for amedia changer device
dot:

<medi a>/<dri ver >
A user-defined name for the device; for dots this value mustbe set to
medi af s- changer .

<medi a>/<nane>

The mediastore name that can be passed to the upper software layers (such as
the MME and an HMI) for display to the user. In most cases this nameis the
volume name of the mediastore.

<nmedi a>/<seri al >
A unique identifier for the mediastore represented by the slot. It must be set to a
value, such asthe freeDB hash, that uniquely identifies the mediastore.

<nedi a>/<sl ot >

The slot position of the mediastore in the changer device. The value of this key
must be the same as the offset returned by acall to the device with the
DCMD_CAM_MECHANISM_STATUS control message. This offset (and
therefore the value of the <sl ot > key) isasingle-digit string representing the
slot with the mediastore.

<medi a>/<t ype>

A predefined text value identifying the kind of mediastore present in the media
changer device slot. Permitted values are:

e FS— basic filesystem
e AUDIOCD — CDDA disc
e DVDVIDEO — DVD-video disc

22 Chapter 4 o« Media Changers April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

e DVDAUDIO— DVD-audio disc
e VCD — Video CD disc
e UNKNOWN — unknown mediastore type

Examplei nf o. xnl file

The example below shows ani nf o. xm filefor a MediaFS slot representing a
mediastore changer device:

<?xm version="1.0" standal one="yes" ?>
<i nf 0>
<nmedi a>
<devi ce>nedi af s- changer </ devi ce>
<sl ot >1</ sl ot >
<seri al >280a1752</ seri al >
<name>M XED</ nane>
<type>FS</type>
</ medi a>
<devi ce>
<dri ver >nedi af s- changer </ dri ver >
<cat agor y>nedi a</ cat agor y>
</ devi ce>
</info>

For more information about thei nf o. xn file, see“Thei nf o. xn file” in the
chapter MediaFS Entities.

Informing MediaFS of state changes

April 30, 2009

MediaFS expects a slot to have one of the following states:
e Uunavailable — the dot is not represented in MediaFS
e available — the dot isrepresented in MediaFS, inside the changer container

e active— the dlot is available and a mediastore that can be synchronized and played
isphysically present

For example, if a CD changer has six possible mediastore locations, it can be
represented by a changer with any one of slots 0 to 5. If amediastore isloaded into
slot 0, MediaFS represents it as shown in the figure below:
fafchanger

——slot 0

MediaFS changer representation of a mediastore in slot O

If the mediastore is gjected from the changer, MediaFS removes its slot representation:

Chapter 4 e Media Changers 23

Informing MediaFS of state changes

[J 2009, QNX Software Systems GmbH & Co. KG.

fefehanger

MediaFS changer representation of device with no available mediastores

For files on a mediastore to be synchronized or played, the slot representing the
mediastore in MediaFS must by marked activeas well as available. That is, the device
controller must use the slot’scont r ol file to inform MediaFS not only that the slot is
present, but that areadable disc is physically loaded in the changer and is ready to be
read. Thus, only one changer slot can be active at any one time.

Changer states

24

To get the current changer state from MediaFs, the client application or the device
controller must issue the DCMD_CAM_CDROM_MECHANISM_STATUS device
control message to each changer slot’'scont r ol file, as appropriate.

DCMD_CAM_CDROM_MECHANISM_STATUS s a standard control defined in the
sys/ cdr om h header file. The example below shows one way to implement the
DCMD_CAM_CDROM_MECHANISM_STATUS device control command:

cdrom st at us.
cdrom st at us.
cdrom st at us.

#defi ne CDROM MSH_CHANGER_SET_CURRENT SLOI’(cdrom_ status slot)\
mech_state &= " 0x07 ;o\
changer state sl ot & "Ox1F ;o\
mech_state | = (slot >>5) ;o\
changer _state_slot |= (slot & Ox1F) ;

cdrom st at us.

struct
struct

_cdrom nechani sm st at us
_cdrom exchange

swi t ch(changer. st at us)

{

case STATUS_EMPTY:

cdrom st at us. hdr.
br eak;

case STATUS_ RETRACT:

case STATUS_ LOAD:
cdrom st at us. hdr.
br eak;

case STATUS_UNLOAD:

cdrom st at us. hdr.
br eak;

defaul t:
cdrom st at us. hdr.
br eak;

}

cdrom st at us. hdr.
cdrom st at us. hdr.

for(index=0;

i ndex < changer.

num sl ot s_avai |
slot _table |en

i f (changer. sl otlnfo[index].status

Chapter 4 ¢ Media Changers

changer state_sl ot

changer state_sl ot

changer state_sl ot

num sl ot s;

cdrom st atus ;
cdrom exchange ;

nmech_state = CDROM MSH_MECHANI SM | DLE ;

CDROM_MSH_CHANGER_LOADI NG ;

CDROM _MBH_CHANGER UNLOADI NG ;

CDROM _MSH_CHANGER READY ;

changer. numslots ;
changer.numslots ;

i ndex++) {
DISCIN {

April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

cdrom status.str[index].flags | = CODROM STR_DI SC_PRESENT;

}

CDROM_MSH_CHANGER_SET_CURRENT_SLOT(cdrom st at us. hdr,
changer. active_slot);

April 30, 2009 Chapter 4 e Media Changers 25

Chapter 5
Managing Playback

In this chapter...

Requested playback control sequences 29
Managing autonomous playback state changes 33

April 30, 2009 Chapter 5 e Managing Playback 27

[2009, QNX Software Systems GmbH & Co. KG. Requested playback control sequences

Playback on media devices may be initiated or changed by:
e auser; that is, ahigh-level application, such asthe MME
e amediadevice, such asaniPod

This chapter presents the control message sequences and the settings that a device
controller may need to support to monitor and manage media playback through
devctl()calsto MediaFS entities. It contains the following sections:

e Requested playback control sequences
e Managing autonomous playback state changes

For alist of MediaFS control messages, see the chapters Playback Messages and
M etadata M essages.

Requested playback control sequences

A media device controller using MediaFS should support client applications issuing
commands to MediaFS entities to start playback of:

e amediafile (track), at the start of the track or at an offset, if the media device
supports playback from an offset

e adirectory
e amediadevice, if the media device supports this action

This section presents the control message sequences and settings required to effect a
playback state change through a devctl()call to a MediaFS entity. It contains:

e Start playback — file or directory
e Start playback — media device
e [ast forward and reverse

e Pause and resume playback

Start playback — file or directory

April 30, 2009

To start playback for a specific file or directory, the client application should issue, as
required, either the DCMD_MEDIA_PLAY or the DCMD_MEDIA_PLAY _AT device
control message to the MediaFSfile or directory to play.

If the file or directory isvalid for the media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.
2 Start playback of the requested track on the media device.

3 Update the following _nedi a_pl ayback structure members:

Chapter 5 e Managing Playback 29

Requested playback control sequences

[J 2009, QNX Software Systems GmbH & Co. KG.

5
6

count— set to the number of tracks that will be played
index— set to the index of the requested track
state— set to PLAYBACK_STATE_PLAY

flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; if the device does not support this
feature, set to 0 (zero)

metaseg— set to 0 (zero)

length— set to the length of the track, or to O (zero) if the track length is not
available

elapsed— set to O (zero) if the DCMD_MEDIA_PLAY message was issued,
or to the track start offset, in seconds, if the DCMD_MEDIA_PLAY_AT
message was issued and is supported

speed— if the the flagsmember is set to
PLAYBACK_FLAG_SPEED EXACT, set to 1 (one) only; no other valueis
permitted

Update the MediaFS currentsymbolic link (if it is present) to point to the
requested mediafile.

Send an out-of-band notification on the cont r ol file.

If al operations are successful, reply to the device control message with EOK.

Start playback — media device

Some media devices support playback of the entire device, starting with the first track
in the device, arandom track, or at the point where playback was previously stopped.
To start or resume playback of a device, aclient application should issue the
DCMD_MEDIA_PLAY device control message to the MediaFS cont r ol file.

If this action is valid for the current media device, the device controller must perform
the following operations, in sequence:

1
2
3

Receive the device control message, and validate playback.

Start playback of the media device.

Update the following _nedi a_pl ayback structure members:

count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

index— set to the currently playing track if the device provides this
information immediately, or to 0 (zero) if the information is not provided at
thistime

state— set to PLAYBACK_STATE_PLAY

flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; no other value is permitted

30 Chapter 5 e Managing Playback April 30, 2009

00 2009, QNX Software Systems GmbH & Co.

KG. Requested playback control sequences

metaseg— set to 0 (zero)
length— set to the length of the track, or O (zero) if the length is unavailable
elapsed— set to O (zero)

speed— set to 1 (one), only if the PLAYBACK_FLAG_SPEED EXACT flagis
set; no other value is permitted

4 Update the currentsymbolic link to point to the requested mediafile. If the
currently playing file is not known at this time, clear the symbolic link.

5 Send an out-of-band notification on the cont r ol file.

6 If all operations are successful, reply to the device control message with EOK.

Track information updates

If adevice autonomously indicates the playing track after MediaFS has replied to the

DCMD_

MEDIA_PLAY device control message that started playback, the device

controller must perform the following operations, in sequence:

1 Update the following _nmedi a_pl ayback structure members:

count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

index— set to the currently playing track

metaseg— increment by 1 (one), if metadata is now available

length— set to the length of the track, or O (zero) if the length is unavailable
elapsed— set to the current track time received from the media device

2 Send an out-of-band notification on the cont r ol file.

Fast forward and reverse

April 30, 2009

The playback speed or direction of a media device represented through MediaFS can
be changed only while the device isin the playing state. To change the playback speed
or direction, or both, the client application should issue the appropriate messages to
the the MediaFScont r ol file.

If the action isvalid for the current media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Change the playback speed on the media device, as requested.

3 Update the following _nedi a_pl ayback structure members:

state— set to PLAYBACK_STATE_PLAY (1)

flags— set to PLAYBACK_FLAG_FASTFWD or
PLAYBACK_FLAG_FASTRWD, and set to
PLAYBACK_FLAG_SPEED EXACT if the device supports this feature

Chapter 5 e Managing Playback 31

Requested playback control sequences [0 2009, QNX Software Systems GmbH & Co. KG.

e speed— set to the playback speed, onlyif the
PLAYBACK_FLAG_SPEED_EXACT flag is set

4 Send an out-of-band notification on the cont r ol file.
5 If all operations are successful, reply to the device control message with EOK.

For more information about fast forward and reverse control messages, see the chapter
Playback and Status M essages.

Pause and resume playback

Pause playback

Resume playback

The client application should pause and resume playback on MediaFS devices by
issuing messages to the MediaFS cont r ol file. If these actions are valid for the
current media device, the device control should apply them to the device.

Playback can only be paused while adevice isin the playing state. To pause playback,
aclient application should issue the DCMD_MEDIA_PAUSE message to the MediaFS

cont rol file. If thisaction isvalid for the current media device, the device controller
must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.
2 Pause playback on the media device.

3 Update the following _nmedi a_pl ayback structure members:

e state— set to PLAYBACK_STATE_PAUSE
e speed— set to 0 (zero), onlyif the PLAYBACK_FLAG_SPEED_EXACT flag
is set
4 Send an out-of-band notification on the cont r ol file.

5 If all operations are successful, reply to the device control message with EOK.

Playback can only be resumed while the device isin the paused state. To resume
playback, the client application should issue the DCMD_MEDIA_RESUME message to
the MediaFS cont r ol file. If thisaction isvalid for the current media device, the
device controller must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.
2 Resume playback paused on the media device.

3 Update the following _nedi a_pl ayback structure members:

e state— set to PLAYBACK_STATE_PLAY

e speed— set to the device speed, onlyif the
PLAYBACK_FLAG_SPEED EXACT flagisset

32 Chapter 5 e Managing Playback April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. Managing autonomous playback state changes

4 Send an out-of-band notification on the cont r ol file.

5 If al operations are successful, reply to the device control message with EOK.

Managing autonomous playback state changes

Track change

During playback, a media device may change playback or metadata states
autonomously, independently of any user request. This section describes the actions
that a device controller must perform when it encounters a device-initiated state
change:

e Track change
e Playback state change

e Metadata update

If amedia device autonomously changes tracks, the device controller must perform the
following operations, in sequence:

1 Update the following _nedi a_pl ayback structure members:

e count— set to the number of tracks that will be played

e index— set to the new currently playing track

e metasegd—setto 0

e length— set to the length of the track, or O (zero) if the length is unavailable
e elapsed— set to 0 (zero)

2 Update the current symbolic link to point to the new currently playing MediaFS
file.

3 Send an out-of-band notification on the cont r ol file.

Playback state change

April 30, 2009

Some media devices may autonomously pause, stop, or resume playback. If these state
changes occur on a media device, the device controller must perform the following
operations, in sequence:

1 Update the following _nedi a_pl ayback structure members:

e state— set to the new playback state

e speed— set to the device speed, onlyif the
PLAYBACK_FLAG_SPEED EXACT flagisset

2 Send an out-of-band notification on the cont r ol file.

Chapter 5 e Managing Playback 33

Managing autonomous playback state changes 0 2009, QNX Software Systems GmbH & Co. KG.

Metadata update

If amedia device supports asynchronous metadata updates, it may update the metadata
for the current playing track. If an update of this type occurs, the device controller
must perform the following operations, in sequence:

1 Update the following _nedi a_pl ayback structure member:
e metaseg— increment by 1 (one)
2 Send an out-of-band notification on the cont r ol file.

Subsequent client application requests for metadata (made through a device control
message to a MediaFS entity) will retrieve the new metadata that was received from
the media device.

34 Chapter 5 ¢ Managing Playback April 30, 2009

Chapter 6
Device Messages

In this chapter...

Using device control messages 37
Device configuration messages 38
iPod, UPnP device and streaming messages 39

April 30, 2009 Chapter 6 o Device Messages 35

[2009, QNX Software Systems GmbH & Co. KG. Using device control messages

This chapter describes the MediaFS device control messages and how to use them. It
contains the following sections:

e Using device control messages
e Device configuration messages

e iPod, UPnP device, and streaming messages

e The MediaFS device control messages, constants and data structures are defined in
the header filei o- f s/ 1i b/ publ i ¢/ sys/ dcnd_medi a. h.

e If abuffer isrequired for acommand message, this documentation includes a buffer
description with the message description; the buffer description follows the
template: “Buffer: descriptiori. If the control message does not require a buffer,
then no buffer description is presented with the message description.

e For information about how to use MediaFS device control messages, see “Using
device control messages’ below.

e For information about the messages used to retrieve album art, see “Album art
retrieval messages’ in the chapter Getting Album Art.

Using device control messages

April 30, 2009

MediaFS device control messages can be applied to open files and directories in the
MediaFS filesystem to:

e query mediadevices for their states and playback information

e initiate actions against mediafiles, such as start, pause and stop playback, skip to
the next or previous file, or change random and repeat mode settings

e retrieve file metadata
e extract album art and other images

Control messages are applied by calls to the devctl()function. When a control
message is applied to a MediaFS entity, the filesystem routes the message to the
appropriate device driver. The device driver must:

e apply the requested action to the underlying media device
e return to the calling application the the result of the action

All state modification control messages must be synchronous. A requested action must
either complete or fail before returning. For example, if the state modifier
DCMD_MEDIA_PLAY message isissued, upon return of the devctl()call, the
underlying device must be in aplaying state, or have returned a POSIX error
indicating why the command failed.

Chapter 6 e Device Messages 37

Device configuration messages 0 2009, QNX Software Systems GmbH & Co. KG.

As with other directories and files, an application must open a MediaFS directory or
file with, respectively, the opendir()and the open()functions before it can use the
devctl()function to issue control messages to them.

To pass data to and receive data from media devices, a client application should use
the devctl()function's dev_data_ptr and dev_info_ptr arguments to point to the
appropriate _nedi a_* datastructures. These _nedi a_* structures are described in
the chapter Playback Structures and Constants.

For alist of POSIX functions that MediaFS supports, see “Required POSIX function
support” in the chapter MediaFS Structure. For more information about the functions,
such as open()and devctl() used to control devices, see the QNX Neutrino Library
Reference

Device configuration messages

This section describes the device messages defined to get and set device
configurations. These message are:

e DCMD_MEDIA_GET_ XML
e DCMD_MEDIA_SET_XML

DCMD_MEDIA_GET_XML

DCMD_MEDIA_GET_XML returns an XML configuration string (UTF-8) with the
device configuration information. See also the chapter MediaFS Entities.

Buffer: char[1]

DCMD_MEDIA_SET_XML

DCMD_MEDIA_SET_XML expects a buffer containing a terminated xpath string
followed by aterminated value string; that is, the element or attribute to modify, and
its new value.

Buffer: char[1]

38 Chapter 6 o Device Messages April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

Q DCMD_MEDIA_GET_XML and DCMD_MEDIA_SET_XML use acommon
configuration layout that becomes specific for each device. For example:

<devi ce api _version="1">
<nedi a>
<interface type="usb" ... />
<Devi ceSpeci ficString>
. Devi ce specific settings
</ Devi ceSpeci ficString>
</ nedi a>
</ devi ce>

See a so the chapter MediaFS Entities.

IPod, UPnP device and streaming messages

This section describes the device control messages defined to obtain information from
and manage iPod and UPnP devices, and media streams. These message are:

e Common messages
e iPod device messages
e UPnP device messages

e Media stream messages

Q Most devices do not support the full set of control messages. If a device does not
support a requested action, the device controller must return the error code ENOTSUP
(command invalid for this device).

Common messages

This section describes the device control messages that can be used to obtain
information from and manage iPod devices, UPnP devices, DRM, and media streams.
These messages are:

e DCMD_MEDIA_CONFIG
e DCMD_MEDIA_GET_DEVINFO
DCMD_MEDIA_CONFIG

DCMD_MEDIA_CONFIG issues a configuration setting to a media device.
Buffer: char [1]

April 30, 2009 Chapter 6 e Device Messages 39

iPod, UPnP device and streaming messages 0 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_GET_DEVINFO
DCMD_MEDIA_GET_DEVINFO requests information about a media device.
Buffer: char [8* 1024]

IPod device messages

This section describes the device control messages defined to obtain information from
and manage iPod devices. These message are:

e DCMD_MEDIA_IPOD_DAUDIO
e DCMD_MEDIA_IPOD_CAP
e DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_DAUDIO

DCMD_MEDIA_IPOD_DAUDIO s used to retrieve iPod audio settings from an iPod
device. Thisinformation iscarried inthe nedi a_i pod_daudi o data structure

Buffer: struct _nedi a_i pod_daudi o

DCMD_MEDIA_IPOD_CAP
DCMD_MEDIA_IPOD_CAPretrieves capabilities information from an iPod device.
Buffer: char[1]

DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_TAG is used to add an iTunes tag to afile on an iPod device.
Buffer: ui nt 8_t [1]

UPnP device messages

This section describes the device control messages defined to obtain information from
and manage UPnP devices. These message are;

e DCMD_MEDIA_UPNP_CDS BROWSE

DCMD_MEDIA_UPNP_CDS_BROWSE

DCMD_MEDIA_UPNP_CDS BROWSE browses a mediastore on adevice that uses the
UPnNP protocal.

Buffer: char[8]

Media stream messages

This section describes the device control messages defined to obtain information from
and manage media streams. These message are:

e DCMD_MEDIA_CLOSE_STREAM

40 Chapter 6 o Device Messages April 30, 2009

[2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

DCMD_MEDIA_INFO_STREAM
DCMD_MEDIA_OPEN_STREAM
DCMD_MEDIA_READ_STREAM

DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_CLOSE_STREAM

DCMD_MEDIA_CLOSE_STREAM closes a media stream.

DCMD_MEDIA_INFO_STREAM

DCMD_MEDIA_INFO_STREAM retrieves information about a media stream. This
information must be placed ina_nedi a_st ream i nf o structure.

Buffer: struct _nedi a_stream

DCMD_MEDIA_OPEN_STREAM

DCMD_MEDIA_OPEN_STREAM opens a media stream.

DCMD_MEDIA_READ_STREAM

DCMD_MEDIA_READ_STREAM reads a media stream into a buffer. Before a stream
can be read, it must be opened with aDCMD_MEDIA_OPEN_STREAM message and
set withaDCMD_MEDIA_SET_STREAM message.

Buffer: char [16* 1024- 1]

DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_SET_STREAM sets the media stream that will be read by calls to
devctl()with the DCMD_MEDIA_READ_STREAM message.

Buffer: unsi gned i nt

April 30, 2009

Chapter 6 e Device Messages 41

Chapter 7
Playback Messages

April 30, 2009 Chapter 7 e Playback Messages 43

[J 2009, QNX Software Systems GmbH & Co. KG.

April 30, 2009

This chapter describes the MediaFS device control messages defined to retrieve state

information from and control playback on a media device accessed and managed

through MediaFS, or that are outside MediaFS. These message are:

DCMD_MEDIA_ACCESS_TYPE
DCMD_MEDIA_FASTFWD
DCMD_MEDIA_FASTRWD
DCMD_MEDIA_GET_REPEAT
DCMD_MEDIA_GET_SHUFFLE
DCMD_MEDIA_GET_STATE
DCMD_MEDIA_NEXT_CHAP
DCMD_MEDIA_NEXT_TRACK
DCMD_MEDIA_PAUSE
DCMD_MEDIA_PLAY
DCMD_MEDIA_PLAY_ AT
DCMD_MEDIA_PLAYBACK_INFO
DCMD_MEDIA_PLAYBACK_STATUS
DCMD_MEDIA_PREV_CHAP
DCMD_MEDIA_PREV_TRACK
DCMD_MEDIA_RESUME
DCMD_MEDIA_SEEK_CHAP
DCMD_MEDIA_SET_REPEAT
DCMD_MEDIA_SET_SHUFFLE

DCMD_MEDIA_SET_STATE

Playback control and device status messages can be issued to the MediaFS cont r ol
file only.

The exceptions to thisrule are:

e the DCMD_MEDIA_PLAY message, which can be issued to:

- theMediaFScontrol file
- aMediarSfile or directory
- any other file

Chapter 7 e Playback Messages

45

[J 2009, QNX Software Systems GmbH & Co. KG.

- adirectory, if the device supports directory playback
e theDCMD_MEDIA_PLAY_AT message, which can beissued to:

- aMediaFSfile

Q e Most devices do not support the full set of control messages. If a message is not
supported by the media device the requested action, the device controller must
return the error code ENOTSUP (command invalid for this device).

e All state modification control messages must be synchronous; the requested action
must either complete or fail before returning.

For example, if the state modifier DCMD_MEDIA_PLAY isissued, upon return of
the devctl()call, the underlying device must be in a playing state, or have returned a
POSIX error indicating why the command failed.

DCMD_MEDIA_ACCESS_TYPE

DCMD_MEDIA_ACCESS TY PE retrieves information about how afileisto be
accessed. The status values may indicate that the file is known to be either DRM
protected or not DRM protected, as well as whether a POSI X read() function can be
used to access the file's media content.

This command does not use adata transfer buffer. If the devctl()status is EOK, the
integer return value (obtained using the last parameter of the devctl()function) may
contain a combination of the following values:

Type Value Description

ACCESS_TYPE_DRM_PROTECTED 1 Thefileis known to be DRM
protected. May not be combined
with

ACCESS TYPE_DRM_UNPROTECTED.

ACCESS TYPE_DRM_UNPROTECTED 2 Thefileis known to not be
DRM protected. May notbe
combined with
ACCESS_TYPE_DRM_PROTECTED.

ACCESS _TYPE_READ_SUPPORTED 4 Thefile can be read using
POSIX read functions (the fileis
not Zune). May be combined
with
ACCESS_TYPE_DRM_UNPROTECTED
or with
ACCESS _TYPE_DRM_PROTECTED.

46 Chapter 7 o Playback Messages April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_FASTFWD

DCMD_MEDIA_FASTFWD instructs the media device to go to the fast forward speed
specified by the rate member of the _nedi a_speed structure. Behavior when this
message is issued to amedia device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device's capabilities and
characteristics.

Buffer: struct _nedi a_speed

DCMD_MEDIA_FASTRWD

DCMD_MEDIA_FASTRWD instructs the media device to go to the fast reverse speed
specified by the _nmedi a_speed data structure’'s rate member. Behavior when this
message is issued to a media device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device's capabilities and
characteristics.

Buffer: struct _nedi a_speed

DCMD_MEDIA_ GET_REPEAT

DCMD_MEDIA_GET_REPEAT queries the media device for its current repeat
playback mode. Defined repeat modes are:

e REPEAT_OFF

e REPEAT ONE_TRACK
e REPEAT ALL_TRACKS
e REPEAT_FOLDER

e REPEAT SUBFOLDER

On success, the call must return the current device repeat mode, in the
_nmedi a_set ti ngs data structure’'s valuemember.

Buffer: struct _nedi a_settings

DCMD_MEDIA_ GET_SHUFFLE

April 30, 2009

DCMD_MEDIA_GET_SHUFFLE gqueries the media device for its current random
playback mode. Defined random modes are:

e SHUFFLE_OFF

e SHUFFLE_TRACKS
e SHUFFLE_ALBUMS
e SHUFFLE_FOLDER

e SHUFFLE_SUBFOLDER

Chapter 7 e Playback Messages 47

[J 2009, QNX Software Systems GmbH & Co. KG.

On success, the call must return the current device random mode, in the
_medi a_set ti ngs data structure's value member.

Buffer: struct _nedi a_settings
DCMD_MEDIA_GET_STATE

DCMD_MEDIA_GET_STATE queries the media device for its current settings and
returnsthe datainthe nedi a_set t i ngs data structure. This data can be used at a
later time to restore playback to the state at the time of the query.

Buffer: uint 8_t [1]
DCMD_MEDIA_NEXT_CHAP

DCMD_MEDIA_NEXT_CHAP instructs the media device to skip forward to the next
chapter in avideo. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device's capabilities and characteristics.

DCMD_MEDIA_NEXT_TRACK

DCMD_MEDIA_NEXT_TRACK instructs the media device to skip forward to the next
fileinits playlist. Behavior when this message isissued to a media device that isnot in
aplaying state is device dependent: the request may succeed or fail, depending on the
media device's capabilities and characteristics.

DCMD_MEDIA_PAUSE

DCMD_MEDIA_PAUSE instructs the media device to pause playback of the current
file. Issuing this message always causes a “pause” instruction to be sent to the media
device, even when playback is already in a paused state

DCMD_MEDIA_PLAY

DCMD_MEDIA_PLAY directs a media device to start playback. Behavior depends on
the entity to which this message isissued, asfollows:

e file— start or resume playback of the current file

e directory — start or resume playback of the file in the directory, as specified by the
media device

e control file— start or resume playback of atrack determined by the media device

DCMD_MEDIA_PLAY_AT

DCMD_MEDIA_PLAY _AT instructs the media device to start playback at a specified
time offset in afile. Thisplay time offset isset in the _nedi a_pl ay data structure.

Buffer: struct _nedi a_pl ay

48 Chapter 7 o Playback Messages April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_PLAYBACK_INFO

DCMD_MEDIA_PLAYBACK_INFO queries the media device for its current playback
information and returns the datain the _nedi a_pl ayback data structure.

All media devices must support this capability, asit is fundamental to executing
playback.

Buffer: struct _medi a_pl ayback

DCMD_MEDIA_PLAYBACK_STATUS

DCMD_MEDIA_PLAYBACK_STATUS queries the media device for its current
playback status and returns the datain the _nmedi a_pl ayback_st at us data
structure.

All media devices must support this capability, asit is fundamental to executing
playback.

Buffer: struct _nedi a_pl ayback_st at us

DCMD_MEDIA_PREV_CHAP

DCMD_MEDIA_PREV_CHAP instructs the media device to skip back to the previous

chapter in avideo. Behavior when this message is issued to a media device that is not
in aplaying state is device dependent: the request may succeed or fail, depending on

the media device's capabilities and characteristics.

DCMD_MEDIA_PREV_TRACK

DCMD_MEDIA_PREV_TRACK instructs the media device to skip backward to the
previous filein its playlist. Behavior when this message isissued to a media device
that isnot in a playing state is device dependent: the request may succeed or fail,
depending on the media device's capabilities and characteristics.

DCMD_MEDIA_RESUME

DCMD_MEDIA_RESUME instructs the media device to resume the playback of the
current file. Issuing this message always causes a“resume’ instruction to be sent to
the media device, even when playback has already resumed

DCMD_MEDIA_SEEK_CHAP

DCMD_MEDIA_SEEK_CHAP instructs the media device to seek to the specified
chapter in avideo. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device's capabilities and characteristics.

Buffer: ui nt 32_t

April 30, 2009 Chapter 7 o Playback Messages 49

[J 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_SET_REPEAT

DCMD_MEDIA_SET_REPEAT sets the repeat mode on the media device. For alist of
defined repeat modes, see DCMD_MEDIA_GET_REPEAT above.

Buffer: struct _nedi a_settings
DCMD_MEDIA_SET_SHUFFLE

DCMD_MEDIA_SET_SHUFFLE sets the random (shuffle) mode on the media device,
changing the playback order. For alist of defined random modes, see
DCMD_MEDIA_GET_SHUFFLE above.

Buffer: struct _nedi a_settings
DCMD_MEDIA_SET_STATE

DCMD_MEDIA_SET_STATE restores the playback settings on the media device to the
values stored inthe _nmedi a_set t i ngs data structure by adevctl()call with the
DCMD_MEDIA_GET_STATE message.

Buffer: ui nt 8 _t[1]

50 Chapter 7 o Playback Messages April 30, 2009

Chapter 8
Metadata Messages

April 30, 2009 Chapter 8 ¢ Metadata Messages 51

[J 2009, QNX Software Systems GmbH & Co. KG.

This chapter describes the MediaFS device control messages defined to obtain media
file metadata from a media device accessed and managed through MediaFS, or that are
outside MediaFS. These message are:

e DCMD_MEDIA_ALBUM
e DCMD_MEDIA_ARTIST
e DCMD_MEDIA_COMMENT
e DCMD_MEDIA_ COMPOSER
e DCMD_MEDIA_DURATION
e DCMD_MEDIA_GENRE
e DCMD_MEDIA_NAME
e DCMD_MEDIA_PUBLISHER
e DCMD_MEDIA_ RELEASE DATE
e DCMD_MEDIA_SONG
e DCMD_MEDIA_TRACK_NUM
e DCMD_MEDIA_URL
M etadata retrieval messages to can be issued to:
e theMediaFScontrol file
e filesentriesinthe MediaFS pl ayback directory
e thecurrent symboliclink
e anyfilenotinthe. FS_i nf o. directory
Behavior of metadata requests
Metadata retrieved by acall to devctl()withaDCMD_MEDIA_* metadata retrieval
message is returned as a NUL L-terminated string.
Return
If the queried media device does no support the requested metadata query, the devctl()
call with the DCMD_MEDIA_* metadata query message returns ENOTSUP.
Metadata for the currently playing file

To request metadata for the currently playing mediafile, use a metadata retrieval
message with acall to the MediaFS cont r ol file, or to the cur r ent symbolic link.

Successful completion of adevctl()call with a metadata retrieval device control
message to the cont r ol fileor tothe current symbolic link retrieves the requested
metadata for the currently playingfile.

April 30, 2009 Chapter 8 ¢ Metadata Messages 53

[J 2009, QNX Software Systems GmbH & Co. KG.

Metadata for a specified file

To request metadata for a specific mediafile, use a metadata retrieval message with a
call to that file.

Successful completion of adevctl()call with a metadata retrieval device control
message to afilethat is notthe MediaFS cont r ol fileor the cur r ent symbolic link
retrieves the requested metadata for the specifiedfile.

DCMD_MEDIA_ALBUM

DCMD_MEDIA_ALBUM queries afile for its album metadata, which the call returns
in a NULL-terminated string. An empty string isvalid if the album metadata is not
known.

Buffer: char[1]

DCMD_MEDIA_ARTIST

DCMD_MEDIA_ARTIST queries afile for its artist metadata, which the call returnsin
aNULL-terminated string. An empty string isvalid if the artist metadata is not knowm.

Buffer: char [1]

DCMD_MEDIA_COMMENT

DCMD_MEDIA_COMMENT queries afile for its comment metadata, which the call
returns in aNULL-terminated string. An empty string is valid if there is no track
comment metadata.

Buffer: char [1]

DCMD_MEDIA_COMPOSER
DCMD_MEDIA_COMPOSER

DCMD_MEDIA_COMPOSER queries afile for its composer metadata, which the call
returnsin aNULL-terminated string. An empty string isvalid if the composer
metadata is not known.

Buffer: char[1]
DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION queries afile for its duration, which the call returns as an
unsigned integer indicating the track duration, in seconds.

Buffer: char [1]
DCMD_MEDIA_GENRE

DCMD_MEDIA_GENRE queries afile for its genre metadata, which the call returnsin
aNULL-terminated string. An empty string isvalid if the genre metadata is not known.

Buffer: char[1]

54 Chapter 8 e Metadata Messages April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_NAME

DCMD_MEDIA_NAME queries afile for its name, which the call returnsin a
NULL-terminated string. An empty string isvalid if the name is not known.

Buffer: char[1]

DCMD_MEDIA_PUBLISHER

DCMD_MEDIA_PUBLISHER queries afile for its publisher metadata, which the call
returns in aNULL-terminated string. An empty string isvalid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_RELEASE_DATE

DCMD_MEDIA_RELEASE_DATE queries afile for its release data metadata, which
the call returnsinthe nedi a_dat e data structure.

Buffer: char[1]

DCMD_MEDIA_SONG

DCMD_MEDIA_SONG queries afile for the song title, which the call returnsin a
NULL-terminated string.

Buffer: char[1]

DCMD_MEDIA_TRACK_NUM

DCMD_MEDIA_TRACK_NUM queries afile for its track number, which the call
returns in aNULL-terminated string. An empty string is valid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_URL
DCMD_MEDIA_URL getsthe URL for amediafile.
Buffer: char[1]

April 30, 2009 Chapter 8 ¢ Metadata Messages 55

Chapter 9

April 30, 2009

Playback Structures and Constants

In this chapter...

Playback structures 59
Playback constants 64
iPod structures 67

Chapter 9 e Playback Structures and Constants 57

0 2009, QNX Software Systems GmbH & Co. KG. Playback structures

Thsi chapter describes MediaFS structures and constants used for playback monitoring
and control:

e Playback structures
e Playback constants

e Pod structures

Playback structures

MediaFS uses the following data structures to report and control playback information
of filesin the MediaFS framework:

e _nedia_date

e nedia_play

e nedi a_pl ayback

e nedi a_pl ayback_st at us
e nedia_settings

e nedia_speed

e nedia_streaminfo

_nmedi a_date
struct _nedia_date {

uint16_t year;
uint8 t second;
uint8_t mnutes;
uint8_t hours;
uint8_t day;
uint8 t nonth;
uint8_t weekday;
char text[40];

}

The _nedi a_dat e structure contains track date information. It is populated and
returned by devctl()when this function successfully issues a
DCMD_MEDIA_RELEASE_DATE message to a MediaFSfile.

Member Type Description
year uint 16_t Therelease date year (0000-9999).
second uint8_t Therelease date second (00-59).

continued. ..

April 30, 2009 Chapter 9 e Playback Structures and Constants 59

Playback structures 0 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

minutes uint8_t The release date minute (00-59).
hours ui nt 8_t The release date hour (00-59).
day uint8_t Therelease date day (01-31).
month ui nt 8_t The release date month (01-12).

weekday uint8_t The release date day of the week (0-6), starting with O for
Sunday and going to 6 for Saturday.

text char A free-form, NULL text field for date information for use
with devices that cannot store date specifics. Maximum
length is 39 characters. If thisfield is used, all other fields
in this structure must be set to 0 (zero).

_medi a_pl ay
struct _nedia play {
unsi gned pos;

b

The medi a_pl ay structure is used in combination with the
DCMD_MEDIA_PLAY_AT command to set the starting play position. It includes at
least the members described in the table below.

Member Type Description
pos unsi gned The offset from time zero, in seconds, at which to start
playback.

_nmedi a_pl ayback
struct _nedi a_pl ayback {
uint32_t count;
ui nt 32_t i ndex;
uint8_ t state;
uint8_t flags;
uint16_t netaseq;
uint32_t | ength;
uint32_t el apsed;
uint32_t speed

b

The _medi a_pl ayback structure has been deprecated and replaced by
_nmedi a_pl ayback_st at us.

60 Chapter 9 o Playback Structures and Constants April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Playback structures

_medi a_pl ayback_st at us
struct _nedi a playback _status {

April 30, 2009

u
u
u
u
u
u
u
u
u
u
u
u
u

nt32_t
nt32_t
nt 32_t
nt32_t
nt32_t
nt32_t
nt32_t
nt 32_t
nt32_t
nt32_t
nt32_t
nt32_t
nt 32_t

b

flags;
st at e;
speed,;

trkidx_total;
trkidx_current;
trkpos_total;
trkpos_current;
chpidx_total;
chpi dx_current;
chppos_total;
chppos_start;

met aseq;

reserved[4];

The _nmedi a_pl ayback_st at us structure contains information about the current
playback state of the device. It isreturned when aDCMD_MEDIA_PLAYBACK
message is sent to the control file. Any change to any element in this structure must
trigger anotification event on the MediaFS contral file. The

table below.

_medi a_pl ayback_st at us structure includes at |east the members described in the

For more information about possible values for playback states and flags values, see
“Media playback constants’ below.

M ember

Type

Description

flags

state

speed

trkidx_total

trkidx_current

uint32_t

uint32_t

uint32_t

uint32_t
ui nt 32_t

Flags to indicate the playback speed status as well
as other information about a mediafile. See“The
flagsand speedmembers’ and “Media playback
constants’ below.

The current playback state of the device. Must be
one of PLAYBACK_STATE_STOP,
PLAYBACK_STATE_PLAY or
PLAYBACK_STATE_PAUSE. This value must be
updated on a device playback state change. See
“Media playback constants’ below.

The playback speed. Thisvaueisvalid only if the
PLAYBACK_FLAG_FASTFWD or the
PLAYBACK_FLAG_FASTRWD flagisset. See“The
flagsand speedmembers’ below.

The total number of tracks in the playback list.

The index reference for the currently playing track.

continued. ..

Chapter 9 e Playback Structures and Constants 61

Playback structures 0 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

trkpos total uint 32_t Thelength of the currently playing track, in
milliseconds. Set to O if the track length is not
known.

trkpos _current ui nt32_t The current position in the currently playing track,

in milliseconds.

chpidx total uint32_t Thetotal number of chaptersin the current media

item. Set to O (zero) if there are no chapters.

chpidx_current ui

nt32_t Theindex reference for the currently playing
chapter.

chppos total uint32_t Thelength of the currently playing chapter, in
milliseconds. Set to O (zero) if the chapter length is

not known.

chppos start uint32_t The offset, in milliseconds, from the start of the
chapter from which to start playback of the chapter.

Set to 0 (zero) if this offset is not known.

metaseq ui nt 32_t A sequence number that changes if metadata values
have changed during playback of the current track.
reserved 4] uint 32_t Reserved for future use.

The flagsand speed members
The value of the flagsmember can be a combination of:
e 0(zero)
e PLAYBACK_FLAG_FASTFWD (0x01)
e PLAYBACK_FLAG_FASTRWD (0x02)
e PLAYBACK_FLAG_SPEED_EXACT (0x04)
e PLAYBACK_FLAG_EVENTS (0x08)
e PLAYBACK_FLAG_ALBART (0x10)
e PLAYBACK_FLAG_IS VIDEO (0x20)

The PLAYBACK_FLAG_FASTFWD and PLAYBACK_FLAG_FASTRWD flag values are
exclusive. If you set one, you must not set the other.

If flagsis non-zero and the media device supports an indication of the exact playback
speed, then PLAYBACK_FLAG_SPEED _EXACT flag can be set.

The speedmember is updated on a playback speed change: 0 means paused, and 1
(one) means normal playback speed. The value of speedsonly valid if the
PLAYBACK_FLAG_SPEED_EXACT flag isset. If the

62 Chapter 9 o Playback Structures and Constants April 30, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Playback structures

_nmedi a_setti

_nmedi a_speed

PLAYBACK_FLAG_SPEED_EXACT flag is not set in the flagsmember, speedshould

be set to 0 (zero).
You should combine the PLAYBACK _FLAG_* values to set the flagsmember.

See also “Media playback constants’ below.

ngs
struct _nedia_settings {

uint8_t val ue
1
The _nedi a_set ti ng structure is used in conjunction with the
DCMD_MEDIA_GET_SHUFFLE, DCMD_MEDIA_SET_SHUFFLE,
DCMD_MEDIA_GET_REPEAT and DCMD_MEDIA_SET_REPEAT device control
messages. It contains the repeat or random mode setting for the device, and includes at
least the members described in the table below.

Member Type Description

value uint8_t Therepeat or random mode value for the device.

Separate messages must be issued for getting and setting random and repeat modes,
that is, it is not possible to get or set both the random and the repeat mode with one
devctl()call. See aso “Repeat and random mode setting constants’ below.

struct _nedi a_speed {

unsi gned rate;
1
The _nmedi a_speed structure is used to set the current playback speed of the media
device. Therate isamultiplication factor, where 1 (one) is normal playback speed.
Valid valuesare 1, 2, 4, 8, 16 and 32.

This structure is used in conjunction with the DCMD_MEDIA_FASTFWD and
DCMD_MEDIA_FASTRWD commands. It includes at |least the members described in
the table below.

Member Type Description

rate unsigned The pl ayback speed multiplication factor; 1
(one) is normal speed.

_nmedia_streaminfo

April 30, 2009

struct _nedia_stream.info {
unsi gned char i s_DRM
unsi gned char seek_support ed;
unsi gned char unused[2];

Chapter 9 e Playback Structures and Constants 63

Playback constants 0 2009, QNX Software Systems GmbH & Co. KG.

ui nt32_t reserved;
ui nt 64_t stream | engt h;

b

The _nedi a_st ream i nf o structure is used to carry information that affects how a
media stream can be played. It includes at least the members described in the table

below:

Member Type Description

is DRM char Indicate if the media stream is DRM (Digital
Rights Management) protected. Set to either Y
(protected) or N (not protected).

seek supported char Indicate if the media stream supports seek
capabilities. Set to either Y (supported) or N (not
supported).

unused 2] char Reserved for future use.

reserved ui nt32_t Reserved for future use.

stream length ui nt 64_t Thelength of the media stream, in bytes. Set to
MEDIA_STREAM_LENGTH_UNKNOWN if the
media stream length is not known.

Playback constants

The tables below list the constants defined in dend_medi a. h for playback monitoring
and control.

Media playback constants

The PLAYBACK_FLAG_* and PLAYBACK_STATE_* constants are defined in the
structure _medi a_pl ayback_st at us; they set or describe playback states.

Constant Value Description

PLAYBACK_FLAG_FASTFWD 0x01 Playback isin fast forward mode;
the DCMD_MEDIA_FASTFWD
control message has been applied,
and playback speed isset to a
number other than 1 (one).

continued. ..

64 Chapter 9 o Playback Structures and Constants April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Playback constants

Constant

Value

Description

PLAYBACK_FLAG_FASTRWD

PLAYBACK_FLAG_SPEED_EXACT

PLAYBACK_FLAG_EVENTS

PLAYBACK_FLAG_ALBART

PLAYBACK_FLAG_IS VIDEO
PLAYBACK_STATE_STOP
PLAYBACK_STATE_PLAY

PLAYBACK_STATE_PAUSE

0x02

0x04

0x08

0x10

0x20

Repeat and random mode setting constants

The REPEAT_* and SHUFFLE_* constants set or describe playback repeat and random
mode settings. The REPEAT_* values should be used with the
DCMD_MEDIA_* REPEAT messages, and the SHUFFLE_* should be used with the

April 30, 2009

DCMD_MEDIA_* SHUFFLE messages.

Playback isin fast rewind mode; the
DCMD_MEDIA_FASTRWD control
message has been applied, and
playback speed is set to a number
other than 1 (one).

The playback speed is the exact
device speed; otherwise the
playback speed isthe value set with
aDCMD_MEDIA_FAST*WD
control message.

Events are waiting to be retrieved
from the event queue.

Album art is available to be read by
acall with the
DCMD_MEDIA_ALBART_READ
control message.

Video is currently playing.
Playback is stopped.

Playback is underway (not paused
or stopped).

Playback is paused.

Constant Value Description

REPEAT_OFF Repeat mode s off.
REPEAT_ONE_TRACK Repeat the current track only.
REPEAT_ALL_TRACKS Repeat all tracks.

REPEAT_FOLDER
REPEAT_SUBFOLDER

o A W N P+ O

SHUFFLE_OFF

Repeat all tracks in the folder.
Repeat all tracks in the subfolder.

Random mode is off.

continued. ..

Chapter 9 e Playback Structures and Constants 65

Playback constants 0 2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description
SHUFFLE_TRACKS 1 Play all tracks in pseudo-random order.
SHUFFLE_ALBUMS 2 Play all albums in pseudo-random order. The

playback order of the tracks depends on
whether SHUFFLE_TRACKS s set.

SHUFFLE_FOLDER 3 Play all tracks in the folder in pseudo-random
order.
SHUFFLE_SUBFOLDER 4 Play all tracks in the subfolder in

pseudo-random order.

Media stream constants
The MEDIA_STREAM_* constants set or describe media streams.

Constant Value Description
MEDIA_STREAM_LENGTH_UNKNOWN -1 The media stream length is
not known.

Media type strings

The table below lists common mediatype strings used in thei nf o. xml file's

<medi a>/<t ype> element to describe the mediastore. These mediastore types are
consistent with the mediastore types defined by the MME's MME_STORAGETYPE_*
constants in order to map type to string.

Constant Value Description
MEDIA_TYPE_UNKNOWN “UNKNOWN” Unknown storage type
MEDIA_TYPE_AUDIOCD “AUDIOCD” Audio CD
MEDIA_TYPE_VCD “VCD” Video CD
MEDIA_TYPE_SVCD “SVCD” Super Video CD
MEDIA_TYPE_FS “FS RAM disc
MEDIA_TYPE_DVDAUDIO “DVDAUDIO” Audio DVD
MEDIA_TYPE_DVDVIDEO “DVDVIDEO” Video DVD
MEDIA_TYPE_IPOD “IPOD” iPod device
MEDIA_TYPE_KODAKCD “KODAKCD” Kodak picture CD

continued. ..

66 Chapter 9 o Playback Structures and Constants April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

iPod structures

Constant Value Description
MEDIA_TYPE_PICTURECD “PICTURECD” Other picture CD
MEDIA_TYPE_A2DP “A2DP” A2DP protocol for Bluetooth
MEDIA_TYPE_SMB “SMB” MEDIA_TYPE_FS
MEDIA_TYPE_FTP “FTP Internet FTP connection
MEDIA_TYPE_HTTP “HTTP Internet HTTP connection
MEDIA_TYPE_NAVIGATION “NAVIGATION” Navigation CD or DVD.
MEDIA_TYPE_PLAYSFORSURE “PFS’ PlaysForSure and similar
devices.
MEDIA_TYPE_UPNP “UPNP’ Devices using UPnP protocol.

IPod structures
MediaFS uses the following data structures to manage iPod devices:

e nedi a_i pod_daudi o

_nmedi a_i pod_daudi o
struct _nedia_i pod_daudi o {

April 30, 2009

unsi gned rate;

i nt sndchk;
i nt vol adj ;
unsi gned reserved;

b

The _nedi a_i pod_daudi o structure is used to carry information about an iPod’s
capabilities, and instructions to be applied to the iPod. It includes at least the

following members:

Member Type

Description

rate unsi gned The samplerate, in Hertz, for the media on the device.
Standard values are 32000, 44100 and 48000; some
devices also support 8000, 11025, 12000, 16000, 22050
or 24000 Hertz.

sndchk i nt

The device sound check value, as gain in decibels plus or

minus. If the sound check capabilitiy is disabled on the
device, this value must be set to 0.

voladj i nt

The device volume adjustment, again in decibels plus or
minus.

continued. ..

Chapter 9 e Playback Structures and Constants 67

iPod structures 0 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

reserved unsi gned Reserved for future use.

68 Chapter 9 o Playback Structures and Constants April 30, 2009

Chapter 10

April 30, 2009

In this chapter...

How to retrieve dbum art

Album art messages 71
Album art structures 73
Album art constants 74

71

Getting Album Art

Chapter 10 e Getting Album Art

69

0 2009, QNX Software Systems GmbH & Co. KG. How to retrieve album art

MediaFS supports retrieval of album art associated with mediafiles, if this capability
is supported by the media device:

How to retrieve album art
Album art messages
Album art structures

Album art constants

How to retrieve album art

To retrieve album art associated with a media file, a high-level multimedia application,
such as the MME, and the device driver must perform the following steps in sequence:

1

Client application: Issue aDCMD_MEDIA_ALBART_INFO message to the
MediaFS cont r ol file, or to another specified file to find out if there is artwork
associated with the file.

Device controller: Retrieve the required information from the device and return
itinthe _nedi a_al bart _ent ry data structure. If artwork is available, set the
appropriate values in this structure’s flag and posmembers.

Client application: If artwork isavailable, issue a
DCMD_MEDIA_ALBART_LOAD message.

Device controller: Complete and return the _nedi a_al bart _ent ry structure
with the image description, so that the client application can know the size of
the image and prepare to read it.

Client application: Issue DCMD_MEDIA_ALBART_READ messages to read
the artwork and place it in a buffer, managing the returned image blocks and
using them to reconstruct the image after the complete image has been read.

Device controller: Retrieve as requested the artwork in blocks from the media
device, returning to the client application, as appropriate, one of:
e the number of bytes sent, if part of the image data was sent

e EAGAIN, if the deviceis till in the process of sending the image block and
the client application needs to try again to get the next image block

e ENODATA, if the entire image has been read and there is no more data to send

Album art messages

To support album art retrieval, a device controller must support the following control
messages from a higher-level application:

e DCMD_MEDIA_ALBART_INFO

e DCMD_MEDIA_ALBART_LOAD

April 30, 2009

Chapter 10 e Getting Aloum Art 71

Album art messages 0 2009, QNX Software Systems GmbH & Co. KG.

e DCMD_MEDIA_ALBART_READ

If the queried media device does no support the album art retrieval, the devctl()call
with the DCMD_MEDIA_ALBART_* message returns ENOTSUP.

DCMD_MEDIA_ALBART_INFO

The DCMD_MEDIA_ALBART_INFO message is used to query amediafile for the
presence of album artwork. The album art information for the fileis placed in the
_medi a_al bart _ent ry data structure.

On success, acall to devctl()with this message returns EOK; the devctl() devinfo_ptr
parameter points to the number or entries in the array with the album artwork.

Buffer: _medi a_al bart _entry

DCMD_MEDIA_ALBART_LOAD

The DCMD_MEDIA_ALBART_LOAD message is used to retrieve the index
information for afile whose album artwork isto be retrieved. The requested
information is placed inthe _medi a_al bart _ent r y data structure.

On success, acal to devctl()with this message returns EOK; the devctl() devinfo_ptr
parameter points to the index for the specified file.

Buffer: _medi a_al bart_entry
DCMD_MEDIA_ALBART_READ

The DCMD_MEDIA_ALBART_READ message is used to read an album artwork
image. The read process starts with the devctl()call with the
DCMD_MEDIA_ALBART_READ message and ends when the entire image has been
read.

Image data is read only once and returned; once a portion of an image has been read
and returned, it is not returned again. The device controller must manage reading data
blocks from the device, and the calling application must manage the returned data
blocks until the entire image has read and can be passed up to an HMI application for

display.

The total size of the image, in bytes, and other image information is placed in the
_nedi a_i ng_desc data structure.

When acall to devctl()with the DCMD_MEDIA_ALBART_READ message completes
the device controller must return one of:

e ENODATA — the entire image has been read
e EAGAIN — theimageis still being received

In addition, on completion of asuccessful call the dev_info_ptr parameter must point
to the number of bytes received.

Buffer: _medi a_al bart

72 Chapter 10 e Getting Album Art April 30, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Album art structures

Album art structures

MediaFS uses the following data structures to process the album art for media files:
e nedia_al bart

e nedia_albart_entry

e nedia_ing_desc

_nmedi a_al bart
struct _nedia_al bart {

ui nt 32_t flags;
uint32_t pos;

uint 32_t reserved[6] ;
struct _nedia_ing_desc desc;

uint 8 _t data[1] ;

b

The nedi a_al bart structure contains the album art data retrieved from amediafile.
Itis populated and returned by devctl()when it successfully issues a
DCMD_MEDIA_ALBART_READ message to a MediaFSfile.

The data in this structure may not be the complete requested image, and multiple reads
may be required to read a complete image. See DCMD_MEDIA_ALBART_READ in
the chapter MediaFS Messages.

Member Type Description

flags ui nt 32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS _* constants under “Album art
constants’ below.

pos ui nt 32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS s set; or the chapter,
if ALBART_FLAG_POS CHPIDX is Set.

reserved6] uint32_t Reserved for future use.

desc struct The _nedi a_i ng_desc structure with the image
description.
data[1] ui nt 8_t An array for the album art data.

_nmedia_al bart_entry
struct _media_al bart_entry {

uint16 t i ndex;
uint16_t reserved[3];
ui nt32_t flags;
uint32_t pos;

April 30, 2009 Chapter 10 e Getting Aloum Art 73

Album art constants 0 2009, QNX Software Systems GmbH & Co. KG.

struct _nedia_ing_desc desc;

b

Member Type Description

index uint 16_t Theindex to match for this album art entry.
reserved3] uint16_t Reserved for future use.

flags ui nt 32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS * constants under “Album art
constants” below.

pos ui nt 32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS s set; or the chapter,
if ALBART_FLAG_POS_CHPIDX is Set.

desc struct The _nmedi a_i ng_desc structure with the image
description.

_nedi a_ing_desc
struct _nedia ing_desc {
uint32_t wdth;
uint32_t height;
uint32_t size;
uint32_t reserved;

char m net ype[64] ;

b
Member Type Description
width uint 32_t Theabum art image width, in pixels.
height uint32_t Theabum art image height, in pixels.
size uint32_t Theabum art image size, in bytes.
reserved uint32_t Reserved for future use.
mimetypg64] char A string with the album art MIME type.

Album art constants

Thetable below lists the constants defined in dend_nedi a. h for album artwork
processing.

74 Chapter 10 e Getting Album Art April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Album art constants

Constant Value Description

ALBART_FLAG_POS NONE 0x00000000 No position information is
available.

ALBART_FLAG_POS TRKPOS 0x00000001 The position isexpressed in
milliseconds from the start of the
track.

ALBART_FLAG_POS CHPIDX 0x00000002 The position is the chapter
number.

ALBART_FLAG_POS MASK 0x0000000F A mask for stripping out bits not
relevant to the flagsmember of
the nedi a_i ng_desc data
structure.

ALBART_INDEX_NONE OXFFFF Indicate that no specific index is

April 30, 2009

used, so that acall to devctl()with
the
DCMD_MEDIA_ALBART_LOAD
message attempts to load the best
match rather than a specific file.

Chapter 10 e Getting Aloum Art 75

Chapter 11
MediaFS Events

In this chapter...
Working with MediaFSevents 79

Eventtypes 81
MediaFS events and their structures 81

April 30, 2009 Chapter 11 o MediaFS Events 77

0 2009, QNX Software Systems GmbH & Co. KG. Working with MediaFS events

This chapter describes MediaFS events and the data structures they use.
e Working with MediaFS events
e MediaFS event types

e MediaFS events and their structures

Working with MediaFS events

MediaFS supports events for communication between devices and upper-level
applications. A device driver should, therefore, be designed to write, whenever the
underlying device changes state, the appropriate MediaFS events and their payloads to
the MediaFS event queue so that they can be read by client applications.

This section presents:
e The MediaFS event queue
e Reading MediaFS events

For acomplete list of supported MediaFS event types, events and event data structures,
see “MediaFS events and their structures’ below.

The MediaFS event queue

The MediaFS event queue is the means by which a device driver can communicate
playback status changes and updates, and device state changes to client applications in
the sequence in which they occur.

The MediaFS event queue:
e isafixed-size, circular queue
e implements FIFO (first in, first out) behavior

The MediaFS queue's FIFO behavior means that a client reading items from the queue
will always receive eventsin chronological order.

Writing events to the queue

When the device controller writes an event to the MediaFS queue, it must:

e Setto PLAYBACK_FLAG_EVENTSthe flagsmember of the
_nmedi a_pl ayback_st at us structure.

e Send an asynchronous notification to all clients registered on thecont r ol file.

Event queue management

April 30, 2009

The device controller should ensure the following event queue behavior:

¢ If the event queue is full when the device driver writes an event to it, the new event
should overwrite the oldest event in the queue.

Chapter 11 o MediaFS Events 79

Working with MediaFS events [] 2009, QNX Software Systems GmbH & Co. KG.

e When al itemsin the queue have been removed, the device controller should clear
the PLAYBACK_FLAG_EVENTSflaginthe _nedi a_pl ayback_st at us data
structure’s flagsmember.

Q In order to assure backwards compatibility with MediaFS 1.0, which did not support
events, the MediaFS event queue is optional.

Reading MediaFS events

Multimedia applications using MediaFS should be designed to use devctl()calls with
the DCMD_MEDIA_READ_EVENTSto read events from the MediaFS event queue,
and to use the information provided by these events to manage media playback and
other activities. To read MediaFS events, an application must call the devctl()function
with the DCMD_MEDIA_READ_EVENTS message.

DCMD_MEDIA_READ_EVENTS

DCMD_MEDIA_READ_EVENTSInstructs MediaFS to populate the client
application’s data buffer with data from the MediaFS event queue.

Buffer: char[1]

Managing your buffer when using DCMD_MEDIA_READ_EVENTS

The DCMD_MEDIA_READ_EVENTSIsused to instruct MediaFS to populate the

client application’s data buffer with data from the MediaFS event queue. It is the
responsibility of the client application to ensure that it has a buffer large enough for
the events in the MediaFS event queue

Behavior when the queue is larger than the client application buffer

If the number of bytes of data in the event queue is greater thanthe size of the client
application’s data buffer, a call to devctl()with the DCMD_MEDIA_READ_EVENTS

message will:
e notwrite any datato the client application’s data buffer

e setthe_nedi a_event structure’s len member to the number of bytes requiredin
the data buffer

e return EOK
In this case, the client application should:

1 Increase the size of the buffer it uses for the MediaFS events to at least the size
returned in len.

2 Call devctl()with the DCMD_MEDIA_READ_EVENTS message again to read
the events from the queue.

80 Chapter 11 e MediaFS Events April 30, 2009

00 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

Behavior when the queue is smaller than or equal to the client application buffer

Event types

If the number of bytes of datain the event queue is less than or equalo the size of the
client application’s data buffer, a call to devctl()with the
DCMD_MEDIA_READ_EVENTS message will:

e fill the buffer

e setthe_nedi a_event structure’s len member to the number of bytes of datain the
buffer to the number of bytes of datain the data buffer

MediaFS uses five types of events. Values for these event types are carried in the
_medi a_event structure’'s typemember. They are described in the table below:

Event type Value Description

MEDIA_EVENT_ERROR 0 Error

MEDIA_EVENT_WARNING 1 Warning

MEDIA_EVENT_TRACK 2 Communicate atrack information change.
MEDIA_EVENT_TIME 3 Communicate atime update.
MEDIA_EVENT_METADATA 4 Communicate changes to metadata.

MediaFS events and their structures

This section describes MediaFS events, organized by event type. It includes:
e The nedi a_event data structure

e Track, time and other information update events

e Metadata update events

e Error and warning events

The nedi a_event data structure

April 30, 2009

_medi a_event

struct _nedia_event {
uint32_t type;
uint32_t len;

b

The _nmedi a_event structureisaincluded in all other MediaFS event structures. It
specifies the event type, and the length of the event data. This structure includes at
least the members described in the table below.

Chapter 11 o MediaFS Events 81

MediaFS events and their structures 0 2009, QNX Software Systems GmbH & Co. KG.

Member Type Description
type uint32_t Theevent type; see “Event types’ above.
len ui nt 32_t Thelength of the event data, in bytes (including padding

to 8-byte alignment).

Track, time and other information update events

MediaFS information events signal an update to track or time information for the
specified mediatrack or file. Depending on the type of information they communicate,
these events carry either the _nedi a_event _i nf o,the_nedi a_event _ti ne or the
_nmedi a_event _t rack data structure.

The table below describes the MediaFS track and time update events:

Event Value Description

MEDIA_EVENT_INFO_UNKNOWN 0 Events carrying information, such
astime or track updates, about a
track or mediafile.

_nmedia_event _info
struct _media_event_info {
struct _nedi a_event event;

ui nt32_t i ndex;
ui nt32_t type;
char val ue[1] ;

1
The _nedi a_event i nf o structure contains track or media file information. It

should be populated when track or mediafile information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _nedi a_event structure with the event type and
size.

index uint32_t Theindex number for the track to which the event is
associated.

type uint 32_t Thetype of information event; see “Track, time and other

information update events’ above.

value[l] char A character string with the changed track information.

82 Chapter 11 ¢ MediaFS Events April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

MediaFS events and their structures

_nmedi a_event _tine
struct _nedia_event _tine {
struct _nedi a _event event;

uint32_t

ui nt32_t

uint32_t
b

i ndex;
el apsed,;
duration;

The nedi a_event _ti ne structure contains track or media file time information. It
should be populated when track or mediafile time information changes, and, if
relevant, included with the information events that MediaFS places in its event queue.

Member Type

Description

event struct

index ui nt32_t

elapsed uint32_t

duration uint32 t

_nmedi a_event _track
struct _media_event _track {
struct _nedi a _event event;

April 30, 2009

ui nt 32_t
ui nt32_t
char

b

The _nedi a_event structure with the event type and
size.

The index number for the track to which the event is
associ ated.

The elapsed time for the current track, in milliseconds.

The track duration (total time) of the current track, in
milliseconds.

i ndex;
duration;
trackpat h[1] ;

The nedi a_event _t rack structure contains track or media file information. It
should be populated when track or mediafile information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type

Description

event struct

duration uint32_t

trackpath char

The _nedi a_event structure with the event type and
size.

Thetrack duration (total time) of the current track, in
milliseconds.

A character string with the path (relative to the
mountpoint) of the current mediafile or track.

Chapter 11 o MediaFS Events 83

MediaFS events and their structures

[J 2009, QNX Software Systems GmbH & Co. KG.

Metadata update events

MediaFS metadata events signal an update or other change to metadata for the
specified media track or file. These events carry the data structure

nmedi a_event _net adat a.

The table below describes the MediaFS metadata update events:

Event

Value Description

MEDIA_EVENT_METADATA_UNKNOWN

MEDIA_EVENT_METADATA_SONG

MEDIA_EVENT_METADATA_ALBUM

MEDIA_EVENT_METADATA_ARTIST

MEDIA_EVENT_METADATA_GENRE

MEDIA_EVENT_METADATA_COMPOSER

MEDIA_EVENT_METADATA_RELEASE_DATE

MEDIA_EVENT_METADATA_TRACK_NUM

MEDIA_EVENT_METADATA_PUBLISHER

MEDIA_EVENT_METADATA_DURATION

MEDIA_EVENT_METADATA_NAME

MEDIA_EVENT_METADATA_COMMENT

Chapter 11 e MediaFS Events

0

10

11

An unspecified change
has been made to the
file's metadata.

Changeto thefile's
song metadata.

Changeto thefile's
album metadata.

Change to thefile's
artist metadata.

Changeto thefile's
genre metadata.

Change to thefile's
composer metadata.

Change to thefile's
release date metadata.

Change to thefile's
track number metadata.

Change to thefile's
publisher metadata.

Changeto thefile's
duration metadata.

Changeto thefile's
name metadata.

Changeto thefile's
comment metadata.

April 30, 2009

00 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

_nmedi a_event net adat a
struct _nedia event netadata {
struct _nedi a _event event;

uint 32_t type;
uint32_t i ndex;

ui nt32_t durati on;
struct _nedia date date;
char val ue[1];

b

The nmedi a_event _net adat a structure contains track metadata. 1t should be
populated whenever metadata for atrack or mediafile changes, and included with the
metadata update events that MediaFS placesin its event queue.

Member Type Description

event struct The _nedi a_event structure with the event type and
size.

type uint32_t Thetype of metadata event; see “Metadata update events’
above.

index uint32_t Theindex number for the track to which the event is
associated.

duration uint32_t Thetrack date.

date st ruct The nedi a_dat e structure with the track date
information.

value[l] char A UTF-8 encoded character string for character-based
metadata types.

Error and warning events

MediaFS error and warning events signal an error or other condition that requires
attention from the client application. These events carry, respectively, the data
structure _nedi a_event _error or _nedi a_event _war ni ng.

The table below describes the MediaFS error and warning events:

Event Value Description
MEDIA_EVENT_ERROR_UNKNOWN 0 An unspecified error condition
has occurred.
MEDIA_EVENT_ERROR_DRM 1 A DRM error has occurred.
MEDIA_EVENT_ERROR_CORRUPT 2 The mediafileis corrupt.

continued. ..

April 30, 2009 Chapter 11 o MediaFS Events 85

MediaFS events and their structures 0 2009, QNX Software Systems GmbH & Co. KG.

Event Value Description

MEDIA_EVENT_WARNING_UNKNOWN 0 An unspecified condition that
requires attention has
occurred.

_nmedi a_event _error
struct _media_event_error {
struct _nmedia_event event;
uint 32_t i ndex;
ui nt32_t type;
b
The _nmedi a_event _error structure contains track or mediafile error information.
It should be populated when an error is encountered with atrack or mediafile, and
included with the error events that MediaFS places in its event queue.

Member Type Description

event struct The _nedi a_event structure with the event type and
size.

index ui nt 32_t Theindex number for the track to which the event is
associated.

type uint 32_t Thetype of error event; see “Error and warning events’
above.

_medi a_event _war ni ng
struct _nedia_event_warning {
struct _nedia_event event;
ui nt32_t i ndex;
ui nt32_t type;
1
The nedi a_event _war ni ng structure contains track or mediafile error

information. It should be populated when awarning situation is encountered with a
track or mediafile, and included with the error events that MediaFS places in its event

gueue.
Member Type Description
event struct The _nedi a_event structure with the event type and
size.
index uint 32_t Theindex number for the track to which the event is
associated.

continued. ..

86 Chapter 11 e MediaFS Events April 30, 2009

00 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

Member Type Description
type uint32_t Thetype of warning event; see“Error and warning
events’ above.

April 30, 2009 Chapter 11 o MediaFS Events 87

Appendix A

MediaFS Examples

In this appendix...

MediaFS structure 91
i nfo.xmn file 91

April 30, 2009 Appendix: A e MediaFS Examples 89

0 2009, QNX Software Systems GmbH & Co. KG. MediaFS structure

This appendix presents some examples that help illustrate how to use MediaFS. It
contains:

e MediaFS structure

e info.xm file

MediaFS structure

The following presents a MediaFS instance representing an iPod device:

i podO/:

total 3

dr-xr-xr-x 3 root r oot 512 Jun 01 11:28
dr-xr-xr-x 2 root r oot 0 Jun 01 11:28 ..
dr-xr-xr-t 3 root r oot 512 Jun 01 11:28 .FS_info.
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11:28 Muisic

i pod0/.FS_info.:
total 6

dr-xr-xr-t 3 root r oot 512 Jun 01 11:28

dr-xr-xr-x 3 root r oot 512 Jun 01 11:28 ..
nrwrwrw 1 root r oot 0 Jun 01 11:28 contro

| rwxrwxrwx 1 root r oot 0 Jun 01 11:28 current ->
-r--r--r-- 1 root r oot 1127 Jun 01 11:28 info.xmn
dr-xr-xr-x 2 root r oot 512 Jun 01 11: 28 pl ayback

i podO/. FS_ i nfo./playback:

total 2

dr-Xxr-xr-x 2 root r oot 512 Jun 01 11:28
dr-xr-xr-t 3 root r oot 512 Jun 01 11:28 ..

i pod0/ Musi c:

total 10

dr-xr-xr-x 10 root r oot 512 Jun 01 11:28
dr-xr-xr-x 3 root r oot 512 Jun 01 11:28 ..
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11:28 Al buns
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11:28 Artists
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11: 28 Audi obooks
dr-xr-xr-x 2 root r oot 512 Jun 01 11: 28 Conposers
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11:28 Genres
dr-xr-xr-x 2 root r oot 512 Jun 01 11:28 Playlists
dr-Xxr-xr-x 2 root r oot 512 Jun 01 11: 28 Podcasts
dr-xr-xr-x 2 root r oot 512 Jun 01 11: 28 Songs

| nfo. xm file
The following presents an MediaFSi nf o. xni filefor an iPod device:

<?xm version="1.0" standal one="yes" ?>
<i nf 0>

April 30, 2009 Appendix: A e MediaFS Examples 91

i nfo.xmnm file

[J 2009, QNX Software Systems GmbH & Co. KG.

<medi a>

<devi ce>i Pod</ devi ce>
<pr ot ocol >
<gener al >1. 02</ gener al >
<di spl ay_renot e>1. 01</ di spl ay_r enot e>
<ext ended>1. 09</ ext ended>
</ pr ot ocol >
<name>Yov Yovchev’ s i Pod</ nane>
<serial >JQ44915UR5S</ seri al >
<swver si on>1. 2. 1</ swer si on>
<nodel >
<i d>0x00060000</ i d>
<nunber >P9585LL </ nunber >
<gener ati on>1</ generati on>
<t ype>i Pod phot o</type>
<si ze>40GB</ si ze>
<col or >whi t e</ col or >
</ nodel >
<audi o>
<eqg>of f </ eq>
</ audi o>
<di spl ay>
<limt>
<type>2</type>
<format >l e_rgh565</f or mat >
<hei ght >110</ hei ght >
<wi dt h>210</w dt h>
</limt>
<limt>
<type>3</type>
<f or mat >be_r gh565</f or mat >
<hei ght >110</ hei ght >
<wi dt h>210</w dt h>
</[limt>
<limt>
<type>1</type>
<f or mat >mono</ f or mat >
<hei ght >110</ hei ght >
<wi dt h>210</w dt h>
</[limt>
</ di spl ay>

</ medi a>
<fsys>

<t ype>i pod</type>
<mount poi nt >/ f s/ i pod0</ nount poi nt >
<rmount devi ce>fil e- 2-i pod- 5- nedi a</ nount devi ce>

</fsys>
<devi ce>

<driver>i pod</driver >

<cat agor y>nedi a</ cat agor y>

<transport>
<type>ser i pod</type>

92 Appendix: A e MediaFS Examples

April 30, 2009

0 2009, QNX Software Systems GmbH & Co. KG. i nfo.xm file

<dev>/ dev/ ser f pga3</ dev>
</transport >
</ devi ce>
</info>

For an example from ani nf o. xn file used for amedia changer device, see “The
i nfo. xm filefor mediastore changers’ in the chapter Media Changers.

April 30, 2009 Appendix: A e MediaFS Examples 93

Index

. FS_info.
directories outside 16

directories outside of 17

directory 13

entities outside directory 16

filesoutside of 17

_nmedia__streaminfo 63

_media_al bart 72,73

_nmedia_al bart_entry 72,73

_media_date 59
_nmedi a_event 81
_medi a_event _error 86

_nmedia_event_info 82,83
85

_nmedi a_event _net adat a
_media_event _time 83
_medi a_event _war ni ng
_media_ing_desc 74
_nmedia ing entry 72
_medi a_i pod_daudio 67
_nmedia_play 60
_medi a_pl ayback 29, 60
_medi a_pl ayback_st at us
_nmedia_settings 63
_nmedi a_speed 63
<driver>

XML key 22
<nedi a>/<devi ce> 13
<nedi a>/<driver> 22
<nedi a>/<nane> 22
<nedi a>/<serial > 22
<nedi a>/<sl ot > 22
<nedi a>/<type> 22
<nane>

April 30, 2009

61

XML key 22
<serial >

XML key 22
<sl ot >

XML key 22
<type>

XML key 22
<uui d>

key 13

A

active

state of mediastore 23
ALBART _FLAG POS * 74
ALBART_INDEX_NONE 74
abumart 71

constants 74

metadata 54

of atrack 54

retrieval messages 71

structures 73
art

getting for albums 71

metadata 71
artist

metadata 54

of atrack 54
asynchronous

notifications 14
available

state of mediastore 23

Index 95

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

B

behavior
control file 14
currentsymbolic link 15
pl ayback directory> 16
buffer
events 80

C

changer
devices 21
extensions 21
info.xm 21
sots 21
states 24
changes
autonomous playback 33
close() 8
closedir() 8
comment
foratrack 54
composer
metadata 54
of atrack 54
constants
artwork 74
playback 64
cont rol
file 14
withiPod devices 14
with PFSdevices 14
control

MediaFS device messages 37, 45

playback sequences 29

point 14
control file

behavior 14
conventions

typographical x
current

symbolic link to currently playing file

current
file 15

96 Index

D

date

of atrack release 55
DCMD_FSYS DIR NFILES 17
DCMD_MEDIA_ACCESS TYPE 46
DCMD_MEDIA_ALBART_INFO 72
DCMD_MEDIA_ALBART LOAD 72
DCMD_MEDIA_ALBART READ 72
DCMD_MEDIA_ALBUM 54
DCMD_MEDIA_ARTIST 54
DCMD_MEDIA_ CLOSE STREAM 41
DCMD_MEDIA_ _COMMENT 54
DCMD_MEDIA_CONFIG 39
DCMD_MEDIA_FASTFWD 47
DCMD_MEDIA_FASTRWD 47
DCMD_MEDIA_GENRE 54
DCMD_MEDIA_GET_DEVINFO 40
DCMD_MEDIA_GET_REPEAT 47
DCMD_MEDIA_ GET_SHUFFLE 47
DCMD_MEDIA_GET_STATE 48
DCMD_MEDIA_GET_XML 38
DCMD_MEDIA_INFO_STREAM 41
DCMD_MEDIA_IPOD_* 40
DCMD_MEDIA_IPOD_CAP 40
DCMD_MEDIA_IPOD_DAUDIO 40
DCMD_MEDIA_IPOD_TAG 40
DCMD_MEDIA_ NAME 55
DCMD_MEDIA_ NEXT_CHAP 48
DCMD_MEDIA_NEXT_TRACK 48
DCMD_MEDIA_OPEN_STREAM 41
DCMD_MEDIA_PAUSE 48
DCMD_MEDIA_PLAY 17,29, 30, 48
DCMD_MEDIA_PLAY_ AT 29, 48
DCMD_MEDIA_PLAYBACK_INFO 14,49
DCMD_MEDIA_PLAYBACK_STATUS 49
DCMD_MEDIA_PREV_CHAP 49
DCMD_MEDIA_PREV_TRACK 49
DCMD_MEDIA PUBLISHER 55
DCMD_MEDIA_READ_EVENTS 80
DCMD_MEDIA_READ_STREAM 41
DCMD_MEDIA_ RELEASE DATE 55
DCMD_MEDIA_ RESUME 49
DCMD_MEDIA_SEEK_CHAP 49
DCMD_MEDIA_SET_REPEAT 50
DCMD_MEDIA_SET _SHUFFLE 50

April 30, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. Index

DCMD_MEDIA_SET_STATE 50 events 85
DCMD_MEDIA_SET_STREAM 41 events 79
DCMD_MEDIA_SET_XML 38 buffer 80
DCMD_MEDIA_SONG 55 error 85
DCMD_MEDIA_TRACK_NUM 55 error structure 86
DCMD_MEDIA_UPNP_CDS BROWSE 40 get MediaFS 80
DCMD_MEDIA_URL 55 information structure 82
dev metadata 84
dementin. FS info. 15 metadata structure 85
devctl() 8 queue 79
dev data ptr argument 37 reading 80
dev info_ptr argument 37 time 82
device time structure 83
control messages 37, 45 track 82
information 13 track structure 83
playback 30 types 81
device-intitiated warning 85
metadata update 34 warning structure 86
playback state change 33 extensions
track change 33 changer 21
Digital Rights Management SeeDRM
dircntl() 8
directories
.FS_info. 13 F
behavior of outside . FS_i nf o. directory
17 fast forward 47
MediaFS 13 playback speed 31
opening 37 f_ast reverse 47
outside. FS_i nf o. directory 16 files _ , _ _
ol ayback 16, 29 behavior of outside . FS_i nf o. directory
DRM 17
control messages 46 MediaFS 13
error 85 opening 37
mediastream 63 outsidethe. FS_i nf o. directory 17
duration playback 29
track 54 filesystem
location 7
media 3
MediaFS 3
E POSIX compliance 3
flags 62
ENOTSUP error 17 fstat() 8
entities functions
outsidethe. FS_i nf o. directory 16 supported POSIX 8
error
DRM 85

event structure 86

April 30, 2009 Index 97

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

G

genre
metadata 54
track 54

images
getting 71
info.xm 13,21
changer 21
creation 13
example 91
minimum requirement 13
persistence 13
dot 21
information
event structure 82
playback 49
interface
MediaFS standardized 3
iPod
control messages 40
data structure 67

exampleof i nf o. xnl file 91
example of MediaFS structure

iPod devices
control file 14

L

location
MediaFS filesystem 7

M

MEDIA_EVENT * 79

MEDIA_EVENT_ERROR_* 85
MEDIA_EVENT_INFO_UNKNOWN 82
84

MEDIA_EVENT_METADATA_*

98 Index

MEDIA_STREAM_LENGTH_UNKNOWN 63,
66

MEDIA_TYPE * 66

media device
<serial> 22
<slot> 22
<uuid> 13
playback 30
unique identifier 13

media stream
control messages 40

MediaFS
abum art retrieval 71
changer extensions 21
configuration messages 38
device control messages 37, 45
device messages 38
events 79
images 71
i nfo.xm example 91
iPod management messages 39
metadata retrieval 53
mountpoint 7, 13
overview 3
playback 29
playback control 45
playlists 18
standardized interface 3
standardized structure 7, 13
state information retrieval messages 53
streaming media management messages 39
structure example 91
structures 59

mediastore
removable 21
dots 23
states 23
types 66

messages
abum art retrieval 71
device control 37, 45
filesoutside. FS_i nfo. directory 17
iPod management 39
metadata retrieval 53
playback control 45
state information retrieval 53

April 30, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. Index

streaming media management 39 opendir() 8, 37

metadata out-of-band
dbumart 54,71 notifications 14
artist 54

composer 54
device-initiated update 34

event structure 85 P

events 84 S . .

for files referenced i n playback pathname delimiter in QNX documentation Xi
directory 16 pause

genre 54 playback 32,48

publisher 55 PFS devices _

release date 55 control file 14

retrieval messages 53 pl ayback _

titte 55 directory behavior 16

track comment 54 playback

track duration 54 about 29

track name 55 at offset 48
track number 55 autonomous state changes 33

MME 3 constants 64
MME_STORAGETYPE * 66 control messages 45
mountpoint control sequences 29
MediaFS 7, 13 current file 15
Multimedia Engine SeeMME device-initiated state change 33
directory 29
fast forward 31
file 29
N file with device-specific actions 14
information 49
name managing 29
of atrack 55 mediadevice 30
next next chapter 48
chapter 48 next track 48
track 48 pause 32,48
notifications previous chapter 49
asynchronous 14 previoustrack 49
registering for 14 random 47,50
number repeat 47, 50
of atrack 55 restore state 50

resume 32, 49
seek to chapter 49

start 48
@) state 48, 50
status 49
offset structures 59
playback at 48 with MediaFS 29
open() 8,37 PLAYBACK_FLAG * 62, 64

April 30, 2009 Index 99

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

PLAYBACK_STATE * 64
pl ayback directory
metadata retrieval for filesreferenced 16
playlists
MediaFS 18
POSIX
MediaFS compliance 3
supported functions 8
previous
chapter 49
track 49
publisher
of atrack 55

gueue
event 79

R

random

mode 47,50
readdir() 8
reading

events 80
readlink() 15
release

date 55
repeat

mode 47,50
REPEAT * 65
restore

playback state 50
resume

playback 32, 49
reverse 47

playback speed 31
rewinddir() 8

100 Index

S

seek
chapter 49
seekdir() 8
SHUFFLE * 47,50, 65
sots
changer 21
i nfo.xnl filefor 21
mediastores 23
states 23
speed 62
speed
playack 31
Start
playback 48
stat() 8
state
available 23
information retrieval messages 53
playback 48, 50
dots 23
structures 59
unavailable 23
status
playback 49
stream
control messages 40
DRM 63
structure
example 91
structures
album art extraction 73
MediaFS 59
playback 59
state 59
symboalic link
current 15
dev 15
to currently playingfile 15
to mediadevice 15
symlink Seesymbolic link

April 30, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

T

telldir() 8
time
event structure 83
events 82
title
metadata 55
track 55
track
comment 54
device-initiated change 33
duration 54
event structure 83
events 82
name 55
number 55
publisher 55
types
event 81
mediastore 66
typographical conventions X

U

unavailable

state of mediastore 23
UPnP

control messages 40

W

warning
event structure 86
events 85

April 30, 2009

Index

101

