
QNX Aviage Multimedia Suite 1.2.0
MME API Library Reference

For QNX  Neutrino 6.4.x

 2009, QNX Software Systems GmbH & Co. KG.

 2007–2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web:http://www.qnx.com/

Electronic edition published May 04, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Reference xiii
Typographical conventions xvi

Note to Windows users xvii

Technical support options xvii

MME API 11
Headers and libraries 5

Compiling client applications 5

Alphabetical list of MME functions, data structures, enumerated types and constants
5

FTYPE* 10

METADATA_* 12

mm_audio_format_t 15

mm_audio_lang_ext 17

mm_audio_type 18

mm_bitrate_t 19

mm_blocked_uops 20

mm_display_mode 22

mm_dvd_status_t 23

mm_media_status_t 27

mm_metadata_t 29

mm_subpict_lang_ext 31

mm_uop_t 32

mm_video_angle_info_t 36

mm_video_audio_info_t 37

mm_video_info_t 39

mm_video_properties_t 43

mm_video_status_t 46

mm_video_subtitle_info_t 48

mme_audio_get_status() 50

mme_bookmark_create() 52

mme_bookmark_delete() 54

mme_buffer_status_t 56

May 4, 2009 Contents iii

 2009, QNX Software Systems GmbH & Co. KG.

mme_button() 58

mme_charconvert_setup() 62

mme_connect() 64

mme_copy_info_t 67

mme_delete_mediastores() 68

mme_device_get_config() 70

mme_device_set_config() 72

mme_directed_sync_cancel() 74

mme_disconnect() 76

mme_dvd_get_disc region() 78

mme_dvd_get_status() 80

mme_explore_end() 82

mme_explore_hdl_t 84

mme_explore_info_free() 85

mme_explore_info_get() 87

mme_explore_info_t 89

mme_explore_playlist_find_file() 92

mme_explore_position_set() 94

mme_explore_size_get() 97

mme_explore_start() 99

MME_FORMAT_* and MME_PLAYMODE_* 101

mme_get_api_timeout_remaining() 103

mme_get_event() 105

mme_get_logging() 107

mme_get_title_chapter() 110

mme_getautopause() 112

mme_getccid() 114

mme_getclientcount() 116

mme_getlocale() 118

mme_getrandom() 120

mme_getrepeat() 122

mme_getscanmode() 124

mme_hdl_t 126

mme_lib_column_set() 127

mme_media_get_def_lang() 129

mme_media_set_def_lang() 131

mme_mediacopier_add() 133

mme_mediacopier_add_with_metadata() 137

mme_mediacopier_cleanup() 141

mme_mediacopier_clear() 143

mme_mediacopier_disable() 145

iv Contents May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

mme_mediacopier_enable() 147

mme_mediacopier_get_mode() 149

mme_mediacopier_get_status() 151

mme_mediacopier_info_t 154

mme_mediacopier_remove() 157

mme_mediacopier_set_mode() 159

mme_metadata_alloc() 161

mme_metadata_extract_data() 163

mme_metadata_extract_string() 165

mme_metadata_extract_unsigned() 167

mme_metadata_create_session() 169

mme_metadata_free_session() 171

mme_metadata_getinfo_current() 173

mme_metadata_getinfo_file() 176

mme_metadata_getinfo_library() 179

mme_metadata_hdl_t 182

mme_metadata_image_cache_clear() 183

mme_metadata_image_load() 185

mme_metadata_image_unload() 188

mme_metadata_image_url_t 190

mme_metadata_info_t 191

mme_metadata_session_t 194

mme_metadata_set() 195

mme_mode_random_t 197

mme_mode_repeat_t 198

MME_MSCAP_* 199

mme_ms_clear_accurate() 201

mme_ms_metadata_done() 203

mme_ms_metadata_get() 204

mme_ms_restart() 206

mme_ms_state_t 208

mme_ms_statechange_t 209

mme_newtrksession() 211

mme_next() 214

mme_output_attr_t 216

mme_output_set_permanent() 218

mme_outputtype_t 220

mme_play() 221

mme_play_attach_output() 224

mme_play_bookmark() 226

mme_play_detach_output() 228

May 4, 2009 Contents v

 2009, QNX Software Systems GmbH & Co. KG.

mme_play_file() 230

mme_play_get_info() 232

mme_play_get_output_attr() 234

mme_play_get_speed() 236

mme_play_get_status() 238

mme_play_get_zone() 240

mme_play_info_t 242

mme_play_offset() 244

mme_play_resume_msid() 247

mme_play_set_output_attr() 249

mme_play_set_speed() 251

mme_play_set_zone() 253

mme_play_status_t 255

MME_PLAYLIST_* 256

mme_playlist_close() 258

mme_playlist_create() 260

mme_playlist_delete() 262

mme_playlist_generate_similar() 264

mme_playlist_hdl_t 266

mme_playlist_item_get() 267

mme_playlist_items_count_get() 270

mme_playlist_open() 272

mme_playlist_position_set() 274

mme_playlist_set_statement() 276

mme_playlist_sync() 278

mme_playstate_speed_t 280

mme_playstate_t 281

mme_prev() 282

mme_register_for_events() 284

mme_resync_mediastore() 287

mme_rmtrksession() 289

mme_seek_title_chapter() 291

mme_seektotime() 293

mme_set_api_timeout() 295

mme_set_debug() 297

mme_set_files_permanent() 299

mme_set_msid_resume_trksession() 301

mme_set_notification_interval() 303

mme_setautopause() 306

mme_setlocale() 308

mme_set_logging() 310

vi Contents May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

mme_setpriorityfolder() 313

mme_setrandom() 315

mme_setrepeat() 318

mme_setscanmode() 320

mme_settrksession() 322

mme_shutdown() 326

MME_SLOTTYPE_* 328

mme_start_device_detection() 330

mme_stop() 332

MME_STORAGETYPE_* 334

mme_sync_cancel() 337

mme_sync_db_check() 339

mme_sync_directed() 342

mme_sync_file() 345

mme_sync_get_msid_status() 348

mme_sync_get_status() 350

MME_SYNC_OPTION_* 352

mme_sync_status_t 354

mme_time_t 356

mme_timebase_set() 357

mme_trksession_append_files() 359

mme_trksession_clear_files() 361

mme_trksession_get_info() 363

mme_trksession_resume_state() 366

mme_trksession_save_state() 368

mme_trksession_set_files() 370

mme_trksessionview_get_current() 372

mme_trksessionview_get_info() 374

mme_trksessionview_info_t 376

mme_trksessionview_metadata_get() 378

mme_trksessionview_readx() 380

mme_trksessionview_update() 383

mme_trksessionview_writedb() 385

mme_video_get_angle_info() 387

mme_video_get_audio_info() 389

mme_video_get_info() 391

mme_video_get_status() 393

mme_video_get_subtitle_info() 395

mme_video_set_angle() 397

mme_video_set_audio() 399

mme_video_set_properties() 401

May 4, 2009 Contents vii

 2009, QNX Software Systems GmbH & Co. KG.

mme_video_set_subtitle() 403

mme_zone_create() 405

mme_zone_delete() 407

MME Events 4092
About MME events 411

MME event classes 411

MME event data 412

mme_copy_error_t 413

mme_event_t 413

mme_event_default_language_t 414

mme_event_metadata_image_t 414

mme_event_metadata_info_t 415

mme_event_metadata_licensing_t 415

mme_event_queue_size_t 416

mme_event_type_t 416

mme_first_fid_data_t 416

mme_folder_sync_data_t 417

mme_ms_update_data_t 418

mme_play_command_error_t 419

mme_play_error_t 419

mme_play_error_track_t 420

mme_sync_data_t 421

mme_sync_error_t 421

mme_trackchange_t 421

mm_warning_info_t 422

MME general events 423

MME_EVENT_AUTOPAUSECHANGED 423

MME_EVENT_BUFFER_TOO_SMALL 423

MME_EVENT_DEFAULT_LANGUAGE 424

MME_EVENT_NONE 424

MME_EVENT_SHUTDOWN 424

MME_EVENT_SHUTDOWN_COMPLETED 425

MME_EVENT_USERMSG 425

MME Synchronization Events 4273
Synchronization events 429

MME_EVENT_MS_DETECTION_DISABLED 430

MME_EVENT_MS_DETECTION_ENABLED 430

MME_EVENT_METADATA_LICENSING 431

MME_EVENT_MS_1PASSCOMPLETE 431

viii Contents May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_MS_2PASSCOMPLETE 433

MME_EVENT_MS_3PASSCOMPLETE 433

MME_EVENT_MS_STATECHANGE 434

MME_EVENT_MS_SYNCCOMPLETE 435

MME_EVENT_MS_SYNC_FIRST_EXISTING_FID 436

MME_EVENT_MS_SYNCFIRSTFID 437

MME_EVENT_MS_SYNC_FOLDER_COMPLETE 438

MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE 438

MME_EVENT_MS_SYNC_FOLDER_STARTED 439

MME_EVENT_MS_SYNC_PENDING 439

MME_EVENT_MS_SYNC_STARTED 439

MME_EVENT_MS_UPDATE 440

MME_EVENT_SYNCABORTED 441

MME_EVENT_SYNC_ERROR 441

MME_EVENT_SYNC_SKIPPED 442

Synchronization error events 442

MME_SYNC_ERROR_MEDIABUSY 443

MME_SYNC_ERROR_NETWORK 443

MME_SYNC_ERROR_FOLDER_DEPTH_LIMIT 443

MME_SYNC_ERROR_FOLDER_LIMIT 444

MME_SYNC_ERROR_LIB_LIMIT 444

MME_SYNC_ERROR_NOTSPECIFIED 445

MME_SYNC_ERROR_READ 445

MME_SYNC_ERROR_UNSUPPORTED 445

MME_SYNC_ERROR_USERCANCEL 446

MME Playback Events 4474
Playback events 449

MME_EVENT_DVD_STATUS 450

MME_EVENT_FINISHED 450

MME_EVENT_FINISHED_WITH_ERROR 451

MME_EVENT_MEDIA_STATUS 451

MME_EVENT_NEWOUTPUT 452

MME_EVENT_NOWPLAYING_METADATA 452

MME_EVENT_OUTPUTATTRCHANGE 453

MME_EVENT_OUTPUTREMOVED 453

MME_EVENT_PLAYAUTOPAUSED 454

MME_EVENT_PLAY_ERROR 454

MME_EVENT_PLAYLIST 454

MME_EVENT_PLAYSTATE 454

MME_EVENT_PLAY_WARNING 455

May 4, 2009 Contents ix

 2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_RANDOMCHANGE 455

MME_EVENT_REPEATCHANGE 456

MME_EVENT_SCANMODECHANGE 456

MME_EVENT_TIME 456

MME_EVENT_TRACKCHANGE 457

MME_EVENT_TRKSESSION 457

MME_EVENT_TRKSESSIONVIEW_COMPLETE 458

MME_EVENT_TRKSESSIONVIEW_INVALID 458

MME_EVENT_TRKSESSIONVIEW_UPDATE 458

MME_EVENT_VIDEO_STATUS 459

Playback error events 459

MME_PLAY_ERROR_BLOCKEDDOMAIN 460

MME_PLAY_ERROR_BLOCKEDUOP 460

MME_PLAY_ERROR_CORRUPT 461

MME_PLAY_ERROR_DEVICEREMOVED 461

MME_PLAY_ERROR_INPUTUNDERRUN 461

MME_PLAY_ERROR_INVALIDFID 462

MME_PLAY_ERROR_MEDIABUSY 462

MME_PLAY_ERROR_INVALIDSAVEDSTATE 462

MME_PLAY_ERROR_NETWORK 463

MME_PLAY_ERROR_NOEXIST 463

MME_PLAY_ERROR_NOOUTPUTDEVICES 463

MME_PLAY_ERROR_NORIGHTS 463

MME_PLAY_ERROR_NOTSPECIFIED 464

MME_PLAY_ERROR_OUTPUTFAILEDATTACH 464

MME_PLAY_ERROR_PARENTALCONTROL 464

MME_PLAY_ERROR_READ 464

MME_PLAY_ERROR_REGION 465

MME_PLAY_ERROR_OUTPUTUNDERRUN 465

MME_PLAY_ERROR_UNSUPPORTEDCODEC 465

MME Media Copy and Ripping Events 4675
Media copying and ripping events 469

MME_EVENT_COPY_ERROR 469

MME_EVENT_MEDIACOPIER_COPYFID 470

MME_EVENT_MEDIACOPIER_SKIPFID 470

MME_EVENT_MEDIACOPIER_STARTFID 471

MME_EVENT_MEDIACOPIER_COMPLETE 471

MME_EVENT_MEDIACOPIER_DISABLED 471

Media copying and ripping error events 472

MME_COPY_ERROR_CORRUPTION 472

x Contents May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

MME_COPY_ERROR_DEVICEREMOVED 473

MME_EVENT_COPY_FATAL_ERROR 473

MME_COPY_ERROR_FILEEXISTS 473

MME_COPY_ERROR_MEDIABUSY 474

MME_COPY_ERROR_MEDIAFULL 474

MME_COPY_ERROR_NORIGHTS 474

MME_COPY_ERROR_NOTSPECIFIED 475

MME_COPY_ERROR_READ 475

MME_COPY_ERROR_UNSUPPORTED_MEDIA_TYPE 475

MME_COPY_ERROR_WRITE 475

MME Metadata Events 4776
Metadata events 479

MME_EVENT_METADATA_IMAGE 479

MME_EVENT_METADATA_INFO 480

MME Database Schema Reference 481A
Tables inmme 486

Table: controlcontexts 486

Table: renderers 486

Table: zones 487

Table: zoneoutputs 487

Table: outputdevices 487

Table: slots 488

Table: languages 489

Table: mediastores 490

Table: metadataplugins 493

Table: playlists 493

Table: trksessions 494

Table: encodeformats 495

Table: copyqueue 496

Table: bookmarks 496

Table: trksessionview 497

Table: copy_incomplete 498

Table: mdi_image_cache 498

Table: ext_db_sync_state 499

Tables inmme_library 499

Table: folders 499

Table: library 500

Table: library_genres 503

Table: library_artists 503

May 4, 2009 Contents xi

 2009, QNX Software Systems GmbH & Co. KG.

Table: library_albums 503

Table: library_composers 504

Table: library_conductors 504

Table: library_soloists 504

Table: library_ensembles 504

Table: library_opus 505

Table: library_categories 505

Table: library_languages 505

Table: db_sync 506

Table: playlistdata 506

Tables inmme_temp 507

Table: nowplaying 507

Tables inmme_custom 508

Table: mediastores_custom 508

Table: library_custom 509

Table: playlistdata_custom 509

Index 511

xii Contents May 4, 2009

About this Reference

May 4, 2009 About this Reference xiii

 2009, QNX Software Systems GmbH & Co. KG.

TheMME API Library Reference accompanies the QNX Aviage multimedia suite,
release 1.2.0. It is intended for application developers who use the suite’s MultiMedia
Engine (MME) to develop multimedia applications.

This table may help you find what you need in theMME API Library Reference:

When you want to: Go to:

Learn about MME API functions, data
structures, enumerated types and
constants.

MME API

Learn about MME events and the data
structures they use.

MME Events

Learn about MME synchronization
events, and synchronization error events.

MME Synchronization Events

Learn about MME playback events, and
playback error events.

MME Playback Events

Learn about MME media copy and
ripping events, and copy and ripping
error events.

MME Media Copy and Ripping Events

Learn about MME metadata events. MME Metadata Events

Learn about the MME database schema. MME Database Schema Reference

Other MME documentation available to application developers includes:

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME Developer’s Guide How to use the MME to program client applications.

MME Utilities Utilities used by the MME.

MME Configuration Guide How to configure the MME.

MME Technotes MME technical notes.

MediaFS Developer’s Guide Developer’s guide for implementing MediaFS.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

May 4, 2009 About this Reference xv

Typographical conventions  2009, QNX Software Systems GmbH & Co. KG.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface componentsCancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item underPerspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

xvi About this Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Technical support options

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter inall pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options
To obtain technical support for any QNX product, visit theSupport + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

May 4, 2009 About this Reference xvii

Chapter 1

MME API

In this chapter. . .
Headers and libraries 5
Compiling client applications 5
Alphabetical list of MME functions, data structures, enumerated types and constants

5
FTYPE* 10
METADATA_* 12
mm_audio_format_t 15
mm_audio_lang_ext 17
mm_audio_type 18
mm_bitrate_t 19
mm_blocked_uops 20
mm_display_mode 22
mm_dvd_status_t 23
mm_media_status_t 27
mm_metadata_t 29
mm_subpict_lang_ext 31
mm_uop_t 32
mm_video_angle_info_t 36
mm_video_audio_info_t 37
mm_video_info_t 39
mm_video_properties_t 43
mm_video_status_t 46
mm_video_subtitle_info_t 48
mme_audio_get_status() 50
mme_bookmark_create() 52
mme_bookmark_delete() 54
mme_buffer_status_t 56
mme_button() 58
mme_charconvert_setup() 62
mme_connect() 64
mme_copy_info_t 67
mme_delete_mediastores() 68
mme_device_get_config() 70
mme_device_set_config() 72
mme_directed_sync_cancel() 74
mme_disconnect() 76
mme_dvd_get_disc region() 78
mme_dvd_get_status() 80
mme_explore_end() 82
mme_explore_hdl_t 84

May 4, 2009 Chapter 1 • MME API 1

 2009, QNX Software Systems GmbH & Co. KG.

mme_explore_info_free() 85
mme_explore_info_get() 87
mme_explore_info_t 89
mme_explore_playlist_find_file() 92
mme_explore_position_set() 94
mme_explore_size_get() 97
mme_explore_start() 99
MME_FORMAT_* and MME_PLAYMODE_* 101
mme_get_api_timeout_remaining() 103
mme_get_event() 105
mme_get_logging() 107
mme_get_title_chapter() 110
mme_getautopause() 112
mme_getccid() 114
mme_getclientcount() 116
mme_getlocale() 118
mme_getrandom() 120
mme_getrepeat() 122
mme_getscanmode() 124
mme_hdl_t 126
mme_lib_column_set() 127
mme_media_get_def_lang() 129
mme_media_set_def_lang() 131
mme_mediacopier_add() 133
mme_mediacopier_add_with_metadata() 137
mme_mediacopier_cleanup() 141
mme_mediacopier_clear() 143
mme_mediacopier_disable() 145
mme_mediacopier_enable() 147
mme_mediacopier_get_mode() 149
mme_mediacopier_get_status() 151
mme_mediacopier_info_t 154
mme_mediacopier_remove() 157
mme_mediacopier_set_mode() 159
mme_metadata_alloc() 161
mme_metadata_extract_data() 163
mme_metadata_extract_string() 165
mme_metadata_extract_unsigned() 167
mme_metadata_create_session() 169
mme_metadata_free_session() 171
mme_metadata_getinfo_current() 173
mme_metadata_getinfo_file() 176
mme_metadata_getinfo_library() 179
mme_metadata_hdl_t 182
mme_metadata_image_cache_clear() 183
mme_metadata_image_load() 185
mme_metadata_image_unload() 188
mme_metadata_image_url_t 190
mme_metadata_info_t 191
mme_metadata_session_t 194
mme_metadata_set() 195
mme_mode_random_t 197
mme_mode_repeat_t 198
MME_MSCAP_* 199
mme_ms_clear_accurate() 201
mme_ms_metadata_done() 203

2 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

mme_ms_metadata_get() 204
mme_ms_restart() 206
mme_ms_state_t 208
mme_ms_statechange_t 209
mme_newtrksession() 211
mme_next() 214
mme_output_attr_t 216
mme_output_set_permanent() 218
mme_outputtype_t 220
mme_play() 221
mme_play_attach_output() 224
mme_play_bookmark() 226
mme_play_detach_output() 228
mme_play_file() 230
mme_play_get_info() 232
mme_play_get_output_attr() 234
mme_play_get_speed() 236
mme_play_get_status() 238
mme_play_get_zone() 240
mme_play_info_t 242
mme_play_offset() 244
mme_play_resume_msid() 247
mme_play_set_output_attr() 249
mme_play_set_speed() 251
mme_play_set_zone() 253
mme_play_status_t 255
MME_PLAYLIST_* 256
mme_playlist_close() 258
mme_playlist_create() 260
mme_playlist_delete() 262
mme_playlist_generate_similar() 264
mme_playlist_hdl_t 266
mme_playlist_item_get() 267
mme_playlist_items_count_get() 270
mme_playlist_open() 272
mme_playlist_position_set() 274
mme_playlist_set_statement() 276
mme_playlist_sync() 278
mme_playstate_speed_t 280
mme_playstate_t 281
mme_prev() 282
mme_register_for_events() 284
mme_resync_mediastore() 287
mme_rmtrksession() 289
mme_seek_title_chapter() 291
mme_seektotime() 293
mme_set_api_timeout() 295
mme_set_debug() 297
mme_set_files_permanent() 299
mme_set_msid_resume_trksession() 301
mme_set_notification_interval() 303
mme_setautopause() 306
mme_setlocale() 308
mme_set_logging() 310
mme_setpriorityfolder() 313
mme_setrandom() 315

May 4, 2009 Chapter 1 • MME API 3

 2009, QNX Software Systems GmbH & Co. KG.

mme_setrepeat() 318
mme_setscanmode() 320
mme_settrksession() 322
mme_shutdown() 326
MME_SLOTTYPE_* 328
mme_start_device_detection() 330
mme_stop() 332
MME_STORAGETYPE_* 334
mme_sync_cancel() 337
mme_sync_db_check() 339
mme_sync_directed() 342
mme_sync_file() 345
mme_sync_get_msid_status() 348
mme_sync_get_status() 350
MME_SYNC_OPTION_* 352
mme_sync_status_t 354
mme_time_t 356
mme_timebase_set() 357
mme_trksession_append_files() 359
mme_trksession_clear_files() 361
mme_trksession_get_info() 363
mme_trksession_resume_state() 366
mme_trksession_save_state() 368
mme_trksession_set_files() 370
mme_trksessionview_get_current() 372
mme_trksessionview_get_info() 374
mme_trksessionview_info_t 376
mme_trksessionview_metadata_get() 378
mme_trksessionview_readx() 380
mme_trksessionview_update() 383
mme_trksessionview_writedb() 385
mme_video_get_angle_info() 387
mme_video_get_audio_info() 389
mme_video_get_info() 391
mme_video_get_status() 393
mme_video_get_subtitle_info() 395
mme_video_set_angle() 397
mme_video_set_audio() 399
mme_video_set_properties() 401
mme_video_set_subtitle() 403
mme_zone_create() 405
mme_zone_delete() 407

4 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Headers and libraries

This chapter describes publicly visible MME API:

• functions

• data structures

• enumerated types

Data structures and enumerated types that are used by only one API function are
documented with the relevant functions. Event structures, enumerated types and
constants are described in the chapter MME Events. If you do not find a structure,
enumerated type or constant in the list below, refer to the index. Configuration
constants are described in theMME Configuration Guide.

Headers and libraries
For the location of MME libraries and header files, see the section “Headers and
libraries” in theRelease Notes for your MME release.

Compiling client applications
The MME requires that client applications be compiled withFILE_OFFSET_BITS set
to 64. For example:

qcc -Amy_library [other_options] -DFILE_OFFSET_BITS=64

For more information about compiling client applications for the MME, seeQCC,

qcc in theQNX Neutrino Utilities Reference.

Alphabetical list of MME functions, data structures,
enumerated types and
constants
FTYPE_*
METADATA_*
mm_audio_format_t

mm_audio_lang_ext

mm_audio_type

mm_bitrate_t

mm_blocked_uops

mm_display_mode

mm_dvd_status_t

mm_media_status_t

mm_metadata_t

mm_subpict_lang_ext

mm_uop_t

mm_video_angle_info_t

mm_video_audio_info_t

May 4, 2009 Chapter 1 • MME API 5

Alphabetical list of MME functions, data structures, enumerated types and constants  2009, QNX Software

Systems GmbH & Co. KG.

mm_video_info_t

mm_video_properties_t

mm_video_status_t

mm_video_subtitle_info_t

mme_audio_get_status()
mme_bookmark_create()
mme_bookmark_delete()
mme_buffer_status_t

mme_button()
mme_charconvert_setup()
mme_connect()
mme_copy_info_t

mme_delete_mediastores()
mme_device_get_config()
mme_device_set_config()
mme_directed_sync_cancel()
mme_disconnect()
mme_dvd_get_disc_region()
mme_dvd_get_status()
mme_explore_end()
mme_explore_hdl_t

mme_explore_info_free()
mme_explore_info_get()
mme_explore_info_t

mme_explore_playlist_find_file()
mme_explore_position_set()
mme_explore_size_get()
mme_explore_start()
MME_FORMAT_*
mme_get_api_timeout_remaining()
mme_getautopause()
mme_getccid()
mme_getclientcount()
mme_get_event()
mme_getlocale()
mme_get_logging()
mme_getrandom()
mme_getrepeat()
mme_getscanmode()
mme_get_title_chapter()
mme_hdl_t

mme_lib_column_set()
mme_media_get_def_lang()
mme_media_set_def_lang()
mme_mediacopier_add()
mme_mediacopier_add_with_metadata()

6 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Alphabetical list of MME functions, data structures, enumerated
types and constants

mme_mediacopier_cleanup()
mme_mediacopier_clear()
mme_mediacopier_disable()
mme_mediacopier_enable()
mme_mediacopier_get_mode()
mme_mediacopier_get_status()
mme_mediacopier_info_t

mme_mediacopier_remove()
mme_mediacopier_set_mode()
mme_metadata_alloc()
mme_metadata_create_session()
mme_metadata_extract_data()
mme_metadata_extract_string()
mme_metadata_extract_unsigned()
mme_metadata_free_session()
mme_metadata_getinfo_current()
mme_metadata_getinfo_file()
mme_metadata_getinfo_library()
mme_metadata_hdl_t

mme_metadata_image_cache_clear()
mme_metadata_image_load()
mme_metadata_image_unload()
mme_metadata_image_url_t

mme_metadata_info_t

mme_metadata_session_t

mme_metadata_set()
mme_mode_random_t

mme_mode_repeat_t

MME_MSCAP_*
mme_ms_clear_accurate()
mme_ms_metadata_done()
mme_ms_metadata_get()
mme_ms_restart()
mme_ms_state_t

mme_ms_statechange_t

mme_newtrksession()
mme_next()
mme_output_attr_t

mme_output_set_permanent()
mme_outputtype_t

mme_play()
mme_play_attach_output()
mme_play_bookmark()
mme_play_detach_output()
mme_play_file()
mme_play_get_info()

May 4, 2009 Chapter 1 • MME API 7

Alphabetical list of MME functions, data structures, enumerated types and constants  2009, QNX Software

Systems GmbH & Co. KG.

mme_play_get_output_attr()
mme_play_get_speed()
mme_play_get_status()
mme_play_get_zone()
mme_play_info_t

mme_play_offset()
mme_play_resume_msid()
mme_play_set_output_attr()
mme_play_set_speed()
mme_play_set_zone()
MME_PLAYLIST_*
mme_playlist_close()
mme_playlist_create()
mme_playlist_delete()
mme_playlist_generate_similar()
mme_playlist_hdl_t

mme_playlist_item_get()
mme_playlist_items_count_get()
mme_playlist_open()
mme_playlist_position_set()
mme_playlist_set_statement()
mme_playlist_sync()
mme_playstate_t

mme_playstate_speed_t

mme_play_status_t

mme_prev()
mme_register_for_events()
mme_resync_mediastore()
mme_rmtrksession()
mme_seek_title_chapter()
mme_seektotime()
mme_set_api_timeout()
mme_setautopause()
mme_set_debug()
mme_set_files_permanent()
mme_setlocale()
mme_set_logging()
mme_set_msid_resume_trksession()
mme_set_notification_interval()
mme_setpriorityfolder()
mme_setrandom()
mme_setrepeat()
mme_setscanmode()
mme_settrksession()
mme_shutdown()
MME_SLOTTYPE_*

8 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Alphabetical list of MME functions, data structures, enumerated
types and constants

mme_start_device_detection()
mme_stop()
MME_STORAGETYPE_*
mme_sync_cancel()
mme_sync_db_check()
mme_sync_directed()
mme_sync_file()
mme_sync_get_msid_status()
mme_sync_get_status()
MME_SYNC_OPTION_*
mme_sync_status_t

mme_time_t

mme_timebase_set()
mme_trksession_append_files()
mme_trksession_clear_files()
mme_trksession_get_info()
mme_trksession_resume_state()
mme_trksession_save_state()
mme_trksession_set_files()
mme_trksessionview_get_current()
mme_trksessionview_get_info()
mme_trksessionview_info_t

mme_trksessionview_metadata_get()
mme_trksessionview_readx()
mme_trksessionview_update()
mme_trksessionview_writedb()
mme_trksessionview_update()
mme_video_get_angle_info()
mme_video_get_audio_info()
mme_video_get_info()
mme_video_get_status()
mme_video_get_subtitle_info()
mme_video_set_angle()
mme_video_set_audio()
mme_video_set_properties()
mme_video_set_subtitle()
mme_zone_create()
mme_zone_delete()

May 4, 2009 Chapter 1 • MME API 9

FTYPE*  2009, QNX Software Systems GmbH & Co. KG.

Media type definitions

Synopsis:
#include <mme/interface.h>

#define FTYPE_*

Description:
The constantsFTYPE* define the media types the MME recognizes. The values listed
in the table below are used by theftype field in the:

• mme_play_info_t data structure

• library table

• nowplaying table

Constant Value Description

FTYPE_UNKNOWN 0 Unknown media type.

FTYPE_AUDIO 1 The media has audio only.

FTYPE_VIDEO 2 The media has video only.

FTYPE_AUDIOVIDEO 3 The media has both audio and video.

FTYPE_PHOTO 4 The media has images (photos).

FTYPE_DEVICE 5 The media can be accessed and played as one file.
For example, play an entire DVD video rather than
tracks on the DVD, or play streamed media.

Maintaining the accuracy of ftype fields

For some files, the file type cannot always be correctly established based only on the
file extension (hence during the first synchronization pass). To ensure correct entries in
the ftype field in the MME tables, the MME updates this field when it performs:

• the first synchronization pass

• the second synchronization pass

• normal playback, upon receiving the metadata update fromio-media, if the MME
is configured tonot update thelibrary from thenowplaying table
(<UpdateLibraryFromNowplaying enabled="off"/>), the MME updates
the ftype field in thelibrary tableonly

• a mediacopier update of metadata, if the mediacopier is configured to make the
metadata accurate before ripping (<UpdateMetadata enabled="true"/>)

10 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. FTYPE*

Classification:
QNX Multimedia

See also:
MME_FORMAT_* , MME_MSCAP_* , MME_STORAGETYPE_* ,
MME_SYNC_OPTION_* , mediastores table in the appendix: MME Database
Schema Reference

May 4, 2009 Chapter 1 • MME API 11

METADATA_*  2009, QNX Software Systems GmbH & Co. KG.

Definitions for metadata string types

Synopsis:
#include <mme/metadata.h>

#define METADATA_*

Description:
The constantsMETADATA_* define the metadata types for the strings used by MME
functions that retrieve metadata for specific files:mme_explore_info_get() and
mme_ms_metadata_get(). For information about how to compose the strings, see the
chapter Metadata and Album Art in theMME Developer’s Guide.

The table below lists current metadata types. All are types are of
METADATA_FORMAT_* , as listed.

Constant Format Value Description

METADATA_TITLE STRING "title" The track
title.

METADATA_ALBUM STRING "album" The
album
with the
track.

METADATA_ARTIST STRING "artist" The
track’s
artist.

METADATA_GENRE STRING "genre" The
track’s
genre.

METADATA_COMPOSER STRING "composer" The track
composer.

METADATA_PUBLISHER STRING "publisher" The track
publisher.

METADATA_NAME STRING "name" The
folder
name.
See
METADATA_NAME

below.

continued. . .

12 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. METADATA_*

Constant Format Value Description

METADATA_RELEASE_DATE TM "release_date" The
track’s
release
date.

METADATA_YEAR UNSIGNED "year" The
track’s
release
year.

METADATA_DURATION UNSIGNED "duration" The
duration
of the
track, in
milliseconds.

METADATA_COMMENT STRING "comment or description" A
description
of the
track.

METADATA_TRACK_NUMBER UNSIGNED "track_number" The track
number.

METADATA_PROTECTED UNSIGNED "protected" The
DRM
PROTECTED
status of
the file.

METADATA_NAME

The metadata forMETADATA_NAME varies according to the context. With iPods, the
name of a folder changes according to its parent folder. For example, the tracks from
the albumTransparente by Mariza, appear to be in different folders, depending on
how the user arrives at the tracks:

• If the user is exploring the iPod through theartists folder, the value for
METADATA_NAME is “Mariza”, the name of the artist.

• If the user is exploring the iPod through thealbums, the value for
METADATA_NAME is “Transparente”, the name of the album.

io-fs-media -dipod must be set toshort for the MME to be able to retrieve
metadata for tracks on an iPod.

May 4, 2009 Chapter 1 • MME API 13

METADATA_*  2009, QNX Software Systems GmbH & Co. KG.

METADATA_FORMAT_*

enum {
METADATA_FORMAT_INVALID = 0,
METADATA_FORMAT_DATA,
METADATA_FORMAT_STRING,
METADATA_FORMAT_TM,
METADATA_FORMAT_UNSIGNED,
};

The enumerated valuesMETADATA_FORMAT_* describe the data types for metadata
presentation, as follows:

• METADATA_FORMAT_INVALID — 0 (zero): invalid format.

• METADATA_FORMAT_DATA — blob.

• METADATA_FORMAT_STRING— character string.

• METADATA_FORMAT_TM — time.

• METADATA_FORMAT_UNSIGNED— unsigned integer.

Classification:
QNX Multimedia

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_load(), mme_metadata_image_unload(),
mme_metadata_image_url_t,mme_metadata_session_t

14 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_audio_format_t
Audio format information

Synopsis:
#include <mm/types.h>

typedef struct mm_audio_format {
char codec[MM_CODEC_NAME_MAX_LEN];
uint32_t bitrate;
uint32_t samplerate;
uint8_t channels;
uint8_t bitrate_type;
uint8_t channel_type;
uint8_t reserve1;
int32_t reserve2;
int32_t reserve3;

} mm_audio_format_t;

Description:
The structuremm_audio_format_t provides information about the current state of
an audio stream. It includes at least the members described in the table below.

Member Type Description

codec char Name of the audio codec. This member is the
character string with the name of the audio codec.
See “Audio codec” below.

bitrate uint32_t Average bitrate for the audio track, in bits per second.

samplerate uint32_t Sample bitrate, in hertz.

channels uint8_t Channel type. See Audio channels.

bitrate_type uint8_t Bitrate type. Seemm_bitrate_t in this reference.

channel_type uint8_t Deprecated in MME 1.1.0. Do not use.

reserve1 uint8_t For future use.

reserve2, 3 int32_t For future use.

Audio codec

The MME API functionmme_audio_get_status() uses the data structure
mm_audio_format_t. The MME API functionmme_video_get_status() uses the
data structuremm_video_info_t. Both these structures include a membercodec.
The codec members of the structuresmm_video_info_t andmm_audio_format_t
hold character strings identifying the codec format for the video or audio. These
strings can have a length of up to the number of bytes defined by
MM_CODEC_NAME_MAX_LEN, which is currently 32 bytes.

May 4, 2009 Chapter 1 • MME API 15

mm_audio_format_t  2009, QNX Software Systems GmbH & Co. KG.

Client applications can pass these character strings up to the end users to inform them
of the codec format used by a video or audio track.

Audio channels

Thechannels member of the structuremm_audio_format_t describes the number of
channels available in the audio stream. It can be set to any number defined as valid by
the audio stream specification.

Example audio stream channels

Channels Audio stream

1 mono

2 stereo

6 Dolby digital 5.1

6 DTS

8 Dolby digital 7.1

8 DTS_ES

Classification:
QNX Multimedia

See also:
mm_bitrate_t,mme_video_audio_info_t,mm_video_audio_info_t,
mm_video_info_t,mme_audio_get_status, video_get_status()

16 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_audio_lang_ext
Captions settings for videos

Synopsis:
#include <mm/types.h>

enum mm_audio_lang_ext;

Description:
The enumerated typemm_audio_lang_ext defines video caption settings. Its values
include:

• MM_CAPTIONS_NORMAL —normal captions.

• MM_VISUAL_IMPARED_AUDIO — captions for the visually impaired.

• MM_DIRECTORS_COMMENTS1— director’s comments.

• MM_DIRECTORS_COMMENTS2— director’s comments.

Classification:
QNX Multimedia

See also:
mm_video_info_t

May 4, 2009 Chapter 1 • MME API 17

mm_audio_type  2009, QNX Software Systems GmbH & Co. KG.

Audio types

Deprecated in MME 1.1.0. Do not use.

Synopsis:
#include <mm/types.h>

enum mm_audio_type;

Description:
mm_audio_types

The enumerated typemm_audio_type defines video audio types. Its values include:

• DOLBY_AC3

• LINEAR_PCM

• MPEG_1_2

• MPEG_2_EXT

• DTS

• SDDS

• MONO

• STEREO

• JOINT_STEREO

• DUAL_CHANNEL

• OTHER(255)

Classification:
QNX Multimedia

See also:
mm_audio_format_t,mm_video_info_t,mme_audio_get_status,
mme_video_get_status()

18 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_bitrate_t
Media bitrate

Synopsis:
#include <mm/types.h>

enum mm_bitrate_t;

Description:
The enumerated typemm_bitrate_t defines streaming bitrate values. These values
are listed below:

• MM_BITRATE_TYPE_UNKNOWN — unknown bit rate.

• MM_BITRATE_TYPE_CONSTANT— constant bitrate: the listed bitrate is always
accurate.

• MM_BITRATE_TYPE_VARIABLE — variable bitrate: the bitrate of encoded
packets is variable.

At present, allio-media graphs setmm_bitrate_t to
MM_BITRATE_TYPE_UNKNOWN.

Classification:
QNX Multimedia

See also:
mm_audio_format_t,mm_video_info_t,mme_audio_get_status,
mme_video_get_status()

May 4, 2009 Chapter 1 • MME API 19

mm_blocked_uops  2009, QNX Software Systems GmbH & Co. KG.

User Operation Prohibition values

Synopsis:
#include <mm/types.h>

enum mm_blocked_uops;

Description:
The enumerated typemm_blocked_uops defines values for the User Operations
Prohibitions (UOP) bit mask. Its values and the behaviors they define are described
below:

• UOP_BLOCK_NONE— no user prohibitions.

• UOP_BLOCK_TIME_PLAY_SEARCH— prohibit search to time.

• UOP_BLOCK_PTT_PLAY_SEARCH— prohibit search to chapters.

• UOP_BLOCK_TITLE_PLAY — prohibit play by title.

• UOP_BLOCK_STOP— prohibit stopping of video.

• UOP_BLOCK_GO_UP— prohibit “up” command.

• UOP_BLOCK_PREV_TOP_PG_SEARCH— prohibit

• UOP_BLOCK_NEXT_PG_SEARCH— prohibit search for next page.

• UOP_BLOCK_FORWARD_SCAN— prohibit forward scans.

• UOP_BLOCK_BACKWARD_SCAN— prohibit backward scans.

• UOP_BLOCK_MENU_CALL_TITLE — prohibit use of title menu.

• UOP_BLOCK_MENU_CALL_ROOT— prohibit use of root menu.

• UOP_BLOCK_MENU_CALL_SUB_PICTURE— prohibit use of sub-picture
(subtitles) menu.

• UOP_BLOCK_MENU_CALL_AUDIO — prohibit changes to audio

• UOP_BLOCK_MENU_CALL_ANGLE — prohibit changes to angle.

• UOP_BLOCK_MENU_CALL_PTT — prohibit calls to chapter menu.

• UOP_BLOCK_RESUME— prohibit resume functionality.

• UOP_BLOCK_BUTTON — prohibit button functionality.

• UOP_BLOCK_STILL_OFF— prohibit turning off of stills.

• UOP_BLOCK_PAUSE_ON — prohibit pause.

20 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_blocked_uops

• UOP_BLOCK_AUDIO_CHANGE— prohibit changes to audio properties.

• UOP_BLOCK_SUB_PICTURE_CHANGE— prohibit changes to sub-picture
(subtitles).

• UOP_BLOCK_ANGLE_CHANGE— prohibit changes to video angle.

• UOP_BLOCK_KARAOKE_CHANGE— prohibit changes to karaoke settings.

• UOP_BLOCK_VIDEO_CHANGE— prohibit changes to video properties.

Classification:
QNX Multimedia

See also:
mm_dvd_status_t

May 4, 2009 Chapter 1 • MME API 21

mm_display_mode  2009, QNX Software Systems GmbH & Co. KG.

Video display modes

Synopsis:
#include <mm/types.h>

enum display_mode;

Description:
The enumerated typemm_display_mode defines how a video is displayed. Its values
and the behaviors they define are described below:

• MM_DISPLAY_MODE_NORMAL — fit the display: the picture is full screen.

• MM_DISPLAY_MODE_LETTERBOX — fit one dimension of the display and add
black bars for other dimension: the picture is partial screen.

• MM_DISPLAY_MODE_PANSCAN— fit one dimension of the display and crop the
other dimension: the picture is full screen.

• MM_DISPLAY_MODE_OPEN_MATTE — display full frame: the original content
cropping is changed.

Classification:
QNX Multimedia

See also:
mm_video_properties_t,mm_video_info_t

22 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_dvd_status_t
DVD status information

Synopsis:
#include <mme/types.h>

typedef struct mm_dvd_status {
struct mm_dvd_blocked {

uint32_t uop_mask;
uint32_t audio_mask;
uint32_t subpicture_mask;

} blocked;
uint32_t domain;
uint32_t title;
uint32_t chapter;
uint64_t chapter_start_time;
uint32_t num_audio_streams;
uint32_t audio_stream;
uint32_t num_subtitle_streams;
uint32_t subtitle_stream;
uint32_t num_angles;
uint32_t angle;
uint32_t playback_pml;
uint32_t spare[4];

} mm_dvd_status_t;

Description:
The structuremm_dvd_status_t carries information about a DVD, including
blocked functionality. It includes at least the members described in the table below.

Member Type Description

blocked struct Masks for User Operation Prohibitions. See
mm_dvd_blocked below.

domain uint32_t The domain of the DVD.

title uint32_t The currently playing DVD title.

chapter uin32_t The currently playing chapter in the DVD
title.

chapter_start_time uin64_t The offset (in milliseconds) of the chapter
start from the start of the title.

num_audio_streams uin32_t The number of available audio streams.

audio_stream uin32_t The current audio stream.

num_subtitle_streams uin32_t The number of subtitle streams.

continued. . .

May 4, 2009 Chapter 1 • MME API 23

mm_dvd_status_t  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

subtitle_stream uin32_t The current subtitle stream.

num_angles uin32_t The number of angles.

angle uin32_t The current angle.

playback_pml uin32_t The parental management level needed for
playback; set to 0 if no change in level is
required.

spare uin32_t Spare.

mm_dvd_blocked

The structuremm_dvd_blocked contains masks indicating which User Operation
Prohibitions (UOP), audio, and subpicture functionality is blocked for the current
track. The UOP mask has bits set to indicate which DVD remote button operations are
prohibited for the current track. The structuremm_dvd_blocked includes at least the
members described in the table below.

Member Type Description

uop_mask uint32_t The bit mask for (UOP) User Operation
Prohibitions. Seemm_blocked_uops in this
reference.

audio_mask uint32_t The mask indicating the audio functionality
permissions set for the current track.

subpicture_mask uint32_t The mask indicating the subpicture functionality
set for the current track.

mm_dvd_status_event_t
typedef struct mm_dvd_status_event {

mm_dvd_status_t status;
mm_dvd_status_reason_t reason;

} mm_dvd_status_event_t;

The structuremm_dvd_status_event_t carries information about a DVD, including
its status, inmm_dvd_status_t, and the reason for the status event delivery, in
mm_dvd_status_reason_t. It includes at least the members described in the table
below.

24 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_dvd_status_t

Member Type Description

status struct Information about a DVD, including blocked functionality.

reason enum The reason for the DVD event delivery.

mm_dvd_status_reason_t

The enumerated typemm_dvd_status_reason_t is used to indicate the reason for
which a DVD status update is delivered. It can be set to the following values:

• MM_DVD_DOMAIN_UPDATE— the DVD domain has changed.

• MM_DVD_TITLE_UPDATE— the DVD title has changed.

• MM_DVD_CHAPTER_UPDATE— th DVD chapter has changed.

• MM_DVD_ANGLE_UPDATE— the DVD angle has changed.

• MM_DVD_AUDIO_UPDATE— the DVD audio stream has changed.

• MM_DVD_SUBTITLE_UPDATE— the DVD subtitle stream has changed.

• MM_DVD_BLOCKED_UPDATE— the DVD user prohibitions have changed.

• MM_DVD_MENU_ACTIVE_UPDATE— the DVD active menu has changed.

• MM_DVD_PML_UPDATE— The parental management level is insufficient for
playback, seeplayback_pml in mm_dvd_status_t for the needed level.

mm_dvd_domain

The enumerated typemm_dvd_domain is used to indicate the domain of the current
track. The DVD specification defines four domains to which data can belong.
mm_dvd_domain can be set to the following values:

• MM_DOMAIN_STOP— DVD is not playing.

• MM_DOMAIN_FP— First Play (optional): initialization domain.

• MM_DOMAIN_VMGM — Video Manage Menu Domain (optional): The following
functionality operates in this domain:

- title menu

- legal notices and warnings

- previews (occasionally)

• MM_DOMAIN_VTSM — Video Title Set Menu Domain (optional). Most menus
operate in this domain:

- root menu

- PTT (chapter selection) menu

May 4, 2009 Chapter 1 • MME API 25

mm_dvd_status_t  2009, QNX Software Systems GmbH & Co. KG.

- audio menu

- sub-picture (subtitles) menu

- angle menu

• MM_DOMAIN_TT — Title Domain (mandatory).This domain includes most
previews, the main feature, etc., and is usually in standard (playback) mode.

Classification:
QNX Multimedia

See also:
mme_dvd_get_status(), mme_video_get_status.html()

26 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_media_status_t
Media status information

Synopsis:
#include <mme/types.h>

typedef struct mm_media_status {
uint32_t title;
uint32_t title_count;
uint32_t chapter;
uint32_t chapter_count;
uint32_t num_audio_streams;
uint32_t audio_stream;
uint32_t num_subtitle_stream
uint32_t subtitle_stream;
uint32_t num_angles;
uint32_t angle;

} mm_media_status_t;

Description:
The structuremm_media_status carries information about a media device, such as
an iPod, that also serves as a mediastore. It includes at least the members described in
the table below.

Member Type Description

title uint32_t The currently playing media title.

title_count uint32_t The number of the current title.

chapter uin32_t The media title’s currently playing chapter.

chapter_count uint32_t The number of the current chapter.

num_audio_streams uin32_t The number of available audio streams.

audio_stream uin32_t The current audio stream.

num_subtitle_streams uin32_t The number of available subtitle streams.

subtitle_stream uin32_t The current subtitle stream.

num_angles uin32_t The number of available angles.

angle uin32_t The current angle.

mm_media_status_event_t
typedef struct mm_media_status_event {

mm_media_status_t status;
mm_media_status_reason_t reason;

} mm_media_status_event_t;

May 4, 2009 Chapter 1 • MME API 27

mm_media_status_t  2009, QNX Software Systems GmbH & Co. KG.

The structuremm_media_status_event_t carries media information delivered with
a MME_EVENT_MEDIA_ event, including its status, inmm_media_status_t, and
the reason for the status event delivery, inmm_media_status_reason_t. It includes
at least the members described in the table below.

Member Type Description

status struct Information about a media.

reason enum The reason for the media event delivery.

mm_media_status_reason_t
typedef enum mm_media_status_reason {

MM_MEDIA_TITLE_UPDATE
MM_MEDIA_CHAPTER_UPDATE
MM_MEDIA_ANGLE_UPDATE
MM_MEDIA_AUDIO_UPDATE
MM_MEDIA_SUBTITLE_UPDATE

} mm_media_status_reason_t;

The enumerated typemm_media_status_reason_t is used to indicate the reason
for which a media status update is delivered. It can be set to the following values:

• MM_MEDIA_TITLE_UPDATE (0x01)— the media title has changed.

• MM_MEDIA_CHAPTER_UPDATE(0x02) — th media chapter has changed.

• MM_MEDIA_ANGLE_UPDATE(0x04) — the media angle has changed.

• MM_MEDIA_AUDIO_UPDATE(0x08) — the media audio stream has changed.

• MM_MEDIA_SUBTITLE_UPDATE (0x10) — the media subtitle stream has
changed.

Classification:
QNX Multimedia

See also:
mme_device_get_conf(), mme_device_set_conf()

28 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_metadata_t
Media metadata

Synopsis:
#include <mm/types.h>

typedef struct mm_metadata {
const char *strings[MM_METADATA_NUM_STRINGS];
const char *reserved1[MM_METADATA_TOTAL_STRINGS - MM_METADATA_NUM_STRINGS];
uint16_t release_year;
uint8_t release_month;
uint8_t release_mday;
uint16_t track_num;
uint16_t disc_num;
uint32_t reserved2[4];

} mm_metadata_t;

Description:
The structuremm_metadata_t carries video metadata. Its members include at least
those listed in the table below.

Member Type Description

*strings const char Array of pointers to video metadata; the number
of pointers is set by the constant
MM_METADATA_NUM_STRINGS. See
mm_metadata_string_index_t below.

*reserved1 const char Reserved array size; the number of pointers is
equal toMM_METADATA_TOTAL_STRINGS
minusMM_METADATA_NUM_STRINGS.
Reserved for future use.

release_year uint16_ The year the media content was released

release_month uint8_t The month the media content was released

release_mday uint8_t The day of the month the media content was
released.

track_num uint16_t The track number on the mediastore.

disc_num uint16_t The disk number of the media store.

reserved2 uint32_t Reserved for future use.

mm_metadata_string_index_t

The enumerated typemm_metadata_string_index_t is used to index the strings
inside the structuremm_metadata_t. Its values include:

• MM_METADATA_TITLE

• MM_METADATA_ARTIST

May 4, 2009 Chapter 1 • MME API 29

mm_metadata_t  2009, QNX Software Systems GmbH & Co. KG.

• MM_METADATA_COMPOSER

• MM_METADATA_ALBUM

• MM_METADATA_GENRE

• MM_METADATA_COMMENT

• MM_METADATA_NUM_STRINGS— the total number of pointers available to the
memberstring in the structuremm_metadata_t.

• MM_METADATA_TOTAL_STRINGS— (16)

The enumerated typemm_metadata_string_index_t is used when accessing the
strings member of anmm_metadata_t type. For example:

mm_metadata_t metadata;
char *artist;
mme_version_of_get_metadata_function(&metadata);
// print out the artist...
printf ("Artist is %s\n", artist = metadata.strings[MM_METADATA_ARTIST]? artist, "Unknown");

Classification:
QNX Multimedia

See also:
mm_video_info_t,mm_video_audio_info_t

30 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_subpict_lang_ext
Video language codes

Synopsis:
#include <mm/types.h>

enum mm_subpict_lang_ext;

Description:
The enumerated typemm_subpict_lang_ext defines the video language extension
codes for audio streams and subtitles. Its values include:

• MM_NOT_SPECIFIED

• MM_CAPTION_NORMAL

• MM_CAPTION_LARGE

• MM_CAPTION_CHILDRENS

• MM_CLOSED_CAPTION_NORMAL

• MM_CLOSED_CAPTION_LARGE

• MM_CLOSED_CAPTION_CHILDRENS

• MM_CAPTION_FORCED

• MM_DIRETORS_COMNENT_NORMAL

• MM_DIRECTORS_COMMENT_LARGE

• MM_DIRECTORS_COMMENT_CHILDREN

Classification:
QNX Multimedia

See also:
mm_video_audio_info_t,mm_video_subtitle_info_t

May 4, 2009 Chapter 1 • MME API 31

mm_uop_t  2009, QNX Software Systems GmbH & Co. KG.

User Operations Prohibitions settings

Synopsis:
#include <mm/types.h>

enum mm_uop_t;

Description:
The enumerated typemm_uop_t defines User Operations Prohibitions values. These
values are listed below:

• MM_UOP_CLOSE— prohibit application close.

• MM_UOP_GET_BOOKMARK — prohibit access to bookmarks.

• MM_UOP_SET_BOOKMARK — prohibit

• MM_UOP_GET_SPRMS— prohibit access to system parameter registers.

• MM_UOP_GET_GPRMS— prohibit access to general parameter registers.

• MM_UOP_SET_GPRM— prohibit modification of general parameter registers.

• MM_UOP_STOP— prohibit stop playback.

• MM_UOP_GO_UP— prohibit go up.

• MM_UOP_PREV_PG_SEARCH— prohibit searching to previous entity in program
chain (typically search to previous chapter).

• MM_UOP_TOP_PG_SEARCH— prohibit searching to first entity in program chain
(typically search to first chapter).

• MM_UOP_NEXT_PG_SEARCH— prohibit searching to next entity in program
chain (typically search to next chapter).

• MM_UOP_SET_SPEED— prohibit set speed.

• MM_UOP_FRAME_ADVANCE — prohibit frame advance.

• MM_UOP_FRAME_REVERSE— prohibit frame reverse.

• MM_UOP_RESUME— prohibit resume playback.

• MM_UOP_UPPER_BUTTON_SELECT— prohibit upper button selection.

• MM_UOP_LOWER_BUTTON_SELECT— prohibit lower button selection.

• MM_UOP_LEFT_BUTTON_SELECT— prohibit left button selection.

• MM_UOP_RIGHT_BUTTON_SELECT— prohibit right button selection.

32 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_uop_t

• MM_UOP_BUTTON_ACTIVATE — prohibit button activation.

• MM_UOP_BUTTON_SELECT_AND_ACTIVATE — prohibit button selection and
activation.

• MM_UOP_STILL_OFF— prohibit turing still mode off.

• MM_UOP_PAUSE_ON — prohibit turning pause on.

• MM_UOP_PAUSE_OFF— prohibit turning pause off.

• MM_UOP_MENU_LANGUAGE_SELECT— prohibit selection of language menu.

• MM_UOP_AUDIO_STREAM_CHANGE— prohibit changing the audio stream.

• MM_UOP_SUB_PICTURE_STREAM_CHANGE— prohibit changing the subtitle
stream.

• MM_UOP_ANGLE_CHANGE— prohibit changing the angle.

• MM_UOP_VIDEO_MODE_CHANGE— prohibit changing the video mode.

• MM_UOP_BUTTON_SELECT— prohibit button selection.

• MM_UOP_BUTTON_SELECT_POINT— prohibit selection of button by
coordinates.

• MM_UOP_BUTTON_ACTIVATE_POINT— prohibit activation of button my
coordinates (i.e. by pressingchapter on track screen).

• MM_UOP_SUB_PICTURE_STREAM_CHANGE_STREAM— prohibit changing
the subtitle stream.

• MM_UOP_SUB_PICTURE_STREAM_CHANGE_DISPLAY — prohibit turning
subtitles on or off.

• MM_UOP_AUDIO_LANGUAGE_SELECT— prohibit selection of the audio
language.

• MM_UOP_SUB_PICTURE_LANGUAGE_SELECT— prohibit changing the subtitle
language.

• MM_UOP_REPEAT_MODE_CHANGE— prohibit changing the repeat more.

• MM_UOP_TITLE_PLAY — prohibit playing the entire title.

• MM_UOP_PTT_PLAY — prohibit part of title play (i.e. jump to a title or chapter).

• MM_UOP_TITLE_TIME_PLAY — prohibit play from at time in the title (i.e. jump
to a time in the title).

• MM_UOP_TITLE_TIME_SEARCH— prohibit search to a specific time in the title.

• MM_UOP_PTT_SEARCH— prohibit search by part of chapter.

May 4, 2009 Chapter 1 • MME API 33

mm_uop_t  2009, QNX Software Systems GmbH & Co. KG.

• MM_UOP_MENU_CALL_VIDEO — prohibit jump to video menu.

• MM_UOP_PARENTAL_LEVEL_SELECT— prohibit selection of parental control
level.

• MM_UOP_PARENTAL_COUNTRY_SELECT— prohibit country selection for
parental control.

• MM_UOP_KARAOKE_MODE_CHANGE— prohibit changing karaoke mode.

• MM_UOP_PTT_PLAY_RANGE— prohibit playback of part of title, by range of
chapters.

• MM_UOP_TITLE_TIME_PLAY_RANGE — prohibit playback of part of title, by
time range.

• MM_UOP_FIRST_PLAY — prohibit playback of first title.

• MM_UOP_TITLE_GROUP_PLAY — prohibit playback by group.

• MM_UOP_TRACK_PLAY — prohibit playback by track.

• MM_UOP_GROUP_TIME_PLAY — prohibit playback of group of titles by time.

• MM_UOP_GROUP_TIME_SEARCH— prohibit searching for time in a group.

• MM_UOP_TRACK_SEARCH— prohibit searching for specific tracks.

• MM_UOP_PREV_TK_SEARCH— prohibit searching for previous track.

• MM_UOP_TOP_TK_SEARCH— prohibit searching for top track.

• MM_UOP_NEXT_TK_SEARCH— prohibit searching for next track.

• MM_UOP_PREV_DLIST_SEARCH— DVD-audio only: prohibit jumping to
previous playlist.

• MM_UOP_NEXT_DLIST_SEARCH— DVD-audio only: prohibit jumping to next
playlist.

• MM_UOP_HOME_DLIST_SEARCH— DVD-audio only: prohibit jumping to first
playlist.

• MM_UOP_MENU_CALL_AUDIO — DVD-audio only: prohibit jumping to
DVD-audio menu.

• MM_UOP_TEXT_LANGUAGE_SELECT— DVD-audio only: prohibit text
language selection.

• MM_UOP_HIDDEN_GROUP_PLAY — DVD-audio only: prohibit playback of of
hidden groups.

• MM_UOP_HIDDEN_TRACK_PLAY — DVD-audio only: prohibit playback of
hidden tracks.

• MM_UOP_HIDDEN_TIME_PLAY — DVD-audio only: prohibit playback of
hidden time.

34 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_uop_t

Classification:
QNX Multimedia

See also:
mm_video_info_t

May 4, 2009 Chapter 1 • MME API 35

mm_video_angle_info_t  2009, QNX Software Systems GmbH & Co. KG.

Video angle settings

Synopsis:
#include <mm/types.h>

typedef struct mm_video_angle_info {
uint32_t title;
uint8_t total;
int8_t current;
int8_t angles_available;
int8_t align;

} mm_video_angle_info_t;

Description:
The structuremm_video_angle_info_t includes at least the members described in
the table below.

Member Type Description

title uint32_t The title of video for which angle information is
provided.

total uint8_t The number of video angles available.

current int8_t The current video angle.

angles_available int8_t Indicate if changing the video angle will take
effect on the current chapter. Clear if no effect on
the current chapter.

align int8_t Aligns the structure to 32 bits.

Classification:
QNX Multimedia

See also:
mme_video_get_status(), mme_video_set_angle()

36 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_audio_info_t
Video audio information

Synopsis:
#include <mm/types.h>

typedef struct mm_video_audio_info {
uint32_t title;
int8_t total;
int8_t current;
struct mm_audio_attr {

char lang[2];
uint8_t ext;
uint8_t type;
uint8_t channels;
uint8_t spare;

} attr[MM_MAX_VIDEO_AUDIO_STREAMS];
} mm_video_audio_info_t;

Description:
The structuremm_video_audio_info_t structure carries information about the
languages of a video’s subtitles. It includes at least the members described in the table
below.

Member Type Description

title uint32_t The title for which audio stream information is provided.

total int8_t The number of available audio streams. If this field is 0
(zero), no audio streams are available.

current int8_t The audio stream currently selected. If this field is set to
-1, no audio is currently playing.

attr struct An array of structures:mm_audio_attr_t, of length
MM_MAX_AUDIO_STREAMS, containing audio
languages information.

mm_audio_attr_t

The structuremm_audio_attr_t carries information about the languages of a video’s
audio streams. It includes at least the members described in the table below.

May 4, 2009 Chapter 1 • MME API 37

mm_video_audio_info_t  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

lang char Two-character ISO 639-1 language code for the audio
stream.

ext uint8_t Language extension codes. Seemm_subpict_lang_ext
in this reference.

type uint8_t Audio stream type.

channels uint8_t Total number of audio channels, including a low frequency
channel. For example, 8 = 7.1, 6 = 5.1, 3 = 2.1, 4 = 4, 2 = 2,
1 = 1, and 255 = “unknown”.

spare uint8_t Unused

Classification:
QNX Multimedia

See also:
mme_video_get_audio_info(), mme_video_set_audio()

38 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_info_t
Video information

Synopsis:
#include <mm/types.h>
typedef struct mm_video_info {

struct {
uint16_t w;
uint16_t h;

} aspect_ratio;
uint32_t width;
uint32_t height;
uint32_t capture_format;
uint32_t frame_width;
uint32_t frame_height;
uint32_t max_bufferable_frames;
uint32_t display_mode;
uint32_t flags;
char codec[32];

} mm_video_info_t;

Description:
The structuremm_video_info_t provides information about a video. It includes at
least the members described in the table below.

Member Type Description

aspect_ratio struct The width to height aspect ratio of the
video. Seeaspect_ratio below.

width uint32_t The width of the video source, in pixels.

height uint32_t Height of the video source, in pixels.

capture_format uint32_t Flags for capturing additional information
useful for presenting the video. See
video_flags below.

frame_width uint32_t The width, in pixels, of the rendered video
in video memory; may be smaller than the
frame width. A value different fromwidth
does not imply scaling; see “flags” below.

frame_height uint32_t The height, in pixels, of the rendered video
in video memory; may be smaller than the
frame height. A value different fromwidth
does not imply scaling; see “flags” below.

continued. . .

May 4, 2009 Chapter 1 • MME API 39

mm_video_info_t  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

max_bufferable_frames uint32_t The maximum number of frames that can
be requested for buffering by a call to the
functionmme_video_set_properties(). A
-1 indicates that the video player does not
support bufferable frames.

display_mode uint32_t The video display mode. See
mm_display_mode

flags uint32_t Flags indicating how to handle the video
display frame croppiing and scaling.

codec char A character string with name of the video
codec. See “Video codec” below.

aspect_ratio

Theaspect_ratiomember uses whole numbers to express the video aspect ratio.
These numbers only describe the height to widthratio of the image, and have no
bearing on the actual width and height in pixels of the source.

Common aspect ratio values are:

• 235:100 (2.35:1)

• 16:9 or 166:100 (1.66:1) and (4/3)

Usual representations are in parentheses: “(x,y)”.

w and h

Thew andh members of the structureaspect_ratio are the whole numbers used to
express the aspect ratio of the image.

Width w and heighth values of 0 (0,0) mean that no aspect ratio information is
available.

width and height

Thewidth andheight are the actual width and height of the source image,in pixels.

flags

Theflags member of the structuremm_video_info_t uses the following values:

• MM_VIDEO_SOURCE_CROP— the video player can crop the source video and
render only the cropped content to the video memory.

• MM_VIDEO_SCALEABLE — the video player can scale (or zoom) the specified
source video and place the scaled result in video memory; if this flag is not set, the
video_width andvideo_height members describe the active video dimensions.

40 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_info_t

• MM_VIDEO_FRAME_SETABLE — the video player can adjust the video memory
image size.

• MM_VIDEO_SOURCE_PICTURE_LETTERBOXED— a 4:3 source picture; if the
source picture is 16:9, black bars are added to make the picture 4:3.

• MM_VIDEO_AUTO_SCALED— the video is scaled to best fit the frame described
in mm_video_info_t.

Video codec

The functionvideo_get_status() uses the data structuremm_video_info_t. The
functionmme_audio_get_status() uses the data structuremm_audio_format_t.
Both these structures include a membercodec.

The codec members of the structuresmm_video_info_t andmm_audio_format_t
hold character strings identifying the codec format for the video or audio. These
strings can have a length of up to the number of bytes defined by
MM_CODEC_NAME_MAX_LEN, which is currently 32 bytes.

Client applications can pass these character strings up to the end users to inform them
of the codec format used by a video or audio track.

mm_display_mode

The enumerated typemm_display_mode describes a video’s display mode. Its values
include:

• MM_DISPLAY_MODE_NORMAL

• MM_DISPLAY_MODE_LETTERBOX

• MM_DISPLAY_MODE_PANSCAN

• MM_DISPLAY_MODE_OPEN_MATTE

capture_format

The enumerated typecapture_format describes a video’s capture format. Its values
include:

• MM_CAPTURE_NTSC

• MM_CAPTURE_PAL

• MM_CAPTURE_OTHER

Classification:
QNX Multimedia

May 4, 2009 Chapter 1 • MME API 41

mm_video_info_t  2009, QNX Software Systems GmbH & Co. KG.

See also:
mm_audio_format_t,mm_bitrate_t,mm_video_audio_info_t,
mme_video_properties_t,mme_audio_get_status, mme_video_get_status()

42 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_properties_t
Video display properties

Synopsis:
#include <mm/types.h>

typedef struct mm_video_properties {
uint32_t flags;
struct {

uint32_t left,top,right,bottom;
} source;
struct {

uint32_t left,top,right,bottom;
} dest;
uint32_t frame_width;
uint32_t frame_height;
uint32_t frame_buffers;
uint32_t display_mode;

} mm_video_properties_t;

Description:
The structuremm_video_properties_t describes video display properties. It
includes at least the members described in the table below.

Member Type Description

flags uint32_t Flags indicating how to handle the video display.

source struct The rectangle (left and top inclusive; right and
bottom exclusive) to extract from the source video;
must be within thewidth andheight dimensions
given bymme_video_get_info(); it is ignored if
MM_AUTO_SCALE is set.

dest struct The rectangle (left and top inclusive; right and
bottom exclusive) to render the video into; it must be
within the frame_width andframe_height
dimensions given bymme_video_get_info(); it is
ignored ifMM_AUTO_SCALE is set.

frame_width uint32_t Specify the width, in pixels, of the video surface to
use when rendering a video; it does not imply scaling
(the frame may or may not be completely filled by
the rendered video); it is used only if the
MM_SET_VID_FRAME_SIZE flag is set.

continued. . .

May 4, 2009 Chapter 1 • MME API 43

mm_video_properties_t  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

frame_height uint32_t Specify the height, in pixels, of the video surface to
use when rendering a video; it does not imply scaling
(the frame may or may not be completely filled by
the rendered video); it is used only if the
MM_SET_VID_FRAME_SIZE flag is set.

frame_buffers uint32_t Specify the number of video frames to buffer; must
be less than or equal tomax_bufferable_frames
given bymme_video_get_info(); it is only used if the
MM_SET_FRAME_BUFFERSflag is set.

display_mode uint32_t The video display mode; used only if the
MM_SET_DISPLAY_MODE flag is set.

For more information about video dimensions and aspect ratio see
mm_video_info_t.

Currentlyio-media-generic only supports setting the video source and destination
(thesource anddest members of themm_video_properties_t structure). Other
io-media variants may support other capabilities.

left, top, right and bottom

The left, top, right andbottom members of the structuressource anddest define,
respectively, the video source and destination video rectangles, in pixels. Theleft and
top values are inclusive; theright andbottom values are exclusive.

flags

Theflags member of the structuremm_video_properties_t uses the following
values:

• MM_AUTO_SCALE — ask the player to determine how best to display the video; if
this flag is set,source anddest members are ignored.

• MM_SET_VID_FRAME_SIZE — set to use the values in theframe_width and
frame_height members. If this flag isnot set, theframe_width andframe_height
members are ignored.

• MM_SET_FRAME_BUFFERS— use the values in theframe_buffers member. If
this flag isnot set theframe_buffers member is ignored.

• MM_SET_DISPLAY_MODE — use the values in thedisplay_mode member. Use
this flag only ifMM_AUTO_SCALE is set. If this flag isnot set, thedisplay_mode
member is ignored.

44 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_properties_t

Classification:
QNX Multimedia

See also:
mm_audio_format_t,mm_audio_type,mm_bitrate_t,
mme_video_audio_info_t,mme_video_info_t,mme_audio_get_status,
mme_video_get_status(), mme_video_get_info(), mme_video_set_properties()

May 4, 2009 Chapter 1 • MME API 45

mm_video_status_t  2009, QNX Software Systems GmbH & Co. KG.

Video status information

Synopsis:
#include <mm/types.h>

typedef struct mm_video_status {
uint32_t width;
uint32_t height;
struct {

uint16_t w;
uint16_t h;

} aspect_ratio;
} mm_video_status_t;

Description:
The structuremm_video_status_t describes a video’s status. It is filled in by the
functionmme_video_get_status() and includes at least the members described in the
table below.

Member Type Description

width uint32_t The width of the video, in pixels.

height uint32_t Height of the video, in pixels.

aspect_ratio struct The width to height aspect ratio of the video. See
aspect_ratio below.

aspect_ratio

Theaspect_ratiomember uses whole numbers to express the video aspect ratio.
These numbers only describe the height to widthratio of the image, and have no
bearing on the actual width and height in pixels of the source.

Common aspect ratio values are:

• 235:100 (2.35:1)

• 16:9 or 166:100 (1.66:1) and (4/3)

Usual representations are in parentheses: “(x,y)”.

w and h

Thew andh members of the structureaspect_ratio are the whole numbers used to
express the aspect ratio of the image.

Width w and heighth values of 0 (0,0) mean that no aspect ratio information is
available.

46 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_status_t

Classification:
QNX Multimedia

See also:
mme_video_get_info(), mme_video_get_status()

May 4, 2009 Chapter 1 • MME API 47

mm_video_subtitle_info_t  2009, QNX Software Systems GmbH & Co. KG.

Video subtitle and caption information

Synopsis:
#include <mm/types.h>

typedef struct mm_video_subtitle_info {
uint32_t title;
uint8_t total;
int8_t current;
struct mm_video_subtitle_attr {

char lang[2];
uint8_t ext;

} attr[MM_MAX_VIDEO_SUBTITLES];
} mm_video_subtitle_info_t;

Description:
The structuremm_video_subtitle_info_t carries information about a video’s
subtitles. It includes at least the members described in the table below.

Member Type Description

title uint32_t The title of video for which subtitle information is
provided.

total uint8_t The number of available subtitles. If this field is 0 (zero),
no subtitles are available.

current int8_t The current subtitle, which is in the range of 0 tototal - 1
(number of available subtitles). If this field is set to -1, no
subtitles are currently displayed.

attr array An array of structures:mm_video_subtitle_attr_t,
of lengthMM_MAX_VIDEO_SUBTITLES, containing
subtitle languages information.

mm_video_subtitle_attr_t

The structuremm_video_subtitle_attr_t contains information about the
languages of a video’s subtitles. It includes at least the members described in the table
below.

48 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mm_video_subtitle_info_t

Member Type Description

lang array An array with two-character ISO 639-1 language codes for
the subtitle.

ext uint8_t Language extension codes. Seemm_subpict_lang_ext.

Classification:
QNX Multimedia

See also:
mm_subpict_lang_ext, mme_video_get_subtitle_info(),
mme_video_set_subtitle()

May 4, 2009 Chapter 1 • MME API 49

mme_audio_get_status()  2009, QNX Software Systems GmbH & Co. KG.

Get the audio status

Synopsis:
#include <mme/mme.h>

int mme_audio_get_status (mme_hdl_t *hdl,
mm_audio_format_t *status);

Arguments:
hdl An MME connection handle.

status A pointer to amm_audio_format_t structure that the function fills in
with information about the audio stream for the current track.

Library:
mme

Description:
The functionmme_audio_get_status() gets audio stream information for the currently
playing track and places it instatus. Seemm_audio_format_t in this reference.

Events

None delivered.

Blocking and validation

This function blocks on the control context and onio-media. It does not validate any
data, and returns with either the requested information or an error.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

50 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_audio_get_status()

See also:
mm_audio_format_t, mme_video_get_status()

May 4, 2009 Chapter 1 • MME API 51

mme_bookmark_create()  2009, QNX Software Systems GmbH & Co. KG.

Create a bookmark for the playing track

Synopsis:
#include <mme/mme.h>

int mme_bookmark_create(mme_hdl_t *hdl,
const char *name,
uint64_t *bookmarkid);

Arguments:
hdl An MME connection handle.

name The bookmark name. Set toNULL if the bookmark name is not
important.

bookmarkid The bookmark ID.

Library:
mme

Description:
The functionmme_bookmark_create() creates a bookmark on a playing track at the
current point of the playback.

Bookmarks allow end users to mark points in tracks from which they want to resume
playing these tracks. They are used bymme_play_bookmark(), which starts playback
of a track in a track session at the specified bookmark instead of at their beginning.

Events

None delivered.

Blocking and validation

This function behaves as follows, depending on the MME connection:

• Synchronous — fully validating and blocks onio-media.

• Asynchronous — replies before the bookmark is created; it doesn’t block on
io-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

52 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_bookmark_create()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_bookmark_delete(), mme_play_bookmark()

May 4, 2009 Chapter 1 • MME API 53

mme_bookmark_delete()  2009, QNX Software Systems GmbH & Co. KG.

Delete a bookmark from a track

Synopsis:
#include <mme/mme.h>

int mme_bookmark_delete(mme_hdl_t *hdl,
uint64_t bookmarkid,
uint64_t fid);

Arguments:
hdl The MME connection handle.

bookmarkid The bookmark ID. Set this argument to0 if you are deleting the
bookmark(s) based on the file ID (fid).

fid The ID for the file from which you want to delete all bookmarks. Set
this argument to0 and usebookmarkid if you want to delete only
one, specified bookmark from the file.

Library:
mme

Description:
The functionmme_bookmark_delete() deletes a specified bookmark or all bookmarks
on a specified track. Note that you can specify eitherbookmarkid to delete a specific
bookmark, orfid to delete all bookmarks for a specified track, but you cannot specify
bothbookmarkid andfid.

Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

54 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_bookmark_delete()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_bookmark_create(), mme_play_bookmark()

May 4, 2009 Chapter 1 • MME API 55

mme_buffer_status_t  2009, QNX Software Systems GmbH & Co. KG.

Buffer status information

Synopsis:
#include <mme/types.h>

typedef struct mme_buffer_status {
uint32_t state;
uint32_t read_ms;
uint32_t max_ms;
uint32_t reserved;

} mme_buffer_status_t;

Description:
The data structuremme_buffer_status_t carries buffer status information. Its
members are described in the table below.

Member Type Description

state uint32_t The buffer state. Seemme_buffer_state_t below.

read_ms uint32_t The number of milliseconds of playback time that are
currently in the buffer.

max_ms uint32_t The maximum buffer size, in milliseconds.

reserved uint32_t Reserved for internal use.

The value inread_ms can be higher than the value inmax_ms. Values are roundedup
to the nearest MRA buffer size, so the current buffer level can be reported as greater
that the set level.

mme_buffer_state_t

The enumerated typemme_buffer_state_t defines buffer states as follows:

• MME_BUFFER_STATE_NORMAL (0) — the MME is playing from the buffer and
draining it, but is not reading anything into the buffer.

• MME_BUFFER_STATE_PREFETCHING(1) — the MME is reading a track and
filling the buffer, but there is not enough playback time in the buffer to start
playback.

• MME_BUFFER_STATE_BUFFERING(2) — the MME is both reading a track and
filling the buffer, and playing from the buffer and draining it.

56 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_buffer_status_t

Classification:
QNX Multimedia

See also:
mme_time_t, mme_playstate_t,mme_playstate_speed_t

May 4, 2009 Chapter 1 • MME API 57

mme_button()  2009, QNX Software Systems GmbH & Co. KG.

Respond to button events for navigable tracks

Synopsis:
#include <mme/mme.h>

int mme_button(mme_hdl_t *hdl,
mm_button_t button);

Arguments:
hdl An MME connection handle.

button The “button” command to pass to the MME in the enumerated type
mm_button_t.

Library:
mme

Description:
The functionmme_button() passes button commands for navigable tracks from your
client application to the MME. Anavigable track is one of the following:

• a track, such as DVD video, that contains a built-in menu

• a track on a device, such as an iPod, that has its own navigation interface

Using the mme_button() function with an iPod device

iPods manage their own track sessions. To move to the next or previous track in an
iPod track session, call themme_button() function withmm_button_t set to
MM_BUTTON_NEXT or MM_BUTTON_PREV, as required.

Checking if a device can manage its own track sessions

To check is a device can manage its own track sessions, the client application can call
mme_play_get_info() to get the data structuremme_play_info_t. If the support flag
containsMME_PLAYSUPPORT_DEVICE_TRACKSESSION, the current device
manages its own track sessions.

Using Repeat and Repeat AB modes

TheMM_BUTTON_REPEAT_OFFandMM_BUTTON_REPEAT_AB_OFFvalues can
be used together to add repeat functionality. For example, you can repeat the current
title, then while repeating the title, mark A and mark B and repeat the AB range. You
can then turn off the repeat AB mode, leaving the repeat title mode active; or, you can
turn off the repeat title mode, leaving the repeat AB mode active.

58 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_button()

mm_button_t

The enumerated typemm_button_t defines the button command to pass to the MME.
It can be set to any of the values listed in the table below.

Note that button commands only work for devices with navigable tracks, as described
above (iPod, DVD-V, Bluetooth), and that most devices only support a subset of the
functionality listed in the table. Check the table to see which devices support which
button values.

Value iPod Bluetooth DVD-V Action

MM_BUTTON_NEXT Y Y Y Skip to next track.

MM_BUTTON_PREV Y Y Y Skip to previous track.

MM_BUTTON_TOP N N Y Skip to first track.

MM_BUTTON_CURSOR_LEFT N N Y Move cursor left.

MM_BUTTON_CURSOR_RIGHT N N Y Move cursor right.

MM_BUTTON_CURSOR_UP N N Y Move cursor up.

MM_BUTTON_CURSOR_DOWN N N Y Move cursor down.

MM_BUTTON_ENTER N N Y Activate the currently highlighted
item.

MM_BUTTON_RETURN N N Y Return to previous activity (i.e.
playback). This button is
equivalent to
MM_BUTTON_RESUME

MM_BUTTON_GOUP N N Y SeeMM_BUTTON_GOUPbelow.

MM_BUTTON_MENU_TITLE N N Y Show title menu.

MM_BUTTON_MENU_ROOT N N Y Go to root menu.

MM_BUTTON_MENU_AUDIO N N Y Show audio properties menu.

MM_BUTTON_MENU_ANGLE N N Y Show video angle menu.

MM_BUTTON_MENU_SUBTITLE N N Y Show subtitle menu.

MM_BUTTON_MENU_PTT N N Y Show title or chapter menu.

MM_BUTTON_REPEAT_AB_OFF N N Y Turn repeat from point A to B off.
See Using Repeat and Repeat AB
modes below.

MM_BUTTON_REPEAT_AB_POINT_A N N Y Set repeat point A.

MM_BUTTON_REPEAT_AB_POINT_B N N Y Set repeat point B.

continued. . .

May 4, 2009 Chapter 1 • MME API 59

mme_button()  2009, QNX Software Systems GmbH & Co. KG.

Value iPod Bluetooth DVD-V Action

MM_BUTTON_REPEAT_OFF N N Y Turn repeat mode off.

MM_BUTTON_REPEAT_CHAPTER N N Y Repeat current chapter.

MM_BUTTON_REPEAT_TITLE N N Y Repeat current title.

MM_BUTTON_REPEAT_DISC N N Y Repeat current disc.

MM_BUTTON_RESUME N N Y Resume previous activity (i.e.
playback).

MM_BUTTON_FRAME_ADVANCE N N Y Advance to next video frame.

MM_BUTTON_FRAME_REVERSE N N Y Move to previous video frame.

MM_BUTTON_PAUSE N Y Y Pause play.

MM_BUTTON_PLAY N Y Y Play.

MM_BUTTON_STOP N Y Y Stop play.

MM_BUTTON_0 to 99 N N Y Accept input from buttonn on a
remote control.

DVD, and video support is platform specific, and the current MME release supports
DVD mediastores and video playback only with customio-media modules.
Similarly, Bluetooth support is scheduled for a future release, or custom
implementations.

If MME API functions that support DVD mediastores and video playback are called
on a system that does not have the requiredio-media modules, these functions return
-1 and seterrno to ENOSYS.

Please contact QNX to discuss your implementation requirements.

MM_BUTTON_GOUP

The behavior ofMM_BUTTON_GOUPis determined by the author of the DVD.
Typically, this button is used to jump to the start of the context the user is in. For
example, if the user is playing a movie, this button jumps to the start of the movie; or,
if the user is in a fourth level menu, this button jumps to the topmost menu.

Events

This function may return playback error events:MME_PLAY_ERROR_*
andMME_EVENT_PLAY_ERROR.

Blocking and validation

This function verifies that the client application code is valid. It blocks on control
contexts.

60 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_button()

If mme_button() is called and another function is called beforemme_button() returns,
the second function blocks onio-media until mme_button() returns. If there are no
other pending calls,mme_button() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play_get_info(), mme_play_info_t

May 4, 2009 Chapter 1 • MME API 61

mme_charconvert_setup()  2009, QNX Software Systems GmbH & Co. KG.

Indicate the default character encoding

Synopsis:
#include <mme/mme.h>
#include <mme/charconver.h>

int mme_charconvert_setup(mme_hdl_t *hdl,
const char *default_encoding,
uint32_t allow_detection);

Arguments:
hdl An MME connection handle.

default_encoding A pointer to string passed to the character conversion DLL
loaded into the MME. The contents of this string are not
currently defined. The character conversion DLL must
understand the contents of thsi string.

allow_detection A flag that determines if the MME and the character conversion
DLL are permitted to perform encoding detection. Set to 1 to
allow detection, or to 0 to disable detection.

Library:
mme

Description:
The functionmme_charconvert_setup() changes the default fallback character
encoding and passes the new values to thecharconvertDLL so that it knows the
new values requested by the system.

Character encoding conversion is required to convert different multimedia sources
(ID3, WMA, etc.) into UTF-8 character format, so that strings are consistent
throughout the system.

The MME already provides the ability to extend its character conversion algorithms by
using the external DLLcharconvert. However, the DLL can MME communicate
the encoding used by a media source to this DLL only if the source itself indicates that
encoding. In cases where the media source does not provide character encoding
information, the character conversion DLL must attempt to detect the encoding and, if
it is unable to do so, fall back to a default encoding.

mme_charconvert_setup() makes setting of the fallback encoding dynamic to allow
easy configuration for different areas of the world. A device controller can tell the
MME what new default encoding to use, and the MME can in turn pass this
information on to the character conversion DLL, which would uses that default.

62 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_charconvert_setup()

Events

None delivered.
Blocking and validation

This function performs no validations and doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
“Creating an external DLL to provide character encoding routines” in the chapter
Configuring Internationalization of theMME Configuration Guide.
mme_media_get_def_lang(), mme_media_set_def_lang()

May 4, 2009 Chapter 1 • MME API 63

mme_connect()  2009, QNX Software Systems GmbH & Co. KG.

Connect to a control context

Synopsis:
#include <mme/mme.h>

mme_hdl_t *mme_connect(const char *filename,
uint32_t flags);

Arguments:
filename The full pathname to the multimedia engine device name, including the

control context (for example,/dev/mme/control_context1).

flags Flags that can be used to modify the behavior or the MME connection.
See “Flags” below.

Library:
mme

Description:
The functionmme_connect() connects the client application to the MME in a specified
control context. It returns anmme_hdl_t object, which is used by the othermme_*()
API functions.

To communicate to multiple control contexts you must usemme_connect() to connect
at least once for each control context.

By default, the MME has one control context, but you can add more to the MME
database, then connect to them. For more detailed information about control contexts,
see “Connecting to the MME” in theMME Developer’s Guide. For more information
about thecontrolcontexts table, see the appendix MME Database Schema
Reference.

CAUTION: Connections are not thread safe, so the client application must ensure that
a connection handle isn’t used by more than one thread at a time.!

Device path

A control context’s path maps directly to a resource manager device path. The device
path, such as, for example,/dev/mme/frontseat, correlates directly to the control
context with the same name; for example: “frontseat”. The device may be on the same
machine that the MME is running on, or it can be located on another machine
accessible to the MME.

64 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_connect()

Flags

The client application can use theflags variable to configure the behavior of the MME
connection. Behavior is configured as follows:

O_SYNCis not set (default).

The MME returns to the client as soon as possible, and completes
work after unblocking the client. It verifies the validity of as
much of the request as possible before unblocking with a success
code.

O_SYNCis set. The MME completely executes requests before returning to the
client.

O_NONBLOCK is not set (default).

The MME will block clients in a queue until it can service their
requests.

O_NONBLOCK is set.

The MME will return an error witherrno set toEAGAIN if
executing a client request would result in the client being blocked.

The blocking option is not honored by all MME functions. Synchronizations, for
example, ignore the blocking flag and are always non-blocking. The main use for the
non-blocking option is to give client application developers more control over the
behavior of the MME playback functions.

Functions that use the QDB many block on the QDB.

Events

None delivered.

Blocking and validation

This function fully validates all data; all arguments are checked before the call returns.
The operation is complete when the call returns.

Returns:
An initialized mme_hdl_t, or NULL if an error occurred (errno is set).

Examples:
The example below shows how to connect your client application to the MME:

May 4, 2009 Chapter 1 • MME API 65

mme_connect()  2009, QNX Software Systems GmbH & Co. KG.

#include <mme/mme.h>
#include <qdb/qdb.h>

static char *mme_device_name = "/dev/mme/default";

static char *qdb_device_name = "/dev/qdb/mme";

...

// Establish a connection to the QDB

// (to obtain information about tracks and their information)

if(NULL == (qdb = qdb_connect(qdb_device_name, 0))) {

fprintf(stderr, "%s: ", qdb_device_name);

perror("qdb_connect()");

exit(EXIT_FAILURE);

}

// Establish a connection to the MME

// (to control what to play)

if(NULL == (mme = mme_connect(mme_device_name, 0))) {

fprintf(stderr, "%s: ", mme_device_name);

perror("mme_connect()");

exit(EXIT_FAILURE);

}

Note that in the sample code above theflags variable is set to 0. The MME will use its
default settings, which areO_SYNCandO_NONBLOCK not set.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
MME connections can be shared between threads in a process. However, they are not
thread safe, so the client application must take precautions to ensure that the same
connection handle isn’t used by two threads at the same time.

See also:
mme_disconnect()

66 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_copy_info_t
Media copy and ripping event information

Synopsis:
#include <mme/types.h>

typedef struct _mme_copy_info {
uint64_t srcfid;
uint64_t dstfid;
uint64_t cqid;

} mme_copy_info_t;

Description:
The structuremme_copy_info_t carries information about media copying and
ripping operations. The MME uses this structure with events such as
MME_EVENT_MEDIACOPIER_COPYFID, MME_EVENT_MEDIACOPIER_SKIPFID
andMME_EVENT_MEDIACOPIER_STARTFID to deliver information about the state
of a media copy or ripping operation.

Member Type Description

srcfid uint64_t The file ID of the source file being copied or ripped.

dstfid uint64_t The file ID of the destination file.

cqid uint64_t The copy queue ID entry currently being copied or ripped.

Classification:
QNX Multimedia

See also:
mme_play_get_status(), “Event data” and the chapter Media Copy and Ripping
Events

May 4, 2009 Chapter 1 • MME API 67

mme_delete_mediastores()  2009, QNX Software Systems GmbH & Co. KG.

Prune unavailable mediastores

Synopsis:
#include <mme/mme.h>

int mme_delete_mediastores(mme_hdl_t *hdl,
uint32_t flags);

Arguments:
hdl An MME connection handle.

flags A flag determining if the function should delete mediastores marked as
permanent. Set to a value defined byMME_DB_DELETION_* .

Library:
mme

Description:
The functionmme_delete_mediastores() prunes from the MME database entries for
mediastores whose state isunavailable. It deletes entries only for mediastores
whose type (MME_STORAGETYPE_*) matches the storage types set by
<MediastoreMatching> configuration elements. See “About pruning ejected
mediastores”.

The functionmme_delete_mediastores() can be called at any time, but it is usually
used after a system startup to delete mediastores entries for mediastores whose states
are set tounavailable because they were removed while the system was shut down.
See Sample scriptmme_del_unav in theMME Configuration Guide.

The default behavior ofmme_delete_mediastores() is to not delete entries for
mediastores whose library entries mark them as permanent. However, you can set the
flag argument to override this restriction and havemme_delete_mediastores() delete
all entries for unavailable mediastores of the types permitted by the
<MediastoreMatching> configuration elements.

The<WhenUnavailable> configuration has no affect onmme_delete_mediastores().

MME_DB_DELETION_*

The MME defines the following values ininterface.h that determine the behavior
of mme_delete_mediastores():

• MME_DB_DELETION_IGNORE_PERMANENT— (0x0001) delete the mediastore
from the MME database, even if it or itslibrary table entries are marked as
permanent.

68 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_delete_mediastores()

Events

None delivered.
Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
()mme_resync_mediastore

May 4, 2009 Chapter 1 • MME API 69

mme_device_get_config()  2009, QNX Software Systems GmbH & Co. KG.

Get device configuration information

Synopsis:
#include <mme/mme.h>

int mme_device_get_config(mme_hdl_t *hdl,
uint64_t msid,
const char *xpath,
unsigned flags,
unsigned buflen,
char *buffer);

Arguments:
hdl An MME connection handle.

msid The mediastore ID of the device from which option information is required.

xpath A pointer to the xpath of the XML element attribute to retrieve. This xpath
must be the string"/" (Get all option configuration information).

flags Flags to detemine the behavior of the operation. For future use.

buflen The length of the buffer (referred to bybuffer) for the device configuration.

buffer A pointer to the buffer where the option option values are placed. See
“Getting and setting device configuration values” in theMME Developer’s
Guide chapter External Devices, CD Changers and Streamed Media.

Library:
mme

Description:
The functionmme_device_get_config() retrieves device configuration information for
a specified device accessed through MediaFS.

Ensuring an adequate buffer length

The functionmme_device_get_config() returns a buffer length when it successfully
completes execution. This buffer length indicates only that the function did not fail. It
doesnot indicate that the configuration information was successfully written to the
buffer referenced by thebuffer argument:

• If the value returned bymme_device_get_config() is less than or equal to (≤) the
buffer length (buflen), the buffer was long enough for the requested information.
The function wrote the information to the buffer and you can go on to the next
operation.

70 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_device_get_config()

• If the value returned bymme_device_get_config() is greater than (>) the buffer
length (buflen), the buffer was too small for the requested information. You need to
increase the buffer length to at least the returned value and call
mme_device_get_config() again.

At present,mme_device_get_config() only supports:

• the following devices accessed through MediaFS:

- iPod devices

- Bluetooth devices using a Temic stack

• retrieving all option configuration information; individual elements or attributes
cannot be specified

Events

None delivered.

Blocking and validation

This function perfoms no validations and runs to completion.

Returns:
>0 The function completed successfully, but did not necessarily retrieve the

requested information. See “Ensuring an adequate buffer length” above.

-1 An error occured (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mm_media_status_t, mme_device_set_config()

May 4, 2009 Chapter 1 • MME API 71

mme_device_set_config()  2009, QNX Software Systems GmbH & Co. KG.

Set device options

Synopsis:
#include <mme/mme.h>

int mme_device_set_config(mme_hdl_t *hdl,
uint64_t msid,
const char *xpath,
const char *newvalue,
unsigned flags);

Arguments:
hdl An MME connection handle.

msid The mediastore ID of the device from which option information is
required.

xpath A pointer to the xpath of the XML element attribute to set. This xpath
must specify an XML element attribute; for example:
"/path/to/node@value".

newvalue A pointer to the new value for the specified option.

flags Flags to detemine the behavior of the operation. For future use.

Library:
mme

Description:
The functionmme_device_set_config() sets a device configuration attribute for a
specified device accessed through MediaFS.

As of this release,mme_device_set_config() only supports:

• iPod devices accessed through MediaFS

• setting a single option configuration attribute; you must call the function for each
attribute you want to change

For more information, see “Getting and setting device configuration values” in the
MME Developer’s Guide chapter External Devices, CD Changers and Streamed
Media.

72 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_device_set_config()

Events

None delivered.
Blocking and validation

This function performs no validations. It does not block.

Returns:
0 Success.

-1 An error occured (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mm_media_status_t, mme_device_get_config()

May 4, 2009 Chapter 1 • MME API 73

mme_directed_sync_cancel()  2009, QNX Software Systems GmbH & Co. KG.

Cancels a specified directed synchronization

Synopsis:
#include <mme/mme.h>

int mme_directed_sync_cancel(mme_hdl_t *hdl,
int operation_id);

Arguments:
hdl An MME connection handle.

operation_id The operation ID of the directed synchronization to be cancelled.

Library:
mme

Description:
The functionmme_directed_sync_cancel() cancels a specified directed
synchronization. The synchronization to cancel can be either in progress or pending.

To cancel a directed synchronization, set the parameteroperation_id to the
synchronization ID returned bymme_sync_directed().

For more information about directed synchronizations, seemme_sync_directed().

Events

This function can return synchronization error events (MME_SYNC_ERROR_*) and
MME_EVENT_SYNCABORTED.

Blocking and validation

This function validatesoperation_id before returning.

Returns:
≥0 Success: the directed synchronization was cancelled, or the mediastore was

not being synchronized when the cancellation request was made.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

74 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_directed_sync_cancel()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_resync_mediastore(), mme_setpriorityfolder(), mme_sync_directed(),
mme_sync_file(), mme_sync_get_msid_status(), mme_sync_get_status()

May 4, 2009 Chapter 1 • MME API 75

mme_disconnect()  2009, QNX Software Systems GmbH & Co. KG.

Disconnect from a control context

Synopsis:
#include <mme/mme.h>

int mme_disconnect(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_disconnect() disconnects the client application from the current
MME control context.

If you want to disconnect from a control context but leave the MME process running
and available for new client application connections, simply callmme_disconnect()
with the handle of the control context from which you want to disconnect. However, if
you want to shut down the MME, you must:

1 Call mme_shutdown() to stop playback and synchronization operations and
prepare the MME for shutdown.

2 Call mme_disconnect() to disconnect from the MME.

For more information about how to shut down the MME, seemme_shutdown() and
“Shutting down the MME” in the chapter Starting Up and Connecting to the MME of
theMME Developer’s Guide.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

76 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_disconnect()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect(), mme_shutdown()

May 4, 2009 Chapter 1 • MME API 77

mme_dvd_get_disc region()  2009, QNX Software Systems GmbH & Co. KG.

Get the region permissions for a DVD-video

Synopsis:
#include <mme/mme.h>

int mme_dvd_get_disc_region (mme_hdl_t *hdl,
uint64_t msid,
uint32_t *region);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore (DVD-video disk) from which information is
needed.

region A pointer to the location where the function can store the region reported
by the DVD-video disk.

Library:
mme

Description:
The functionmme_dvd_get_disc_region() gets the region code of specific DVD-video
disks that are inserted into the DVD drive. The bits set by
mme_dvd_get_disc_region() represent the regions in which the DVD-video may be
played. If no bits are set, the DVD-video is regionless and can be played in any region.

Theregion argument takes a 32-bit region code, but the top 24 bits of the region aren’t
currently used. Region codes are represented in bits 0 to 7, with bit 0 representing
region 1, up to bit 7 representing region 8.

How to use mme_dvd_get_disc_region()

Before playing a DVD-video, the MME automatically checks the region for a
DVD-video disk against the DVD drive region, and enforces permissions. If the user
attempts to play a DVD-video in a drive that does not have permissions for that
DVD-video’s region, the MME generates aMME_PLAY_ERROR_REGIONevent.

You should use the functionmme_dvd_get_disc_region() to check the regions of a
DVD-video disk when you first access it. You can perform a bitwise AND operation to
compare these regions against the region codes for which a device is enabled in order
to determine if the DVD-video can be played on that device. For example, if the
device is enabled for regions 1 and 3, you can check that a DVD-video disk is from
one of these regions or has no region set before allowing the user to continue.

By getting the DVD-video disk regions on first access and checking these against the
DVD drive regions, you can inform the end-user immediately in the event that the
DVD-video is not playable on the drive.

78 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_dvd_get_disc region()

Example: check if a DVD-video disk can be played on a device
/*

* You can play a disk if it has no region (its region code
* is 0), or if one of the disk region bits matches the
* device region bits.
*/

if (bitsfromdisc == 0 || (bitsfromdisc & deviceregion) != 0) {
/* Region is OK */
}

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_status()

May 4, 2009 Chapter 1 • MME API 79

mme_dvd_get_status()  2009, QNX Software Systems GmbH & Co. KG.

Get the status for a DVD

Synopsis:
#include <mme/mme.h>

int mme_dvd_get_status (mme_hdl_t *hdl,
mm_dvd_status_t *status);

Arguments:
hdl An MME connection handle.

status A pointer to amm_dvd_status_t structure the function fills in with
information about the DVD status. Seemm_dvd_status_t.

Library:
mme

Description:
The functionmme_dvd_get_status() gets the status for a DVD device. This
information is specific to DVD devices; for generic video playback information, use
mme_video_get_status().

Events

None delivered.

Blocking and validation

This function blocks onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

80 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_dvd_get_status()

See also:
mme_video_get_status(), mm_dvd_status_t

May 4, 2009 Chapter 1 • MME API 81

mme_explore_end()  2009, QNX Software Systems GmbH & Co. KG.

End exploration of an item

Synopsis:
#include <mme/explore.h>

int mme_explore_end(mme_explore_hdl_t *x_hdl);

Arguments:
x_hdl The explorer handle returned bymme_explore_start().

Library:
mme

Description:
The functionmme_explore_end() ends the exploration of an item on a media store.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

82 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_end()

See also:
mme_explore_hdl_t, mme_explore_info_free(), mme_explore_info_get(),
mme_explore_info_t, mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

May 4, 2009 Chapter 1 • MME API 83

mme_explore_hdl_t  2009, QNX Software Systems GmbH & Co. KG.

The explorer API handle

Synopsis:
#include <mme/explore.h>

struct mme_explore_hdl;
typedef struct mme_explore_hdl mme_explore_hdl_t;

Description:
The structuremme_explore_hdl_t is used for exploration session control. One
handle is used for each item explored.

Classification:
QNX Multimedia

See also:
mme_explore_end(), mme_explore_info_free(), mme_explore_info_get(),
mme_explore_info_t, mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

84 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_info_free()
Free an explorer data structure

Synopsis:
#include <mme/explore.h>

int mme_explore_info_free(mme_hdl_t *hdl,
const mme_explore_info_t *info);

Arguments:
hdl A handle to the MME returned bymme_explore_start().

info Pointer to themme_explore_info_t structure to free.

Library:
mme

Description:
The functionmme_explore_info_free() releases anmme_explore_info_t structure
that was returned bymme_explore_playlist_find_file(), not in the context of an
explorer session.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 85

mme_explore_info_free()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_get(),
mme_explore_info_t, mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

86 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_info_get()
Get information about an item being explored

Synopsis:
#include <mme/explore.h>

const mme_explore_info_t *mme_explore_info_get(mme_explore_hdl_t *x_hdl,
uint32_t flags);

Arguments:
x_hdl An explorer handle returned bymme_explore_start().

flags Flags describing the type of item.

Library:
mme

Description:
The functionmme_explore_info_get() retrieves information about an item in a folder
or a playlist file, and returns this information in the data structure
mme_explore_info_t. This information is:

• The path and filename of the item.

• A flag describing the item (file, folder, playlist, etc.). SeeMME_EXPLORE_* bit
masks inmme_explore_hdl_t.

• Metadata, if metadata has been requested. The default is tonot retrieve metadata.

The path information is identical in format to the path information returned by
mme_ms_metadata_get(), and used bymme_play_file() (deprecated).

The item the information is for is determined by:

• the current offset position in the folder

• the number of times this function has been called

Each time this function is called, the offset position is incremented by 1 (one), until
eithermme_explore_end() or mme_explore_position_set() is called. If no offset
position is set,mme_explore_info_get() starts retrieving information from the first
item in the folder.

Items retrieved bymme_explore_info_get() are presented as they occur; that is, they
arenot sorted or reorganized in any way.

May 4, 2009 Chapter 1 • MME API 87

mme_explore_info_get()  2009, QNX Software Systems GmbH & Co. KG.

MME_EXPLORE_RESOLVE_PLAYLIST_ITEM

The constantMME_EXPLORE_RESOLVE_PLAYLIST_ITEM is an inbound flag telling
the MME to resolve playlist file entries immediately. Using this flag results in much
faster resolution of playlist contents to playable files, but the actual playlist entry value
is not visible at to the client application.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
An initialized mme_explore_hdl_t, or NULL if an error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_t, mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

88 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_info_t
Information about items found during mediastore exploration

Synopsis:
#include <mme/explore.h>

typedef struct s_mme_explore_info {
uint32_t flags;
uint32_t index;
char *path;
mme_metadata_hdl_t *metadata;
} mme_explore_info_t;

Description:
The structuremme_explore_info_t carries information about items (folders and
files) found at a specified path on a mediastore. It contains at least the members
described in the table below.

Member Type Description

flags uint32_t Flags set to a value defined by
MME_EXPLORE_* bit masks, described
below.

index unint32_t Index for this entry in the parent folder.

path char A pointer to the full path to the item on the
mediastore.

metadata mme_metadata_hdl_t A pointer to the metadata for this item, if
metadata was requested and found. If this
pointer is not zero, you know that metadata
for this item is available. You donot need to
check the
MME_EXPLORE_FLAGS_HAS_METADATA
flag as well.

MME_EXPLORE_* bit masks

Bitmasks that support mediastore exploration are described in the table below:

May 4, 2009 Chapter 1 • MME API 89

mme_explore_info_t  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_EXPLORE_FILTER_INCLUDE 0x00000000 Inbound flag: instruct the MME to treat
the file filter specification as an
include-only specifier. This is the
default setting if no flag is specified.

MME_EXPLORE_FLAGS_IS_FOLDER 0x00000001 The item is a folder —not a file.

MME_EXPLORE_FLAGS_IS_PLAYLIST 0x00000002 The item is a playlist (folder or file).

MME_EXPLORE_FLAGS_IS_PLAYLIST_ITEM 0x00000004 The item is a name from a playlist.

MME_EXPLORE_FLAGS_IS_PLAYLIST_FILENAME 0x00000008 The item is a resolved filename from a
playlist file. The MME returns this
value only for items retrieved from
playlists when
MME_EXPLORE_RESOLVE_PLAYLIST_ITEM

is used for items successfully converted
to a file on the mediastore. Otherwise,
the MME returns the
MME_EXPLORE_FLAGS_IS_PLAYLIST_ITEM

flag with the item.

MME_EXPLORE_FLAGS_HAS_METADATA 0x00000100 The item has metadata.

MME_EXPLORE_RESOLVE_PLAYLIST_ITEM 0x00010000 Inbound flag: instruct the MME to
resolve playlist file entries immediately.
Using this flag results in much faster
resolution of playlist contents to
playable files, but the actual playlist
entry value is not visible to the client
application. This flag overrides the
MME_EXPLORE_UNCONVERTED_CHAR_ENCODING
flag.

MME_EXPLORE_FILTER_EXCLUDE 0x00020000 Inbound flag: instruct the MME to treat
the file filter specification as an exclude
specifier.

MME_EXPLORE_UNCONVERTED_CHAR_ENCODING 0x00040000 Inbound flag: instruct the MME tonot
perform any character conversion on
entries before returning them. See
“MME_EXPLORE_UNCONVERTED_CHAR_ENCODING

flag” below.

MME_EXPLORE_UNCONVERTED_CHAR_ENCODING flag

Normally, the MME attempts to convert playlist file entries to UTF-8.

Setting theMME_EXPLORE_UNCONVERTED_CHAR_ENCODINGinbound flag is
useful for seeing what comes out of playlists when their entries don’t appear to convert
to real files.

90 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_info_t

If the MME_EXPLORE_RESOLVE_PLAYLIST_ITEM flag is set, this setting overrides
theMME_EXPLORE_UNCONVERTED_CHAR_ENCODINGflag.

Example

Below is an example from the command-line applicationmmexplore showing how
MME_EXPLORE_* bit masks can be used.

static const char *item_type_str(uint32_t flags)
{

if (flags & MME_EXPLORE_FLAGS_IS_PLAYLIST_FILENAME) {
return "PF";

}
if (flags & MME_EXPLORE_FLAGS_IS_PLAYLIST_ITEM) {

return "PI";
}
if ((flags & (MME_EXPLORE_FLAGS_IS_PLAYLIST|MME_EXPLORE_FLAGS_IS_FOLDER)) ==

(MME_EXPLORE_FLAGS_IS_PLAYLIST|MME_EXPLORE_FLAGS_IS_FOLDER)) {
return "DP";

}
if (flags & MME_EXPLORE_FLAGS_IS_PLAYLIST) {

return "P ";
}
if (flags & MME_EXPLORE_FLAGS_IS_FOLDER) {

return "D ";
}
return "F ";

}

Classification:
QNX Multimedia

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_get(), mme_explore_playlist_find_file(),
mme_explore_position_set(), mme_explore_size_get(), mme_explore_start()

May 4, 2009 Chapter 1 • MME API 91

mme_explore_playlist_find_file()  2009, QNX Software Systems GmbH & Co. KG.

Convert playlist file entries to filenames

Synopsis:

#include <mme/explore.h>

const mme_explore_info_t
*mme_explore_playlist_find_file(mme_hdl_t *hdl,

uint64_t msid,
const char *entry,
const char *path,
const char *metadata_types,
uint32_t flags);

Arguments:
hdl A handle to the MME returned bymme_explore_start().

msid The ID of the media store to explore.

entry The playlist file entry retrieved from the explorer.

path The path of the playlist file on the mediastore.

metadata_types An optional pointer to a string containing a comma-separated list
of metadata types to retrieve. This pointer may beNULL. See
METADATA_* in this reference.

flags For future use.

Library:
mme

Description:
The functionmme_explore_playlist_find_file() converts playlist file entries retrieved
during exploration of a playlist file or folder to a filename on the system, and returns
information about these converted entries in amme_explore_info_t structure.

92 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_playlist_find_file()

• You should convert your playlists to UTF-8 before calling
mme_explore_playlist_find_file(). This function currently assumes that theentry
argument is in UTF-8 character encoding. Characters in playlists may not be in
UTF-8 encoding, and if they are not converted to UTF-8 may cause the function to
fail.

• Sincemme_explore_playlist_find_file() cannot know the origin of entries it
converts, it always returns a value of 0 for theindex member of the returned
mme_explore_info_t structure.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
A populatedmme_explore_info_t structure on success, orNULL if an error
occurred (errno is set).

The result of a successful call tomme_explore_playlist_find_file() must be released
by mme_explore_info_free().

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_get(), mme_explore_info_t, mme_explore_position_set(),
mme_explore_size_get(), mme_explore_start()

May 4, 2009 Chapter 1 • MME API 93

mme_explore_position_set()  2009, QNX Software Systems GmbH & Co. KG.

Position the information extraction location in the current folder

Synopsis:
#include <mme/explore.h>

int mme_explore_position_set(mme_explore_hdl_t *x_hdl,
unsigned offset,
unsigned items,
const char *metadata_types,
const char *filter,
uint32_t flags);

Arguments:
x_hdl An explorer handle returned bymme_explore_start().

offset The offset in the folder from which to start getting information.

items The number of items, starting at the offset from which
information is required.

metadata_types An optional pointer to a string containing a comma-separated list
of metadata types to retrieve. This pointer may beNULL. See
METADATA_* in this reference.

filter A pointer to a regular expression used for filtering. This pointer
may beNULL. See “Filtering” below.

flags An MME_EXPLORE_FILTER_* bitmask instructing the MME to
treat the filter specification as either an include-only or as an
exclude-only specifier. The default is
MME_EXPLORE_FILTER_INCLUDE. See “Filtering” below.

Library:
mme

Description:
The functionmme_explore_position_set() sets:

• The position offset in the current folder from which the MME extracts information.

• The number of items that are requested, starting at the offset.

• The metadata types, if any, returned with the items. See also the chapter Metadata
and Artwork in theMME Developer’s Guide.

94 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_position_set()

If the item being explored is a playlist file, no metadata will be returned.

CAUTION: Retrieving more items than can be shown at one time in the HMI display
window reduces system responsiveness:

• Always setitems (the number of items requested) to a value less than or equal to
the number of items that can be shown at one time in the HMI display window size.

• Adjust the number of items requested to correspond to changes to the size of the
HMI display window.

!

Filtering

You can use thefilter andflag arguments to filter the files examined and deliver only
files of interest.

If the filter argument isNULL, it specifies no filter, and removes any previously used
filter. When this argument is notNULL, it is an extended regular expression as defined
by theregcomp() function, where the flagsREG_ICASE| REG_EXTENDED|

REG_NOSUBare used.

For example, to include only MP3 and WAVE files, based on the extensions.mp3 and
.wav, you should callmme_explore_position_set() as follows:

rc = mme_explore_position_set(x_hdl, 0, 20, NULL, ".mp3$|.wav$",
MME_EXPLORE_FILTER_INCLUDE);

Or, to exclude all files with the extension.mov, do the following:

rc = mme_explore_position_set(x_hdl, 0, 20, NULL, ".mov$",
MME_EXPLORE_FILTER_EXCLUDE);

CAUTION:

• The presence of filters makes usingmme_explore_size_get() an expensive
operation (for mediastores for which it is normally inexpensive), because the
mme_explore_size_get() operation must now traverse the entire session to
determine the actual number of items of interest.

• If a filter is assigned (or removed), the current position with the current explore
session is reset to 0.

• If mme_explore_size_get() is called before the filter is set, its result may not be
accurate when the filter is applied.

!

May 4, 2009 Chapter 1 • MME API 95

mme_explore_position_set()  2009, QNX Software Systems GmbH & Co. KG.

Events

None delivered.
Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_get(), mme_explore_info_t,
mme_explore_playlist_find_file(), mme_explore_size_get(), mme_explore_start()

96 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_size_get()
Get the number of entries to be explored

Synopsis:
#include <mme/explore.h>

ssize_t mme_explore_size_get(mme_explore_hdl_t *x_hdl,
uint32_t flags);

Arguments:
x_hdl An explorer handle returned bymme_explore_start().

flags For future use.

Library:
mme

Description:
The functionmme_explore_size_get() returns the number of entries of interest found
in the folder that is currently being explored.

CAUTION:

• mme_explore_size_get() may require considerable time to complete execution:
with some mediastore types, it requires areaddir() of the entire item being
explored.

• If mme_explore_size_get() is called before the filter is set, its result may not be
accurate when the filter is applied.

• The use of filters withmme_explore_position_set() makes using
mme_explore_size_get() an expensive operation (for mediastores for which it is
normally inexpensive), because themme_explore_size_get() operation must now
traverse the entire session to determine the actual number of items of interest.

!

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

May 4, 2009 Chapter 1 • MME API 97

mme_explore_size_get()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_get(), mme_explore_info_t,
mme_explore_playlist_find_file(), mme_explore_position_set(),
mme_explore_start()

98 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_explore_start()
Start exploring an item on a mediastore

Synopsis:
#include <mme/explore.h>

mme_explore_hdl_t *mme_explore_start(mme_hdl_t *hdl,
uint64_t uint64_t msid,
const char *path,
uint32_t flags);

Arguments:
hdl An MME connection handle.

msid The ID of the media store to explore.

path The path to the item to explore. Use an empty string to start at the root of the
media store. See the “Description” below.

flags For future use.

Library:
mme

Description:
The functionmme_explore_start() returns a handle to be used to explore a mediastore.
After calling mme_explore_start(), you can use othermme_explore_*() functions to
find and learn about folders and files of interest on the media store.

Thepath argument can be refer to a file marked as a playlist as well as to a folder or to
a file that can be played.

Events

None delivered.

Blocking and validation

This function performs no validations. It doesn’t block.

Returns:
An initialized mme_explore_hdl_t, or NULL if an error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 99

mme_explore_start()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_explore_end(), mme_explore_hdl_t, mme_explore_info_free(),
mme_explore_info_get(), mme_explore_info_t,
mme_explore_playlist_find_file(), mme_explore_position_set(),
mme_explore_size_get()

100 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_FORMAT_* and MME_PLAYMODE_*
Track session creation definitions

Synopsis:
#include <mme/interface.h>

#define MME_PLAYMODE_*

#define MME_FORMAT_*

Description:
The constantsMME_PLAYMODE_* define the play mode used for a track session. The
constantsMME_FORMAT_* described in the table below define the media file formats
(codecs). They are used by theformat field in thelibrary table.

Constant Value Description

MME_PLAYMODE_LIBRARY 0x0 Library mode.

MME_PLAYMODE_FILE 0x2 File-based track session mode.

MME_FORMAT_UNKNOWN 0ULL Unknown media format.

MME_FORMAT_MLP 1ULL Meridian Lossless Packing

MME_FORMAT_PCM 2ULL LPCM and PCM (Pulse-Code
Modulation)

MME_FORMAT_AC3 3ULL AC-3 (Dolby Digital)

MME_FORMAT_MP2 4ULL MPEG1 audio layer II

MME_FORMAT_MPEG1_L2 4ULL MPEG audio layer II

MME_FORMAT_DTS 5ULL DTS Coherent Acoustics (Digital
Theatre Systems)

MME_FORMAT_SDDS 6ULL Sony Dynamic Digital Sound

MME_FORMAT_MPEG1_L1 7ULL MPEG1 audio layer I

MME_FORMAT_MPEG1_L3 8ULL MPEG1 audio layer III

MME_FORMAT_MPEG2_L1 9ULL MPEG1 audio layer I

MME_FORMAT_MPEG2_L2 10ULL MPEG2 audio layer II

MME_FORMAT_MPEG2_L3 11ULL MPEG2 audio layer III

MME_FORMAT_MPEG2_PRO 12ULL MPEG2 program stream

MME_FORMAT_OGG 13ULL Ogg Vorbis format

MME_FORMAT_AAC 14ULL AAC format

continued. . .

May 4, 2009 Chapter 1 • MME API 101

MME_FORMAT_* and MME_PLAYMODE_*  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_FORMAT_AMR 15ULL AMR format

MME_FORMAT_PCM_PREEMPH 16ULL PCM format with pre-emphasis

MME_FORMAT_WMA 17ULL WMA format

Classification:
QNX Multimedia

See also:
MME_MSCAP_* , MME_MSCAP_* , MME_STORAGETYPE_* ,
MME_SYNC_OPTION_* , mediastores

102 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_get_api_timeout_remaining()
Get the time left on the unblocking timer

Synopsis:
#include <mme/mme.h>

int mme_get_api_timeout_remaining(mme_hdl_t *hdl,
uint32_t *milliseconds);

Arguments:
hdl An MME connection handle.

milliseconds Deprecated.

Library:
mme

Description:
The functionmme_get_api_timeout_remaining() distinguishes betweenEINTR errors
caused by the MME unblocking the caller and other EINTR errors.

If a client application has usedmme_set_api_timeout() to set an unblocking timer on
the control context, API calls that are blocked beyond the set timeout period will
unblock the client, returning early with theerrno set toEINTR.

Becauseerrnos propagate up, anEINTR can be returned to the client for reasons other
than a timeout. To distinguish EINTR errors caused by the MME unblocking the caller
and other EINTR errors, callmme_get_api_timeout_remaining() to get the time
remaining on the timer. If the time remaining indicated bymilliseconds is greater that
0 (zero), then theEINTR error wasn’t caused by a timeout. If the time remaining is 0,
then theEINTR was caused by a timeout.

The MME’s default configuration is to disable unblocking capabilities, which renders
the information delivered bymme_get_api_timeout_remaining() meaningless. To
enable the MME’s unblocking capability, set the<Unblock> configuration element
attribute to “true”.

Events

None delivered.

Blocking and validation

This function doesn’t block.

May 4, 2009 Chapter 1 • MME API 103

mme_get_api_timeout_remaining()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success. Assuming an MMEEINTR

-1 An error occurred (errno is set). Errno is set. AnEINVAL error indicates that
the timeout is set to 0, so the request for the time remaining is invalid.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_set_api_timeout()

104 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_get_event()
Get the next queued MME event

Synopsis:
#include <mme/mme.h>

int mme_get_event(mme_hdl_t *hdl,
mme_event_t **mme_event);

Arguments:
hdl An MME connection handle.

mme_event A pointer to a pointer to the event in the MME event queue.

Library:
mme

Description:
The functionmme_get_event() allows you to determine when your client application
receives events. It retrieves events from the event queue, and places event information
in themme_event_t data structure. This information includes the event:

• type

• size, in bytes (events are variable length)

• data

Events are associated with an MME connection handlemme_hdl_t; they cannot be
cleared by the client application.

The MME does not automatically place events in the event queue. You must use the
functionmme_register_for_events() to register for the types of events your client
application needs to receive. Registration is typically done immediately after
connection.

When the client application is registered for one or more type of event, the MME
places these event types in an event queue and sends the relevantsigevent to the
client application. Based on thesigevent, the client can decide to call
mme_get_event() to retrieve the event.

A call to mme_get_event() invalidates any data that was in themme_event_t before
the call was made. If the client application needs to keep event information longer
than the next call tomme_get_event(), it must copy the event before calling
mme_get_event().

May 4, 2009 Chapter 1 • MME API 105

mme_get_event()  2009, QNX Software Systems GmbH & Co. KG.

For more information about registering for events, see “Registering for events” in the
chapter Starting Up and Connecting to the MME of theMME Developer’s Guide, and
mme_register_for_events().

If your client application does not register for events before it callsmme_get_event(),
the event queue will be empty. If there are no events in the event queue
mme_event_type_twill be set toMME_EVENT_NONE.

For more information about these data structures, see the relevant sections in the
chapter MME Events.

Events

None delivered.

Blocking and validation

This function doesn’t perform any validations, and blocks only on internal event
structures. It doesn’t block on processes external to the MME, such asqdb or
io-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect(), mme_disconnect(), mme_register_for_events(), MME Events,
“Registering for events” in theMME Developer’s Guide

106 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_get_logging()
Get the verbosity log levels for specified logging modules

Synopsis:
#include <mme/mme.h>

int mme_get_logging(mme_hdl_t *hdl,
const char *name,
char *settings,
size_t size);

Arguments:
hdl An MME connection handle.

name A pointer to a string with the name of the logging module for which
information is required. Set the string toNULL to retrieve information for
all logging modules.

settings A comma-separated list of the logging modules and their log levels. See
“Log level settings” below.

size The size, in bytes, of the buffer for the retrieved setting information.

Library:
mme

Description:
The functionmme_get_logging() retrieves the logging verbosity levels for the
specified MME logging modules. For more information about the logging modules
and how to set their levels, seemme_set_logging().

Log level settings

Themme_get_logging() function writes logging level information into the buffer
referenced by thesettings argument. These settings are written as a comma-separated
list with each item based on the following template:

module=verbosity level:flags

For example, if the metadata interface logging module has a verbosity level of 8 and
its flags set to 0,mme_get_logging() writes the following to the buffer referenced by
settings: mdi=8:0.

Logging modules

The strings that identifymme logging modules include:

May 4, 2009 Chapter 1 • MME API 107

mme_get_logging()  2009, QNX Software Systems GmbH & Co. KG.

String Module

imgprc image processing module

mdi metadata interface module

mdp metdata plugin module

pl playlist module

sync synchronization module

mme all other modules

The above list is not definitive. The logging modules may change. To find out what
logging module strings are valid, callmme_get_logging() with the string referenced
by thename argument set toNULL.

Logging flags

The logging flags are bit masks that configure logging behavior:

Value Behavior

1 Also write anything logged to standard output.

2 Write timing logs.

Events

None delivered.

Blocking and validation

This function doesn’t perform any validations, and doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

108 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_get_logging()

Safety

Signal handler No

Thread Yes

See also:
mme_set_logging()

May 4, 2009 Chapter 1 • MME API 109

mme_get_title_chapter()  2009, QNX Software Systems GmbH & Co. KG.

Get DVD title and chapter information

Synopsis:
#include <mme/mme.h>

int mme_get_title_chapter(mme_hdl_t hdl,
uint64_t *title,
uint64_t *ntitles,
uint64_t *chapter,
uint64_t *nchapters);

Arguments:
hdl An MME connection handle.

title The current title number.

ntitles The number of titles in currently playing track or mediastore.

chapter The current chapter number.

nchapters The number of chapters in the current title.

Library:
mme

Description:
The functionmme_get_title_chapter() gets for the currently playing DVD track:

• the number of titles and chapters on the track or its mediastore

• the currently playing title and chapter numbers.

This function can be used only if theMME_PLAYSUPPORT_NAVIGATION flag is set
in thesupport member of the structuremme_play_info_t.

To start playback from a specific title and chapter, call the function
mme_seek_title_chapter() to seek to the desired title and chapter, then call the
functionmme_play() to start playback.

Events

None delivered.

Blocking and validation

This function blocks onio-media.

110 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_get_title_chapter()

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Examples:
Below is a code snippet that illustrates how to get DVD title and chapter information.

uint64_t title, ntitles, chapter, nchapters;

rc = mme_get_title_chapter(mmehdl, &title, &ntitles, &chapter, &nchapters);
if (rc == EOK) {

printf("Title %lld of %lld, Chapter %lld of %lld",
title, ntitles, chapter, nchapters);

} else {
printf("Error getting title/chapter info %s", strerror(errno));

}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play(), mme_play_bookmark(), mme_play_get_info(), mme_play_info_t,
mme_seek_title_chapter(), mme_seektotime()

May 4, 2009 Chapter 1 • MME API 111

mme_getautopause()  2009, QNX Software Systems GmbH & Co. KG.

Get the autopause mode set for a control context

Synopsis:
#include <mme/mme.h>

int mme_getautopause(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_getautopause() returns the autopause mode for a control context. It
returns 1 if autopause is enabled, 0 if it isn’t enabled. For a description of autopause
mode, seemme_setautopause().

Events

None delivered

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success:

1 Autopause mode is set.

0 Autopause mode is not set.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

112 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getautopause()

See also:
mme_next(), mme_play(), mme_prev(), mme_setautopause()

May 4, 2009 Chapter 1 • MME API 113

mme_getccid()  2009, QNX Software Systems GmbH & Co. KG.

Get the control context ID for the currently connected control context

Synopsis:
#include <mme/mme.h>

int mme_getccid(mme_hdl_t *hdl,
uint64_t *ccid);

Arguments:
hdl An MME connection handle.

ccid The control context ID (output).

Library:
mme

Description:
The functionmme_getccid() returns the ID for the control context associated with the
specified MME handle. You can use this ID to query these tables in the MME
database:

• controlcontext, to obtain additional information about the control context
(such as its current track session)

• nowplaying, to find the metadata for the track currently playing on the control
context.

For more information about control contexts, see the chapter Control Contexts, Zones
and Output Devices in theMME Developer’s Guide.

Events

None delivered.

Blocking and validation

This function is fully validating; it checks all arguments before returning.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

114 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getccid()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect()

May 4, 2009 Chapter 1 • MME API 115

mme_getclientcount()  2009, QNX Software Systems GmbH & Co. KG.

Get the number of clients connected to a control context

Synopsis:
#include <mme/mme.h>

int mme_getclientcount(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_getclientcount() returns the number of clients connected to the
MME on the control context specified byhdl. This count is the number ofmme_hdl_t
active handles that have been returned by calls tomme_connect() for the control
context.

Events

None delivered.

Blocking and validation

This function is non-blocking and performs no validations.

Returns:
≥0 Success: the number of clients attached to the control context for the specified

MME handle.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

116 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getclientcount()

See also:
mme_connect()

May 4, 2009 Chapter 1 • MME API 117

mme_getlocale()  2009, QNX Software Systems GmbH & Co. KG.

Get the locale setting

Synopsis:
#include <mme/mme.h>

int mme_getlocale(mme_hdl_t *hdl,
char *locale);

Arguments:
hdl An MME connection handle.

locale A pointer to a location where the function can store the current locale
setting. This location must be at least six characters long.

Library:
mme

Description:
The functionmme_getlocale() gets the current locale setting for an MME control
context.

Events

None delivered

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

118 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getlocale()

See also:
mme_setlocale()

May 4, 2009 Chapter 1 • MME API 119

mme_getrandom()  2009, QNX Software Systems GmbH & Co. KG.

Get the random playback mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_getrandom(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_getrandom() tells you whether the specified control context has
been set to random playback mode. On success, it returns the control context’s random
mode.

Seemme_mode_random_t for a description of the random modes.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns. Verifies that
the client application code is valid. Blocks on control contexts.

If mme_getrandom() is called and another function is called beforemme_getrandom()
returns, the second function blocks onio-media until mme_getrandom() returns. If
there are no other pending calls,mme_getrandom() returns without blocking on
io-media.

Returns:
≥0 Success: the random playback mode for the control context.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

120 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getrandom()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getrepeat(), mme_getscanmode() mme_setrandom() mme_setrepeat(),
mme_mode_random_t,mme_mode_repeat_t

May 4, 2009 Chapter 1 • MME API 121

mme_getrepeat()  2009, QNX Software Systems GmbH & Co. KG.

Get the repeat playback mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_getrepeat(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_getrepeat() returns the repeat mode for the specified control
context. On success, it returns the control context’s repeat mode.

Seemme_mode_repeat_t for a description of these modes.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

This function blocks on control contexts. Ifmme_getrepeat() is called and another
function is called beforemme_getrepeat() returns, the second function blocks on
io-media until mme_getrepeat() returns. If there are no other pending calls,
mme_getrepeat() returns without blocking onio-media.

Returns:
≥0 Success: the repeat playback mode for the control context.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

continued. . .

122 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getrepeat()

Safety

Thread Yes

See also:
mme_getrandom(), mme_getscanmode() mme_setrandom() mme_setrepeat(),
mme_mode_random_t,mme_mode_repeat_t

May 4, 2009 Chapter 1 • MME API 123

mme_getscanmode()  2009, QNX Software Systems GmbH & Co. KG.

Get the scan mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_getscanmode(mme_hdl_t *hdl,
uint64_t *time);

Arguments:
hdl An MME connection handle.

time A pointer to a location where the function can store the scan mode setting (in
milliseconds).

Library:
mme

Description:
The functionmme_getscanmode() gets the scan mode setting for a control context.
This setting is the number of milliseconds of a track that the MME plays in scan mode
before skipping to the next track in the tracklist.

Events

None delivered.

Blocking and validation

This function blocks on control contexts. Ifmme_getscanmode() is called and another
function is called beforemme_getscanmode() returns, the second function blocks on
io-media until mme_getscanmode() returns. If there are no other pending calls,
mme_getscanmode() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

124 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_getscanmode()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getrandom(), mme_getrepeat(), mme_setrandom() mme_setrepeat(),
mme_setscanmode()

May 4, 2009 Chapter 1 • MME API 125

mme_hdl_t  2009, QNX Software Systems GmbH & Co. KG.

The MME connection handle

Synopsis:
#include <mme/types.h>

Description:
The opaque structuremme_hdl_t carries MME connection handle information. Valid
connection handles are created by the functionmme_connect(). The MME fills in all
needed information to create the connection handle; you only need to know that all
calls to MME functions require a valid connection handle.

The functionmme_disconnect() releases connection handles. Function calls made
with a connection handle after it has been released will cause an error.

Safety

All MME functions are thread-safe. The client application can create multiple
connections and the MME handles thread safety for all threadswhen each thread uses
a different connection handle.

However, if you use the same connection handle for more than one thread in your
client application, you must use mutexes, semaphores or some other method to protect
the connection handle from being accidently overwritten.

Classification:
QNX Multimedia

See also:
mme_connect(), mme_disconnect()

126 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_lib_column_set()
Set values in specified table column

Synopsis:
#include <mme/mme.h>

int mme_lib_column_set(mme_hdl_t *hdl,
uint64_t msid,
const char *column,
int value);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore for which a value needs to be changed in the
library table.

column The name of thelibrary table column that needs to be changed.

value The new value for the entries for the specified mediastore in the specified
column.

Library:
mme

Description:
The functionmme_lib_column_set() inserts a value into the entries for a mediastore in
thelibrary table (or adjunct tables). It can be used to perform actions such as
clearing thelibrary tableaccurate fields for the specified mediastore.

Update behavior

This function can only be used to update entries in the columns listed below, and it
validates that the character string referenced bycolumn specifies one of these columns:

• accurate

• last_played

• fullplay_count

• playable

• permanent

• copied_fid

May 4, 2009 Chapter 1 • MME API 127

mme_lib_column_set()  2009, QNX Software Systems GmbH & Co. KG.

• Whenmme_lib_column_set() completes execution it returns the number of rows
for the specified mediastore that now have the new value. In other words, the
function returns the number of rows for the specified mediastore that are now set to
the new value.

• If prior to the call tomme_lib_column_set() some rows were already set to the
required value, the return value may differ from the number of rows actually
updated.

• Only rows for the specified mediastore are included in the return value. Rows for
other mediastores are not counted.

Events

None delivered.

Blocking and validation

This function validates the column name; it executes to completion.

Returns:
≥0 Success: the number of table rows for the specified mediastore, with the new

value updated. See “Update behavior” above.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

128 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_media_get_def_lang()
Get the preferred media playback language

Synopsis:
#include <mme/mme.h>

int mme_media_get_def_lang (mme_hdl_t *hdl,
char *lang);

Arguments:
hdl An MME connection handle.

lang A pointer to a location where the function can store the current preferred
media playback language (a string to place a 0-terminated, 2-character
ISO639-1 language code). If the language hasn’t been set,lang is set to a
0-length string.

Library:
mme

Description:
The functionmme_media_get_def_lang() gets the current preferred language
playback setting for an MME control context.

For more information about default language settings, see
mme_media_set_def_lang().

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 129

mme_media_get_def_lang()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_media_set_def_lang()

130 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_media_set_def_lang()
Set the preferred media playback language

Synopsis:
#include <mme/mme.h>

int mme_media_set_def_lang (mme_hdl_t *hdl,
const char *lang);

Arguments:
hdl An MME connection handle.

lang The default language code to set. This is a string containing 2-character
ISO639-1 language code. See
http://www.loc.gov/standards/iso639-2/php/code_list.php

Library:
mme

Description:
The functionmme_media_set_def_lang() sets the preferred language for media
playback. After this function sets the language preference for the current MME
control context, the MME uses the selected language as the default langauge for
playback whenever possible. For example,mme_media_set_def_lang() sets the
preferred language to German:

• If a DVD-video has playback in German, the MME will play the DVD in German.

• If a DVD-video does not have playback in German, the MME will play the DVD in
the preferred language set on the DVD itself.

If mme_media_set_def_lang() is not called after connecting to the MME, no language
preference is selected, and the MME will play media in the preferred language set on
the mediastores.

Events

The functionmme_media_set_def_lang() delivers the
MME_EVENT_DEFAULT_LANGUAGE so that asynchronous clients are notified that
the default preferred language has been successfully set, or that the attempt to change
the language has failed.

Blocking and validation

This function doesn’t block.

May 4, 2009 Chapter 1 • MME API 131

mme_media_set_def_lang()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_media_get_def_lang()

132 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_add()
Add files to the copy queue

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_add(mme_hdl_t *hdl,
mme_mediacopier_info_t *copyinfo,
char *statement,
uint32_t flags);

Arguments:
hdl An MME connection handle.

copyinfo A pointer to amme_mediacopier_info_t structure that contains
information about the copy operation.

statement An SQL statement that selects the fids that you want to encode.

flags Flags affecting the copy operation. See “Mediacopier flags” below.

Library:
mme

Description:
The functionmme_mediacopier_add() prepares a media copying or ripping operation.
Files that are selected bystatement are added to thecopyqueue table in the MME
database.

To start a copy or ripping operation:

• usemme_mediacopier_add() to populate thecopyqueue table with information
needed for the copy or ripping operation

• call mme_mediacopier_enable() to start the operation

To add files to the copy queue, specifying strings for unknown metadata, use
mme_mediacopier_add_with_metadata().

Using default ripping values

By default, if you set thecopyinfo members as follows:dstmsid=0,
dstfolder=NULL,dstfilename=NULL, andencodeformatid=0, the MME will
use the defaults in the configuration filemme.conf.

May 4, 2009 Chapter 1 • MME API 133

mme_mediacopier_add()  2009, QNX Software Systems GmbH & Co. KG.

CAUTION: You should not assume that the default destination mediastore set by the
configuration element<Copying>/<Destination>/<MSID> is always your HDD. In
some instances, on startup the MME may detect another mediastore, such as a CD,
before it detects the HDD and assign itmsid=1. When preparing a media copy or
ripping operation, ensure that the destination mediastore (dstmsid) is a writeable
mediastore.

!

For more information, see the chapter Configuring Media Copying and Ripping in the
MME Configuration Guide.

Mediacopier flags

Media copying and ripping uses theflags argument to determine media copying and
ripping behavior. Possible values are combinations of:

Flag Value Description

MME_MEDIACOPIER_COPYADD_NONE 0x0000 Copy or rip directly
to a destination
folder. Obsolete; not
supported.

MME_MEDIACOPIER_COPYADD_PRESERVE_PATH 0x0001 Preserve the original
folder structure for
copied or ripped
files. Create folders
as required.
Obsolete; not
supported.

MME_MEDIACOPIER_USE_DEFAULT_FILENAME 0x0002 Use the default
destination filename
set in the MME
configuration file.

MME_MEDIACOPIER_USE_METADATA 0x0004 Use the specified
metadata; do not use
defaults.

MME_MEDIACOPIER_USE_DEFAULT_FOLDERNAME 0x0008 Use the default
destination folder
name set in the
MME configuration
file.

134 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_add()

For more information about default destination files and folders, see “Configuration
elements for the media copy and ripping destination” in theMME Configuration
Guide chapter Configuring Media Copying and Ripping.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success

-1 An error occurred (errno is set).

Examples:
Below is a code snippet from themmecli.c example application. This code snippet
illustrates how to set up a call tomme_mediacopier_add().

mme_mediacopier_info_t copyinfo;

// Just use defaults for now
copyinfo.dstmsid = 0;
copyinfo.dstfolderid = 0;
copyinfo.format = 0;
copyinfo.bitrate = 0;
rc = mme_mediacopier_add(&mmehdl, ©info, statement, 0);

if (rc == -1) {
sprintf(output, "Error setting copy add");

}
else {

sprintf(output, "copy added");
}

The example below shows how to use template strings for the destination folder and
file name.

mme_mediacopier_info_t copyinfo;

char *folder = "/ripped/$ARTIST/$ALBUM/";
char *title = "$0TRACK-$TITLE(date=$DATESTAMP,time=$TIMESTAMP,srcfid=$SRC

copyinfo.dstmsid = 1;
copyinfo.dstfolder = folder;
copyinfo.dstfilename = title;
copyinfo.encodeformatid = 2;
rc = mme_mediacopier_add(mmehdl, ©info, statement, 0);

if (rc == -1) {
sprintf(output, "Error setting copy add");

May 4, 2009 Chapter 1 • MME API 135

mme_mediacopier_add()  2009, QNX Software Systems GmbH & Co. KG.

}
else {

sprintf(output, "copy added");
}

Seemme_mediacopier_info_t.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_mediacopier_add_with_metadata(), mme_mediacopier_cleanup(),
mme_mediacopier_clear(), mme_mediacopier_disable(),
mme_mediacopier_enable(), mme_mediacopier_get_status(),
mme_mediacopier_remove(), mme_mediacopier_info_t

136 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_add_with_metadata()
Add files to the copy queue, specifying strings for unknown metadata

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_add_with_metadata(mme_hdl_t *hdl,
mme_mediacopier_info_t *copyinfo,
const char *statement,
uint32_t flags,
const char *unknown_album,
const char *unknown_artist);

Arguments:
hdl An MME connection handle.

copyinfo A pointer to amme_mediacopier_info_t structure that
contains information about the copy operation.

statement An SQL statement that selects the fids that you want to encode.

flags Flags affecting the copy operation. See “Mediacopier flags”
below.

unknown_album A pointer to a text string to add to the file metadata if the album
is not known.

unknown_artist A pointer to a text string to add to the file metadata if the artist is
not known.

Library:
mme

Description:
The functionmme_mediacopier_add_with_metadata() prepares a media copying or
ripping operation and adds specified strings when the artist or album is not known.
This function behaves exactly likemme_mediacopier_add(), except for the added
functionality required to add the string for unknown metadata.

This function updates metadata if:

• the<IgnoreNonAccurate> and<UpdateMetadata> configuration elements
have theirenable attributes set totrue, and the source tracklibrary.accurate
value is 0 (the accuracy of metadata is not known);

or, if:

• theflags argument is set toMME_MEDIACOPIER_USE_METADATA

May 4, 2009 Chapter 1 • MME API 137

mme_mediacopier_add_with_metadata()  2009, QNX Software Systems GmbH & Co. KG.

The functionmme_mediacopier_add_with_metadata() updates the metadata both in
the MMElibrary table entry for the destination file, and in the destination file itself.
This behavior ensures that the metadata added to the destination file is maintained,
even in the event that the MME database is lost.

To specify metadata for destination files whose album or artist is not known, use the
unknown_album andunknown_artist fields, specifying the strings to insert as
metadata, and including the$MSIDENTIFIER template variable in the strings to
ensure that each file is uniquely identified. See$MSIDENTIFIER below.

Determining destination file and folder names

Calls tomme_mediacopier_add_with_metadata() determine destination file and
folder names as follows:

• If the MME_MEDIACOPIER_USE_METADATA flag value is set, the filename and
folder name must be explicitly defined. Configured defaults arenot to be used, and
theMME_MEDIACOPIER_USE_DEFAULT_* flags are not relevant.

• If the MME_MEDIACOPIER_USE_DEFAULT_FILENAME flag is set, use the default
filename.

• If the MME_MEDIACOPIER_USE_DEFAULT_FOLDERNAME flag is set, use the
default folder name.

Mediacopier flags

Media copying and ripping uses theflags argument to determine media copying and
ripping behavior. Possible values are combinations of:

Flag Value Description

MME_MEDIACOPIER_COPYADD_NONE 0x0000 Copy or rip directly
to a destination
folder. Obsolete; not
supported.

MME_MEDIACOPIER_COPYADD_PRESERVE_PATH 0x0001 Preserve the original
folder structure for
copied or ripped
files. Create folders
as required.
Obsolete; not
supported.

MME_MEDIACOPIER_USE_DEFAULT_FILENAME 0x0002 Use the default
destination filename
set in the MME
configuration file.

continued. . .

138 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_add_with_metadata()

Flag Value Description

MME_MEDIACOPIER_USE_METADATA 0x0004 Use the specified
metadata; do not use
defaults.

MME_MEDIACOPIER_USE_DEFAULT_FOLDERNAME 0x0008 Use the default
destination folder
name set in the
MME configuration
file.

For more information about default destination files and folders, see “Configuration
elements for the media copy and ripping destination” in theMME Configuration
Guide chapter Configuring Media Copying and Ripping.

$MSIDENTIFIER

The$MSIDENTIFIER template variable is set to the value of theidentifier field in
themediastores table. Adding it to the string written into a destination file’s
unknown_* fields ensures that the destinatation file is always correctly associated with
its mediastore.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0. Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 139

mme_mediacopier_add_with_metadata()  2009, QNX Software Systems GmbH & Co. KG.

See also:
METADATA_* , mme_mediacopier_add(), mme_mediacopier_cleanup(),
mme_mediacopier_clear(), mme_mediacopier_disable(),
mme_mediacopier_enable(), mme_mediacopier_get_status(),
mme_mediacopier_remove(), mme_mediacopier_info_t

140 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_cleanup()
Clean up partially copied or ripped files

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_cleanup(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_mediacopier_cleanup() cleans up partially copied or ripped files
from the MME database and the system HDD. You should use this function when
starting up after a media copying or ripping operation has been aborted or was stopped
unexpectedly, in order to to ensure that the MME does not keep entries for
incompletely ripped files in its database.

The functionmme_mediacopier_cleanup() can be called only if the mediacopier is
disabled. An attempt to call this function while the mediacopier is enabled causes it to
return anEBUSY error.

Events

None delivered.

Blocking and validation

This function checks that the mediacopier is disabled; it doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set). AnEBUSY error indicates that the
mediacopier is enabled.

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 141

mme_mediacopier_cleanup()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_mediacopier_add(), mme_mediacopier_clear(), mme_mediacopier_disable(),
mme_mediacopier_enable(), mme_mediacopier_get_status(),
mme_mediacopier_remove()

142 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_clear()
Clear all files from the media copy queue

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_clear(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_mediacopier_clear() removes all files from the media copy queue.

To remove specific files from the copy queue, usemme_mediacopier_remove().

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 143

mme_mediacopier_clear()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_mediacopier_add(), mme_mediacopier_cleanup(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier_get_status(), mme_mediacopier_remove()

144 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_disable()
Disable the mediacopier

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_disable(mme_hdl_t *hdl,
uint32_t flags);

Arguments:
hdl The MME connection handle.

flags Flags that affect the disable operation. None are defined; pass as 0.

Library:
mme

Description:
The functionmme_mediacopier_disable() stops a copying or ripping operation.

Stopping a media copying or ripping operation does not affect thecopyqueue table.
To remove file fromcopyqueue table, you must call the function
mme_mediacopier_clear().

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 145

mme_mediacopier_disable()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier_clear(),
mme_mediacopier_enable(), mme_mediacopier_get_status(),
mme_mediacopier_remove()

146 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_enable()
Enable the mediacopier

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_enable(mme_hdl_t *hdl,
uint32_t flags);

Arguments:
hdl The MME connection handle.

flags Flags that affect the enable operation. None are defined; pass as 0.

Library:
mme

Description:
The functionmme_mediacopier_enable() starts a copying or ripping operation.

Before callingmme_mediacopier_enable() you must callmme_mediacopier_add() to
prepare a media copy operation and populate thecopyqueue table. You can stop a
copy operation in progress by callingmme_mediacopier_disable().

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 147

mme_mediacopier_enable()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier_clear(),
mme_mediacopier_disable(), mme_mediacopier_get_status(),
mme_mediacopier_remove()

148 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_get_mode()
Get the selected media copy or rip mode

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_get_mode(mme_hdl_t *hdl,
mme_mediacopier_mode_t *copymode);

Arguments:
hdl An MME connection handle.

copymode The copy mode selected for the media copying or ripping operation.

Library:
mme

Description:
The functionmme_mediacopier_get_mode() gets the selected mode for a media copy
or ripping operation. This mode is defined by the enumerated type
mme_mediacopier_mode_t.

Events

None delivered.

Blocking and validation

This function blocks until it completes.

Returns:
≥0 Success

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 149

mme_mediacopier_get_mode()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_mediacopier_cleanup(), mme_mediacopier_set_mode(), mme_metadata_set()

150 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_get_status()
Get the status of a media copy or ripping operation

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_get_status(mme_hdl_t *hdl,
mme_copy_status_t *copy_status);

Arguments:
hdl An MME connection handle.

msg A pointer to the structuremme_copy_status_t that is filled in by the
function. Seemme_copy_status_t below.

Library:
mme

Description:
The functionmme_mediacopier_get_status() gets the status of a media copying or
ripping operation. The status information is placed in a structure
mme_copy_status_t.

mme_copy_status_t
typedef struct _mme_copy_status {

uint64_t cqid;
uint64_t srcfid;
uint64_t dstfid;
uint32_t units;
uint32_t reserved;
union {

mme_time_t time_info;
mme_byte_status_t byte_info;

};
} mme_copy_status_t;

The structuremme_copy_status_t defines information about the current media copy
or ripping operation. Its members include at least those described in the table below.

Member Type Description

cqid uint64_t The copy queue ID entry currently being
copied or ripped.

continued. . .

May 4, 2009 Chapter 1 • MME API 151

mme_mediacopier_get_status()  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

srcfid uint64_t The file ID of the source file being copied or
ripped.

dstfid uint64_t The file ID of the destination file.

units uint32_t The units (time or bytes) used to track
progress of the media copy or ripping
operation. Seemme_copy_units_t below.

reserved uint32_t Reserved for internal use.

byte_info | time_info union Depending on the value ofunits, either the
structuremme_time_t with the play time
ripped, or the structure
mme_byte_status_twith the number of
bytes copied.

mme_copy_units_t

The enumerated typemme_copy_units_t defines the units used to measure progress
during a media copy or ripping operation. It can have the following values:

• MME_COPY_UNITS_NONE(0) — no measurement units have been defined.

• MME_COPY_UNITS_TIME_MS (1) — time, in milliseconds.

• MME_COPY_UNITS_BYTES (2) — bytes.

mme_byte_status_t
typedef struct _mme_byte_status {

uint64_t bytepos;
uint64_t nbytes;

} mme_byte_status_t;

Media copy operations usebyte_info to communicate the progress of a copy operation
whenmme_copy_units_t is set toMME_COPY_UNITS_BYTES. byte_info is a
member ofmme_copy_status_t; it uses the structuremme_byte_status_t to hold
the copy progress information. Its members are described in the table below.

Member Type Description

bytepos uint64_t Number of bytes copied thus far.

nbytes uint64_t Total number of bytes to be copied.

152 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_get_status()

time_info

Ripping operations usetime_info to communicate the progress of a ripping operation
whenmme_copy_units_t is set toMME_COPY_UNITS_TIME_MS. A member of
mme_copy_status_t, time_info uses the structuremme_time_t to hold the ripping
progress information, in milliseconds:

• the duration of the track

• the current time position

Seemme_time_t.

Events

None delivered.

Blocking and validation

This function blocks until it completes.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier_clear(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier_remove(), mme_time_t

May 4, 2009 Chapter 1 • MME API 153

mme_mediacopier_info_t  2009, QNX Software Systems GmbH & Co. KG.

Media copy and ripping information

Synopsis:
#include <mme/types.h>

typedef struct {
uint64_t dstmsid;
const char *dstfolder;
const char *dstfilename;
uint64_t encodeformatid;

} mme_mediacopier_info_t;

Description:
The structuremme_mediacopier_info_t carries information about a media copy or
ripping operation. It includes at least the members described in the table below.

Member Type Description

dstmsid uint64_t The destinationmsid. Set to 0 to use the default
msid.

dstfolder char A pointer to the destination folder for the tracks to
be ripped. Seedstfolder below.

dstfilename char A pointer to the string used to create the destination
file name for the tracks to be ripped.

encodeformatid uint64_t The encode format ID (encodeformatid) from the
encodeformats table that you want to use for
encoding. Seeencodeformatid below.

dstfolder and dstfilename

The value fordstfolder must be in the format/foldername/ (beginning and ending with
a “/” character). For example, if in yourmediastores table the destinationmsid has
a mountpath of/media/drive, and thedstfolder name is “/ripped/”, then the track is
ripped to/media/drive/ripped/.

Setdstfolder to NULL to use the default destination folder, anddstfilename NULL to
use the destination file name defined in the MME configuration filemme.conf. You
can specify nested sub-directories, as required.

Destination folder dstfolder and file name dstfilename template strings

The MME defines templates strings you can use to name the ripping destination
folders and files. These template strings are described in the table below.

154 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_info_t

String Value Description

$TITLE MME_MEDIACOPIER_TEMPLATE_TITLE song title

$ARTIST MME_MEDIACOPIER_TEMPLATE_ARTIST artist name

$ALBUM MME_MEDIACOPIER_TEMPLATE_ALBUM album name

$GENRE MME_MEDIACOPIER_TEMPLATE_GENRE song genre

$COMPOSER MME_MEDIACOPIER_TEMPLATE_COMPOSER song composer

$TRACK MME_MEDIACOPIER_TEMPLATE_TRACK track number

$0TRACK MME_MEDIACOPIER_TEMPLATE_0TRACK track number with leading
zeros: 01, 02, etc.

$DISC MME_MEDIACOPIER_TEMPLATE_DISC disc number

$0DISC MME_MEDIACOPIER_TEMPLATE_0DISC disc number with leading
zeros: 01, 02, etc.

$YEAR MME_MEDIACOPIER_TEMPLATE_YEAR release year

$SRCFID MME_MEDIACOPIER_TEMPLATE_SRCFID source file ID

$SRCMSID MME_MEDIACOPIER_TEMPLATE_SRCMSID source mediastore ID

$TIMESTAMP MME_MEDIACOPIER_TEMPLATE_TIMESTAMP time when file is copied

$DATESTAMP MME_MEDIACOPIER_TEMPLATE_DATESTAMP date when file is copied

$MSIDENTIFIER MME_MEDIACOPIER_TEMPLATE_MSIDENTIFIER source mediastore ID

$NO_PRESERVE_PATH COPY_NO_PATH_PRESERVE force the path to be discarded

$PRESERVE_PATH COPY_PATH_PRESERVE force the path to be preserved

$PRESERVE_PATH_AFTER COPY_PATH_PRESERVE_AFTER modify the source path when it
is appended to the destination
folder

encodeformatid

The standard default values forencodeformatid are:

• 1 — copy operation

• 2 — wav encoding

• 3 — AAC encoding (SH4 only; requires specific licences)

• 4 — wma encoding (requires specific licences)

Setencodeformatid to 0 to use the default encode format.

May 4, 2009 Chapter 1 • MME API 155

mme_mediacopier_info_t  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Multimedia

See also:
mme_mediacopier_add()

156 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_remove()
Remove files from the media copy queue

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_remove(mme_hdl_t *hdl,
char *statement,
uint32_t flags);

Arguments:
hdl An MME connection handle.

statement An SQL statement of copy queue IDs that you want to remove from the
copy queue.

flags Option flags. There are currently none defined, pass as 0.

Library:
mme

Description:
The functionmme_mediacopier_remove() removes specified files from the copy
queue. To clear all files from the copy queue, usemme_mediacopier_clear().

Events

None returned.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 157

mme_mediacopier_remove()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_mediacopier_add(), mme_mediacopier_cleanup(), mme_mediacopier_clear(),
mme_mediacopier_disable(), mme_mediacopier_enable(),
mme_mediacopier_get_status()

158 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mediacopier_set_mode()
Get the selected media copy or rip mode

Synopsis:
#include <mme/mme.h>

int mme_mediacopier_set_mode(mme_hdl_t *hdl,
mme_mediacopier_mode_t *copymode);

Arguments:
hdl An MME connection handle.

copymode The copy mode selected for the media copying or ripping operation.

Library:
mme

Description:
The functionmme_mediacopier_set_mode() sets the mode for a media copying or
ripping operation. This mode is defined by the enumerated type
mme_mediacopier_mode_t.

mme_mediacopier_mode_t

The enumerated typemme_mediacopier_mode_t sets the media copying or ripping
mode:

• MME_MEDIACOPIER_MODE_BKG — The MME will:

- return after it initiates the operation

- perform the media copy or ripping in the background

- give priority to other operations

• MME_MEDIACOPIER_MODE_PRIORITY_BKG — The MME will:

- return after it initiates the operation

- perform the media copy or ripping in the background

- take priority over other background operations

• MME_MEDIACOPIER_MODE_FOREGROUND (For future implementation.)
— The MME will:

- return after it completes the operation

- perform the media copy or ripping in the foreground

- negotiate priority with other foreground operations

May 4, 2009 Chapter 1 • MME API 159

mme_mediacopier_set_mode()  2009, QNX Software Systems GmbH & Co. KG.

Events

None delivered.
Blocking and validation

This function blocks until it completes.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_mediacopier_cleanup(), mme_mediacopier_get_mode(), mme_metadata_set()

160 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_alloc()
Copy a metadata handle

Synopsis:
#include <mme/explore.h>

mme_metadata_hdl_t *mme_metadata_alloc(
const mme_metadata_hdl_t *metadata);

Arguments:
metadata A pointer to the metadata to copy.

Library:
mme

Description:
The functionmme_metadata_alloc() makes and returns a malloced copy of a specified
metadata handle structuremme_metadata_hdl_t, making it easier for users of the
MME’s explorer API to copy retrieved items.

The client application must deallocate the returned value frommme_metadata_alloc()
by usingfree().

For more information about managing metadata handles, see “Managing explorer
structures and metadata handles” in the chapter Metadata and Artwork in theMME
Developer’s Guide.

Events

None delivered.

Blocking and validation

This function performs no validations and doesn’t block.

Returns

Returns:
A copied metadata handle structure.

Success.

0 An error occurred (errno is set), or the metadata handle received isNULL.

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 161

mme_metadata_alloc()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
METADATA_* , mme_metadata_extract_data(), mme_metadata_extract_string(),
mme_metadata_extract_unsigned(), mme_metadata_hdl_t,
mme_ms_metadata_done(), mme_ms_metadata_get()

162 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_extract_data()
Get the data format metadata from the metadata handle

Synopsis:
#include <mme/metadata.h>

const void *mme_metadata_extract_data(const mme_metadata_hdl_t *metadata,
const char *type,
uint32_t flags,
size_t *length);

Arguments:
metadata The pointer to the handle with the metadata.

type The type of metadata to extract. SeeMETADATA_* .

flags For future use.

length A pointer to the location to which the function should return the length,
in bytes, of the extracted data. If there is no data, this value is 0 (zero).

Library:
metadata

Description:
The functionmme_metadata_extract_data() returns the format of the metadata
retrieved bymme_ms_metadata_get() and placed in the metadata handle
mme_metadata_hdl_t. Metadata formats are defined by the
METADATA_FORMAT_* enumerated values.

Events

None delivered.

Blocking and validation

This function validates that the metadata handle isn’tNULL. It doesn’t block.

Returns:
Data in the character string, orNULL if no data is found (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 163

mme_metadata_extract_data()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_string(),
mme_metadata_extract_unsigned(), mme_metadata_hdl_t,
mme_ms_metadata_done(), mme_ms_metadata_get()

164 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_extract_string()
Get the string format from the metadata handle

Synopsis:
#include <mme/metadata.h>

const char *mme_metadata_extract_string(const mme_metadata_hdl_t *metadata
const char *type,
uint32_t flags);

Arguments:
metadata The pointer to the handle with the metadata, returned by

mme_ms_metadata_get().

type The type of metadata to extract. SeeMETADATA_* .

flags For future use.

Library:
metadata

Description:
The functionmme_metadata_extract_string() extracts metadata in character string
format from the metadata handlemme_metadata_hdl_t.

Events

None delivered.

Blocking and validation

This function validates that the metadata handle isn’tNULL. It doesn’t block.

Returns:
Data in the character string, orNULL if no data is found (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 165

mme_metadata_extract_string()  2009, QNX Software Systems GmbH & Co. KG.

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_data(),
mme_metadata_extract_unsigned(), mme_metadata_hdl_t,
mme_ms_metadata_done(), mme_ms_metadata_get()

166 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_extract_unsigned()
Get unsigned metadata from the metadata handle

Synopsis:
#include <mme/metadata.h>

int mme_metadata_extract_unsigned(const mme_metadata_hdl_t *metadata,
const char *type,
uint32_t flags,
unsigned *value);

Arguments:
metadata The pointer to the handle with the metadata, returned by

mme_ms_metadata_get().

type The type of metadata to retrieve. SeeMETADATA_* .

flags For future use.

value A pointer to the location where the value is to be returned; mustnot be
NULL.

Library:
metadata

Description:
The functionmme_metadata_extract_unsigned() extracts unsigned metadata from the
metadata handlemme_metadata_hdl_t.

Events

None delivered.

Blocking and validation

This function validates that the metadata handle isn’tNULL. It doesn’t block.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 167

mme_metadata_extract_unsigned()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_data(),
mme_metadata_extract_string(), mme_metadata_hdl_t,
mme_ms_metadata_done(), mme_ms_metadata_get()

168 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_create_session()
Create a new metatdata session

Synopsis:
#include <mme/mme.h>

int mme_metadata_create_session(mme_hdl_t *hdl,
mme_metadata_session_t **session);

Arguments:
hdl An MME connection handle.

session A pointer to the location with the metadata session structure.

Library:
mme

Description:
The functionmme_metadata_create_session() creates a new metata session. Creating
a metadata session guarantees that the images loaded and the metadata retrieved
remain valid until the session is ended by a call tomme_metadata_free_session().

A client application may have multiple metadata sessions open at the same time, only
limited by system resources. Because every metadata session consumes system
resources, the client application should end a metadata session when the data
requested in that session is no longer needed.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
EOK and a valid pointer to anmme_metadata_session_t data structure.

Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 169

mme_metadata_create_session()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_free_session(), mme_metadata_getinfo_current(),
mme_metadata_getinfo_file(), mme_metadata_getinfo_library(),
mme_metadata_image_cache_clear(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

170 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_free_session()
End a metadata session

Synopsis:
#include <mme/mme.h>

int mme_metadata_free_session(mme_metadata_session_t *session);

Arguments:
session A pointer to a metadata session structure.

Library:
mme

Description:
The functionmme_metadata_free_session() frees the memory and the images used in
a metadata session.

Every metadata session consumes system resources. The client application should
always call this function to end a metadata session when the data requested in that
session is no longer needed.

Events

None delivered.

Blocking and validation

This function will cancel any pending metadata or image requests before returning.
These cancellations may delay the return of the this function.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 171

mme_metadata_free_session()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_metadata_create_session(), mme_metadata_getinfo_current(),
mme_metadata_getinfo_file(), mme_metadata_getinfo_library(),
mme_metadata_image_cache_clear(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

172 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_getinfo_current()
Get metadata for the currently playing track

Synopsis:
#include <mme/mme.h>

int mme_metadata_getinfo_current(mme_metadata_session_t *session,
const char *metadata_groups,
uint64_t *mdinfo_rid,
mme_metadata_info_t **metadata);

Arguments:
session A pointer to a metadata session structure.

metadata_groups A pointer to a string representing the metadata information
groups for which metadata is requested.

mdinfo_rid A pointer to a generated metadata information request ID.

metadata A pointer to the location with the requested metadata. See
“metadata pointer” below.

Library:
mme

Description:
The functionmme_metadata_getinfo_current() retrieves metadata for the currently
playing track and places it at the location specified bymetadata. You must call
mme_metadata_create_session() to create a metadata session before using
mme_metadata_getinfo_current().

There is no guarantee that the current track will not change between the time
mme_metadata_getcurrent() is called and the return of the requested data. The client
application must therefore monitor track change events, and make a new request for
metadata if the track changes.

May 4, 2009 Chapter 1 • MME API 173

mme_metadata_getinfo_current()  2009, QNX Software Systems GmbH & Co. KG.

• Metadata and images retrieved with this function are only valid for the current
metadata session.

• A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

• After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA_INFO event will return anEBUSY error.

metadata pointer

Themetadata argument points to a pointer to amme_metadata_info_tmetadata
structure with the retrieved metadata. Depending on the value ofmetadata,
mme_metadata_getinfo_*() operates either synchonously or asynchronously.

NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatesasynchronously, and the
mme_metadata_info_t structure is delivered with the
MME_EVENT_METADATA_INFO event.

non-NULL pointer

If metadata is non-NULL functionmme_metadata_getinfo_*() operates
synchronously and the following applies:

• If the referenced pointer to themme_metadata_info_t structure isNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

• If the referenced pointer to the to themme_metadata_info_tstructure is
non-NULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in themme_metadata_info_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA_INFO.

Blocking and validation

See “metadata pointer” above.

174 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_getinfo_current()

Returns:
0 Success:mdinfo_rid is set.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_file(), mme_metadata_getinfo_library(),
mme_metadata_image_cache_clear(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

May 4, 2009 Chapter 1 • MME API 175

mme_metadata_getinfo_file()  2009, QNX Software Systems GmbH & Co. KG.

Get metadata for a specified file, based on the filepath

Synopsis:
#include <mme/mme.h>

int mme_metadata_getinfo_file(mme_metadata_session_t *session,
uint64_t msid,
const char *file,
const char *metadata_groups,
uint64_t *mdinfo_rid,
mme_metadata_info_t **metadata);

Arguments:
session A pointer to a metadata session structure.

msid The mediastore ID for the mediastore with the file for which
metadata is required.

file A pointer to the path, relative to the mediastore mountpath, of
the file for which metadata is required.

metadata_groups A pointer to a string representing the metadata information
groups for which metadata is requested.

mdinfo_rid A pointer to a generated metadata information request ID.

metadata A pointer to the location with the requested metadata. See
“metadata pointer” below.

Library:
mme

Description:
The functionmme_metadata_getinfo_file() retrieves metadata for the file identified by
the its filepath, and places this metadata at the location specified bymetadata. You
must callmme_metadata_create_session() to create a metadata session before using
mme_metadata_getinfo_file().

176 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_getinfo_file()

• Metadata and images retrieved with this function are only valid for the current
metadata session.

• A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

• After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA_INFO event will return anEBUSY error.

metadata pointer

Themetadata argument points to a pointer to amme_metadata_info_tmetadata
structure with the retrieved metadata. Depending on the value ofmetadata,
mme_metadata_getinfo_*() operates either synchonously or asynchronously.

NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatesasynchronously, and the
mme_metadata_info_t structure is delivered with the
MME_EVENT_METADATA_INFO event.

non-NULL pointer

If metadata is non-NULL functionmme_metadata_getinfo_*() operates
synchronously and the following applies:

• If the referenced pointer to themme_metadata_info_t structure isNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

• If the referenced pointer to the to themme_metadata_info_tstructure is
non-NULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in themme_metadata_info_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA_INFO.

Blocking and validation

See “metadata pointer” above.

May 4, 2009 Chapter 1 • MME API 177

mme_metadata_getinfo_file()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
0 Success:mdinfo_rid is set.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_library(),
mme_metadata_image_cache_clear(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

178 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_getinfo_library()
Get metadata for a specified file, based on the file ID

Synopsis:
#include <mme/mme.h>

int mme_metadata_getinfo_library(mme_metadata_session_t *session,
uint64_t fid,
const char *metadata_groups,
uint64_t *mdinfo_rid,
mme_metadata_info_t **metadata);

Arguments:
session A pointer to a metadata session structure.

fid The file ID of the file for which metadata is required.

metadata_groups A pointer to a string representing the metadata information
groups for which metadata is requested.

mdinfo_rid A pointer to a generated metadata information request ID.

metadata A pointer to the location with the requested metadata. See
“metadata pointer” below.

Library:
mme

Description:
The functionmme_metadata_getinfo_library() retrieves metadata for the file
identified by the its file ID, and places this metadata at the location specified by
metadata. You must callmme_metadata_create_session() to create a metadata
session before usingmme_metadata_getinfo_library().

• Metadata and images retrieved with this function are only valid for the current
metadata session.

• A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

• After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA_INFO event will return anEBUSY error.

May 4, 2009 Chapter 1 • MME API 179

mme_metadata_getinfo_library()  2009, QNX Software Systems GmbH & Co. KG.

metadata pointer

Themetadata argument points to a pointer to amme_metadata_info_tmetadata
structure with the retrieved metadata. Depending on the value ofmetadata,
mme_metadata_getinfo_*() operates either synchonously or asynchronously.

NULL pointer

If metadata is NULL, mme_metadata_getinfo_*() operatesasynchronously, and the
mme_metadata_info_t structure is delivered with the
MME_EVENT_METADATA_INFO event.

non-NULL pointer

If metadata is non-NULL functionmme_metadata_getinfo_*() operates
synchronously and the following applies:

• If the referenced pointer to themme_metadata_info_t structure isNULL,
mme_metadata_getinfo_*() allocates memory for the structure.

• If the referenced pointer to the to themme_metadata_info_tstructure is
non-NULL mme_metadata_getinfo_*() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in themme_metadata_info_t structure, see
“XML content” with the description of the structure.

Events

MME_EVENT_METADATA_INFO.

Blocking and validation

See “metadata pointer” above.

Returns:
0 Success:mdinfo_rid is set.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

180 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_getinfo_library()

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_image_cache_clear(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

May 4, 2009 Chapter 1 • MME API 181

mme_metadata_hdl_t  2009, QNX Software Systems GmbH & Co. KG.

The metadata API handle

Synopsis:
#include <mme/metadata.h>

struct mme_metadata_hdl;
typedef struct mme_metadata_hdl mme_metadata_hdl_t;

Description:
The structuremme_metadata_hdl_t carries the metadata retrieved by
mme_metadata_extract_data() andmme_metadata_extract_string().

Creating and freeing the metadata handle

A metadata handle can be acquired through any of these functions:

• mme_explore_info_get()

• mme_ms_metadata_get()

• mme_trksessionview_metadata_get()

The data in the metadata handle can be used bymme_metadata_extract_string() and
mme_metadata_extract_data(), and remains valid until the handle is freed.

To free a metadata handle, use one of these methods:

• Handles created bymme_ms_metadata_get() or
mme_trksessionview_metadata_get(), call mme_ms_metadata_done().

• Handles created bymme_explore_info_get(), call mme_explore_end(), or
mme_explore_info_get() to create e new handle.

Classification:
QNX Multimedia

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_data(),
mme_metadata_extract_string(), mme_metadata_extract_unsigned(),
mme_ms_metadata_done(), mme_ms_metadata_get()

182 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_image_cache_clear()
Purge images from the image cache

Synopsis:
#include <mme/mme.h>

int mme_metadata_image_cache_clear(mme_hdl_t *hdl,
uint64_t msid);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore for which images must be purged from the image
cache. Set to 0 (zero) to clear the entire cache.

Library:
mme

Description:
The functionmme_metadata_image_cache_clear() clears from the image cache:

• all images associated with the specified mediastore; or,

• if msid is set to 0, all images in the cache

This function can be called at any time; you donot need to create a metadata session
before clearing the image cache.

If a client application attempt to clear the cache while an item is being inserted into the
cache,mme_metadata_image_cache_clear() returns anEBUSY error. If a client
application receives this error, it should attempt to clear the cache again at a later time.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 183

mme_metadata_image_cache_clear()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_load(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

184 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_image_load()
Load an image for a file

Synopsis:
#include <mme/mme.h>

int mme_metadata_image_load(mme_metadata_session_t *session,
uint64_t mdinfo_rid,
unsigned image_id,
int image_format_profile,
uint64_t *mdimage_rid,
mme_metadata_image_url_t **image_url);

Arguments:
session A pointer to a metadata session structure.

mdinfo_rid A metadata information request ID, obtained by a call to a
mme_metadata_getinfo_*() function.

image_id The ID of the image, obtained from the track metadata .

image_format_profile

Predefined profile format index. Set to -1 for no conversion.

mdimage_rid A pointer to a generated metadata image request ID, populated on
success.

image_url A pointer to the location with the requested image. See “image_url
pointer” below.

Library:
mme

Description:
The functionmme_metadata_image_load() uses information retrieved by a call to any
of themme_metadata_getinfo_*() functions to load an image to the location specified
by the URL referenced byimage_url. You must callmme_metadata_create_session()
to create a metadata session before usingmme_metadata_getinfo_current().

May 4, 2009 Chapter 1 • MME API 185

mme_metadata_image_load()  2009, QNX Software Systems GmbH & Co. KG.

• Metadata and images retrieved with this function are only valid for the current
metadata session.

• A call to anmme_metadata_getinfo_*() function switches the metadata session
context to the newly requested file, thus causing any requests for image IDs from
previous image data to fail.

• After anmme_metadata_getinfo_*() function has been called, any further calls to
anmme_metadata_getinfo_*() function before receipt of a
MME_EVENT_METADATA_INFO event will return anEBUSY error.

image_url pointer

The image_url argument points to a pointer to amme_metadata_image_url_t
metadata structure with the retrieved URL for the requested image. Depending on the
value ofimage_url, mme_metadata_image_load() operates either synchonously or
asynchronously.

NULL pointer

If image_url is NULL, mme_metadata_getinfo_current() operatesasynchronously,
and themme_metadata_info_t structure is delivered with the
MME_EVENT_METADATA_INFO event.

non-NULL pointer

If image_url is non-NULL functionmme_metadata_image_load() operates
synchronously and the following applies:

• If the referenced pointer to themme_metadata_info_t structure isNULL,
mme_metadata_image_load() allocates memory for the structure.

• If the referenced pointer to the to themme_metadata_info_tstructure is
non-NULL mme_metadata_image_load() reuses the memory at the indicated
locations, increasing the buffer for the structure as needed.

For an example of the XML delivered in themme_metadata_*_t structure, see
“XML content” with the description of themme_metadata_info_t structure.

Events

MME_EVENT_METADATA_IMAGE.

Blocking and validation

See “image_url pointer” above.

186 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_image_load()

Returns:
0 Success:mdimage_rid is set.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_unload(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

May 4, 2009 Chapter 1 • MME API 187

mme_metadata_image_unload()  2009, QNX Software Systems GmbH & Co. KG.

Clear image from temporary storage

Synopsis:
#include <mme/mme.h>

int mme_metadata_image_unload(mme_metadata_session_t *session,
uint64_t mdimage_rid);,

Arguments:
session A pointer to a metadata session structure.

mdimage_rid A metadata image request ID, obtained by a call to a
mme_metadata_getinfo_*() function.

Library:
mme

Description:
The functionmme_metadata_image_unload() removes from temporary storage an
image loaded bymme_metadata_image_load(). The image to remove from
temporary storage is identified by themdimage_rid, which was generated by a
mme_metadata_image_load() function when it retrieved an image for a file.

If mme_metadata_image_unload() is called while an image is loading, the call
cancels the load, and the MME delivers the event with the
mme_event_metadata_image_t error member set toECANCELED.

You must callmme_metadata_create_session() to create a metadata session before
usingmme_metadata_unload().

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

188 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_image_unload()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_load(), mme_metadata_image_url_t,
mme_metadata_info_t,mme_metadata_session_t

May 4, 2009 Chapter 1 • MME API 189

mme_metadata_image_url_t  2009, QNX Software Systems GmbH & Co. KG.

The structure carrying the URL for an image

Synopsis:
#include <mme/types.h>

typedef struct s_mme_metadata_image_url {
int32_t len;
char url[1];

} mme_metadata_image_url_t;

Description:
The structuremme_metadata_image_url_t carries the URL retrieved by
mme_metadata_image_load() used with a synchronous connection. This URL can be
used to load an image from a remote location.

Member Type Description

len int32_t The length, in bytes, of theurl string, including itsNULL
terminator.

url char A NULL-terminated URL formated string location of an
image.

Classification:
QNX Multimedia

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_load(), mme_metadata_image_unload(),
mme_metadata_info_t,mme_metadata_session_t

190 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_info_t
The metadata structure

Synopsis:
#include <mme/types.h>

typedef struct s_mme_metadata_info {
int len;
char xmlbuf[1];

} mme_metadata_info_t;

Description:
The structuremme_metadata_info_t carries the metadata retrieved by
mme_metadata_getinfo_current(), mme_metadata_getinfo_file() and
mme_metadata_getinfo_library().

Member Type Description

len int The length, in bytes, of thexmlbuf string, including itsNULL
terminator. See “XML content” below.

xmlbuf char A NULL-terminated XML formated string containing metadata.

XML content

The MME’s metadata API organizes metadata into groups and subgroups. You can use
these groups and subgroups to request only the metadata you need, thereby optimizing
performance and reducing resource consumption.

To request only specified metadata, use the following guidelines to set the character
string referenced by amme_metadata_getinfo_*() function’smetadata_groups
argument:

• Setting themetadata_groups argument toNULL, or the group to"*" instructs the
function to returnall avaialble metadata for the file.

• A metadata group can use wildcards characters to obtain all metadata for a
subgroup. For example, to get all image subgroups, use the string"image/*".

Supported <format> attributes

The table below list the attributes for the<format> element currently supported by
the MME’s metadata API.

Attribute Optional Description

height Yes The image height, in pixels.

continued. . .

May 4, 2009 Chapter 1 • MME API 191

mme_metadata_info_t  2009, QNX Software Systems GmbH & Co. KG.

Attribute Optional Description

width Yes The image width, in pixels.

mime_type Yes The content MIME type.

start_timepos Yes The image start time, in milliseconds, from the start of the track.

end_timepos Yes The image end time, in milliseconds, from the start of the track.

desc Yes An image description.

size Yes The image size, in bytes.

url Yes An external URL to the image.

Example: default XML content

Below a example of the default XML content returned inxmlbuf by a call to an
mme_metadata_getinfo_*() function. No metadata group is enabled:

<?xml version="1.0" standalone="yes"?>
<container type="file">

<track index="0">
<audio>

<stream index="0"/>
</audio>
<images>

<image index="0"/>
<image index="1"/>

</images>
</track>

</container>

Example: XML content with one metadata group enable

Below is an example of the XML content returned inxmlbuf by a call to an
mme_metadata_getinfo_*() function. Only the
<image index="1"/>

</images>
</track>

</container>

192 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_info_t

Classification:
QNX Multimedia

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_load(), mme_metadata_image_unload(),
mme_metadata_image_url_t,mme_metadata_session_t

May 4, 2009 Chapter 1 • MME API 193

mme_metadata_session_t  2009, QNX Software Systems GmbH & Co. KG.

A metadata session identifier

Synopsis:
#include <mme/types.h>

typedef struct s_mme_metadata_session {
uint64_t session_id;

} mme_metadata_session_t;

Description:
The structuremme_metadata_session_t carries a unique identifier withinforamtion
about a metadata session. It is set bymme_metadata_create_session() and used by
themme_metadata_*() functions. It is cleared bymme_metadata_free_session().

Member Type Description

session_id uint64_t A metadata session identifier.

Classification:
QNX Multimedia

See also:
mme_metadata_create_session(), mme_metadata_free_session(),
mme_metadata_getinfo_current(), mme_metadata_getinfo_file(),
mme_metadata_getinfo_library(), mme_metadata_image_cache_clear(),
mme_metadata_image_load(), mme_metadata_image_unload(),
mme_metadata_image_url_t,mme_metadata_info_t

194 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_metadata_set()
Set the metadata for a file

Synopsis:
#include <mme/mme.h>

int mme_metadata_set(mme_hdl_t *hdl,
uint64_t fid,
mm_metadata_t *metadata,
uint64_t flags);

Arguments:
hdl An MME connection handle.

fid The file ID of the file whose metadata you want to set.

metadata A pointer to the structure that carries the file metadata. For more
information, seemm_metadata_t.

flags A flag to define the behavior of the call. For future use.

Library:
mme

Description:
The functionmme_metadata_set() sets the metadata in the MME database for a
specified file. The client application can use this function with an HMI to allow the
end-user to change the metadata in the MME database for copied and ripped media. It
sets the metadata in the database, and can be used to correct and complete metadata
that was incorrectly or incompletely entered when the file was copied or ripped.

To set the metadata for a file:

1 Complete the structuremm_metadata_twith the file metadata.

2 Call mme_metadata_set(), specifying the file ID.

Events

None delivered.

Blocking and validation

This function performs no validations, and doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 195

mme_metadata_set()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_mediacopier_add(), mme_mediacopier_get_mode(),
mme_mediacopier_set_mode(),

196 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_mode_random_t
Random mode values

Synopsis:
#include <mme/types.h>

typedef enum mme_mode_random {
...

} mme_mode_random_t;

Description:
The enumerated typemme_mode_random_t defines random mode settings. These
settings match the settings used by iPods:

• MME_RANDOM_OFF(0) — random mode is not selected

• MME_RANDOM_ALL (1) — random playback for the track session

• MME_RANDOM_ALBUMS (2) — random playback for the current album or
directory on an iPod device. The MME doesn’t support this mode, and falls back to
MME_RANDOM_ALL if this mode is set. However, if playback is handled
externally (i.e. by an iPod device), then the random command is handled by the
device.

• MME_RANDOM_FOLDER(3) — random playback for the current folder

• MME_RANDOM_SUBFOLDER(4) — random playback for the current subfolder

For more information about playback random mode, seemme_setrandom() and
“Using random and repeat modes” in the chapter Playing Media of theMME
Developer’s Guide.

Classification:
QNX Multimedia

See also:
mme_mode_repeat_t, mme_getrandom(), mme_getrepeat(), mme_getscanmode()
mme_setrandom() mme_setrepeat()

May 4, 2009 Chapter 1 • MME API 197

mme_mode_repeat_t  2009, QNX Software Systems GmbH & Co. KG.

Repeast mode values

Synopsis:
#include <mme/types.h>

typedef enum mme_mode_repeat_t;

Description:
The enumerated typemme_mode_repeat_t defines random mode settings. These
settings match the settings used by iPods:

• MME_REPEAT_OFF— repeat mode is not selected

• MME_REPEAT_SINGLE — repeat the current track

• MME_REPEAT_ALL — repeat all tracks in the track session

• MME_REPEAT_FOLDER— repeat all tracks in the current folder

• MME_REPEAT_SUBFOLDER— repeat all tracks in the current subfolder

For more information about playback repeat mode, seemme_setrepeat() and “Using
random and repeat modes” in the chapter Playing Media of theMME Developer’s
Guide.

Classification:
QNX Multimedia

See also:
mmme_mode_random_t, mme_getrandom(), mme_getrepeat(), mme_getscanmode()
mme_setrandom(), mme_setrepeat()

198 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_MSCAP_*
Mediastore capability definitions

Synopsis:
#include <mme/interface.h>

#define _MME_MSCAP_*_MASK
#define MME_MSCAP_*

Description:
The constantsMME_MSCAP_* are bit masks defining mediastore capabilities. The
values listed in the table below are used by thecapabilities field in themediastores
table.

Constant Value Description

MME_MSCAP_SYNC 0x00000001 The mediastore can be synchronized.

MME_MSCAP_PRUNABLE 0x00000002 Synchronization should manage pruning
of this mediastore.

MME_MSCAP_SYNC_DIRECTED 0x00000004 The mediastore supports directed
synchronizations.

MME_MSCAP_NO_AUTO_SYNC 0x00000008 The mediastore is never automatically
synchronized.

MME_MSCAP_PRIO_FOLDER 0x00000010 The mediastore can prioritize folders for
synchronization.

MME_MSCAP_MEDIAFS_1WIRE 0x00000020 The device is a media device.

MME_MSCAP_MEDIAFS_2WIRE 0x00000040 The device is a media device.

MME_MSCAP_DEVICE_TRACKSESSIONS 0x00000080 The device manages its own track
sessions.

MME_MSCAP_NOWPLAYING_METADATA 0x00000100 Metadata for the currently playing track
can be retrieved from the device.

MME_MSCAP_NOWPLAYING_FILENAME 0x00000200 The filename for the currently playing
track can be retrieved from the device.

MME_MSCAP_DEVICE_SAVES_STATE 0x00000400 The device can save its own state; used
for resuming playback with
mme_play_resume_msid().

continued. . .

May 4, 2009 Chapter 1 • MME API 199

MME_MSCAP_*  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_MSCAP_DEVICE_REPEATRANDOM 0x00000800 The device supports repeat and random
modes. This capability does not apply to
USB devices; it appliesonly to devices
with the
MME_MSCAP_DEVICE_TRACKSESSIONS

capability set.

MME_MSCAP_DELETE_ON_EJECT 0x00001000 The MME should delete entries for this
mediastore when it is ejected.

MME_MSCAP_PLAY_FILE 0x00002000 The device supports the deprecated
mme_play_file() function.

MME_MSCAP_EXPLORABLE 0x00004000 The device supports the MME’s explorer
API. Seemme_explore_start() and the
othermme_explore_*() functions.

MME_MSCAP_TRKSESSIONVIEW_METADATA 0x00008000 The device supports the
mme_trksessionview_metadata_get()
function.

MME_MSCAP_TRACK_POSITION_COOKIE_BASED 0x00010000 The device supports the See
mme_trksession_save_state() function.

MME_MSCAP_SUPPORTS_VIDEO 0x00020000 The device supports video playback.

MME_MSCAP_CONNECTION_NONOPTIMAL 0x00040000 The device is not using the optimal link;
for example, an iPod that supports USB is
using a serial transport.

MME_MSCAP_AUDIO_NONOPTIMAL 0x00080000 The device is not using the optimal audio
link; for example, an iPod that supports
digital audio is using analog audio.

MME_MSCAP_SET 0x80000000 Device capabilities have been set (make
non-zero).

For more information about detecting mediastores and discovering their capabilities,
see “Mediastore and device capabilities” in the chapter Working with Mediastores of
theMME Developer’s Guide.

Classification:
QNX Multimedia

See also:
MME_FORMAT_* , MME_FTYPE_* , MME_STORAGETYPE_* ,
MME_SYNC_OPTION_*

200 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_ms_clear_accurate()
Mark library entries as inaccurate

Synopsis:
#include <mme/mme.h>

int mme_ms_clear_accurate(mme_hdl_t *hdl,
uint64_t msid);

Arguments:
hdl An MME connection handle.

msid The ID for the mediastore to be marked inaccurate.

Library:
mme

Description:
The functionmme_ms_clear_accurate() clears theaccurate fields in thelibrary for
items linked to the specified mediastore. Clearing theaccuratemarks the entry in the
library table as inaccurate, so that the MME synchronizers will update the data.

Setmsid to 0 to mark as inaccurate all entries in thelibrary linked to all
mediastores.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 201

mme_ms_clear_accurate()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

202 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_ms_metadata_done()
Clear the metadata handle

Synopsis:
#include <mme/metadata.h>

void mme_ms_metadata_done(mme_metadata_hdl_t *metadata);

Arguments:
metadata The pointer to the handle with the metadata.

Library:
metadata

Description:
The functionmme_ms_metadata_done() clears the metadata handle. It should be used
when the metadata in the handle is no longer needed.

Events

None delivered.

Blocking and validation

This function validates that the metadata handle isn’tNULL. It doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_data(),
mme_metadata_extract_string(), mme_metadata_hdl_t, mme_ms_metadata_get()

May 4, 2009 Chapter 1 • MME API 203

mme_ms_metadata_get()  2009, QNX Software Systems GmbH & Co. KG.

Get metadata from a file

Synopsis:
#include <mme/metadata.h>

mme_metadata_hdl_t *mme_ms_metadata_get(
mme_hdl_t *hdl,
uint64_t *msid,
const char *path,
const char *types,
uint32_t flags);

Arguments:
hdl The MME connection handle.

msid The ID of the mediastore with the file whose metadata is required.

path The path and filename (not including the mediastore mountpath) of the file
whose metadata is required.

types A pointer to a string containing a comma-separated list of metadata types to
retrieve. Maynot beNULL. SeeMETADATA_* .

flags For future use.

Library:
metadata

Description:
The functionmme_metadata_get() gets metadata for a file and places it in the
metadata handlemme_metadata_hdl_t. The type of metadata retrieved is defined by
theMETADATA_FORMAT_* enumerated values.

Events

None delivered.

Blocking and validation

This function performs no validations and doesn’t block.

Returns:
Data in the character string, orNULL if no data is found (errno is set).

204 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_ms_metadata_get()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
METADATA_* , mme_metadata_alloc(), mme_metadata_extract_data(),
mme_metadata_extract_string(), mme_metadata_hdl_t,
mme_ms_metadata_done()

May 4, 2009 Chapter 1 • MME API 205

mme_ms_restart()  2009, QNX Software Systems GmbH & Co. KG.

Request that a media store be restarted

Synopsis:
#include <mme/mme.h>

int mme_ms_restart(mme_hdl_t *hdl,
uint64_t msid);

Arguments:
db An MME connection handle.

msid The ID of the mediastore to restart.

Library:
mme

Description:
The functionmme_ms_restart() causes the specified mediastore to go through an
“active” to “nonexistent” transition, followed by an insertion to the “active” state.

When the state of a mediastore changes from another state to “nonexistent”, the MME
always prunes the entries for that mediastore from its database,no matter what the
pruning configurations. Thus, whenmme_ms_restart() is successful, when the
mediastore restarts it appears to the MME as anew mediastore, and the MME assigns
it a new mediastore ID.

CAUTION: mme_ms_restart() is:

• not the recommended method for rediscovering a mediastore. It may be changed or
removed from the MME API.

• not supported for mediastores that are not active, or for mediastores that use an
mmdev handler plugin.

!

Events

None delivered.

Blocking and validation

This function validates the request and runs asynchronously, so it may fail after
returning success. The calling application must examine the mediastore state change
events to determine if the entire operation finished successfully.

Calls using that MME handle used bymme_ms_restart() will fail until the operation is
complete, even if the call tomme_ms_restart() has returned.

206 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_ms_restart()

Returns:
≥0 Success.
-1 An error occurred (errno is set):

• EINVAL — the mediastore does not exist or is not active

• ENOTSUP— the mediastore uses anmmdev handler

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
“Mediastore states” in the chapter Working with Mediastores of theMME Developer’s
Guide

May 4, 2009 Chapter 1 • MME API 207

mme_ms_state_t  2009, QNX Software Systems GmbH & Co. KG.

Mediastore states

Synopsis:
#include <mme/types.h>

typedef enum {
e_mme_ms_nonexistent = 0,
e_mme_ms_unavailable,
e_mme_ms_available,
e_mme_ms_active
} mme_ms_state_t;

Description:
The enumerated typemme_ms_state_t defines mediastore states:

• e_mme_ms_nonexistent— non-existent: the MME has no database entry for the
mediastore.

• e_mme_ms_unavailable— unavailable: the MME has a database entry for the
mediastore, but the mediastore is not in the system in which the MME is running.

• e_mme_ms_available— available: the MME has a database entry for the
mediastore, and the mediastore is in the system in which the MME is running. That
is, the MME knows the location of the mediastore, but the mediastore cannot be
synchronized, and tracks on the mediastore cannot be ripped or played. This state
is generally possible only for disk-based media stores in multi-disk changers.

• e_mme_ms_active— active: the usable state of a mediastore. The MME has a
database entry for the mediastore, the mediastore can be synchronized, and tracks
on the mediastore can be ripped or played

For more information about mediastore states and state transitions, see the chapter
Working with mediastores of theMME Developer’s Guide.

Classification:
QNX Multimedia

See also:
mme_ms_statechange_t

208 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_ms_statechange_t
Data for media store state change event

Synopsis:
#include <mme/types.h>

typedef struct s_mme_ms_statechange {
uint64_t msid;
uint32_t old_state;
uint32_t new_state;
uint16_t device_type;
uint16_t storage_type;
uint32_t reserved;

}

Description:
The structuremme_ms_statechange_t carries data for the mediastore state change
eventsMME_MS_STATECHANGE. It includes at least the members described in the
table below.

Member Type Description

msid uint64_t The mediastore ID

old_state uint32_t The previous state of the mediastore

new_state uint32_t The new state of the mediastore

device_type uint16_t The device type. See “Device types” below.

storage_type uint16_t The mediastore storage type, as defined by the
MME_STORAGETYPE_* constant.

reserved uint32_t Reserved for internal use.

Mediastore states are defined by the enumerated valuemme_ms_state_t. For more
information about mediastore states and state transitions, see the chapter Working with
Mediastores.

Device types

The value ofdevice_type is defined by theslottype field for the mediastore in the
slots table. This field uses the values defined by theMME_SLOTTYPE_* , and its use
is defined by the user.

May 4, 2009 Chapter 1 • MME API 209

mme_ms_statechange_t  2009, QNX Software Systems GmbH & Co. KG.

If the MME is unable to associate a mediastore that is available but not active with an
entry in theslots table, the value fordevice_type may be
MME_SLOTTYPE_UNKNOWN.

Classification:
QNX Multimedia

See also:
mme_ms_state_t

210 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_newtrksession()
Create a new track session

Synopsis:
#include <mme/mme.h>

int mme_newtrksession(mme_hdl_t *hdl,
char *statement,
short int mode,
uint64_t *trksessionid);

Arguments:
hdl An MME connection handle.

statement An SQL statement that defines the track session you want to create.

mode The track session mode. This mode can be either
MME_PLAYMODE_LIBRARY (0) or MME_PLAYMODE_FILE (1).

trksessionid The pointer to the location where the function can store the new track
session ID. Pass this value tomme_settrksession() to activate the
track session.

Library:
mme

Description:
The functionmme_newtrksession() creates a new track session for the specified
control context.

The SQL query passed to this function can select tracks from thelibrary table, the
playlist table, or any other valid source. The MME adds each new track session
created bymme_newtrksession() to thetrksessions table in the MME library.

The SQL statement should not end with a semicolon. The statement is actually a
sub-statement, whichmme_newtrksession() places into a larger statement. The result
for the statement you pass tomme_newtrksession() must include afid column.

For best performance, compose the query to look for media files only on available
mediastores. For example, for library-mode track sessions, compose the query:

SELECT fid FROM library WHERE msid IN
(SELECT msid FROM mediastores WHERE available=1)

For file-based track sessions, compose a query that returns theFTYPE_DEVICE fid for
the mediastore with the files discovered through the explorer API. For example:

SELECT fid FROM library WHERE ftype=5 AND msid=3

May 4, 2009 Chapter 1 • MME API 211

mme_newtrksession()  2009, QNX Software Systems GmbH & Co. KG.

For more information about library-mode and file-based track sessions, see “Working
with track sessions” in theMME Developer’s Guide.

After you have created a new track session, you need to:

• call mme_settrksession() to make it the active track session on the specified zone

• call mme_play() to start playing tracks in the track session

A new track session inherits its random and repeat modes from the control context in
which it is created. For more information about these modes, seemme_setrandom()
andmme_setrepeat().

You can callmme_trksession_get_info() to get the ID of the active track session in a
specific control context.

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Examples:
// Create a new track session of all songs from a playlist
// that are currently available
sql = qdb_mprintf(

"SELECT fid FROM playlistdata WHERE "
"plid = (SELECT plid FROM playlists WHERE name = ’%q’) "
"AND msid IN (SELECT msid FROM mediastores WHERE available=1)",
playlistname);

if (sql == NULL) {
fprintf(stderr, "error with select statement;");
exit(1);

}

rc = mme_newtrksession(&mme, sql, MME_PLAYMODE_LIBRARY, &trksessionid);
if (rc == -1) {

fprintf(stderr, "error creating new track session;");
exit(1);

}

rc = mme_settrksession(&mme, trksessionid);
if (rc == -1) {

fprintf(stderr, "error setting track session;");
exit(1);

}

// pass in a fid of 0 to start from the beginning.

212 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_newtrksession()

rc = mme_play(&mme, 0);

if (rc == -1) {
fprintf(stderr, "error starting playback;");
exit(1);

}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_get_info(), mme_rmtrksession(), mme_settrksession()

May 4, 2009 Chapter 1 • MME API 213

mme_next()  2009, QNX Software Systems GmbH & Co. KG.

Skip to the next track

Synopsis:
#include <mme/mme.h>

int mme_next(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_next() skips to the next track in the currently playing track session.

Effect of play modes on behavior

The behavior ofmme_next() is affected by the play modes set for the specified control
context (sequential versus random, and repeat versus no repeat).

If sequential mode is set, the next track in the track session is determined by the
sequentialid field in the next row of thetrksessionview table. The order of the file
IDs in this table column is determined by theORDER BY clause used to create the
track session.

If random mode is set, the next track in the track session is determined by the
randomid field in the next row of thetrksessionview table. The order of the file
IDs in this table column is generated by the MME when it sets the track session.

Effect of repeat mode on the last track of a session

When the last track in the track session is playing, the result of callingmme_next()
depends on whether the repeat mode is set.

If repeat is off,mme_next() setserrno to ENODATA when it has reached the end of the
track session (or, when random mode is set, when all songs in the trackssessin have
been played).

If repeat is on:

• if sequential mode is set, the MME plays the first track in the track session, as
determined by thesequentialid column in thetrksessionview table

• if random mode is set, the MME plays the first track in the track session, as
determined by therandomid column in thetrksessionview table

214 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_next()

Working with an iPod device

iPod devices manage their own track sessions. To move to the next or previous track in
an iPod track session, call themme_button() function withmm_button_t set to
MM_BUTTON_NEXT or MM_BUTTON_PREV, as required.

Events

Any event of the classMME_EVENT_CLASS_PLAY, and anyMME_PLAY_ERROR_*
event.

Blocking and validation

Verifies that thefid is valid. Does not verify that the file exists, or that it is playable.

This function blocks on control contexts. Ifmme_next() is called and another function
is called beforemme_next() returns, the second function blocks onio-media until
mme_next() returns. If there are no other pending calls,mme_next() returns without
blocking onio-media.

Returns:
≥0 Success:errno set toENODATA indicates that there are no more tracks to play.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_prev(), mme_setrandom(), mme_setrepeat()

May 4, 2009 Chapter 1 • MME API 215

mme_output_attr_t  2009, QNX Software Systems GmbH & Co. KG.

Media output attributes

Synopsis:
#include <mme/types.h>

typedef struct mme_output_attr {
union {

struct {
int volume;
int balance;
int fade;
int mute;
uint64_t delay;

} audio;

struct {
int layer;

} video;

struct {
/* not yet implemented */

} encoded;
};

} mme_output_attr_t;

Description:
The structuremme_output_attr_t carries playback output attributes and is used for
getting and setting attributes on output devices. It is a union of the structuresaudio,
video andencoded, and can therefore only control one class of output device at a
time.

The members of the structuresaudio, video andencoded that make up
mme_output_attr_t are described in the table below.

Structure Member Type Description

mme_output_attr_t audio struct Audio information

mme_output_attr_t video struct Video information

mme_output_attr_t encoded struct Encoding information. For
future use.

audio volume int The output volume, as a percent
from 0 to 100.

audio balance int The output balance: 0 (left); 50
(center); 100 (right).

continued. . .

216 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_output_attr_t

Structure Member Type Description

audio fade int The output fade setting: 0
(back); 50 (center); 100
(forward).

audio mute int The output muted setting: Set to
1 for muted,0 for not muted.

audio delay uint64_t The output delay, in
millisenconds.

video layer int The GF/video layer.

Classification:
QNX Multimedia

See also:
mme_play_get_output_attr()

May 4, 2009 Chapter 1 • MME API 217

mme_output_set_permanent()  2009, QNX Software Systems GmbH & Co. KG.

Set the permanency status of an output device

Synopsis:
#include <mme/mme.h>

int mme_output_set_permanent(mme_hdl_t *hdl,
uint64_t outputid,
int permanent);

Arguments:
hdl An MME connection handle.

outputid The ID of the output device whose permanency status is to be set.

permanent The output device’s permanency status: Set this argument to 1 for
permanent, 0 for not permanent.

Library:
mme

Description:
The functionmme_output_set_permanent() sets the permanency status of the
specified output device:

1 The output device is permanent.

0 The output device isnot permanent.

Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

218 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_output_set_permanent()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play_attach_output(), mme_play_detach_output(), mme_play_get_zone(),
mme_play_set_zone(), mme_zone_create(), mme_zone_delete()

May 4, 2009 Chapter 1 • MME API 219

mme_outputtype_t  2009, QNX Software Systems GmbH & Co. KG.

Define media output types

Synopsis:
#include <mme/types.h>

typedef enum mme_outputtype {
MME_OUTPUTTYPE_UNKNOWN = 0,
MME_OUTPUTTYPE_AUDIO = 1,
MME_OUTPUTTYPE_VIDEO = 2,
MME_OUTPUTTYPE_ENCODED = 3

} mme_outputtype_t;

Description:
The enumerated typesmme_outputtype_t defines media output types. Its values are
listed below:

• MME_OUTPUTTYPE_UNKNOWN

• MME_OUTPUTTYPE_AUDIO

• MME_OUTPUTTYPE_VIDEO

• MME_OUTPUTTYPE_ENCODED

Classification:
QNX Multimedia

See also:
mme_output_attr_t, play_get_output_attr()

220 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play()
Play a track session

Synopsis:
#include <mme/mme.h>

int mme_play(mme_hdl_t *hdl,
uint64_t fid);

Arguments:
hdl An MME connection handle.

fid The file ID of the file or track you want to play. Pass as 0 to start playback at
the first track in the track session.

Library:
mme

Description:
The functionmme_play() plays tracks in a track session. This function can only be
used after the client application has calledmme_newtrksession() to create a track
session, andmme_settrksession() to set the track session.

If you specify thefid in a library-based track-session, the MME starts playback with
the specifiedfid. If the library-based track session contains more than one instance of
the specifiedfid, the MME starts playback at the first instance of thisfid.

The MME control context notifies the client application at set intervals while it is
playing a track session by delivering the eventMME_EVENT_TIME. You can change
this period through the functionmme_set_notification_interval().

May 4, 2009 Chapter 1 • MME API 221

mme_play()  2009, QNX Software Systems GmbH & Co. KG.

• If you need the file ID (fid) of the track being played, your client application can do
one of the following:

- wait for the MME_EVENT_TRACKCHANGE event, delivered when the track
session starts playing a new track. This event contains thefid

- call the functionmme_play_get_info() and get thefid from
mme_play_info_t.fid

• If you call mme_play() while a track is playing, the MME will drop the current
track and start playing the new track.

• If mme_play() is unable to play a track in a track session it generates an
MME_PLAY_ERROR_* event, then attempts to play the next track in the track
session.

• If you attempt to play a file ID (fid) that is not in your track session, the MME will
play the first track in the track session. This behavior is specific to MME 1.1.0; in
subsequent releases,mme_play() will return an error.

Events

This function may deliver any event of the classMME_EVENT_CLASS_PLAY, and
anyMME_PLAY_ERROR_* event.

Blocking and validation

This function does not verify that thefid is in the track session. If the connection to the
MME is synchronous, the function validates that the file exists and that it is playable.

This function blocks on control contexts. Ifmme_play() is called and another function
is called beforemme_play() returns, the second function blocks onio-media until
mme_play() returns. If there are no other pending calls,mme_play() returns without
blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

222 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play()

Safety

Signal handler No

Thread Yes

See also:
mme_newtrksession(), mme_next(), mme_prev(), mme_stop()

May 4, 2009 Chapter 1 • MME API 223

mme_play_attach_output()  2009, QNX Software Systems GmbH & Co. KG.

Attach an output to a zone

Synopsis:
#include <mme/mme.h>

int mme_play_attach_output(mme_hdl_t *hdl,
uint64_t zoneid,
uint64_t outputid);

Arguments:
hdl An MME connection handle.

zoneid The zone to which you want to attach the output device. If set to 0, use
the current control context zone.

outputid The ID of the output device to attach to the zone.

Library:
mme

Description:
The functionmme_play_attach_output() attaches an output device to a specified zone.
Playback on the control context using the specified zone will go to the output devices
attached to that zone.

The MME saves the output device setting so that the next time the control context is
used it will automatically send its output to the same output devices.

Events

None delivered.

Blocking and validation

This function blocks on control contexts. It validates parameters. In asynchronous
mode, it returns before callingio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

224 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_attach_output()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_output_set_permanent(), mme_play_detach_output(), mme_play_get_zone(),
mme_play_set_zone(), mme_zone_create(), mme_zone_delete().

May 4, 2009 Chapter 1 • MME API 225

mme_play_bookmark()  2009, QNX Software Systems GmbH & Co. KG.

Start playback from a bookmark

Synopsis:
#include <mme/mme.h>

int mme_bookmark_play(mme_hdl_t *hdl,
uint64_t bookmarkid);

Arguments:
hdl An MME connection handle.

bookmarkid The bookmark ID from which to play.

Library:
mme

Description:
The functionmme_play_bookmark() begins playing a track from the specified
bookmark. Its behavior is like that ofmme_play(), except that instead of playing the
track from its beginning,mme_play_bookmark() starts playback from the bookmark.

Like mme_play(), mme_play_bookmark() requires that the track to be in the current
track session. In addition, the track must have the specified bookmark.

Events

This function may deliver any event of the classMME_EVENT_CLASS_PLAY, and
anyMME_PLAY_ERROR_* event.

Blocking and validation

This function verifies that thefid is valid. It doesn’t verify that the file exists, or that it
is playable.

This function blocks on control contexts. Ifmme_play() is called and another function
is called beforemme_play() returns, the second function blocks onio-media until
mme_play() returns. If there are no other pending calls,mme_play() returns without
blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

226 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_bookmark()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_bookmark_create(), mme_bookmark_delete(),

May 4, 2009 Chapter 1 • MME API 227

mme_play_detach_output()  2009, QNX Software Systems GmbH & Co. KG.

Detach an output from a zone

Synopsis:
#include <mme/mme.h>

int mme_play_detach_output(mme_hdl_t *hdl,
uint64_t zoneid,
uint64_t outputid);

Arguments:
hdl An MME connection handle.

zoneid The zone from which you want to detach the output device. If set to 0,
use the current control context zone.

outputid The ID of the output device to detach from the zone. .

Library:
mme

Description:
The functionmme_play_detach_output() detaches an output device from a specified
zone.

Events

None delivered.

Blocking and validation

This function blocks on control contexts. It validates parameters. In asynchronous
mode, it returns before callingio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

228 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_detach_output()

Safety

Signal handler No

Thread Yes

See also:
mme_output_set_permanent(), mme_play_attach_output(), mme_play_get_zone(),
mme_play_set_zone(), mme_zone_create(), mme_zone_delete()

May 4, 2009 Chapter 1 • MME API 229

mme_play_file()  2009, QNX Software Systems GmbH & Co. KG.

Play a track on an unsynchronized mediastore

This function is deprecated. Use file-based track sessions; see “Creating and
modifying file-based track sessions” in theMME Developer’s Guide.

Synopsis:
#include <mme/mme.h>

int mme_play_file(mme_hdl_t *hdl,
uint64_t msid,
const char *filename);

Arguments:
hdl The handle of the control context.

msid The ID of the mediastore with the track to be played.

filename The path and filename of the track to play. The filename includes the
path to the file on the mediastore, but it doesnot include the mountpath
to the mediastore. The path infilename must begin with a “/” (slash).
For example:/songs_folder/album_folder/.

Library:
mme

Description:
The functionmme_play_file() plays a track on a mediastore regardless of whether the
mediastore has been synchronized. This function can only be used to play a track on a
mediastore that has itscapabilities field in themediastores table set to
MME_MSCAP_PLAY_FILE.

Like mme_play(), in order to play a track,mme_play_file() requires a track session to
be set, but does not require the track to be in the set track session.

Events

This function may deliver any event of the classMME_EVENT_CLASS_PLAY, and
anyMME_PLAY_ERROR_* event.

Blocking and validation

This function does not verify that thefid is in the track session. If the connection to the
MME is synchronous, the function validates that the file exists and that it is playable.

This function blocks on control contexts. Ifmme_play_file() is called and another
function is called beforemme_play_file() returns, the second function blocks on
io-media until mme_play_file() returns. If there are no other pending calls,
mme_play_file() returns without blocking onio-media.

230 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_file()

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play()

May 4, 2009 Chapter 1 • MME API 231

mme_play_get_info()  2009, QNX Software Systems GmbH & Co. KG.

Get information about the track or file currently being played

Synopsis:
#include <mme/mme.h>

int mme_play_get_info(mme_hdl_t *hdl,
mme_play_info_t *info);

Arguments:
hdl An MME connection handle.

info A pointer to amme_play_info_t structure thatmme_play_get_info() can
fill with the playback information.

Library:
mme

Description:
The functionmme_play_get_info() retrieves current information about the track that
is currently being played, and fills out the structure pointed to byinfo. For information
about this structure, seemme_play_info_t in this reference.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success: MME retrieved the information for the current track and placed this

information in the structuremme_play_info_t.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

232 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_get_info()

See also:
mme_play(), mme_play_get_status(), mme_play_get_info(),
mme_play_get_status(), mme_play_set_speed(), mme_set_notification_interval()

May 4, 2009 Chapter 1 • MME API 233

mme_play_get_output_attr()  2009, QNX Software Systems GmbH & Co. KG.

Get the attributes for an output device

Synopsis:
#include <mme/mme.h>

int mme_play_get_output_attr(mme_hdl_t *hdl,
uint64_t outputdeviceid,
mme_output_attr_t *attr);

Arguments:
hdl An MME connection handle.

outputdeviceid The ID of the output device for which to get attibutes.

attr A pointer to a structure with the output device attributes.

Library:
mme

Description:
The functionmme_play_get_output_attr() gets the output attributes for the specified
output device, and places them in a structuremme_output_attr_t. For more
information about this structure, seemme_output_attr_t in this reference.

Events

None delivered.

Blocking and validation

This function blocks on control contexts.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

234 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_get_output_attr()

See also:
mme_play_set_output_attr(), mme_output_set_permanent()

May 4, 2009 Chapter 1 • MME API 235

mme_play_get_speed()  2009, QNX Software Systems GmbH & Co. KG.

Gets playback speed and direction (forward, reverse, pause) for tracks

Synopsis:
#include <mme/mme.h>

int mme_play_get_speed(mme_hdl_t *hdl,
int *speed);

Arguments:
hdl An MME connection handle.

speed A pointer to the playback speed for the current track, expressed in units of
1/1000 of normal speed.

Library:
mme

Description:
The functionmme_play_get_speed() gets the playback speed for the current track or
file.

The playback speed is expressed in units of 1/1000 of normal speed: 1000 means
normal speed, 2000 means double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values between 0 and 1000 are slow
speed playback.

iPods do not report their current playback speed. Queries for their playback speed
always return a nominal 1000, but this value should not be considered accurate.

Events

None delivered.

Blocking and validation

This function validates all data, and doesn’t block.

Returns:
≥0 Success: the playback speed was set.

-1 An error occurred (errno is set).

236 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_get_speed()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play(), mme_play_get_info(), mme_play_get_status(), mme_play_set_speed()

May 4, 2009 Chapter 1 • MME API 237

mme_play_get_status()  2009, QNX Software Systems GmbH & Co. KG.

Get the status of the current track

Synopsis:
#include <mme/mme.h>

int mme_play_get_status(mme_hdl_t *hdl,
mme_play_status_t *play_status);

Arguments:
hdl An MME connection handle.

play_status The pointer to the structure with the playback status information
filled in by mme_play_get_status().

Library:
mme

Description:
The functionmme_play_get_status() retrieves the status of a media play. It provides
the total play time of the media track and the play time elapsed by filling in the
structuremme_play_status_t pointed to byplay_status. See
mme_play_status_t in this reference.

Events

None delivered.

Blocking and validation

This function validates all data, and doesn’t block.

Returns:
≥0 Success: MME retrieved the status of the media play and filled in the

information in the structuremme_play_status_t.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

238 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_get_status()

See also:
mme_play(), mme_play_get_info(), mme_play_get_status(),
mme_play_set_output_attr(), mme_time_t, mme_playstate_t,
mme_playstatus_t

May 4, 2009 Chapter 1 • MME API 239

mme_play_get_zone()  2009, QNX Software Systems GmbH & Co. KG.

Get the zone ID used by a control context

Synopsis:
#include <mme/mme.h>

int mme_play_get_zone(mme_hdl_t *hdl,
uint64_t *zoneid);

Arguments:
hdl An MME connection handle.

zoneid The zone ID.

Library:
mme

Description:
The functionmme_play_get_zone() gets the zone used by the current control context.
For more information about zones, seemme_zone_create().

Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

240 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_get_zone()

See also:
mme_play_attach_output(), mme_play_detach_output(),
mme_output_set_permanent(), mme_play_set_zone(), mme_zone_create(),
mme_zone_delete()

May 4, 2009 Chapter 1 • MME API 241

mme_play_info_t  2009, QNX Software Systems GmbH & Co. KG.

Information about the currently playing track

Synopsis:
#include <mme/types.h>

typedef struct mme_play_info {
uint64_t fid;
uint64_t msid;
uint32_t storage_type;
uint32_t ftype;
uint32_t playmode;
uint32_t slottype;
uint32_t tracknum;
uint32_t titlenum;

uint32_t audio_index;
uint32_t support;
uint32_t reserved;
uint64_t mscap;
uint32_t reserved;
uint64_t offset;

} mme_play_info_t;

Description:
The structuremme_play_info_t carries information about the currently playing
track. The functionmme_play_get_info() uses this structure to deliver information
about the state of a playback operation.

Member Type Description

fid uint64_t The track or file ID.

msid uint64_t The mediastore ID.

storage_type uint32_t The type of mediastore. SeeMME_STORAGETYPE_*
in this reference.

ftype uint32_t The type of media track or file. SeeMME_FTYPE_*
in this reference.

playmode uint32_t The playmode of the track session (library or file).
SeeMME_FORMAT_* andMME_PLAYMODE_* in
this reference.

slottype uint32_t The slot type of the current track or file. See
MME_SLOTTYPE_* in this reference.

tracknum uint32_t The track number of the current track or file.

titlenum uint32_t The title or group number of the CD, DVD-video or
DVD-audio.

continued. . .

242 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_info_t

Member Type Description

audio_index uint32_t The audio index of the track on a DVD. It is the same
as theaudio_index filed in thelibrary.

support uint32_t A bitmask flag indicating the functionality supported
by the current playing track. See “Playsupport flag”
below.

reserved uint32_t Reserved for future use..

mscap uint64_t A bitmask with the mediastore capabilities. Values are
defined by the MME_MSCAP_* constants.

offset uint64_t The current offset in the track session. Offsets are
zero-based

For information about storage types, seeMME_STORAGETYPE_* in this reference.

Play support flag

Thesupport member ofmme_play_info_t is a bitmask flag indicating the
functionality supported by the current track or file, and the device on which track or
file is located:

• MME_PLAYSUPPORT_NAVIGATION — the current track is navigable. Use the
functionmme_button() to allow the end-user to control navigation of the track.

• MME_PLAYSUPPORT_DEVICE_TRACKSESSION— the device supports it own
track session management. An example of this functionality is an iPod running in
serial mode. Rather than issuemme_next(), issuemme_button(NEXT) to move to
the next track.

• MME_PLAYSUPPORT_VIDEO — the current track has video.

• MME_PLAYSUPPORT_AUDIO — the current track has audio.

• MME_PLAYSUPPORT_REPEATRANDOM— the device track session supports
repeat and random. An example of this sort of device is an iPod operating in serial
mode.

Classification:
QNX Multimedia

See also:
mme_play_get_info(), mme_button(), MME_FTYPE_* , MME_FORMAT_* and
MME_PLAYMODE_* , MME_SLOTTYPE_* , MME_STORAGETYPE_*

May 4, 2009 Chapter 1 • MME API 243

mme_play_offset()  2009, QNX Software Systems GmbH & Co. KG.

Start playback at the specified offset in a track session

Synopsis:
#include <mme/mme.h>

int mme_play_offset(mme_hdl_t *hdl,
int offset,
uint32_t flags);

Arguments:
hdl An MME connection handle.

offset The 0-based offset in the track session at which to start playback.

flags For future use.

Library:
mme

Description:
The functionmme_play_offset() starts playback at the specified offset in a track
session (the offset in thetrksessionview table). A value of 0 for theoffset starts
playback of the first track in the track session. Once started, playback continues
through to the end of the track session.

Note the following about usingmme_play_offset():

• The client application must create and set a track session before using
mme_play_offset(), just as it does formme_play().

• A call to mme_play_offset() while playback is underway will stop playback and
restart it at the specified offset:

- If the track currently playing is part of a device track session
(mme_play_get_info() reports
MME_PLAYSUPPORT_DEVICE_TRACKSESSION), the MME applies the offset
to thedevice tracksession.

- In all other cases, the MME applies the offset to the MME tracksession. For
more information about MME and device track sessions, see “Playing media on
iPods” in the chapter Working with External Devices of theMME Developer’s
Guide.

244 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_offset()

You need to be playing the iPod before you can jump to an index into its tracksession.
You can usemme_play_get_info() to confirm that you are playing an iPod: if you are
not the iPod,mme_play_get_info() will not report
MME_PLAYSUPPORT_DEVICE_TRACKSESSION.

• Random and repeat modes do not change the behavior ofmme_play_offset():

- If random mode is on, playback starts at the specified offset in the random order
track session, and continues from that point.

- If repeat mode is on for the track session, playback repeats through the track
session until it is stopped.

In other words, if the value ofoffsetis 1 and:

- the tracks in a sequential track session are 4, 5, 6, then playback starts with track
5.

- the tracks in a random track session are 6, 4, 5, then playback starts with track 4.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 245

mme_play_offset()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_trksession_append_files(), mme_trksession_set_files(),
mme_trksessionview_readx()

246 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_resume_msid()
Resume playback of a track session on a specified mediastore.

Synopsis:
#include <mme/mme.h>

int mme_play_resume_msid(mme_hdl_t *hdl,
uint64_t msid);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore for which to resume playback.

Library:
mme

Description:
The functionmme_play_resume_msid() resumes playback of a track session on a
specified mediastore at the pointmme_trksession_save_state() saved the track
session’s state.

For devices, such as iPods, where the device itself maintains state knowledge:

• the functionmme_play_resume_msid() creates a new track session and resumes
playback where indicated by the device’s memory.

• calling mme_play_resume_msid() when the iPod device is in a stopped state will
not resume playback, because a stopped iPod has no active track session that can be
resumed.

• after a call tomme_play_resume_msid(), you should wait for the
MME_EVENT_PLAYSTATE event with theplaystate set to
MME_PLAYSTATE_PLAYING before querying the device or setting the random and
repeat modes.

For more information, see theMME Developer’s Guide:

• “Stopping and resuming playback” in the chapter Playing Media

• “Using random and repeat modes on iPods” in the chapter Working with iPods

Events

The functionmme_play_resume_msid() delivers the following event:

• MME_EVENT_PLAYSTATE — the function has completed work.

May 4, 2009 Chapter 1 • MME API 247

mme_play_resume_msid()  2009, QNX Software Systems GmbH & Co. KG.

Blocking and validation

This function blocks onqdb. In asynchronous mode, it attempts to validate the request
(make sure the request makes sense) before releasing the caller.

Returns:
≥0 Success: the MME resumed playback of the track session for the mediastore.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_get_info(), mme_play_resume_msid()
mme_trksession_resume_state() mme_trksession_save_state()

248 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_set_output_attr()
Set the attributes for an output device

Synopsis:
#include <mme/mme.h>

int mme_play_set_output_attr(mme_hdl_t *hdl,
uint64_t outputdeviceid,
mme_output_attr_t *attr);

Arguments:
hdl An MME connection handle.

outputdeviceid The ID of the output device on which to set attributes.

attr A pointer to a structure with the output device attributes. See
mme_output_attr_t in this reference.

Library:
mme

Description:
The functionmme_play_set_output_attr() sets the output attributes for the specified
output device. These attributes are carried in the data structuremme_output_attr_t

described in this reference.

To apply the same attributes to all output devices attached to a control context, set
outputdeviceid to 0. The MME will iterate through all attached output devices and
apply the values specified inmme_output_attr_t to them.

Events

This function deliversMME_EVENT_OUTPUTATTRCHANGEwith the ID of the
output device where the change occured, inmme_event_data_t.value.

Blocking and validation

This function validates the output device ID, and behaves as follows, depending on
whether the MME is currently playing a track:

• Playing — if the MME connection is asynchronous, this function returns before
updatingio-media, becauseio-media communicates with hardware, which has
different response times, making it impossible for the MME to know how long it
will take to return.

• Not playing — behaves synchronously: fully validating, updating a cache, not
hardware.

May 4, 2009 Chapter 1 • MME API 249

mme_play_set_output_attr()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play_get_output_attr(), mme_output_set_permanent()

250 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_set_speed()
Sets playback speed and direction (forward, reverse, pause) for tracks

Synopsis:
#include <mme/mme.h>

int mme_play_set_speed(mme_hdl_t *hdl,
int speed);

Arguments:
hdl An MME connection handle.

speed The playback speed to set for the current track, expressed in units of 1/1000
of normal speed.

Library:
mme

Description:
The functionmme_play_set_speed() sets the playback speed for the current track or
file, including forward, reverse and pause.

The playback speed is expressed in units of 1/1000 of normal speed: 1000 means
normal speed, 2000 means double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values between 0 and 1000 are slow
speed playback.

• The requested speed can’t be guaranteed for all devices. The graph used to play the
track will select the supported speed closest to the one requested. The client
application should usemme_play_get_status() to get the actual playback speed.

• During fast forward or reverse, an iPod continuously increases speed until it
reaches the beginning or end of a track, at which time it resets to normal speed.

Events

MME_EVENT_TIME when the function has completed work.

Blocking and validation

This function verifies that the requested time position is valid, and blocks until it has
advanced playback to this time position.

May 4, 2009 Chapter 1 • MME API 251

mme_play_set_speed()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success: the playback speed was set.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play(), mme_play_get_info(), mme_play_get_output_attr(),
mme_play_get_speed(), mme_play_get_status(), mme_play_set_output_attr()

252 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_set_zone()
Set the zone ID used by a control context

Synopsis:
#include <mme/mme.h>

int mme_play_set_zone(mme_hdl_t *hdl,
uint64_t zoneid);

Arguments:
hdl An MME connection handle.

zoneid The ID of the output zone to be used by the current control context.

Library:
mme

Description:
The functionmme_play_set_zone() sets the output zone to be used by the current
control context. For more information about zones, seemme_zone_create().

Events

None delivered.

Blocking and validation

This function is fully validating and runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 253

mme_play_set_zone()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_output_set_permanent(), mme_play_attach_output(),
mme_play_detach_output(), mme_play_set_zone(), mme_zone_create(),
mme_zone_delete()

254 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_play_status_t
Play status information

Synopsis:
#include <mme/types.h>

typedef struct _mme_play_status {
mme_time_t time_info;
uint32_t playstate;
mme_buffer_status_t buffer;

} mme_play_status_t;

Description:
The structuremme_play_status_t provides a snapshot of the current playback
status, including total play time and play time elapsed. It includes at least the members
described in the table below.

Member Type Description

time_info mme_time_t Time information about the current track
or file. Seemme_time_t in this reference.

playstate mme_playstate_t The current MME playstate. See
mme_playstate_t in this reference.

buffer mme_buffer_status_t The current playback buffer status. See
mme_buffer_status_t.

Classification:
QNX Multimedia

See also:
mme_buffer_status_t,mme_time_t, mme_playstate_t,
mme_playstate_speed_t

May 4, 2009 Chapter 1 • MME API 255

MME_PLAYLIST_*  2009, QNX Software Systems GmbH & Co. KG.

Playlist ownership and mode definitions

Synopsis:
#include <mme/interface.h>

#define MME_PLAYLIST_*

Description:
TheMME_PLAYLIST_* constants define values used in theplaylists table,:

• MME_PLAYLIST_MODE_*

• MME_PLAYLIST_OWNER_*

See also theMME_PLAYLIST_FLAGS_PLAYLIST_ENTRY and
MME_PLAYLIST_RESOLVE_* constants used bymme_playlist_item_get().

MME_PLAYLIST_MODE_*

TheMME_PLAYLIST_MODE_* constants identify the type of playlist. The MME
updates themode field in theplaylists table with the value identifying the playlist
mode.

Constant Value Description

MME_PLAYLIST_MODE_LIBRARY 0 The playlist is on a mediastore.

MME_PLAYLIST_MODE_GENERATED 1 The playlist has been created by the
user.

MME_PLAYLIST_OWNER_*

TheMME_PLAYLIST_OWNER_* constants identify the owner of a playlist. The
MME updates theownership field in theplaylists table with the value identifying
the playlist owner.

Constant Value Description

MME_PLAYLIST_OWNER_MME 0 The playlist is owned by the MME.

MME_PLAYLIST_OWNER_DEVICE 1 The playlist is owned by an external
device, such as an iPod.

MME_PLAYLIST_OWNER_USER 2 The playlist is owned by the user, who
created the playlist.

256 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_PLAYLIST_*

Classification:
QNX Multimedia

See also:
mme_playlist_close(), mme_playlist_create(), mme_playlist_delete(),
mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 257

mme_playlist_close()  2009, QNX Software Systems GmbH & Co. KG.

Close a playlist

Synopsis:
#include <mme/playlist.h>

int mme_playlist_close(mme_playlist_hdl_t *hdl);

Arguments:
hdl An MME playlist connection handle returned bymme_playlist_open().

Library:
mme

Description:
The functionmme_playlist_close() closes the playlist opened with the connection
handle referenced byhdl.

Events

None returned

Blocking and validation

This function validates the playlist connection handle and does not block.

Returns:
0 Success: the ID of the synchronization operation.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_create(), mme_playlist_delete(),
mme_playlist_generate_similar(), mme_playlist_hdl_t,

258 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_close()

mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 259

mme_playlist_create()  2009, QNX Software Systems GmbH & Co. KG.

Create a new playlist

Synopsis:
#include <mme/playlist.h>

int mme_playlist_create(mme_hdl_t *hdl,
uint64_t msid,
const char *name,
uint64_t *plid);

Arguments:
hdl An MME connection handle.

msid The ID for the mediastore from which the playlist will be made. If the
mediastore is pruned, the playlist will be deleted. Set the mediastore ID to 0
(zero) to prevent pruning of the mediastore.

name The name of the new playlist.

plid The ID for the new playlist.

Library:
mme

Description:
The functionmme_playlist_create() creates a new playlist from a mediastore. It adds
a playlist entry to the tableplaylists and the playlist data to theplaylistdata
table. It does not write to theplaylistdata_custom table, or any other*_custom
tables; these remain the responsibility of the client application.

Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

260 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_create()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_delete(),
mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 261

mme_playlist_delete()  2009, QNX Software Systems GmbH & Co. KG.

Delete a specified playlist

Synopsis:
#include <mme/mme.h>

int mme_playlist_delete(mme_hdl_t *hdl,
uint64_t *plid);

Arguments:
hdl An MME connection handle.

plid The ID of the playlist to be deleted.

Library:
mme

Description:
The functionmme_playlist_delete() deletes a playlist from theplaylists table, and
its data from theplaylistdata table.

This function does not delete custom playlists in theplaylistdata_custom table.
Custom playlists must be deleted manually.

The following example provided inmme_connect.sql shows how to create triggers
to delete entries from theplaylistdata_custom table when the client application
callsmme_playlist_delete() to delete a playlist:

CREATE TEMP TRIGGER playlistdata_custom_delete DELETE ON playlists
BEGIN

DELETE FROM playlistdata_custom WHERE plid=OLD.plid;
END;

Events

None delivered.

Blocking and validation

This function runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

262 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_delete()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 263

mme_playlist_generate_similar()  2009, QNX Software Systems GmbH & Co. KG.

Generate a playlist like an existing playlist

This function is no yet fully implemented, and returns anENOSUPerror if it is called.

Synopsis:
#include <mme/playlist.h>

int mme_playlist_generate_similar(mme_hdl_t *hdl,
const char *name
uint64_t fid,
uint64_t msid,
unsigned max_entries,
uint32_t flags,
uint32_t *plid);

Arguments:
hdl An MME connection handle.

name A pointer to a text name to display for the new playlist.

fid The ID of the file to use as a seed for the new playlist.

msid The ID of the mediastore from which to select tracks to place in the
playlist. See “Playlists and mediastores” below.

max_entries The maximum number of entries that can be put in the new playlist.

flags For future use.

plid The playlist ID of the new playlist.

Library:
mme

Description:
The functionmme_playlist_generate_similar() generates a playlist from files similar
to the seed file.

Playlists and mediastores

Themsid argument determines which mediastoresmme_playlist_generate_similar()
uses to generate a playlist. Possible values and behaviors are as follows:

>0 Build a playlist from tracks on the specified mediastore.

If the MME prunes the mediastore from its database, it also prunes the playlist.

=0 Build a playlist from tracks on all active mediastores.

The client application is responsible for pruning the playlist when it is no
longer needed; the MME doesnot prune the playlist from the database,
because it is not associated with a specific mediastore.

264 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_generate_similar()

Events

None delivered.
Blocking and validation

This function validates the mediastore ID, and runs to completion.

Returns:
>0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_hdl_t, mme_playlist_item_get(),
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 265

mme_playlist_hdl_t  2009, QNX Software Systems GmbH & Co. KG.

The playlist API handle

Synopsis:
#include <mme/playlist.h>

struct mme_playlist_hdl;
typedef struct mme_playlist_hdl mme_playlist_hdl_t;

Description:
The structuremme_playlist_hdl_t is used for playlist session control. One handle
is used for each playlist opened.

Classification:
QNX Multimedia

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_item_get(),
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

266 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_item_get()
Get an entry from a playlist

Synopsis:
#include <mme/playlist.h>

int mme_playlist_item_get(mme_playlist_hdl_t *hdl,
uint32_t *flags,
char *buffer,
size_t length);

Arguments:
hdl A playlist connection handle.

flags A pointer to flags to control the operation. See “Flags” below.

buffer A pointer to a buffer

length The length of the buffer, in bytes; may be 0.

Library:
mme

Description:
The functionmme_playlist_item_get() retrieves the playlist entry at the position
specified bymme_playlist_position_set(), and places it in the buffer referenced by
buffer.

Successful completion (return value≥0) of a call tomme_playlist_item_get() does not
mean that the function successfully read in the playlist entry. If the returned value is
great than the allocated buffer length (length), you must increase the buffer length to at
least the returned value and call the function again to read in the entry. Alternately, you
can callmme_playlist_item_get() with the length argument set to 0 to get the playlist
entry length, set the buffer size to the returned value, then call the function again.

Flags

Theflags argument is used both to:

• Pass instructions tomme_playlist_item_get(): when calling
mme_playlist_item_get(), set theflags argument to
MME_PLAYLIST_RESOLVE_PLAYLIST_ENTRY to have the function convert the
playlist entry to a file.

• Return information about the retrieved playlist entry: the entry is either
unconverted (MME_PLAYLIST_FLAGS_PLAYLIST_ENTRY) or convereted into a
file (MME_PLAYLIST_FLAGS_PLAYLIST_FILE).

May 4, 2009 Chapter 1 • MME API 267

mme_playlist_item_get()  2009, QNX Software Systems GmbH & Co. KG.

MME_PLAYLIST_FLAGS_*

TheMME_PLAYLIST_FLAGS_* constants identify the type of item that has been
retreived by a call tomme_playlist_item_get().

Constant Value Description

MME_PLAYLIST_FLAGS_PLAYLIST_ENTRY 0x00000001 The item is an
unconverted entry from
a playlist.

MME_PLAYLIST_FLAGS_PLAYLIST_FILE 0x00000002 The item is a playlist
entry that has been
converted to a real file.

MME_PLAYLIST_RESOLVE_*

TheMME_PLAYLIST_RESOLVE_* constants determine how to process a playlist item
retrieved withmme_playlist_item_get().

Constant Value Description

MME_PLAYLIST_RESOLVE_PLAYLIST_ENTRY 0x00000001 Convert the entry to a
real file before
returning it.

Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:
>0 Success: the length of the playlist entry, in bytes, even if the buffer is too short

for the entry.

0 Success, but the end of the playlist has been reached.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

268 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_item_get()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(),
mme_playlist_item_get()

May 4, 2009 Chapter 1 • MME API 269

mme_playlist_items_count_get()  2009, QNX Software Systems GmbH & Co. KG.

Get the number of items in a playlist

Synopsis:
#include <mme/playlist.h>

int mme_playlist_items_count_get(mme_playlist_hdl_t *hdl,
int *items);

Arguments:
hdl An playlist connection handle.

items The number of items in the playlist.

Library:
mme

Description:
The functionmme_playlist_items_count_get() gets the number of items in the
currently open playlist. This number can be 0, greater than 0, or -1. If the value is -1,
the playlist has no fixed length.

Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:
0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

270 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_items_count_get()

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_open(), mme_playlist_position_set(),
mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 271

mme_playlist_open()  2009, QNX Software Systems GmbH & Co. KG.

Open a playlist

Synopsis:
#include <mme/playlist.h>

mme_playlist_hdl_t mme_playlist_open(mme_hdl_t *hdl,
uint64_t plid,
uint32_t flags);

Arguments:
hdl An MME connection handle.

folderid The ID of the playlist to open.

flags For future use.

Library:
mme

Description:
The functionmme_playlist_open() returns a handle to be used to work with a playlist.
After calling mme_playlist_open(), you can use othermme_playlist_*() functions to
find and extract entries from the opened playlist.

This function can only open a playlist if a playlist synchronization (PLSS) plugin able
to process the playlist is available. If no PLSS plugin for the playlist is available,
mme_playlist_open() fails.

Events

None delivered.

Blocking and validation

This function validates the playlist ID, and runs to completion.

Returns:
An initialized mme_playlist_hdl_t, or NULL if an error occurred (errno is set).

Classification:
QNX Neutrino

272 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_open()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(),
mme_playlist_position_set(), mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 273

mme_playlist_position_set()  2009, QNX Software Systems GmbH & Co. KG.

Set the current position in a playlist

Synopsis:
#include <mme/mme.h>

int mme_playlist_position_set(mme_playlist_hdl_t *hdl,
unsigned position);

Arguments:
hdl A playlist connection handle.

position The position to set in the playlist to.

Library:
mme/playlist

Description:
The functionmme_playlist_position_set() sets a position in the current playlist. After
calling this function, you can callmme_playlist_item_get() to retrieve the item from
the position set.

Events

None delivered.

Blocking and validation

This function performs no validations, and runs to completion.

Returns:
0 Success: the ID of the synchronization operation.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

274 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_position_set()

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_set_statement(), mme_playlist_sync()

May 4, 2009 Chapter 1 • MME API 275

mme_playlist_set_statement()  2009, QNX Software Systems GmbH & Co. KG.

Set the SQL statement to create a playlist

Synopsis:
#include <mme/mme.h>

int mme_playlist_set_statement(mme_hdl_t *hdl,
uint64_t *plid,
const char *sql);

Arguments:
hdl An MME connection handle.

plid The ID of the playlist.

sql A pointer to the SQL statement used to retrieve the file IDs of the files or
tracks for the playlist.

Library:
mme

Description:
The functionmme_playlist_set_statement() sets the SQL statement to use when
retrieving the files to create a playlist.

Events

Blocking and validation

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

276 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_set_statement()

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_sync(),

May 4, 2009 Chapter 1 • MME API 277

mme_playlist_sync()  2009, QNX Software Systems GmbH & Co. KG.

Synchronize a specified playlist

Synopsis:
#include <mme/mme.h>

int mme_playlist_sync(mme_hdl_t *hdl,
uint64_t plid,
uint32_t flags);

Arguments:
hdl An MME connection handle.

folderid The ID of the playlist to synchronize.

flags For future use.

Library:
mme

Description:
The functionmme_playlist_sync() synchronizes the specified playlist. When it
completes the synchronization operation it delivers either
MME_EVENT_MS_SYNCCOMPLETEfor a successfully synchronization, or
MME_EVENT_SYNCABORTED for an unsuccessful synchronization.

Events

The functionmme_playlist_sync() may deliver any event of the class
MME_EVENT_CLASS_SYNC, and any of theMME_SYNC_ERROR_* error events.

Blocking and validation

This function validates the synchronization request and does not block.

Returns:
>0 Success: the ID of the synchronization operation.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

278 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playlist_sync()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_PLAYLIST_* , mme_playlist_close(), mme_playlist_create(),
mme_playlist_delete(), mme_playlist_generate_similar(), mme_playlist_hdl_t,
mme_playlist_item_get(), mme_playlist_items_count_get(), mme_playlist_open(),
mme_playlist_position_set(), mme_playlist_set_statement(),
mme_resync_mediastore()

May 4, 2009 Chapter 1 • MME API 279

mme_playstate_speed_t  2009, QNX Software Systems GmbH & Co. KG.

Playback state and speed

Synopsis:
#include <mme/types.h>
typedef struct mme_playstate_speed {

uint32_t playstate;
int32_t speed;

} mme_playstate_speed_t;

Description:
The structuremme_playstate_speed_t carries information about state and speed
of playback. The MME uses this structure with the eventMME_EVENT_PLAYSTATE
to deliver information about the state of a playback operation.

Member Type Description

playstate uint32_t The current play state. Seemme_playstate_t

speed int32_t The current playback speed, expressed in units of 1/1000
of normal speed: 1000 means normal speed, 2000 means
double speed, etc. Positive values mean forward, negative
values mean reverse, and zero means pause. Values
between 0 and 1000 are slow speed playback.

Classification:
QNX Multimedia

See also:
mme_play_get_status(), mme_playstate_t,mme_play_status_t

280 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_playstate_t
Values for playback state

Synopsis:
#include <mme/types.h>

typedef enum mme_playstate {
...

} mme_playstate_t;

Description:
The enumerated typemme_playstate_t defines the values used to describe
playback states. Its values include:

• MME_PLAYSTATE_UNKNOWN (0)

• MME_PLAYSTATE_ERROR(1)

• MME_PLAYSTATE_PLAYING (2)

• MME_PLAYSTATE_PAUSED(3)

• MME_PLAYSTATE_FASTFWD(4)

• MME_PLAYSTATE_FASTREV(5)

• Not used. (6)

• MME_PLAYSTATE_STOPPED(7)

• MME_PLAYSTATE_SLOWFWD(8)

• MME_PLAYSTATE_SLOWREV(9)

Classification:
QNX Multimedia

See also:
mme_play_get_status(), mme_playstate_speed_t,mme_play_status_t

May 4, 2009 Chapter 1 • MME API 281

mme_prev()  2009, QNX Software Systems GmbH & Co. KG.

Skip to the previous track

Synopsis:
#include <mme/mme.h>

int mme_prev(mme_hdl_t *hdl);

Arguments:
hdl The MME handle for the control context playing the track session on which

you want to skip to the previous track.

Library:
mme

Description:
The functionmme_prev() skips to the previous title in the currently playing track
session. The previously played track is obtained from thetrksessionview table.

Effect of play modes on behavior

The behavior ofmme_prev() is affected by the play modes set for the specified control
context (sequential versus random, and repeat versus no repeat).

If sequential mode is set, the file ID of the previous track in the track session is in the
previous row in thesequentialid column of thetrksessionview table. If random
mode is set, the file ID of the previous track in the track session is in therandomid
column of thetrksessionview table.

Effect of repeat mode on the first track of a session

When the first track in the track session is playing, the result of callingmme_prev()
depends on whether the repeat mode is set.

If repeat mode is off, when it has reached the beginning of the track session (or, when
random mode is set, when all songs in the track session have been played),
mme_next() setserrno to ENODATA .

If repeat mode is on:

• if sequential mode is set, the MME plays the first track in the track session, as
determined by thesequentialid column in thetrksessionview table.

• if random mode is set, the MME plays the first track in the track session, as
determined by therandomid column in thetrksessionview table.

282 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_prev()

Working with an iPod device

iPod devices manage their own track sessions. To move to the next or previous track in
an iPod track session, call themme_button() function withmm_button_t set to
MM_BUTTON_NEXT or MM_BUTTON_PREV, as required.

Events

This function may deliver any event of the classMME_EVENT_CLASS_PLAY, and
anyMME_PLAY_ERROR_* event.

Blocking and validation

This function verifies that thefid is valid. Does not verify that the file exists, or that it
is playable.

This function blocks on control contexts. Ifmme_prev() is called and another function
is called beforemme_prev() returns, the second function blocks onio-media until
mme_prev() returns. If there are no other pending calls,mme_prev() returns without
blocking onio-media.

Returns:
≥0 Success:errno set toENODATA indicates that there are no more tracks to play.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_next(), mme_setrandom(), mme_setrepeat()

May 4, 2009 Chapter 1 • MME API 283

mme_register_for_events()  2009, QNX Software Systems GmbH & Co. KG.

Register and unregister for events from the MME

Synopsis:
#include <mme/mme.h>

int mme_register_for_events(mme_hdl_t *hdl,
mme_event_class_t event_class,
struct sigevent *event);

Arguments:
hdl The MME connection handle.

event_class The MME event class or classes for which the client application
wants to register or unregister.

event The event to have delivered when it is received. To unregister for the
specified class setevent to NULL.

Library:
mme

Description:
The functionmme_register_for_events() allows the client application to determine the
events it wants to receive from the MME.

Register for events

The MME does not deliver events to a client application unless it is specifically
instructed to do so. To receive events from the MME, a client application must register
for events after connecting to the MME, specifying the class or classes of events it
wants to receive.

The client application must register after each connection. This feature allows the
client application to register different different classes of events for connections. For
example, a connection used to handle synchronizations can register for
synchronization events, but not for playback events, because it will never call
functions that deliver playback events.

Each event class has a differentsigevent. When it has registered for an event class, the
client application has told the MME whichsigevents it wants to receive. When it has a
relevant event, the MME will:

• place it in its event queue

• send thesigevent automatically to the client application.

The client application can then decide from thesigeventif it needs to see the associated
event. When it needs to see events, the client application can use the function
mme_get_event() to have them delivered from the MME’s event queue.

284 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_register_for_events()

Unregister for events

To stop receiving a class of events, the client application must unregister for that event
class. To unregister for an event class, call the functionmme_register_for_events()
with theevent_class set to the event class for which you want to stop receiving events,
and the argumentevent set to NULL.

If the client application has registered for several or all event classes, it can unregister
for any event class without affecting the registration for the other event classes. For
example:

mme_register_for_events(hdl, MME_EVENT_CLASS_ALL, &event);

// Do some work here.

mme_register_for_events(hdl, MM_EVENT_CLASS_COPY, NULL);

MME event classes

mme_event_classes_t defines the different MME event classes as bitmasks:

MME_EVENT_CLASS_PLAY

Playback events.

MME_EVENT_CLASS_SYNC

Synchronization events.

MME_EVENT_CLASS_COPY

Copying and ripping events.

MME_EVENT_CLASS_GENERAL

Events not specified in the other classes.

MME_EVENT_CLASS_ALL

All events.

The MME event classes are bitmasks. They can be used together with anOR operator
to register for several events at once. For example, to register forplayback and
synchronization events call the functionmme_register_for_events() as follows:

mme_register_for_events(hdl,
MME_EVENT_CLASS_PLAY | MME_EVENT_CLASS_SYNC,
event);

For more information about events, see the chapter MME Events and following.

May 4, 2009 Chapter 1 • MME API 285

mme_register_for_events()  2009, QNX Software Systems GmbH & Co. KG.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect(), mme_disconnect(), mme_get_event(), MME Events

286 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_resync_mediastore()
Re-synchronize a mediastore

Synopsis:
#include <mme/mme.h>

int mme_resync_mediastore(mme_hdl_t *hdl,
uint64_t msid,
uint64_t folderid,
uint32_t options);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore to resynchronize.

folderid Specifies the folder to synchronize. A value of 0 means synchronize all
folders.

options A mask that sets synchronization options. The options can be any
combination of:

• MME_SYNC_OPTION_CANCEL_CURRENT— not used by
mme_resync_mediastore(). Seemme_sync_directed().

• MME_SYNC_OPTION_CLR_INV_COPIED— set to 0 (zero) all
invalid copied_fid values in thelibrary table.

• MME_SYNC_OPTION_PASS_FILES— synchronize files (perform
first pass synchronization).

• MME_SYNC_OPTION_PASS_METADATA — synchronize metadata
(perform second pass synchronization).

• MME_SYNC_OPTION_PASS_PLAYLISTS — synchronize playlists
(perform third pass synchronization).

• MME_SYNC_OPTION_PASS_ALL — synchronize files, metadata,
and playlists.

• MME_SYNC_OPTION_RECURSIVE— perform a recursive
synchronization;mme_resync_mediastore() always assumes that this
flag is set.

Library:
mme

Description:
The functionmme_resync_mediastore() attempts to start synchronization of a
mediastore. It returns immediately, with synchronization continuing in the
background.

May 4, 2009 Chapter 1 • MME API 287

mme_resync_mediastore()  2009, QNX Software Systems GmbH & Co. KG.

When a particular pass is specified, if that pass was previously marked as complete in
the MME database, the MME first marks that pass as not complete, then attempts the
new synchronization. Any previously completed synchronization passes that are not
being redone are left untouched.

CAUTION: A clean up of invalidcopied_id fields can take a long time. Use the
MME_SYNC_OPTION_CLR_INV_COPIEDflag judiciously —only when
synchronizing after deleting media files from your database.

!

Events

The functionmme_resync_mediastore() may deliver any event of the class
MME_EVENT_CLASS_SYNC, and any of theMME_SYNC_ERROR_* error events.

Blocking and validation

This function verifies that themsid andfolderid are valid. It returns, then requests a
synchronization in the background at the earliest possible time. If all synchronization
threads are busy, this request is queued until a synchronization thread becomes
available.

See the chapter Configuring Synchronization in theMME Configuration Guide.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_playlist_sync(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

288 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_rmtrksession()
Remove a track session from the database

Synopsis:
#include <mme/mme.h>
int mme_rmtrksession(mme_hdl_t *hdl,

uint64_t trksessionid);

Arguments:
hdl An MME connection handle.

trksessionid The ID for the track session you want to remove.

Library:
mme

Description:
The functionmme_rmtrksession() removes the specified track session from the
trksessions table in the MME library. It also removes references to the specified
track session from these other tables:

• controlcontexts table — if the removed track session is the currently playing
track session for the control context, thetrksessionid field for the control context is
set to 0

• mediastores— if the removed track session was the last played track session for
this mediastore, thetrksessionid field for the control context is set to 0

You can get the current track session for a control context by calling
mme_trksession_get_info().

Events

None delivered.

Blocking and validation

This function blocks on control contexts. It fully validates data; all arguments are
checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 289

mme_rmtrksession()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_get_info(), mme_trksession_resume_state(),
mme_set_msid_resume_trksession(), mme_newtrksession(), settrksession()

290 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_seek_title_chapter()
Seek to a specified title and chapter on a track or mediastore

Synopsis:
#include <mme/mme.h>

int mme_seek_title_chapter(mme_hdl_t hdl,
uint64_t title,
uint64_t chapter);

Arguments:
hdl An MME connection handle.

title The title from which to start playback.

chapter The chapter from which to start playback.

Library:
mme

Description:
The functionmme_seek_title_chapter() seeks to a specified title and chapter on a
track or mediastore so that playback can begin from that point. This function can only
be used if theMME_PLAYSUPPORT_NAVIGATION flag is set in thesupport member
of the structuremme_play_info_t.

To start playback from a specific title and chapter:

1 Create a track session with the mediastore file ID (fid) for the entire DVD.

2 Set the track session.

3 Call mme_play() to start playback.

4 Once the navigator is active, callmme_seek_title_chapter() to seek to the
desired title and chapter on the DVD.

To get information about titles and chapters on a playing track, call the function
mme_get_title_chapter().

Events

None delivered.

May 4, 2009 Chapter 1 • MME API 291

mme_seek_title_chapter()  2009, QNX Software Systems GmbH & Co. KG.

Blocking and validation

This function blocks onio-media.
Returns:

≥0 Success.

-1 An error occurred (errno is set).

Examples:
Below is a code snippet that illustrates how to seek to a specific title (1) and chapter
(5).

uint64_t title = 1, chapter = 5;

rc = mme_seek_title_chapter(mmehdl, title, chapter);
if (rc == EOK) {

printf("Seeking to title %lld chapter %lld", title, chapter);
} else {

printf("Seek to title %lld chapter %lld failed, %s", title, chapter, strerror(errno))
}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_get_title_chapter(), mme_play(), mme_play_bookmark(),
mme_play_get_info(), mme_play_info_t, mme_seektotime()

292 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_seektotime()
Seek to a time in a playing track

Synopsis:
#include <mme/mme.h>

int mme_seektotime(mme_hdl_t *hdl,
int time);

Arguments:
hdl An MME connection handle.

time The time you want to seek to, in milliseconds.

Library:
mme

Description:
The functionmme_seektotime() seeks to a specific time (expressed in milliseconds
from the start of the track) in the current track. The track must be playing for the seek
to work.

If time is greater than the total time for the currently playing track, behavior varies,
depending on the media, as follows:

• DVD-audio — return to the beginning of the current track

• DVD-video — seek to the requested time in the title

• all other media — seek to the end of the current track

Events

None delivered.

Blocking and validation

This function blocks on control contexts. Ifmme_seektotime() is called and another
function is called beforemme_seektotime() returns, the second function blocks on
io-media until mme_seektotime() returns. If there are no other pending calls,
mme_seektotime() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 293

mme_seektotime()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect(), mme_next(), mme_play()

294 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_api_timeout()
Set the time period on the unblocking timer

Synopsis:
#include <mme/mme.h>

int mme_set_api_timeout(mme_hdl_t *hdl,
uint32_t *milliseconds);

Arguments:
hdl An MME connection handle.

milliseconds The time, in milliseconds, to wait before unblocking the client. Set
to 0 to disable.

Library:
mme

Description:
The functionmme_set_api_timeout() sets, for the current control context, the amount
of time, in milliseconds, the MME will wait before unblocking the client application
when it is blocked by calls to the MME.

If mme_set_api_timeout() is set, API calls that are blocked beyond the set timeout
period will unblock the client, returning early with theerrno set toEINTR.

For information about how to confirm the cause of anEINTR error, see
mme_get_api_timeout_remaining().

The MME’s default configuration is to disable unblocking capabilities, which disables
mme_set_api_timeout(). To enable the MME’s unblocking capability, set the
<Unblock> configuration element attribute to “true”.

CAUTION: The MME connection handle,mme_hdl_t, is not thread safe; only one
instance can be used at a time. This limitation means thatmme_set_api_timeout() can
not be called concurrently with another function call: you can call
mme_set_api_timeout() at any time to configure the behavior offuture calls to the
MME API, but you can’t usemme_set_api_timeout() to force the return of a call that
has already been made.

!

Events

None delivered.

May 4, 2009 Chapter 1 • MME API 295

mme_set_api_timeout()  2009, QNX Software Systems GmbH & Co. KG.

Blocking and validation

This function doesn’t block.
Returns:

≥0 Success.

-1 An error occurred (errno is set). Errno is set.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_get_api_timeout_remaining()

296 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_debug()
Set MME debug settings

Synopsis:
#include <mme/mme.h>

int mme_set_debug(mme_hdl_t *hdl,
uint8_t verbose,
uint8_t debug);

Arguments:
hdl An MME connection handle.

verbose The verbosity setting for the MME.

debug The debug setting for the MME.

Library:
mme

Description:
The functionmme_set_debug() sets the MME verbosity and debug levels. It can be
called at any time. Debug and verbosity levels range from 0 (zero) to 10, with 0
meaning “turned off” and 10 providing the most detailed information. These levels are
equivalent to themme start up options-v and-D. See alsomme in theMME Utilities
Reference.

When debugging problems, use a higher verbosity level to write more detailed
information to the log. The debug setting is usually used only by QNX developers.

CAUTION: The higher the verbosity and debug settings, the more overhead is placed
on the system. A production environment should run with verbosity and debug
settings of 0 (zero).

!

Events

None delivered.

Blocking and validation

This function blocks until it completes.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 297

mme_set_debug()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_set_api_timeout()

298 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_files_permanent()
Set files as permanent (not prunable) or prunable

Synopsis:
#include <mme/mme.h>

int mme_set_files_permanent(mme_hdl_t *hdl,
bool permanent,
const char *fidselect);

Arguments:
hdl An MME connection handle.

permanent A boolean flag to set the file as permanent “true” (permanent) or
“false” (prunable).

fidselect A SELECT statement to retrieve file or files to be marked.

Library:
mme

Description:
The functionmme_set_files_permanent() marks specified media files as permanent
(not prunable), or prunable. This feature can be used to ensure that files, such as ring
tones, are never pruned from the MME’s database. The default setting for files is
prunable.

To mark one or more files as either permanent or prunable, call
mme_set_files_permanent() with a SELECT statement to select the file or files from
thelibrary table, and thepermanent argument set to “true” (permanent) orfalse
(prunable), as required. This action sets thepermanent field in thelibrary table for
the selected file or files. When the MME is pruning its database it willnot remove files
with thepermanent field set totrue.

For more information about prune management, see “Database pruning” in the chapter
Configuring Device Support and Media Synchronization of theMME Configuration
Guide.

Events

None delivered.

Blocking and validation

This function doesn’t block.

May 4, 2009 Chapter 1 • MME API 299

mme_set_files_permanent()  2009, QNX Software Systems GmbH & Co. KG.

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_resync_mediastore()

300 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_msid_resume_trksession()
Set the track session ID to use when resuming playback of a mediastore.

Synopsis:
#include <mme/mme.h>

int mme_set_msid_resume_trksession(mme_hdl_t *hdl,
uint64_t msid);

Arguments:
hdl An MME connection handle.

msid The ID of the mediastore to which the track session ID is set.

Library:
mme

Description:
The functionmme_set_msid_resume_trksession() links a track session with a specific
mediastore. The track session ID is used by the functionmme_play_resume_msid() to
resume playback on the the mediastore.

Multiple mediastore IDs can be assigned to the same track session ID.

For more information about stopping an resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media of theMME
Developer’s Guide.

Events

None delivered.

Blocking and validation

This function blocks on the control context. It performs full validation and runs to
completion, returning success or failure.

Returns:
≥0 Success: the MME assigned themsid to thetrksessionid.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 301

mme_set_msid_resume_trksession()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_newtrksession(), mme_rmtrksession(), settrksession().
mme_trksession_get_info(), mme_trksession_resume_state(),
mme_trksession_save_state()

302 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_notification_interval()
Set the time interval between updates during playback

Synopsis:
#include <mme/mme.h>

int mme_set_notification_interval(mme_hdl_t *hdl,
uint32_t time);

Arguments:
hdl An MME connection handle.

time The time interval between updates.

Library:
mme

Description:
The functionmme_set_notification_interval() configures the MME to deliver the
eventMME_EVENT_TIME at regular intervals to the client application, when the
MME control context to which the client application is connected is playing a file or
track.

The argumenttime sets the event delivery period. The default period is 100
milliseconds.

The deliver period remains constant regardless of the speed of the playback. That is, if
the period is set to 100, the MME delivers the eventMME_EVENT_TIME to the client
application every 100 milliseconds. This represents 100 milliseconds of playback time
at the regular speed of 1000, but 200 milliseconds of playback time if the playback
speed is 2000.

The only exception is if the playback is stopped, in which case the playback speed is 0
and the MME does not deliver the eventMME_EVENT_TIME to the client application.

The table below shows some examples of behavior set by
mme_set_notification_interval().

time Playback speed Time between notifications Playback time between
notifications

100 1000 100 ms 100 ms

100 2000 100 ms 200 ms

100 500 100 ms 50 ms

continued. . .

May 4, 2009 Chapter 1 • MME API 303

mme_set_notification_interval()  2009, QNX Software Systems GmbH & Co. KG.

time Playback speed Time between notifications Playback time between
notifications

200 2000 200 ms 400 ms

100 0 (paused) no notification sent n/a

For more information, seemme_play_set_speed().

Limitations of time reporting accuracy

The accuracy and frequency of time updates depends upon the implementation of the
io-media graphs used to process the media, and on the accuracy and frequency of
updates delivered by the underlying drivers and hardware. Graphs should attempt to
deliver a timing resolution of 100 milliseconds or better, but this resolution is not
always available.

The MME delivers theMME_EVENT_TIME event to the client application only when
it receives a time update from the device or driver (throughio-media). Thus, if, for
example, the MME’s notification interval to the client application is set to 100
milliseconds, but a driver delivers time position updates to the MME only every 300
milliseconds, the client application will only receive time updates every 300
milliseconds and may see jitter in the time reporting.

Note also that notification intervals areapproximate. Actual intervals may vary
slightly, depending on the behavior of devices and drivers, and the time required for
requesting and receiving time updates.

Events

None delivered

Blocking and validation

This function does not make calls toqdb or io-media. It blocks only at the control
context level; that is, it blocks only if other requests are already queued or being
processed. It validates that the notification interval is not being set to 0.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

304 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_notification_interval()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play(), mme_play_get_info() mme_play_get_output_attr()
mme_play_get_status() mme_play_output_attr() mme_play_set_speed()

May 4, 2009 Chapter 1 • MME API 305

mme_setautopause()  2009, QNX Software Systems GmbH & Co. KG.

Set the autopause mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_setautopause(mme_hdl_t *hdl,
bool enable);

Arguments:
hdl An MME connection handle.

enable The autopause setting. Pass astrue to turn on autopause mode, andfalse
to turn it off.

Library:
mme

Description:
The functionmme_setautopause() sets the autopause mode for a control context.
Changing the autopause mode for a control context doesn’t affect a currently playing
track. The change comes into effect for the next track played. By default, autopause
mode is off.

The ability to set a control context’s default behavior to start tracks in the paused state
is particularly useful if you need to perform additional audio processing outside the
MME before playing tracks, or if the system needs to change mediastores during
playback of a tracksession.

Playback behavior when autopause mode is on

When autopause is turned on, tracks start playback in the paused state. When a track is
started in the paused state, the MME delivers aMME_EVENT_PLAYAUTOPAUSED
event, and you need to explicitly resume paused tracks with a call to
mme_play_set_speed() with speed set to 1000.

This behavior affects all calls that initiate playback of a track, including:

• mme_play()

• mme_prev()

• mme_next()

Autopause with devices that control their own track sessions

Do not set autopause for control contexts with devices, such as iPods and Bluetooth
phones, that control their own playback. If you set autopause for control contexts with
these devices attached:

306 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setautopause()

• playback for these devices may produce unexpected behavior
• metadata and other track information requested from these devices may be invalid

Autopause with playback pre-queuing

Autopause willnot take effect if all the following conditions are true:

• the mediastore IDs of the currently playing track and the next track are the same

• io-media will use the same graph to play the next track as it is using for the
currently playing track (the tracks are of the same format)

See also “Playback pre-queuing” in the chapter Configuring Playback of theMME
Configuration Guide.

Events

This function delivers the eventMME_EVENT_AUTOPAUSECHANGED, if it has
changed the autopause state for the control context (for example, from “on” to “off”,
or from “off” to “on”). If mme_setautopause() doesn’t change the autopause state for
the control context, it doesn’t deliver an event (for example, if the state was “on” and
was set to “on”, or the state was “off” and was set to “off”).

Blocking and validation

This function blocks on control contexts.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getautopause(), mme_next(), mme_play(), mme_prev()

May 4, 2009 Chapter 1 • MME API 307

mme_setlocale()  2009, QNX Software Systems GmbH & Co. KG.

Set the preferred language for media with unknown language

Synopsis:
#include <mme/mme.h>

int mme_setlocale (mme_hdl_t *hdl,
const char *locale);

Arguments:
hdl An MME connection handle.

locale The locale code to set. This is a string containing a 5-character language
and region code. This string consists of a 2-character ISO639-1 language
code, followed by a “_” character, followed by a 2-character ISO3166-1
alpha-2 region code. See
http://www.loc.gov/standards/iso639-2/php/code_list.php.

Library:
mme

Description:
The functionmme_setlocale() sets the preferred language for displaying:

• MME messages, such as “synchronizing”

• metadata labels, such as “Artist”, for media for which the language is not known.

The requested language must exist in the database, and thelanguages table must be
populated with the appropriate text strings.

This function doesn’t set the preferred language for media playback. To specify that
setting, usemme_media_set_def_lang().

The current MME implementation uses only the first two characters to extract the
language. In the future, this function may set the language used in strings where
language sets are available, causing a re-ordering of database tables that are
lexicographically collated.

Events

None delivered.

308 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setlocale()

Blocking and validation

This function is fully validating and runs to completion.
Returns:

≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getlocale(), mme_media_get_def_lang(), mme_media_set_def_lang()

May 4, 2009 Chapter 1 • MME API 309

mme_set_logging()  2009, QNX Software Systems GmbH & Co. KG.

Set the verbosity levels for specified logging modules

Synopsis:
#include <mme/mme.h>

int mme_set_logging(mme_hdl_t *hdl,
const char *name,
uint8_t level,
uint8_t flags);

Arguments:
hdl An MME connection handle.

name A pointer to a string with the name of the logging module for which log
levels are to be set. To set levels for all modules, set the string toNULL.
See the “Description” below.

verbose The new log verbosity level to use for the specified modules. See
“Logging modules” below.

flags Flags that configure logging behavior. See “Logging flags” below.

Library:
mme

Description:
The functionmme_set_logging() sets the verbosity levels for specified MME logging
modules. You can set verbosity levels as required for individual modules or for all
modules, as required, by placing the appropriate strings in the buffer referenced by the
name argument.

Logging modules

The strings that identifymme logging modules include:

String Module

imgprc image processing module

mdi metadata interface module

mdp metdata plugin module

pl playlist module

sync synchronization module

continued. . .

310 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_set_logging()

String Module

mme all other modules

The above list is not definitive. The logging modules may change. To find out what
logging module strings are valid, callmme_get_logging() with the string referenced
by thename argument set toNULL.

Logging flags

The logging flags are bit masks that configure logging behavior:

Value Behavior

1 Also write anything logged to standard output.

2 Write timing logs.

Events

None delivered.

Blocking and validation

This function doesn’t perform any validations, and doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 311

mme_set_logging()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_get_logging()

312 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setpriorityfolder()
Set a priority folder for synchronization

Synopsis:
#include <mme/mme.h>

int mme_setpriorityfolder(mme_hdl_t *hdl,
uint64_t folderid);

Arguments:
hdl An MME connection handle.

folderid The ID of the folder to be synchronized first. This ID must match the
folderid field in the MME databasefolders table.

Library:
mme

Description:
The functionmme_setpriorityfolder() tells the MME to synchronize the specified
folder first. When you call this function, if the MME is in the process of sychronizing
a mediastore, it pauses and synchronizes the specified folder first before resuming the
rest of the sychronization.

Events

None delivered.

Blocking and validation

This function blocks onqdb. It validates:

• the folder ID (it must exist)

• that the synchronizer supports the use of prioritized folders

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 313

mme_setpriorityfolder()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_resync_mediastore(), mme_sync_cancel(),
mme_sync_directed(), mme_sync_file(), mme_sync_get_msid_status(),
mme_sync_get_status()

314 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setrandom()
Sets the random playback mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_setrandom(mme_hdl_t *hdl,
int mode);

Arguments:
hdl An MME connection handle.

mode The random mode. For a list of random modes, see
mmme_mode_random_t.

Library:
mme

Description:
The functionmme_setrandom() sets the random playback mode for a control context.
Tracks are played in pseudo-random order (using the QDBrandom() function), and
won’t be repeated until all the tracks in the track session have already been played.

Clearing a track session

You can clear a track session by:

• calling mme_stop() to stop the track session

• calling mme_settrksession() with trksessionid set to 0 (zero)

A random or repeat mode setting only works if the external device supports the
setting. If the external device doesn’t support the requested setting, the MME logs a
warning and continues playback.

CAUTION: A call to mme_settrksession() or mme_set_msid_resume_trksession()
regenerates the pseudo-random list the MME uses for random mode playback.!

Switching modes

The following describes how the MME plays through a track session when it switches
between random and sequential modes, assuming that repeat mode is off.

When the MME switches the track session from sequential to random mode it:

• generates a list of all the tracks in the track session in pseudo-random order

May 4, 2009 Chapter 1 • MME API 315

mme_setrandom()  2009, QNX Software Systems GmbH & Co. KG.

• plays through this list until it has played all the tracks in the track session

When the MME switches the track session from random to sequential mode it:

• clears the random history

• continues playing tracks from the track session track list, starting with the currently
playing track

• plays through the track session to the end. Tracks on the track session track list that
are before the track at which sequential mode was started are not played.

If the client application callsmme_setrandom() when the track session is already in
random mode, the MME clears all random history and:

• If the call tomme_setrandom() sets the playback mode to random mode (for
example, fromrandom all to random album, or from random all to random all
[sic], the MME generates a new pseudo-random list of tracks in the track session
and continues playback from this new list.

• If the call tomme_setrandom() turns off the random mode, the MME continues
playback of the current track session in sequential mode.

For information about how the MME counts tracks played, see
mme_trksession_get_info().

CAUTION: The client application should always call the function
mme_trksession_get_info() immediately after switching between random and
sequential modes. Changing the random mode resets the value ofcurrent_trk, and if
the client application doesn’t update this information withmme_trksession_get_info()
the client application can’t know where it is in the track session.

!

Events

MME_EVENT_RANDOMCHANGE when the function has completed work.

Blocking and validation

This function blocks on control contexts. Ifmme_setrandom() is called and another
function is called beforemme_setrandom() returns, the second function blocks on
io-media until mme_setrandom() returns. If there are no other pending calls,
mme_setrandom() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

316 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setrandom()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getrandom(), mme_getrepeat(), mme_getscanmode() mme_setrepeat(),
mmme_mode_random_t,mmme_mode_repeat_t

May 4, 2009 Chapter 1 • MME API 317

mme_setrepeat()  2009, QNX Software Systems GmbH & Co. KG.

Sets the repeat playback mode for a control context

Synopsis:
#include <mme/mme.h>

int mme_setrepeat(mme_hdl_t *hdl,
int mode);

Arguments:
hdl An MME connection handle.

mode The repeat mode. For a list of repeat modes, seemmme_mode_repeat_t.

Library:
mme

Description:
The functionmme_setrepeat() sets the repeat playback mode for a control context. If
random playback mode is enabled and the repeat mode isMME_REPEAT_ALL , when
all the tracks in a tracksession are played once, the MME determines a new
pseudo-random order, and the first track in the new list starts playing. Playback will
continue indefinitely.

If the repeat mode isMME_REPEAT_SINGLE, the current track repeats indefinitely.

A random or repeat mode setting only works if the external device supports the
setting. If the external device doesn’t support the requested setting, the MME logs a
warning and continues playback.

Events

This function returnsMME_EVENT_REPEATCHANGEwhen it has completed work.

Blocking and validation

This function blocks on control contexts. Ifmme_setrepeat() is called and another
function is called beforemme_setrepeat() returns, the second function blocks on
io-media until mme_setrepeat() returns. If there are no other pending calls,
mme_setrepeat() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

318 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setrepeat()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getrandom(), mme_getrepeat(), mme_getscanmode() mme_setrandom(),
mmme_mode_random_t,mmme_mode_repeat_t

May 4, 2009 Chapter 1 • MME API 319

mme_setscanmode()  2009, QNX Software Systems GmbH & Co. KG.

Set the scan mode and time for a control context

Synopsis:
#include <mme/mme.h>

int mme_setscanmode(mme_hdl_t *hdl,
uint64_t time);

Arguments:
hdl An MME connection handle.

time The number of milliseconds to play a track before skipping to the next track
in the tracklist. Set to 0 to disable scan mode for the current control context.

Library:
mme

Description:
The functionmme_setscanmode() sets the scan mode for a control context. The scan
mode setting is the maximum number of milliseconds from the beginning of the track
the MME will play before going to the next track.

If the scan mode setting is changed while a track is playing, the new scan mode will
take effect immediately. The MME will behave as though the new setting had been
made before it started playing the track. For example, if:

• the scan modetime is 8000 milliseconds

• the MME plays 5064 milliseconds of a track

• the scan modetime is set to 6000 milliseconds,

then the MME will stop playing the track at 6000 milliseconds and move to the next
track.

If the scan modetime is set to a value less than the time already played from a track,
the MME will move immediately to the next track.

Events

This function returnsMME_EVENT_SCANMODECHANGEwhen it has completed
work.

Blocking and validation

This function blocks on control contexts. Ifmme_setscanmode() is called and another
function is called beforemme_setscanmode() returns, the second function blocks on
io-media until mme_setscanmode() returns. If there are no other pending calls,
mme_setscanmode() returns without blocking onio-media.

320 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_setscanmode()

Returns:
≥0 Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_getrandom(), < mme_getrepeat(), mme_getscanmode(), mme_setrandom(),
mme_setrepeat()

May 4, 2009 Chapter 1 • MME API 321

mme_settrksession()  2009, QNX Software Systems GmbH & Co. KG.

Set the current track session

Synopsis:
#include <mme/mme.h>

int mme_settrksession(mme_hdl_t *hdl,
uint64_t trksessionid);

Arguments:
hdl An MME connection handle.

trksessionid The track session ID, set bymme_newtrksession(); set to 0 to release
(“unset”) the current track session.

Library:
mme

Description:
The functionmme_settrksession() sets the current track session for the specified
control context. Before setting the track session for a control context, you must create
the track session withmme_newtrksession(). To play the track session, after you have
set it, callmme_play().

A call to mme_settrksession() does the following:

• If the MME is playing a track and the file ID (fid) of this track is also in the newly
requested track session, the MME doesnot stop playback. It :

- seamlessly switches playback to the same track in the new tracksession

- correctly sets the playback position for the new track session

- if the newly set track session has more than one instance of thefid being played,
playback is transferred to the first instance of thisfid

• If the currently playing track is not in the newly requested track session, calling
mme_settrksession() will stop the currently playing track session and clear the data
associated with its track session. See “Preventing playback interruption” below.

322 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_settrksession()

• File-based track sessions are not permanent. Their contents are lost if playback is
switched to another track session.

• Calling mme_settrksession() regenerates the list of tracks used by the MME for
playback in random mode (the entries in therandomid field of the
trksessionview table).

Preventing playback interruption

In order to not interrupt playback,mme_settrksession() will fail (return -1 and set
errno to ECANCELED) if:

• thefid of the currently playing track is not in the new tracksession

or if:

• the track that was playing when the client issued the request to switch tracks is no
longer playing

Client applications have several options for handling situations where
mme_settrksession() cannot switch track sessions. These include:

• refuse the user request

• instruct the MME to stop playback, then set a new track session

• create a new track session that includes thefid for the currently playing track, then
call mme_settrksession() again to attempt a seamless transition to the new track
session

Using mme_settrksession() to resume playback

If you have stopped a track session and want to usemme_trksession_resume_state()
to resume playback, you must callmme_settrksession() before calling
mme_trksession_resume_state(), as follows:

1 Track session is stopped.

2 Call mme_settrksession().

3 Call mme_trksession_resume_state()

For more information about stopping an resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media in theMME
Developer’s Guide.

Releasing or “unsetting” a track session

You can release or “unset” the current track session by callingmme_settrksession()
with trksessionid set to 0 (zero). Releasing a track session reduces the memory being
used by the MME.

May 4, 2009 Chapter 1 • MME API 323

mme_settrksession()  2009, QNX Software Systems GmbH & Co. KG.

• You must callmme_stop() to stop the track session before you can release it.

• A track session cannot be used by more than one control context. If you attempt to
set a track session already in use by another control context,mme_settrksession()
returns -1 and setserrno to EINVAL . To pass control of a track session to a new
control context, you must first release it from the current control context

For information about deleting a track session, see “Deleting a track session” in the
chapter Using the MME.

Events

If the tracksession being set is not the currently active track session, the MME delivers
the eventMME_EVENT_TRKSESSION. If the track session specified is already set, the
MME delivers no events.

If the new track session has different repeat or random settings than the current
settings on the control context, the MME delivers one or both of the events
MME_EVENT_REPEATCHANGEandMME_EVENT_RANDOMCHANGE.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

This function blocks on control contexts. Ifmme_settrksession() is called and another
function is called beforemme_settrksession() returns, the second function blocks on
io-media until mme_settrksession() returns. If there are no other pending calls,
mme_settrksession() returns without blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

324 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_settrksession()

See also:
mme_newtrksession(), mme_rmtrksession(), mme_trksessionview_update()

May 4, 2009 Chapter 1 • MME API 325

mme_shutdown()  2009, QNX Software Systems GmbH & Co. KG.

Prepare the MME for shut down

Synopsis:
#include <mme/mme.h>

int mme_shutdown (mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_shutdown() prepares the MME for shut down and delivers the
eventMME_EVENT_SHUTDOWNto all control contexts. When you call this function,
it stops and disables:

• playback on all control contexts

• synchronizations on all control contexts

• any other MME operations that write to the MME database

After calling mme_shutdown(), you can:

1 Call mme_disconnect() to disconnect the client application from the MME.

2 Shut down the system by, for instance, turning off the power.

The functionmme_shutdown() returns immediately and shuts down MME threads in
the background. This behavior means that the MME may deliver other eventsafter it
has deliveredMME_EVENT_SHUTDOWN. When all MME threads have shut down,
the MME delivers the eventMME_EVENT_SHUTDOWN_COMPLETED.

If you want to shut down the MME without turning off the system, after calling
mme_shutdown() your client application needs to kill the MME process.

If your client application callsmme_disconnect() without callingmme_shutdown()
first, it will disconnect from the MME control context, but the MME process will
continue to run. Your client application will be able to usemme_connect() to make a
new connection to the MME.

326 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_shutdown()

Events

This function returns the eventsMME_EVENT_SHUTDOWNand
MME_EVENT_SHUTDOWN_COMPLETED.

Blocking and validation

Returns immediately and shuts down threads in background.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Examples:
The code snippet below illustrates how to shut down the MME.

mme_hdl_t *hdl = mme_connect("/dev/mme/default", 0);
mme_shutdown(hdl);
mme_disconnect(hdl);

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_connect(), mme_disconnect()

May 4, 2009 Chapter 1 • MME API 327

MME_SLOTTYPE_*  2009, QNX Software Systems GmbH & Co. KG.

Slot type definitions

Synopsis:
#include <mme/interface.h>

#define MME_SLOTTYPE_*

Description:
The constantsMME_SLOTTYPE_* define the slot types the MME recognizes. The
values listed in the table below are used by theslottype field in the:

• mme_play_info_t data structure

• slots table

Constant Value Description

MME_SLOTTYPE_UNKNOWN 0 Unknown device.

MME_SLOTTYPE_USB 1 USB device.

MME_SLOTTYPE_CD 2 Internal CD/DVD drive.

MME_SLOTTYPE_DRIVE 3 Not used.

MME_SLOTTYPE_MEDIAFS 4 Not used.

MME_SLOTTYPE_CD_EXT 5 External CD/DVD drive.

MME_SLOTTYPE_CD_CHGR_INT 6 Internal CD/DVD changer.

MME_SLOTTYPE_CD_CHGR_EXT 7 External CD/DVD changer.

MME_SLOTTYPE_FILESYSTEM 8 Generic POSIX filesystem type.

MME_SLOTTYPE_BLUETOOTH 9 Bluetooth stack.

MME_SLOTTYPE_INTERNET 10 Internet, used for streaming.

Macros for determining slot types

The MME includes some macros that facilitate determining a slot type.

check_slottype_cd

Use the macrocheck_slottype_cd to determine if the slot type is for any type of
CD:

#define check_slottype_cd(slottype) \

((slottype == MME_SLOTTYPE_CD || slottype == MME_SLOTTYPE_CD_EXT || \

slottype == MME_SLOTTYPE_CD_CHGR_INT || slottype == MME_SLOTTYPE_CD_CHGR_EXT))

328 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_SLOTTYPE_*

check_slottype_cd_int

Use the macrocheck_slottype_cd_int to determine if the slot type is for an
internal CD:

#define check_slottype_cd_int(slottype) \

((slottype == MME_SLOTTYPE_CD || slottype == MME_SLOTTYPE_CD_CHGR_INT))

check_slottype_cd_int

Use the macrocheck_slottype_cd_ext to determine if the slot type is for an
external CD:

#define check_slottype_cd_ext(slottype) \

((slottype == MME_SLOTTYPE_CD_EXT || slottype == MME_SLOTTYPE_CD_CHGR_EXT))

is_mediafs_type

Use the macrois_mediafs_type to determine if the slot type is for a media
filesystem:

#define is_mediafs_type(SLOTTYPE) \

((SLOTTYPE == MME_SLOTTYPE_MEDIAFS) || (SLOTTYPE == MME_SLOTTYPE_MEDIAFS_2WIRE))

Classification:
QNX Multimedia

See also:
mme_play_info_t

May 4, 2009 Chapter 1 • MME API 329

mme_start_device_detection()  2009, QNX Software Systems GmbH & Co. KG.

Start device and mediastore detection

Synopsis:
#include <mme/mme.h>

int mme_start_device_detection(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_start_device_detection() starts device and mediastore detection.
By default, device and mediastore detection is on, though it is possible to turn
detection off when first starting the MME by changing the setting of
<DeviceDetection> in the MME configuration file:mme.conf. For more
information, see the chapter Configuring Device Support in theMME Configuration
Guide.

CAUTION: If you have configured your MME tonot automatically start device
detection, always callmme_start_device_detection() before attempting any tasks that
access devices (synchronization, playback, media copy and ripping, etc.).

Failure to callmme_start_device_detection() before attempting these type of tasks
will produce unexpected results that may compromise the integrity of your system.

!

Events

None delivered.

Blocking and validation

Full validation of data; all arguments are checked before the call returns.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

330 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_start_device_detection()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
Configuring Device Support in theMME Configuration Guide

May 4, 2009 Chapter 1 • MME API 331

mme_stop()  2009, QNX Software Systems GmbH & Co. KG.

Stop a track session

Synopsis:
#include <mme/mme.h>

int mme_stop(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_stop() stops the track session currently playing in the specified
control context. You can call this function even if no track session is playing.

Events

MME_EVENT_PLAYSTATE with mme_event_data_t.playstatespeed set to 0
(zero).

Blocking and validation

This function verifies that the track session in the control context is in playback mode
and can be stopped.

This function blocks on control contexts. Ifmme_stop() is called and another function
is called beforemme_stop() returns, the second function blocks onio-media until
mme_stop() returns. If there are no other pending calls,mme_stop() returns without
blocking onio-media.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

332 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_stop()

Safety

Signal handler No

Thread Yes

See also:
mme_play()

May 4, 2009 Chapter 1 • MME API 333

MME_STORAGETYPE_*  2009, QNX Software Systems GmbH & Co. KG.

Storage type definitions

Synopsis:
#include <mme/interface.h>

#define MME_STORAGETYPE_*

Description:
The constantsMME_STORAGETYPE_* define the storage types the MME recognizes.
The values listed in the tables below are used by thestorage_type field in the:

• mme_play_info_t data structure

• mediastores table

Users can define their own, custom storager types, as required. Available values are
listed in the table “User defined storage types” below.

Pre-defined storage types

Thes storage types are pre-defined:

Constant Value Description

MME_STORAGETYPE_UNKNOWN 0 Unknown storage type

MME_STORAGETYPE_AUDIOCD 1 Audio CD

MME_STORAGETYPE_FS 2 RAM disc

MME_STORAGETYPE_DEVB 2 MME_STORAGETYPE_FS

MME_STORAGETYPE_DVDAUDIO 3 Audio DVD

MME_STORAGETYPE_VCD 4 Video CD

MME_STORAGETYPE_SVCD 5 Super Video CD

MME_STORAGETYPE_DVDVIDEO 6 Video DVD

MME_STORAGETYPE_IPOD 8 iPod device

MME_STORAGETYPE_KODAKCD 9 Kodak picture CD

MME_STORAGETYPE_PICTURECD 10 Other picture CD

MME_STORAGETYPE_A2DP 12 A2DP protocol for Bluetooth

MME_STORAGETYPE_RESERVED0 13 Placeholder for UPnP

MME_STORAGETYPE_SMB 14 MME_STORAGETYPE_FS

MME_STORAGETYPE_FTP 15 Internet FTP connection

continued. . .

334 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_STORAGETYPE_*

Constant Value Description

MME_STORAGETYPE_HTTP 16 Internet HTTP connection

MME_STORAGETYPE_NAVIGATION 17 Navigation CD or DVD. See
also “Mediastore
synchronization settings” .

MME_STORAGETYPE_UPGRADE 18 Upgrade CD or DVD. See also
“Filtering synchronization by
storage type”.

MME_STORAGETYPE_PLAYSFORSURE 20 PlaysForSure and similar
devices.

MME_STORAGETYPE_UPNP 21 Devices using UPnP protocol.

MME_STORAGETYPE_INTERNETSTREAM 22 Internet streaming.

Multiple mediastore types on single device

These storage types are used to identify different mediastore types on the same device
(such as a CD changer):

Constant Value Description

MME_STORAGETYPE_MEDIAFS_2WIRE_UNKNOWN 620 Unknown storage
type

MME_STORAGETYPE_MEDIAFS_2WIRE_CDAUDIO 621 Audio CD

MME_STORAGETYPE_MEDIAFS_2WIRE_VCD 622 Video CD

MME_STORAGETYPE_MEDIAFS_2WIRE_DEVB 623 RAM disk

MME_STORAGETYPE_MEDIAFS_2WIRE_DVDAUDIO 624 Audio DVD

MME_STORAGETYPE_MEDIAFS_2WIRE_DVDVIDEO 625 Video DVD

User defined storage types

These storage types are available for custom implementations:

Constant Value Description

MME_STORAGETYPE_CUSTOM1 100

MME_STORAGETYPE_CUSTOM2 101

MME_STORAGETYPE_CUSTOM3 102

continued. . .

May 4, 2009 Chapter 1 • MME API 335

MME_STORAGETYPE_*  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_STORAGETYPE_CUSTOM4 103

MME_STORAGETYPE_CUSTOM5 104

MME_STORAGETYPE_CUSTOM6 105

MME_STORAGETYPE_CUSTOM7 106

MME_STORAGETYPE_CUSTOM8 107

MME_STORAGETYPE_CUSTOM9 108

MME_STORAGETYPE_CUSTOM10 110

Events

Blocking and validation

Classification:
QNX Multimedia

See also:
MME_FORMAT_* , FTYPE_* , MME_MSCAP_* , MME_SYNC_OPTION_* , Table:
mediastores

336 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_cancel()
Cancels mediastore synchronization

Synopsis:
#include <mme/mme.h>

int mme_sync_cancel (mme_hdl_t *hdl,
uint64_t msid);

Arguments:
hdl An MME connection handle.

msid The ID for the mediastore on which synchronization is to be stopped or
cancelled.

Library:
mme

Description:
The functionmme_sync_cancel() cancels mediastore synchronizations. Set the
parametermsid to the mediastore ID of the mediastore for which you want to cancel
synchronization.

If you set the parametermsid to 0,mme_sync_cancel() cancels all current and pending
mediastore synchronizations on all devices.

All cancelled synchronizations send an MM_EVENT_SYNCABORTED event.

For an active synchronization the MME:

• aborts the synchronization

• reports an error in the logs

• sends an MME_EVENT_SYNCABORTED event.

For pending synchronizations the MME

• immediately removes the pending synchronizations from the pending queue

• sends the MME_EVENT_SYNCABORTED event

Events

This function can return synchronization error events (MME_SYNC_ERROR_*) and
MME_EVENT_SYNCABORTED.

May 4, 2009 Chapter 1 • MME API 337

mme_sync_cancel()  2009, QNX Software Systems GmbH & Co. KG.

Blocking and validation

This function is non-blocking. It delivers aMME_EVENT_SYNCABORTEDevent for
each completed cancellation. It does not validate the mediastore ID (msid).

Returns:
≥0 Success: the mediastore synchronization was cancelled, or the mediastore was

not being synchronized when the cancellation request was made.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_playlist_sync(), mme_resync_mediastore(),
mme_setpriorityfolder(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

338 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_db_check()
Check and repair a folder with inconsistencies

Synopsis:
#include <mme/mme.h>

int mme_sync_db_check(mme_hdl_t *hdl,
uint64_t folderid,
uint32_t flags);

Arguments:
hdl An MME connection handle.

folderid The ID of the folder to verify and repair.

flags Flags controlling the verification and repair. See “Flags” below.

Library:
mme

Description:
The functionmme_sync_db_check() checks the specified folder for consistency and,
optionally, attempts to repair any errors it encounters. It:

• Checks folder information (in fields reserved for internal use only) in thefolders

table.

• Logs all inconsistencies.

• If the MME_SYNC_OPTION_REPAIRflag is set, attempts to repair any
inconsistencies that it finds between the folder information in the database and the
folder’s contents.

The functionmme_sync_db_check():

• can be used to try to repair inconsistencies:

- if problems are encountered after a synchronization

- for mediastores with POSIX compliant filesystemsonly; if the specified folder is
not on a mediastore with a POSIX compliant filesystem (i.e. a CDDA),
mme_sync_db_check() returns an error

• always verifies the consistency of the specified folder if it can

May 4, 2009 Chapter 1 • MME API 339

mme_sync_db_check()  2009, QNX Software Systems GmbH & Co. KG.

CAUTION: If mme_sync_db_check() finds and is unable to repair inconsistencies
between the MME database and a folder, there is probably a problem with the
database that requires immediate attention.

!

When and how to use mme_sync_db_check()

You should usemme_sync_db_check() if you suspect a problem with the MME
database, and proceed as follows:

1 Call mme_sync_db_check() to verify the folder that may be the source of the
problem (donot setflags to MME_SYNC_OPTION_REPAIR). If the function
reports zero inconsistencies, the database does not require repair.

2 If mme_sync_db_check() reports and logs inconsistencies, call the function
again with theflags option set toMME_SYNC_OPTION_REPAIR.

3 After mme_sync_db_check() finishes repairing the database, run this function
again, with theflags optionnot set toMME_SYNC_OPTION_REPAIR— you
need to verify that the repair was completely successful.

4 If mme_sync_db_check() still reports inconsistencies:

4a Contact QNX and forward, if possible:

• all logs

• the database with the inconsistencies

• a copy of the mediastore associated with the inconsistencies; this copy
must keep all file modification times from the original

4b Restart and resynchronize the mediastore with the inconsistencies by
calling mme_ms_restart() to delete all database contents associated with
this mediastore.

4c If resynchronization of an newly active mediastore is not automatic on
your system, callmme_resync_mediastore() to synchronize the
mediastore.

5 If mme_sync_db_check() no longer reports inconsistencies, resynchronize the
mediastore by callingmme_resync_mediastore().

Flags

The behavior ofmme_sync_db_check() is determined by the values of theflags
argument:

• MME_SYNC_OPTION_REPAIR(0x0400) — verify and attempt to repair the
database

• MME_SYNC_OPTION_VERIFY (0x0800) — verification is the minimum action
performed bymme_sync_db_check(), so this flag is always implied in any call to
this function

340 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_db_check()

• MME_SYNC_OPTION_RECURSIVE(0x4000) — verify and repair recursively (the
specified folder and its subfolders)

Events

None delivered.

Blocking and validation

This function checks that:

• the specified folder ID exists

• the specified folder is on an active mediastore

• there is a checking function

This function runs synchronously, and therefore blocks.

Returns:
0 Success: the verification or repair operation has started.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
MME_SYNC_OPTION_*

May 4, 2009 Chapter 1 • MME API 341

mme_sync_directed()  2009, QNX Software Systems GmbH & Co. KG.

Start a directed synchronization

Synopsis:
#include <mme/mme.h>

int mme_sync_directed(mme_hdl_t *hdl,
uint64_t msid,
const char *path,
uint32_t options);

Arguments:
hdl An MME connection handle.

msid The ID for the mediastore on which directed synchronization is to be
performed.

path The path to be synchronized on the mediastore.

options The synchronization options. The options can be any combination of:

• MME_SYNC_OPTION_CANCEL_CURRENT— Cancel any other
synchronization on the mediastore, and run this directed
synchronization. Used only bymme_sync_directed(); not used by
mme_resync_mediastore().

• MME_SYNC_OPTION_CLR_INV_COPIED— set to 0 (zero) all
invalid copied_fid values in thelibrary table.

• MME_SYNC_OPTION_PASS_FILES— synchronize files (perform
first pass synchronization).

• MME_SYNC_OPTION_PASS_METADATA — synchronize metadata
(perform second pass synchronization).

• MME_SYNC_OPTION_PASS_PLAYLISTS — synchronize playlists
(perform third pass synchronization).

• MME_SYNC_OPTION_PASS_ALL — synchronize files, metadata, and
playlists.

• MME_SYNC_OPTION_RECURSIVE— perform a recursive
synchronization starting from the path defined bypath. Assumed set
by mme_resync_mediastore().

Library:
mme

342 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_directed()

Description:
The functionmme_sync_directed() starts directed synchronization for a specified path
on a mediastore.

Directed synchronization allows you to synchronize only a specified path on a
mediastore. This capability is particularly useful if you want to synchronize part of a
large mediastore in order to start playing its contents, then synchronize the rest (or
other parts) of the mediastore in the background or at a later time.

Directed synchronization is only available for mediastores with hierarchical directory
structures: HHDs, iPods, USB sticks, data CDs, etc. It is not available for mediastores,
such as music CDs, that have a single-level directory structure.

CAUTION: A clean up of invalidcopied_id fields can take a long time. Use the
MME_SYNC_OPTION_CLR_INV_COPIEDflag judiciously —only when
synchronizing after deleting media files from your database.

!

Events

This function returns synchronization events with the operation ID. See the chapter
MME Synchronization Events for a full list.

Blocking and validation

This function is non-blocking. It returns asynchronously. On completion, it returns a
positive integer, which is the operation ID. This return value is sent with the event:

• MME_EVENT_MS_SYNCCOMPLETEif the operation was successfully completed

• MME_EVENT_SYNCABORTEDif the operation failed to complete successfully

Returns:
>0 Success: the operation ID of the directed synchronization.

-1 An error occurred (errno is set).

Examples:
The code snippet below shows an example of how directed synchronization can be
used:

uint64_t go_to_folder (

mme_hdl_t *mme,

qdb_hdl_t *db,

uint64_t msid,

uint64_t folderid,

const char *folder_name

)

May 4, 2009 Chapter 1 • MME API 343

mme_sync_directed()  2009, QNX Software Systems GmbH & Co. KG.

{
int rc;

/* if it’s already synced, don’t resync it unless forced */

if (force_resync || (! folder_synced(db, msid, folderid))) {

rc = mme_sync_directed(mme, msid, folder_name, MME_SYNC_OPTION_PASS_ALL);

if (rc == -1) {

fprintf(stderr, "Unable to get sync path \"%s\": %s (%d).\n",

folder_name, strerror(errno), errno);

return 0;

}

if (waitfor_directed_syncevent(rc) != 1) {

/* operation didn’t finish, or failed */

fprintf(stderr, "**** Operation failed. ****\n");

return 0;

}

}

return folderid;

}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_playlist_sync(), mme_resync_mediastore(),
mme_setpriorityfolder(), mme_sync_cancel(), mme_sync_file(),
mme_sync_get_msid_status(), mme_sync_get_status()

344 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_file()
Synchronize a specified file.

Synopsis:
#include <mme/mme.h>

int mme_sync_file(mme_hdl_t *hdl,
uint64_t old_fid,
uint64_t new_msid,
const char *new_filename);

Arguments:
hdl An MME connection handle.

old_fid The file ID of the file in the library before the change. Use 0 for file
additions, to indicate that there is no existing file associated with
the operation.

new_msid The ID for the media store with thenew_filename path for the new
file. This value may be 0 ifnew_filename is NULL, as in the case
of file removals.

new_filename The path and name of the new file, relative to the mountpath of the
mediastore identified bynew_msid. This value may be a NULL
pointer to indicate there is no new file associated with the
operation, as in the case of file removals.

Library:
mme

Description:
The functionmme_sync_file() starts a synchronization for a specified file.

File synchronization allows the client application to have the MME synchronize only a
specified file. This capability is typically used when the client application knows that a
specific file change has occured: a file has been deleted, added, moved or renamed.

In all cases, the client application must specify, as a minimum, one of theold_fid or the
new_filename. The values the client application should assign to these variables before
passing them tomme_sync_file() depending on the reason it is calling the function:

• File additions

old_fid 0.

new_filename The path and name of the new file.

• File changes

May 4, 2009 Chapter 1 • MME API 345

mme_sync_file()  2009, QNX Software Systems GmbH & Co. KG.

old_fid fid of the changed file.

new_filename The path and name of the changed file.

• File removals

old_fid The file ID (fid) of the deleted file.

new_filename NULL.

Function behavior

No synchronization options are available for this function; it attempts to do the
equivalent of both file and metadata synchronization passes.

File changes and additions

During synchronization, themme_sync_file() delivers synchronization events:

• When the function begins synchronization, it delivers the event
MME_EVENT_MS_SYNC_STARTED with the operation ID and themsid of the
new file.

• If old_fid is not specified and the file exists, the function delivers the event
MME_EVENT_MS_SYNCFIRSTFID with thefid of the file in the MME
database. The function performs the first and second synchronization passes, but
delivers only the event MME_EVENT_MS_1PASSCOMPLETE.

• If old_fid is specified, the function updates the existing library with the new folder
ID, mediastore ID and filename, but makes no other changes to the metadata.
Before completion it delivers only the event
MME_EVENT_MS_1PASSCOMPLETE.

File removal

If new_msid is 0 andnew_filename is NULL, mme_sync_file() removes the file
specified byfid. The function returns 0 on successful completion.

Limitations

The functionmme_sync_file() can only be used with certain media store types. For
example, the function it is not supported for use with iPods.

There is no support for changes across mediastores. For example, when both themsid
andold_msid are specified, themsid for the old file must match theold_msid.

File move or rename is supported only when the file remains on the same media store.
In this case, all metadata about the file is preserved. If the file is moved to a different
mediastore, two separate calls tomme_sync_file() are required and:

• the file ID of the renamed file may change

• metadata is not preserved

346 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_file()

Events

This function returns synchronization events with the operation ID. See “File changes
and additions” above, and the chapter MME Synchronization Events for a full list.

Blocking and validation

This function is non-blocking. It returns synchronously. On completion, it returns 0 or
a positive integer, which is the operation ID. This return value is sent with:

• an MME_EVENT_MS_SYNCCOMPLETE event if the operation was
successfully completed

• an MME_EVENT_SYNCABORTED event if the operation failed to complete
successfully

Returns:
≥0 Success:

=0 Operation completed synchronously. This situation occurs only if
new_msid is 0 andnew_filename is NULL.

>0 Value returned is synchronization operation ID. the operation ID of the
directed synchronization.

-1 An error occurred (errno is set). The event
MME_EVENT_SYNCABORTED is sent with themsid and the operation ID.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_get_msid_status(),
mme_sync_get_status()

May 4, 2009 Chapter 1 • MME API 347

mme_sync_get_msid_status()  2009, QNX Software Systems GmbH & Co. KG.

Gets the status of synchronization for a mediastore

Synopsis:
#include <mme/mme.h>

int mme_sync_get_msid_status (mme_hdl_t *hdl,
uint64_t msid,
mme_sync_status_t *status)

Arguments:
hdl An MME connection handle

msid The ID of the mediastore for which you want to get the synchronization
status.

status A pointer to amme_sync_status_t structure where the function can
store information about the synchronization status.

Library:
mme

Description:
The functionmme_sync_get_msid_status() gets information about a specific
mediastore’s synchronization status. For more information about thestatus structure,
seemme_sync_status_t.

If you request the synchronization status for an invalid MSID (a mediastore that
doesn’t exist), the function returns success, but all pass fields instatus are filled with 0.

Events

None delivered.

Blocking and validation

This function is non-blocking. It validates thatstatus is not null.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

348 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_get_msid_status()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_directed_sync_cancel(), mme_resync_mediastore(), mme_setpriorityfolder(),
mme_sync_cancel(), mme_sync_directed(), mme_sync_file(),
mme_sync_get_msid_status()

May 4, 2009 Chapter 1 • MME API 349

mme_sync_get_status()  2009, QNX Software Systems GmbH & Co. KG.

Gets information about system synchronization

Synopsis:
#include <mme/mme.h>

int mme_sync_get_status (mme_hdl_t *hdl,
mme_sync_status_t *status,
size_t status_size)

Arguments:
hdl An MME connection handle.

status A pointer to an array ofmme_sync_status_t structures where the
function can store status information. Pass asNULL to get the number
of mediastores actively involved in synchronization. See
mme_sync_status_t in this reference.

status_size The number of elements in thestatus array. It may be 0 (zero).

Library:
mme

Description:
The functionmme_sync_get_status() gets information about system synchronization.
You can call this function and passstatus asNULL andstatus_size as 0 to simply
return the number of mediastores that have synchronization passes underway or
pending, and use this information to set up thestatus array for a subsequent call.
However, keep in mind that mediastore synchronization status can change rapidly, so
you should always check the return value for the number of elements that contain valid
data instatus.

Events

None delivered.

Blocking and validation

This function is non-blocking.

Returns:
≥0 Success. The value returned is the number of media stores that have

synchronization passes in progress or pending.

-1 An error occurred (errno is set).

350 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_get_status()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_playlist_sync(), mme_sync_cancel(), mme_sync_get_msid_status()
mme_sync_status_t()

May 4, 2009 Chapter 1 • MME API 351

MME_SYNC_OPTION_*  2009, QNX Software Systems GmbH & Co. KG.

Synchroniztion option type definitions

Synopsis:
#include <mme/interface.h>

#define MME_SYNC_OPTION_*

Description:
TheMME_SYNC_OPTION_* constants are bit masks defining the synchronization
options that can be set for synchronizing mediastores. The values listed in the table
below can be set by the client application to configure synchronization behaviors.

For more information, see the chapter Synchronizing Media, and
mme_sync_directed(), mme_resync_mediastore() andmme_sync_get_status() in this
reference.

Constant Value Description

MME_SYNC_OPTION_PASS_FILES 0x0001 Perform file and folder
synchronization pass.

MME_SYNC_OPTION_PASS_METADATA 0x0002 Perform metadata
synchronization pass.

MME_SYNC_OPTION_PASS_PLAYLISTS 0x0004 Perform playlist
synchronization pass.

MME_SYNC_OPTION_PASS_EXT_DB_SYNC 0x0008 Perform external database
synchronization pass.

MME_SYNC_OPTION_PASS_ALL 0x000F Perform all synchronization
passes:FILES + METADATA +

PLAYLISTS + EXT_DB_SYNC.

MME_SYNC_OPTION_REPAIR 0x0400 Repair the database. See
mme_sync_db_check().

MME_SYNC_OPTION_VERIFY 0x0800 Verify if the database needs
repairing. See
mme_sync_db_check().

MME_SYNC_OPTION_CLR_INV_COPIED 0x1000 Set to 0 (zero) all invalid
copied_fid values in the
library table. This option
can be used only with
mme_sync_directed() or
mme_resync_mediastore().

continued. . .

352 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME_SYNC_OPTION_*

Constant Value Description

MME_SYNC_OPTION_CANCEL_CURRENT 0x2000 Cancel current
synchronization.

MME_SYNC_OPTION_RECURSIVE 0x4000 Perform recursive
synchronization.

MME_SYNC_OPTION_BLOCKING 0x8000 For future use.

Classification:
QNX Multimedia

See also:
MME_FORMAT_* , MME_FTYPE_* , MME_MSCAP_* , MME_STORAGETYPE_* ,
mme_sync_db_check(), mme_sync_directed(), mme_resync_mediastore(),
mme_sync_get_status()

May 4, 2009 Chapter 1 • MME API 353

mme_sync_status_t  2009, QNX Software Systems GmbH & Co. KG.

Synchronization status information

Synopsis:
#include <mme/types.h>

typedef struct s_mme_sync_status {
uint64_t msid;
uint16_t passes_done;
uint16_t current_pass;
uint16_t passes_to_do;
uint16_t reserved[1];
uint32_t operation_id;

} mme_sync_status_t;

Description:
The structuremme_sync_status_t carries information about the status of a
synchronization operation. It has at least the members described in the table below.

Member Type Description

msid uint64_t The ID of the mediastore.

passes_done uint16_t The synchronization passes that have completed.

current_pass uint16_t The current synchronization pass flag.

passes_to_do uint16_t The synchronization passes yet to be performed.

operation_id uint32_t An identifier for the synchronization operation, used
for directed synchronizations. The MME sets it to 0
(zero) for all synchronizations,except directed
synchronizations.

Pass flags

Thepasses_done andpasses_to_do are a combination of zero or more of the flags
with the values listed below:

• MME_SYNC_OPTION_PASS_FILES— file pass

• MME_SYNC_OPTION_PASS_METADATA — metadata pass

• MME_SYNC_OPTION_PASS_PLAYLISTS — third pass

• MME_SYNC_OPTION_PASS_ALL — all passes

Thecurrent_pass flag can only be set to 0 (zero) or 1 (one).

TheMME_SYNC_OPTION_PASS_* constants are described in
MME_SYNC_OPTION_* in this reference.

354 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_sync_status_t

Classification:
QNX Multimedia

See also:
mme_sync_get_status()

May 4, 2009 Chapter 1 • MME API 355

mme_time_t  2009, QNX Software Systems GmbH & Co. KG.

Time information for current track

Synopsis:
#include <mme/types.h>

typedef struct _mme_time_info {
uint64_t time;
uint64_t duration;

} mme_time_t;

Description:
The structuremme_time_t carries the total play time and the play time elapsed for the
current track or file. It is used during operations such as playback and ripping. It
includes at least the members listed in the table below.

Member Type Description

time uint64_t The current time position in the track or file, in
milliseconds.

duration uint64_t The total duration of the track or file, in milliseconds.

Classification:
QNX Multimedia

See also:
mme_play_get_status()

356 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_timebase_set()
Ensure that database time values increase monotonically

Synopsis:
#include <mme/mme.h>

int mme_timebase_set(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_timebase_set() ensures that the database time values increase
monotonically. This function should be used to ensure correct database time values on
systems that do not have a real-time clock implemented, or if the system time is
adjusted backwards.

As an alternative to runningmme_timebase_set(), if this function is needed for every
MME startup, consider enabling the<TimebaseSet> option in the MME
configuration file. Setting this option runs the same function as a call to
mme_timebase_set(). It is exactly equivalent to callingmme_timebase_set() at every
startup. See “Database time base” in theMME Configuration Guide chapter
Configuring Database Behavior.

Events

None returned

Blocking and validation

This function performs no validations and does not block.

Returns:
0 Success: the ID of the synchronization operation.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 357

mme_timebase_set()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
“Database configuration elements” in theMME Configuration Guide chapter
Configuring Database Behavior.

358 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_append_files()
Append tracks or a stream to a file-based track session

Synopsis:
#include <mme/mme.h>

int mme_trksession_append_files(mme_hdl_t *hdl,
uint64_t trksessionid,
int nfiles,
uint64_t *msid,
const char **filename);

Arguments:
hdl An MME connection handle.

trksessionid The ID of the track session to update.

nfiles The number of files to append to the track session.

msid A pointer to an array filled with the samemsid (mediastore ID); this
msid must be themsid of theFTYPE_DEVICE fid (file ID) that was
used to create the track session.

filename A pointer to an array of strings. The content of these strings depends
on the mediastore type associated with the pointer. See “The
filename array” below.

Library:
mme

Description:
The functionmme_trksession_append_files() appends files (or streams) to an existing
file-based track session. It can be used to add to a track session tracks of interest
discovered through the explorer API, subject to the following conditions:

• The file or files to be appended are on the same mediastore (the same
FTYPE_DEVICE) that was used to create the track session.

• The track session is not in repeat or random mode.

Whenmme_trksession_append_files() successfully appends a file, files or a stream to
a track session it delivers anMME_EVENT_TRKSESSIONVIEW_UPDATEevent to
indicate to the client application that the track session has changed.

The filename array

The strings in the array referred to byfilename can be filenames of tracks to be played,
URLs of streams to be played, or strings appropriate for other types of media.

May 4, 2009 Chapter 1 • MME API 359

mme_trksession_append_files()  2009, QNX Software Systems GmbH & Co. KG.

The formats of the strings in the array referred to byfilename are dependent on the
types of mediastore referred to in themsid array. Thus, for example, if anmsid in the
msid array is of type internet stream, then the string at the same position in the
filename array must be a full URL.

If filename points to an array of tracks, it includes the path to the file on the mediastore,
but it doesnot include the mountpath to the mediastore. The path infilename must
begin with a “/” (slash). For example:/songs_folder/album_folder/.

The design that requires the repetition of the same mediastore ID throughout the array
referenced bymsid is implemented to facilitate the implementation of more advanced
file append capabilities in the future.

Events

MME_EVENT_TRKSESSIONVIEW_UPDATE.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_clear_files(), mme_trksession_get_info(),
mme_trksession_resume_state(), mme_trksession_save_state(),
mme_trksession_set_files()

360 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_clear_files()
Clear all files from a file-based track session

Synopsis:
#include <mme/mme.h>

int mme_trksession_clear_files(mme_hdl_t *hdl,
uint64_t trksessionid);

Arguments:
hdl An MME connection handle.

trksessionid The ID of the track session to clear.

Library:
mme

Description:
The functionmme_trksession_clear_files() clears all tracks from the specified
file-based track session. You must stop playback before calling this fucntion.

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 361

mme_trksession_clear_files()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_trksession_append_files(), mme_trksession_get_info(),
mme_trksession_resume_state(), mme_trksession_save_state(),
mme_trksession_set_files()

362 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_get_info()
Get information about the current track session

Synopsis:
#include <mme/mme.h>

int mme_trksession_get_info(mme_hdl_t *hdl,
uint64_t *trksessionid,
uint64_t *current_trk,
uint64_t *total_trk);

Arguments:
hdl An MME connection handle.

trksessionid The ID of the current track session, unique for the control context.

current_trk The one-based track currently being played from the tracksession.
For more information, see “Track number count with sequential and
random modes” below.

total_trk The number of tracks in the current track session.

Library:
mme

Description:
The functionmme_trksession_get_info() retrieves the following information about the
current track session:

• the track session ID

• thefid of the track currently being played

• the total number of tracks in the track session.

This information provides a snapshot of a track session and what the MME is doing
with the track session. For example, a track session withtotal_trk set to 0 (zero)
indicates that the MME found no tracks or files that meet the criteria used to create the
track session (artist, genre, etc.).

Always use this function to retrieve track session information. The MME may to need
to retrieve track session information from an external device, such as an iPod, because
information stored in an external device will not be available in thetrksession table.

Don’t use the track session tabletrksession to retrieve track session information,
because this method will miss information on external devices.

May 4, 2009 Chapter 1 • MME API 363

mme_trksession_get_info()  2009, QNX Software Systems GmbH & Co. KG.

The values of a track’ssequentialid andrandomid fields in thetrksessionview
table have no bearing on the value ofcurrent_trk. The value returned incurrent_trk is
just the one-based offset in the track session of the currently playing track. For
example, in a track session with 10 tracks, if playback is at the third track,current_trk
will be 3, while thesequentialid field for the track may be 7, or some other number
used to sort the tracks (ORDER BY) when the track session was created.

Track number count with sequential and random modes

The method used by the MME to count the tracks played in a track session differs in
sequential and random modes, and is consistent with the method used by iPods.

Sequential mode

For track sessions in sequential mode, the MME assignscurrent_trk the number of the
track in the track session, and increments its value by 1 (one) each time it begins
playing a new track. For example, if the end-user chooses to start playing in sequential
mode on track 3 of the track session,current_track the value ofcurrent_track will be
3. The MME will continue playing tracks to the end of the track session, but will not
play tracks 0, 1 or 2 (unless repeat mode is on, in which case the MME will continue
playing through the track list until instructed to stop). The value ofcurrent_trk is
therefore always the same as the track number in the tracklist.

Random mode

When the MME is asked to start playing a track session in random mode, it uses the
QDB random() function to create a pseudo-random order, and makes a list of tracks to
play in this order. The MME assignscurrent_trk the value 0 (zero) when it starts
playing the first track in its pseudo-random list,and increments this value by 1 (one)
each time it begins playing a new track. Thus, the value ofcurrent_trk is the number
or tracks played plus 1 for the current track, and has no relationship to the track
number in the track session.

How to calculate the number of tracks left to play

For both sequential and random modes, to calculate the number of tracks left to play in
the track session, simply subtractcurrent_trk from total_trk. The end of the track
session is reached whencurrent_trk=total_trk.

Events

None delivered.

Blocking and validation

This function returns immediately.

364 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_get_info()

Returns:
>=0 Success: the MME retrieved the track session information for the current

track session..
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play_resume_msid(), mme_set_msid_resume_trksession(),
mme_trksession_resume_state(), mme_trksession_save_state(),
mme_trksessionview_update()

May 4, 2009 Chapter 1 • MME API 365

mme_trksession_resume_state()  2009, QNX Software Systems GmbH & Co. KG.

Resume playing a track session at the last saved position

Synopsis:
#include <mme/mme.h>

int mme_trksession_resume_state(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_trksession_resume_state() resumes playing a track session at the
point its state was saved by a call tomme_trksession_save_state().

Before stopping a track session, you must use the function
mme_trksession_save_state() to save its state. After you have saved the track
session’s state, you can stop playback, then call the functionsmme_settrksession() and
mme_trksession_resume_state() at any time to resume playback.

For more information about stopping and resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media.

Events

This function may deliver any event of the classMME_EVENT_CLASS_PLAY, and
anyMME_PLAY_ERROR_* event.

Blocking and validation

This function does not verify that thefid is in the track session. If the connection to the
MME is synchronous, the function validates that the file exists and that it is playable.

This function blocks on control contexts. Ifmme_trksession_resume_state() is called
and another function is called beforemme_trksession_resume_state() returns, the
second function blocks onio-media until mme_trksession_resume_state() returns.
If there are no other pending calls,mme_trksession_resume_state() returns without
blocking onio-media.

Returns:
≥0 Success: MME resumed playback of the track session.

-1 An error occurred (errno is set).

366 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_resume_state()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_append_files(), mme_trksession_clear_files(),
mme_trksession_get_info(), mme_trksession_save_state(),
mme_trksession_set_files()

May 4, 2009 Chapter 1 • MME API 367

mme_trksession_save_state()  2009, QNX Software Systems GmbH & Co. KG.

Save the playing position of the current track session

Synopsis:
#include <mme/mme.h>

int mme_trksession_save_state(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_trksession_save_state() saves the playing position of the current
track session. If you want to be able to stop a track session then resume playing it at a
later time, you must use this function to save its playing position before you interrupt
it.

If the track session is on a device, such as an iPod, that manages its own track
sessions, do not callmme_trksession_save_state(). The device is responsible for
saving its state, and will resume playback from the correct point when you call
mme_play_resume_msid().

For more information about stopping and resuming playback of track sessions, see
“Stopping and resuming playback” in the chapter Playing Media.

Events

None delivered.

Blocking and validation

This function may block on the control context,qdb or io-media. Depending on the
MME connection, it behaves as follows:

• Asynchronous — returns before saving the track session.

• Synchronous — validates that a track session is set, and returns only after the
MME has saved the track session state or if it encounters a failure.

Returns:
≥0 Success: the MME saved the state of the current track session.

-1 An error occurred (errno is set).

368 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_save_state()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_append_files(), mme_trksession_clear_files(),
mme_trksession_get_info(), mme_trksession_resume_state(),
mme_trksession_set_files()

May 4, 2009 Chapter 1 • MME API 369

mme_trksession_set_files()  2009, QNX Software Systems GmbH & Co. KG.

Update the track list in a file-based track session

Synopsis:
#include <mme/mme.h>

int mme_trksession_set_files(mme_hdl_t *hdl,
uint64_t trksessionid,
int nfiles,
uint64_t *msid,
const char **filename,
unsigned offset,);

Arguments:
hdl An MME connection handle.

trksessionid The ID of the track session to update.

nfiles The number of files to set in the track session.

msid A pointer to an array of mediastore IDs matching thefilename array.

Eachmsid in themsid array must:

• match the mediastoreFTYPE_DEVICE file ID fid that was used to
create the track session

• identify the mediastore with the file at the same location in the
filename array; for example, index 12 of themsid array referes to
the mediastore ID of the filename at index 12 of thefilename
array.

filename A pointer to an array of filenames of tracks to be played. The
filename includes the path to the file on the mediastore, but it does
not include the mountpath to the mediastore. The path infilename
must begin with a “/” (slash). For example:
/songs_folder/album_folder/.

offset The offset to jump to in the new track session.

Library:
mme

Description:
The functionmme_trksession_set_files() replaces list of tracks to play in afile-based
track session with a new list.

If the offset argument is not 0, this value is considered the the offset (position) in the
new track session that the MME should go to when it begins playback. This offset in
the new tracksession must match currently playing track.

370 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksession_set_files()

Whenmme_trksession_append_files() successfully appends a file or files to a track
session it delivers anMME_EVENT_TRKSESSIONVIEW_UPDATE event to indicate to
the client application that the track session has changed.

Events

MME_EVENT_TRKSESSIONVIEW_UPDATE.

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_append_files(), mme_trksession_clear_files(),
mme_trksession_get_info(), mme_trksession_resume_state(),
mme_trksession_save_state()

May 4, 2009 Chapter 1 • MME API 371

mme_trksessionview_get_current()  2009, QNX Software Systems GmbH & Co. KG.

Get information about the current track

Synopsis:
#include <mme/mme.h>

int mme_trksessionview_get_current(mme_hdl_t *hdl,
mme_trksessionview_info_t *info);

Arguments:
hdl The handle of the control context.

info A pointer to the information about the MME track session, the device track
session, and (where applicable) the video chapters.

Library:
mme

Description:
The functionmme_trksessionview_get_current() gets information about the current
track and places it in the structuremme_trksessionview_info_t. It works exactly
like mme_trksession_get_info() except that it assumes the current title (if applicable)
and track.

Events

None delivered.

Blocking and validation

This function performs no validations and doesn’t block.

Returns

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

372 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_get_current()

Safety

Signal handler No

Thread Yes

See also:
mme_trksession_get_info(), mme_trksessionview_info_t

May 4, 2009 Chapter 1 • MME API 373

mme_trksessionview_get_info()  2009, QNX Software Systems GmbH & Co. KG.

Get information about a track in a track session

Synopsis:
#include <mme/mme.h>

int mme_trksessionview_get_info(mme_hdl_t *hdl,
unsigned track,
unsigned title,
mme_trksessionview_info_t *info);

Arguments:
hdl The handle of the control context.

track The number of the track for which you want information, counted
sequentially from track 0 in the track session. (The track number is
zero-based.)

title The title on the device or DVD for which you want information, counted
sequentially from title 1 in the device track session. (The title number is
one-based.)

info A pointer to the information about the MME track session, the device track
session, and (where applicable) the video chapters.

Library:
mme

Description:
The functionmme_trksessionview_get_info() retrieves information about a title or
track on a DVD or a device, such as an iPod, that manages its own track sessions, and
places it in the structuremme_trksessionview_info_t.

Events

None delivered.

Blocking and validation

This function performs no validations and doesn’t block.

Returns:
>0 Success

-1 An error occurred (errno is set).

374 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_get_info()

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksession_append_files(), mme_trksession_clear_files(),
mme_trksession_resume_state(), mme_trksession_save_state(),
mme_trksession_set_files(), mme_trksession_get_current(),
mme_trksessionview_info_t

May 4, 2009 Chapter 1 • MME API 375

mme_trksessionview_info_t  2009, QNX Software Systems GmbH & Co. KG.

Information about items found during mediastore exploration

Synopsis:
#include <mme/mme.h>

typedef struct {
uint64_t trksessionid;
uint64_t flags;
uint32_t track;
uint32_t totaltracks;
uint32_t title;
uint32_t ntitles;
uint32_t chapter;
uint32_t nchapters;
char reserved[16];

} mme_trksessionview_info_t;

Description:
The structuremme_trksessionview_info_t carries information about:

• tracks in the current MME track session

• titles (tracks) in the current device track session, for devices, such as iPods, that
manage their own track sessions; and titles on DVDs

• chapters, in videos on DVDs and other mediastores and devices

It contains at least the members described in the table below.

Member Type Description

trksessionid uint64_t The ID of the current MME track session.

flags uint64_t For future use.

track uint32_t The ID of the current track in the MME track session.

totaltracks uint32_t The total number of tracks in the current MME track
session.

title uint32_t The ID of the current title (track) in the device’s track
session.

ntitles uint32_t The total number of titles (tracks) in the current device
track session.

chapter uint32_t For future use. The ID of the current chapter in the
current title in the current track session on a DVD, or
other mediastore or device.

continued. . .

376 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_info_t

Member Type Description

nchapters uint32_t For future use. The total number of chapters in the
current title in the current track session on a DVD, or
other mediastore or device.

reserved uint32_t For future use.

Classification:
QNX Multimedia

See also:
mme_trksession_get_current(), mme_trksessionview_get_info(),
mme_trksessionview_metadata_get(), mme_trksessionview_readx(),
mme_trksessionview_writedb()

May 4, 2009 Chapter 1 • MME API 377

mme_trksessionview_metadata_get()  2009, QNX Software Systems GmbH & Co. KG.

Get metadata for a track in a track session

Synopsis:
#include <mme/mme.h>

mme_metadata_hdl_t *mme_trksessionview_metadata_get(mme_hdl_t *hdl,
unsigned track,
unsigned title,
unsigned chapter,
const char *types,
uint32_t flags);

Arguments:
hdl The handle of the control context.

track The number of the track for which you want information, counted
sequentially from track 0 in the track session. (The track number is
zero-based.)

title The ID of the current title (track) in the device’s track session.

chapter For future use. The ID of the current chapter in the current title in the
current track session on a DVD, or other mediastore or device.

types The types of metadata requested. See the chapter Metadata and Artwork
in theMME Developer’s Guide.

flags For future use.

Library:
mme

Description:
The functionmme_trksessionview_metadata_get() retrieves metadata for a title or
track on a DVD or a device, such as an iPod, that manages its own track sessions. It
returns this metadata in the metadata structuremme_metadata_hdl_t.

Events

None delivered.

Blocking and validation

This function performs no validations, and doesn’t block.

378 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_metadata_get()

Returns:
≥0: data inmme_metadata_hdl_t.

Success.
-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksessionview_get_info(), mme_trksessionview_info_t,
mme_trksessionview_readx(), mme_trksessionview_writedb()

May 4, 2009 Chapter 1 • MME API 379

mme_trksessionview_readx()  2009, QNX Software Systems GmbH & Co. KG.

Read track data from the track session view

Synopsis:
#include <mme/mme.h>

int mme_trksessionview_readx(mme_hdl_t *hdl,
unsigned type,
int offset,
unsigned ntracks,
void *buf,
unsigned *buflen);

Arguments:
hdl An MME connection handle.

type The type of information requested. SeeTRKVIEW_READ_* below.

offset The 0-based offset in the track session at which to start reading.

ntracks The number of tracks for which information is requested.

buf A pointer to the buffer into which the information can be placed.

buflen A pointer to the size,in bytes, of the buffer. Specify the size you allocate
for the request when calling the function; it will fill in the size actually
required to fulfill the request, which you can check when the function
returns.

Library:
mme

Description:
The functionmme_trksessionview_readx() reads track session data from the
trksessionview table. It fills the buffer referenced bybuf with an array of elements.

The number of elements in the array is set by thentracks parameter, and the type and
size of the elements are determined by thetype parameter:

• If you settype to TRKVIEW_READ_FID, mme_trksessionview_readx() fills the
array withtrksessionview_entry_t structures.

• If you settype to TRKVIEW_READ_FILE, mme_trksessionview_readx() fills the
array withtrksessionview_entry_file_t structures.

380 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_readx()

Set thetype argument toTRKVIEW_READ_FILE only for file-based track sessions
(track sessions created with themode argument set toMME_PLAYMODE_FILE).

The functionmme_trksessionview_readx() returns the number of elements it
successfully read. This number may be less than the number of elements requested
(ntracks if the source mediastore contains less files than the requested number, or if the
allocated buffer is too small to contain the information for all the requested tracks.

To ensure that you callmme_trksessionview_readx() with a buffer large enough for all
the requested elements, you can call it once withbuflen set to 0:

*buflen = 0
mme_trksessionview_readx(hdl, type, offset, ntracks, buf, buflen);

The function will fill in buflen with the buffer size required for the number and type of
information you request. You can then callmme_trksessionview_readx() a second
time, certain that your buffer is large enough for your request.

trksessionview_entry_t
typedef struct {

uint64_t fid;
} trksessionview_entry_t;

The data structuretrksessionview_entry_t defines the array used by
mme_trksessionview_read() to store track session view entries in memory.

trksessionview_entry_file_t
typedef struct {

uint64_t msid;
uint32_t reserved;
char *filename;

} trksessionview_entry_file_t;

The data structuretrksessionview_entry_file_t carries information about
tracks in a track session. It contains the following members:

Member Type Description

msid uint64_t The mediastore ID of the mediastore with the track.

reserved uint32-t Reserved for future use.

filename char The filename of the track.

May 4, 2009 Chapter 1 • MME API 381

mme_trksessionview_readx()  2009, QNX Software Systems GmbH & Co. KG.

TRKVIEW_READ_*
#define TRKVIEW_READ_FID 0x00000001
#define TRKVIEW_READ_FILE 0x00000002

TheTRKVIEW_READ_* constants are used to set the type of information
mme_trksessionview_readx() requests from thetrksessionview table. Its value can
be set to:

• TRKVIEW_READ_FID (0x00000001) — get the file IDs for the tracks

• TRKVIEW_READ_FILE (0x00000002) — get the file offsets for tracks

Events

None delivered.

Blocking and validation

This function doesn’t block.

Returns:
≥0: the number of elements the function successfully read.

Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_trksessionview_get_info(), mme_trksessionview_info_t,
mme_trksessionview_metadata_get(), mme_trksessionview_writedb()

382 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_update()
Update the information in the trksessionview table

Synopsis:
#include <mme/mme.h>

int mme_trksessionview_update(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_trksessionview_update() causes the MME to update the
information for the current control context .

Thetrksessionview table stores static snapshots of track sessions at the time that
they are set. The entries in this table do not, therefore, reflect changes to the database
that have occurred since the track session was set. For example, files and metadata that
were added to the database after the track session was set remain unknown to the track
session.

To update the track session snapshot with the latest information provided by a
concurrent synchronization, callmme_trksessionview_update().

The track session view is accurate in memory as soon as
mme_trksessionview_update() returns, regardless of whether the connection is
synchronous our asynchronous. However, depending on how the MME is configured,
the updates may or may not have been written to thetrksessionview table. Only
receipt of theMME_EVENT_TRKSESSIONVIEW_COMPLETEevent confirms that the
updates have been written to thetrksessionview table.

If your system is configurednot to automatically write track session view updates to
the database (<TrksessionViewAutoWrite> set tofalse), you must call
mme_trksessionview_writedb() to update thetrksessionview table.

For both library-based and file-based track sessions, a call to
mme_trksessionview_update() refreshes the pseudo-random order of the tracks in the
track session.

For more information, see “Working with track sessions” in the chapter Playing Media
of theMME Developer’s Guide.

May 4, 2009 Chapter 1 • MME API 383

mme_trksessionview_update()  2009, QNX Software Systems GmbH & Co. KG.

Events

Client applications that callmme_trksessionview_update() can expect to see the
following sequence of events:
1 MME_EVENT_TRKSESSIONVIEW_INVALID

2 MME_EVENT_TRKSESSIONVIEW_UPDATE — one or more times, if your
system is configured to write updates to the database

3 MME_EVENT_TRKSESSIONVIEW_COMPLETE— when the track session
snapshot is written to thetrksessionview table

Blocking and validation

This function doesn’t block.

Returns:
≥0 Success: the MME updated the state of the current track session.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_play_resume_msid(), mme_trksession_get_info(),
mme_set_msid_resume_trksession(), mme_trksession_resume_state().
mme_trksession_save_state()

384 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_trksessionview_writedb()
Write the MME track session view to the database

Synopsis:
#include <mme/mme.h>

int mme_trksessionview_writedb(mme_hdl_t *hdl);

Arguments:
hdl An MME connection handle.

Library:
mme

Description:
The functionmme_trksessionview_writedb() writes the current track session view to
thetrksessionview table in the MME database.

When the MME is configured to keep track session views in memory, it does not write
the track session view to the MME database unless it is instructed to do so by a call to
mme_trksessionview_writedb(). This function can be used to save track session views
when the system is idle, or at system shutdown.

Events

This function delivers the eventMME_EVENT_TRKSESSIONVIEW_COMPLETEwhen
it has finished writing the track session view to the database. If the track session view
has already been written to the database, this function will not write it a second time,
but will nevertheless deliverMME_EVENT_TRKSESSIONVIEW_COMPLETE.

Blocking and validation

This function performs no validations, and returns immediately.

Returns:
>0 Success

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 385

mme_trksessionview_writedb()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_trksessionview_get_info(), mme_trksessionview_info_t,
mme_trksessionview_metadata_get(), mme_trksessionview_readx()

386 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_get_angle_info()
Get the video angle

Synopsis:
#include <mme/mme.h>

int mme_video_get_angle_info (mme_hdl_t *hdl,
uint64_t title,
mm_video_angle_info_t *info);

Arguments:
hdl An MME connection handle.

title The video title for which angle information is requested.

info A pointer to amm_video_angle_info_t structure that carries information
about the video angle.

Library:
mme

Description:
The functionmme_video_get_angle_info() gets the video angle for an MME control
context, and places it in the data structuremm_video_angle_info_t.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Examples:
mm_video_angle_info_t info;
unit_64 title = 1;

rc = mme_video_get_angle_info(mmehdl, title, &info);
if (rc == 0) {

sprintf(output, "Total: %d; Current: %d",
info.total, info.current);

} else {
sprintf(output, "Error getting video angle info: %s (%d).",

May 4, 2009 Chapter 1 • MME API 387

mme_video_get_angle_info()  2009, QNX Software Systems GmbH & Co. KG.

strerror(errno), errno);
}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_audio_info(), mme_video_get_info(), mme_video_get_status(),
mme_video_get_subtitle_info(), mme_video_set_angle(), mme_video_set_audio(),
mme_video_set_properties(), mme_video_set_subtitle()

388 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_get_audio_info()
Get the audio information for video playback

Synopsis:
#include <mme/mme.h>

int mme_video_get_audio_info (mme_hdl_t *hdl,
uint64_t title,
mm_video_audio_info_t *info);

Arguments:
hdl An MME connection handle.

title The video title for which you want to get the audio information.

info A pointer to amm_video_audio_info_t structure that carries information
about the title’s audio settings.

Library:
mme

Description:
The functionmme_video_get_audio_info() gets information about audio settings for
video playback in a control context and places it in the structure
mm_video_audio_info_t described in this reference.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Examples:
Frommmecli:

mm_video_angle_info_t info;
unit_64 title = 1;

rc = mme_video_get_angle_info(mmehdl, title, &info);
if (rc == 0) {

May 4, 2009 Chapter 1 • MME API 389

mme_video_get_audio_info()  2009, QNX Software Systems GmbH & Co. KG.

sprintf(output, "Total: %d; Current: %d",
info.total, info.current);

} else {
sprintf(output, "Error getting video angle info: %s (%d).",

strerror(errno), errno);
}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_info(), mme_video_get_status(),
mme_video_get_subtitle_info(), mme_video_set_angle(), mme_video_set_audio(),
mme_video_set_properties(), mme_video_set_subtitle()

390 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_get_info()
Get information about a video.

Synopsis:
#include <mme/mme.h>

int mme_video_get_info(mme_hdl_t *hdl,
mm_video_info_t *info);

Arguments:
hdl An MME connection handle.

msid A pointer to amm_video_info_t structure thatmme_video_info() can fill
with the information about the current video.

Library:
mme

Description:
The functionmme_video_get_info() gets information about a video, including:

• aspect ratio

• dimensions (height and width)

• display mode

• capture format

For information about the structuremm_video_info_t, seemm_video_info_t in
this reference.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success: the MME retrieved the information about the video.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 391

mme_video_get_info()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_status(), mme_video_get_subtitle_info(), mme_video_set_angle(),
mme_video_set_audio(), mme_video_set_properties(), mme_video_set_audio()

392 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_get_status()
Get the video status

Synopsis:
#include <mme/mme.h>

int mme_video_get_status (mme_hdl_t *hdl,
mm_video_status_t *status);

Arguments:
hdl An MME connection handle.

status A pointer to amm_video_status_t structure that the function fills in
with information about the video playback status.

Library:
mme

Description:
The functionmme_video_get_status() gets status information for video playback of
any format. The MME indicates that there has been a change in video status by
sending aMME_EVENT_VIDEO_STATUSevent.

To get DVD device status, usemme_dvd_get_status().

For more information about video dimensions and aspect ratio, see
mm_video_info_t in this reference.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Examples:
Frommmecli:

mm_video_status_t status;

May 4, 2009 Chapter 1 • MME API 393

mme_video_get_status()  2009, QNX Software Systems GmbH & Co. KG.

rc = mme_video_get_status(mmehdl, &status);
if (rc == -1) {

sprintf(output, "Error getting video status: %s (%d).",
strerror(errno), errno);

} else {
sprintf(output, "Size: %ux%u; Aspect Ratio: %ux%u.",

status.width, status.height,
status.aspect_ratio.w,status.aspect_ratio.h);

}

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_info(), mme_video_get_subtitle_info(), mme_video_set_angle(),
mme_video_set_audio(), mme_video_set_properties(), mme_video_set_audio()

394 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_get_subtitle_info()
Get subtitle information for a video title

Synopsis:
#include <mme/mme.h>

int mme_video_get_subtitle_info (mme_hdl_t *hdl,
uint64_t title,
mm_video_subtitle_info_t *info);

Arguments:
hdl An MME connection handle.

title The video title for which you want to get the subtitle information.

info A pointer to amm_video_subtitle_info_t structure that carries
information about the video subtitles.

Library:
mme

Description:
The functionmme_video_get_subtitle_info() gets information about the subtitle for
video playback for a control context and places it in the structure
mm_video_subtitle_info_t.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 395

mme_video_get_subtitle_info()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_info(), mme_video_get_status(), mme_video_set_angle(),
mme_video_set_audio(), mme_video_set_properties(), mme_video_set_audio()

396 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_set_angle()
Set the video angle

Synopsis:
#include <mme/mme.h>

int mme_video_set_angle (mme_hdl_t *hdl,
uint64_t title,
int index);

Arguments:
hdl An MME connection handle.

title The video title on which to set the angle.

index An index to a desired angle from the array filled in by a previous call to
mme_video_get_angle_info(). 0 (zero) points to the first available choice.

Library:
mme

Description:
The functionmme_video_set_angle() sets the video angle for video playback. Before
calling this function, usemme_video_get_angle_info() to get the current video angle.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

continued. . .

May 4, 2009 Chapter 1 • MME API 397

mme_video_set_angle()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_info(), mme_video_get_status(), mme_video_get_subtitle_info(),
mme_video_set_audio(), mme_video_set_properties(), mme_video_set_audio()

398 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_set_audio()
Set the audio stream for video playback

Synopsis:
#include <mme/mme.h>

int mme_video_set_audio (mme_hdl_t *hdl,
uint64_t title,
int index);

Arguments:
hdl An MME connection handle.

title The title to set the audio for.

index An index to a desired audio stream from the array filled in by a previous
call to mme_video_get_audio_info(). 0 (zero) points to the first available
choice. A -1 in this parameter disables audio.

Library:
mme

Description:
The functionmme_video_set_audio() sets the audio stream for video playback in a
control context.

The MME 1.1.0 release does not support dynamic setting of audio attributes during
video playback. These attributes should be set before starting playback. See also the
data structuremm_video_audio_info_t.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 399

mme_video_set_audio()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mm_video_audio_info_t, mme_video_get_angle_info(),
mme_video_get_audio_info(), mme_video_get_info(), mme_video_get_status(),
mme_video_get_subtitle_info(), mme_video_set_angle(),
mme_video_set_properties(), mme_video_set_audio()

400 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_set_properties()
Set the properties of a video.

Synopsis:
#include <mme/mme.h>

int mme_video_set_properties(mme_hdl_t *hdl,
mm_video_properties_t *props);

Arguments:
hdl An MME connection handle.

props The pointer to the structure with the properties to set for the video.

Library:
mme

Description:
The functionmme_video_set_properties() sets video properties, and places the data in
the structuremm_video_properties_t described in this reference. The properties
set bymme_video_set_properties() include:

• dimensions (height and width)

• display mode

• zoom mode

Currentlyio-media-generic only supports setting the video source and destination
(thesource anddest members of themm_video_properties_t structure). Other
io-media variants may support other capabilities.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success: the MME set the video properties.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 401

mme_video_set_properties()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_info(), mme_video_get_status(), mme_video_get_subtitle_info(),
mme_video_set_angle(), mme_video_set_audio(), mme_video_set_audio()

402 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_video_set_subtitle()
Set the subtitle for video playback

Synopsis:
#include <mme/mme.h>

int mme_video_set_subtitle (mme_hdl_t *hdl,
uint64_t title,
int index);

Arguments:
hdl An MME connection handle.

title The title to set the subtitle for.

index An index to a desired subtitle from the array filled in by a previous call to
mme_video_get_subtitle_info(). 0 (zero) points to the first available choice.
A -1 in this parameter disables subtitles.

Library:
mme

Description:
The functionmme_video_set_subtitle() sets the subtitles for video playback a control
context. Before calling this function, usemme_get_subtitle_info() to get the available
subtitles for the video.

Events

None delivered.

Blocking and validation

This function blocks onio-media. It returns only when it has completed.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

May 4, 2009 Chapter 1 • MME API 403

mme_video_set_subtitle()  2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_video_get_angle_info(), mme_video_get_audio_info(),
mme_video_get_info(), mme_video_get_status(), mme_video_get_subtitle_info(),
mme_video_set_angle(), mme_video_set_audio(), mme_video_set_properties()

404 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_zone_create()
Create an output zone

Synopsis:
#include <mme/mme.h>

int mme_zone_create(mme_hdl_t *hdl,
const char *name,
uint64_t *zoneid);

Arguments:
hdl An MME connection handle.

name A pointer to the zone name.

zoneid The zone ID returned by the function.

Library:
mme

Description:
The functionmme_zone_create() creates an output zone. It returns the ID of the new
zone it created.

The MME uses zones to manage output. Zones can be attached to a control context or
detached from a control context. The MME sends playback from a control context
only to the zones attached to that control context. For example, in an automobile with
two zones: “driver” and “passengers”, the zone “passengers” could be attached to a
control context playing a video, while the zone “driver” would not be attached. A
DVD-video played back in the control context would be available only in the zone
“passengers”, but not in the zone “driver”.

Events

None delivered.

Blocking and validation

This function executes to completion.

Returns:
≥0 Success: the ID of the created output zone.

-1 An error occurred (errno is set).

May 4, 2009 Chapter 1 • MME API 405

mme_zone_create()  2009, QNX Software Systems GmbH & Co. KG.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
mme_output_set_permanent(), mme_play_attach_output(),
mme_play_detach_output(), mme_play_get_zone(), mme_play_set_zone(),
mme_zone_delete()

406 Chapter 1 • MME API May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. mme_zone_delete()
Delete an output zone

Synopsis:
#include <mme/mme.h>

int mme_zone_delete(mme_hdl_t *hdl,
uint64_t *zoneid);

Arguments:
hdl An MME connection handle.

zoneid The ID of the zone to be deleted.

Library:
mme

Description:
The functionmme_zone_delete() deletes the specified output zone. For more
information about zones, seemme_zone_create().

Events

None delivered.

Blocking and validation

This function runs to completion.

Returns:
≥0 Success.

-1 An error occurred (errno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No

Thread Yes

May 4, 2009 Chapter 1 • MME API 407

mme_zone_delete()  2009, QNX Software Systems GmbH & Co. KG.

See also:
mme_output_set_permanent(), mme_play_attach_output(),
mme_play_detach_output(), mme_play_get_zone(), mme_play_set_zone(),
mme_zone_create()

408 Chapter 1 • MME API May 4, 2009

Chapter 2

MME Events

In this chapter. . .
About MME events 411
MME event classes 411
MME event data 412
MME general events 423

May 4, 2009 Chapter 2 • MME Events 409

 2009, QNX Software Systems GmbH & Co. KG. About MME events

MME events are like other QNX Neutrino events. They are signals or pulses used to
notify a client application thread that a particular condition has occurred. Unlike
signals and pulses, events can be used to carry data.

This chapter includes:

• About MME events

• MME event classes

• MME event data

• MME general events

For information about other types of MME events, see the following chapters in this
reference:

• MME Synchronization Events

• MME Playback Events

• MME Media Copy and Ripping Events

• MME Metadata Events

For more information about events in general, see theQNX Neutrino Programmer’s
Guide.

About MME events
MME events are associated with the control contexts through which the client
application is connected to the MME. Each client connected to a control context has
its own event queue to which the MME delivers events.

To receive events from the MME, your client application must:

• after each new connection to the MME, call the function
mme_register_for_events() to register for events

• call the functionmme_get_event() when it needs to retrieve the MME events.

See also the chapter Starting Up and Connecting to the MME in theMME Developer’s
Guide.

MME event classes
MME events are divided into classes, whichmme_event_class_t defines as
bitmasks. Its values are described in the table below.

May 4, 2009 Chapter 2 • MME Events 411

MME event data  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

MME_EVENT_CLASS_PLAY 0x0001 See the chapter MME Playback
Events.

MME_EVENT_CLASS_SYNC 0x0002 See the chapter MME
Synchronization Events.

MME_EVENT_CLASS_COPY 0x0004 See the chapter MME Media
Copy and Ripping Events.

MME_EVENT_CLASS_GENERAL 0x0008 See “Events not specified in the
other classes” below.

MME_EVENT_CLASS_METADATA 0x0010 See the chapter MME Metadata
Events.

MME_EVENT_CLASS_ALL 0xFFFF All events.

The MME event classes are bitmasks. They can be used together with anOR operator
to register for several events at once. For example, to register forplayback and
synchronization events call the functionmme_register_for_events() as follows:

mme_register_for_events(hdl,
MME_EVENT_CLASS_PLAY | MME_EVENT_CLASS_SYNC,
event);

The client application can register each of its connections for any or all of these
classes, as required.

MME event data
Event data is delivered in the following structures:

• mme_copy_error_t

• mme_event_t

• mme_event_default_language_t

• mme_event_metadata_image_t

• mme_event_metadata_info_t

• mme_event_metadata_licensing_t

• mme_event_queue_size_t

• mme_event_type_t

• mme_first_fid_data_t

• mme_folder_sync_data_t

412 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME event data

• mme_ms_update_data_t
• mme_play_command_error_t

• mme_play_error_t

• mme_play_error_track_t

• mme_sync_data_t

• mme_sync_error_t

• mme_trackchange_t

• mm_warning_info_t

For more information about the structuresmme_sync_data_t and
mme_first_fid_data_t, and themme_*_error_t structures, see the relevant
sections below.

mme_copy_error_t
typedef struct mme_copy_error {

uint32_t type;
uint64_t cqid;
uint32_t reserved;
union {

uint64_t value;
uint64_t msid;

};
} mme_copy_error_t;

The structuremme_copy_error_t carries media copying and ripping error data. Its
members are described in the table below:

Member Type Description

type uint32_t Type of media copying and ripping error.

cqid uint64_t The copy queue ID.

reserved uint32_t Reserved for internal use.

union uint64_t Eithervalue: copy queue ID, ormsid: mediastore ID.

mme_event_t
typedef struct _mme_event {

mme_event_type_t type;
size_t size;
char data[0];

} mme_event_t;

The structuremme_event_t is described in the table below:

May 4, 2009 Chapter 2 • MME Events 413

MME event data  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

type mme_event_type_t The event type.

size size_t The size, in bytes of the event data.

data char The event data.

mme_event_default_language_t
#include <mme/types.h>

typedef struct s_mme_default_language_event {
int error;
const char language[1];

} mme_event_default_language_t;

The data structuremme_event_default_language_t carries information delivered
with a MME_EVENT_DEFAULT_LANGUAGE event, including the result of the last
attempt to set the default language, and aNULL terminated string indicating the
current default language. It includes at least the members described in the table below:

Member Type Description

error int The result of the last request; this member is set toEOK
on success.

language const char A NULL terminated string that indicates the current
default language.

mme_event_metadata_image_t
typedef struct s_mme_metadata_image_event {

uint64_t mdinfo_irid;
int32_t error;
uint32_t reserved;
mme_metadata_image_url_t url;

} mme_event_metadata_image_t;

The data structuremme_event_metadata_image_t carries data for the
MME_EVENT_METADATA_IMAGE event. It includes at least the members listed in
the table below:

Member Type Description

mdinfo_irid uint64_t A metadata image request
identifier.

continued. . .

414 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME event data

Member Type Description

error int Theerrno returned with the
request; set toEOK on success.

reserved uint32_t Reserved for internal use.

url mme_metadata_image_url_t The structure with the URL
location for the image.

mme_event_metadata_info_t
typedef struct s_mme_metadata_info_event {

uint64_t mdinfo_rid;
int32_t error;
uint32_t reserved;
mme_metadata_info_t metadata;

} mme_event_metadata_info_t;

The data structuremme_event_metadata_info_t carries data for the
MME_EVENT_METADATA_INFO event. It includes at least the members listed in the
table below:

Member Type Description

mdinfo_irid uint64_t A metadata information request
identifier.

error int Theerrno returned with the request; set
to EOK on success.

reserved uint32_t Reserved for internal use.

metadata mme_metadata_info_t The structure with the metadata.

mme_event_metadata_licensing_t
typedef struct mme_event_metadata_licensing {

uint64_t msid;
uint64_t fid;
char license[32];

} mme_event_metadata_licensing_t;

The data structuremme_event_metadata_licensing_t carries metadata licensing
data. It includes at least the members described in the table below:

Member Type Description

msid uint64_t During mediastore synchronizations, the mediastore ID.

continued. . .

May 4, 2009 Chapter 2 • MME Events 415

MME event data  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

fid uint64_t During individual file synchronizations, the file ID.

license char The license agreement, up to 32 characters long.

mme_event_queue_size_t
typedef struct s_mme_event_queue_size {

size_t first_event;
size_t all_events;

} mme_event_queue_size_t;

The structuremme_event_queue_size_t carries data for the event
MME_EVENT_BUFFER_TOO_SMALL event. It includes at least the members listed in
the table below:

Member Type Description

first_event size_t The size, in bytes, of the first event.

all_events size_t The size, in bytes, of all the events in the queue.

mme_event_type_t
typedef enum mme_event_type {
...

MME_EVENT_*
...

} mme_event_type_t;

The enumerated typemme_event_type_t defines the types of events delivered by
the MME. For details, see the events described in this chapter.

mme_first_fid_data_t
mme_first_fid_data {

uint64_t fid;
uint64_t msid;
uint64_t timestamp;
uint32_t operation_id;
uint32_t reserved;

} mme_first_fid_data_t;

The structuremme_first_fid_data_t carries the file ID (fid) and mediastore ID
(msid) for the first file and mediastore found during synchronization. It has at least
these members:

416 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME event data

Member Type Description

fid uint64_t The file ID.

msid uint64_t The mediastore ID.

timestamp uint64_t During a first synchronization pass, the MME’s
internal timestamp from thelibrary tablelast_sync
field; set to 0 (zero) at the second synchronization
pass.

operation_id uint32_t The ID of the synchronization process that delivers
the event carryingmme_first_fid_data_t.

reserved uint32_t Reserved for internal use.

mme_folder_sync_data_t
typedef struct s_mme_folder_sync_data {

uint64_t msid;
uint64_t folderid;
uint32_t pass;
uint32_t num_files;
uint32_t num_folders;
uint32_t num_playlists;
uint64_t timestamp;
uint32_t operation_id;
uint32_t reserved;

} mme_folder_sync_data_t;

The data structuremme_folder_sync_data_t carries event data for folder
synchronizations. It contains at least the members described in the table below:

Member Type Description

msid uint64_t The ID of the mediastore with the folder being
synchronized.

folderid uint64_t The ID of the folder being synchronized.

pass uint32_t The synchronization pass this event is for; uses the
MME_SYNC_OPTION_PASS_* flags.

num_files uint32_t See event specific documentation.

num_folders uint32_t See event specific documentation.

num_playlists uint32_t The number of playlists added to theplaylist file.

timestamp uint64_t A timestamp of the last synchronization (last_sync
value) for items associated with the event that
delivers this structure.

continued. . .

May 4, 2009 Chapter 2 • MME Events 417

MME event data  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

operation_id uint32_t The operation ID.

reserved uint32_t Reserved for internal use.

mme_ms_update_data_t
typedef struct s_mms_ms_update_data {

uint64_t msid;
uint64_t added_filecount;
uint64_t added_foldercount;
uint32_t operation_id;
uint32_t flags;
uint64_t timestamp;

} mme_ms_update_data_t;

The data structuremme_ms_update_data_t carries data about files information
copied during synchronizations. It is described in the table below:

Member Type Description

msid uint64_t The ID of the synchronized mediastore.

added_filecount uint64_t The number of file IDs (fids) added to the MME
database by this synchronization.

added_foldercount uint64_t The number of folders added to the MME
database by this synchronization.

operation_id uint32_t The operation ID.

flags uint32_t The type of operation. Seeflags below.

timestamp uint64_t The time stamp to write in thelast_sync column
for items associated with the event that carries
this data structure.

flags

Themme_ms_update_data_tmemberflags can have the following values:

flags Meaning

0 Not a synchronization operation

MME_SYNC_OPTION_PASS_FILES Synchronization pass 1

MME_SYNC_OPTION_PASS_METADATA Synchronization pass 2

continued. . .

418 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME event data

flags Meaning

MME_SYNC_OPTION_PASS_PLAYLISTS Synchronization pass 3

mme_play_command_error_t
typedef struct mme_play_command_error {

uint32_t command;
uint32_t button;
uint64_t fid;

} mme_play_command_error_t;

The structuremme_play_command_error_t carries the playback error types. Its
members are described in the table below:

Member Type Description

command mme_command_type_t Command error data.

button uint32_t Button error data.

fid uint32_t The file ID of the file being accessed when
the error occurs.

mme_play_error_t
typedef struct mme_play_error {

uint32_t type;
uint32_t reserved;
union {

uint64_t value;
uint64_t fid;
uint64_t trksessionid;
uint64_t msid;
uint64_t outputid;
mme_play_command_error_t command_error;
mme_play_error_track_t track;

};
} mme_play_error_t;

The structuremme_play_error_t carries playback error data. Its members are
described in the table below:

May 4, 2009 Chapter 2 • MME Events 419

MME event data  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

type uint32_t The type of
playback error; see
“Playback error
events” in the
chapter MME
Playback Events.

reserved uint32_t Reserved for
internal use.

value uint64_t The error value.

fid uint64_t The file ID.

trksessionid uint64_t The track session
ID.

msid uint64_t The mediastore ID.

outputid uint64_t The output ID.

command_error_t mme_play_command_error_t The command
error type.

mme_play_error_track_t mme_play_error_track_t The file ID or the
offset of the track
that generated the
error.

mme_play_error_track_t
typedef struct mme_play_error_track {

uint64_t fid;
uint64_t offset;

} mme_play_error_track_t;

The data structuremme_play_error_track_t carries the file ID or the offset in the
track session of the track where a playback error occurred. It contains the following
members:

Member Type Description

fid uint64_t The file ID of the track where an error occurred; used for
library-based track sessions.

offset uint64_t The offset of the track where an error occurred; used for
file-based track sessions.

420 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME event data

mme_sync_data_t
typedef struct mme_sync_data {

uint64_t msid;
uint32_t operation_id;

uint32_t reserved;
} mme_sync_data_t;

The structuremme_sync_data_t carries data for many synchronization events
(MME_EVENT_MS_SYNC_*). It has these members:

Member Type Description

msid uint64_t The mediastore ID.

operation_id uint32_t The synchronization operation ID.

reserved uint32_t Reserved for internal use.

mme_sync_error_t
typedef struct mme_sync_error {

uint32_t type;
uint32_t operation_id;
uint32_t param;
uint32_t reserved;
uint64_t msid;

} mme_sync_error_t;

The structuremme_sync_error_t carries synchronization error data. Its members
are described in the table below:

Member Type Description

type uint32_t The type of synchronization error.

operation_id uint32_t The synchronization operation ID.

param uint32_t Parameters for the synchronization.

reserved uint32_t Reserved for internal use.

msid uint64_t The mediastore ID.

mme_trackchange_t
typedef struct mme_trackchange {

uint64_t fid;
uint64_t fid_requested;
uint64_t offset;

} mme_trackchange_t;

May 4, 2009 Chapter 2 • MME Events 421

MME event data  2009, QNX Software Systems GmbH & Co. KG.

The data structuremme_trackchange_t carries data for the
MME_EVENT_TRACKCHANGE event. It is described in the table below:

Member Type Description

fid uint64_t The file ID of the track being played.

fid_requested uint64_t The file ID that was requested for playback. In most
casesfid andfid_requested will have the same values.
However, when playback occurs during a ripping
operation,fid andfid_requested may be different,
because the client application may request playback
of a track from the source, such as a CDDA, but the
MME will play the ripped destination file on the
HDD.

offset uint64_t The current offset in the track session.

mm_warning_info_t
typedef struct s_mm_warning_info {
_Uint32t mm_warning; /* mm_warnings_t */
_Uint32t flags; /* mm_warning_flags_t */
} mm_warning_info_t;

The structuremm_warning_info_t carries information about the conditions that
have caused a warning. It contains at least the members described in the table below.

Member Type Description

mm_warning mme_warnings_t The type of warning condition
reported byio-media.

flags mme_warning_flags_t Information about the conditions that
caused the warningPlayback warnings
for io-media.

mm_warnings_t

The enumerated typemm_warnings_t defines the type of warning condition
detected. Its values and the behaviors they define are described below:

• MM_WARNING_READ_TIMEOUT — playback of a partially ripped file is in
danger of over-running the end of that file.

mm_warning_flags_t

The enumerated typemm_warning_flags_t defines the state of an MME operation
associated with a warning. Its values and the behaviors they define are described
below:

422 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME general events

• MM_WARNING_FLAG_NONE— no user-perceivable warning condition exists.

• MM_WARNING_FLAG_AUDIBLE — playback has over-run the end of a partially
ripped or copied file, and the user has encountered an audible gap.

MME general events
The MME delivers general events (MME_EVENT_CLASS_GENERAL) to the client
application to indicate changes in status, or the result of an activity.

The MME general events are:

• MME_EVENT_AUTOPAUSECHANGED

• MME_EVENT_BUFFER_TOO_SMALL

• MME_EVENT_DEFAULT_LANGUAGEL

• MME_EVENT_NONE

• MME_EVENT_SHUTDOWN

• MME_EVENT_SHUTDOWN_COMPLETED

• MME_EVENT_USERMSG

MME_EVENT_AUTOPAUSECHANGED

The MME delivers the eventMME_EVENT_AUTOPAUSECHANGEDafter it has
changed the autopause mode for a specified control context.

To change the autopause mode for a control context, call the function
mme_setautopause().

Event data

The new autopause setting, in auint64_t:

1 Enabled.

0 Disabled.

Database tables updated

No database tables are updated.

MME_EVENT_BUFFER_TOO_SMALL

The MME delivers the eventMME_EVENT_BUFFER_TOO_SMALL to a client
application when the client application’s event buffer is too small to retrieve any
events from the MME.

May 4, 2009 Chapter 2 • MME Events 423

MME general events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The size, in bytes, of the first event in the event buffer, in
mme_event_queue_size_t.first_event, and the size of all the events in the
event queue, inmme_event_queue_size_t.all_events.

Database tables updated

No database tables are updated.

MME_EVENT_DEFAULT_LANGUAGE

The MME functionmme_media_set_def_lang() delivers the event
MME_EVENT_DEFAULT_LANGUAGE to indicate that the default preferred language
for a media item has been set.

Event data

The success or failure of the default preferred language update, and the preferred
language, inmme_event_default_language_t.

The string inmme_event_default_language_t.language always indicates the
current default preferred language. That is, ifmme_media_set_def_lang() is unable to
change the default language to the requested language, this string will indicate the
preferred language before the function call was made (because it is still theset
preferred language).

Database tables updated

No database tables are updated.

MME_EVENT_NONE

The MME delivers the eventMME_EVENT_NONE to a client application when there
are no events in the queue for the control context from which the client application
requested events.

To request events, use the functionmme_get_event().

Event data

No data.

Database tables updated

No database tables are updated.

MME_EVENT_SHUTDOWN

The MME delivers the eventMME_EVENT_SHUTDOWNto all control contexts after
it receives a request to shut down. If your client application receives this event, it
should inform the user that it is shutting down.

424 Chapter 2 • MME Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME general events

To shut down the MME, call the functionmme_shutdown().

The functionmme_shutdown() returns immediately and shuts down MME threads in
the background. This behavior means that the MME may deliver other eventsafter it
has deliveredMME_EVENT_SHUTDOWN. When all MME threads have shut down,
the MME delivers the eventMME_EVENT_SHUTDOWN_COMPLETED.

Event data

No data.

Database tables updated

No database tables are updated.

MME_EVENT_SHUTDOWN_COMPLETED

The MME delivers the eventMME_EVENT_SHUTDOWN_COMPLETEDto all control
contexts to indicate that it has completed its shutdown preparations. Playback, ripping
and synchronization operations have been stopped.

Event data

No data.

Database tables updated

No database tables updated.

CAUTION: Operations attempted with the MME after it has delivered the
MME_EVENT_SHUTDOWN_COMPLETEDevent may produce unexpected results and
compromise the integrity of your system. To use the MME after receiving the
MME_EVENT_SHUTDOWN_COMPLETEDevent, you should terminate the MME,
then start it again.

!

MME_EVENT_USERMSG

Not currently implemented.

May 4, 2009 Chapter 2 • MME Events 425

Chapter 3

MME Synchronization Events

In this chapter. . .
Synchronization events 429
Synchronization error events 442

May 4, 2009 Chapter 3 • MME Synchronization Events 427

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

MME events are like other QNX Neutrino events. They are signals or pulses used to
notify a client application thread that a particular condition has occurred. Unlike
signals and pulses, events can be used to carry data.

This chapter includes:

• Synchronization events

• Synchronization error events

For other information about other types of MME events, see the following chapters in
this reference:

• MME Events

• MME Playback Events

• MME Media Copy and Ripping Events

• MME Metadata Events

For more information about events in general, see theQNX Neutrino Programmer’s
Guide.

Synchronization events
The MME delivers synchronization events (MME_EVENT_CLASS_SYNC) to the
client application to indicate the status or result of a synchronization.

The MME synchronization events are:

• MME_EVENT_MS_DETECTION_DISABLED

• MME_EVENT_MS_DETECTION_ENABLED

• MME_EVENT_METADATA_LICENSING

• MME_EVENT_MS_1PASSCOMPLETE

• MME_EVENT_MS_2PASSCOMPLETE

• MME_EVENT_MS_3PASSCOMPLETE

• MME_EVENT_MS_STATECHANGE

• MME_EVENT_MS_SYNCCOMPLETE

• MME_EVENT_MS_SYNC_FIRST_EXISTING_FID

• MME_EVENT_MS_SYNCFIRSTFID

• MME_EVENT_MS_SYNC_FOLDER_COMPLETE

• MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE

May 4, 2009 Chapter 3 • MME Synchronization Events 429

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

• MME_EVENT_MS_SYNC_FOLDER_STARTED

• MME_EVENT_MS_SYNC_PENDING

• MME_EVENT_MS_SYNC_STARTED

• MME_EVENT_MS_UPDATE

• MME_EVENT_SYNCABORTED

• MME_EVENT_SYNC_ERROR

• MME_EVENT_SYNC_SKIPPED

MME_EVENT_MS_DETECTION_DISABLED

The MME synchronization eventMME_EVENT_MS_DETECTION_DISABLED is for
future use.

Event data

No event data is delivered.

Database table updated

No database tables are updated.

MME_EVENT_MS_DETECTION_ENABLED

The MME delivers the synchronization event
MME_EVENT_MS_DETECTION_ENABLED when it has successfully read a path
monitoring configuration, connected to a path monitoring system, and enabled device
detection.

Event data

No event data is delivered.

Database table updated

The following table is updated:

• mediastores— entries in the database that were set toactive or available
are set tounavailable

After the MME delivers the eventMME_EVENT_MS_DETECTION_ENABLED it may
begin processing mediastore state changes and updating themediastores table
accordingly.

430 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

MME_EVENT_METADATA_LICENSING

The MME delivers the synchronization eventMME_EVENT_METADATA_LICENSING
when it uses a metadata service that has special licensing requirements, such as a
requirement to display the service’s logo. The MME delivers this event each time it
begins using the metadata service.

Event data

This event delivers the following data, inmme_event_metadata_licensing_t, as
follows:

• If the MME is synchronizing an entire mediastore, this event delivers the
mediastore ID inmme_event_metadata_licensing_t.msid, with
mme_event_metadata_licensing_t.fid set to 0 (zero).

• If the MME is performing synchronizations for individual files, this event delivers
the file ID inmme_event_metadata_licensing_t.fid, with
mme_event_metadata_licensing_t.msid set to 0 (zero).

• The licensing requirement, inmme_event_metadata_licensing_t.license.

Database table updated

No database tables are updated.

MME_EVENT_MS_1PASSCOMPLETE

The MME delivers the eventMME_EVENT_MS_1PASSCOMPLETEwhen it has
completed the first pass of file and folder synchronization between a mediastore and
the MME library.

With the first synchronization pass the MME:

• sets thevalid field to 0 (not valid) for all file IDs (fids) that are in the library for the
mediastore being synchronized.

• recursively scans the mediastore for files and folders

When it finds a file on the mediastore, the MME:

• checks if the file is in the library. If the file is in the library, the MME:

- sets that file’svalid field to 1 to indicate that the file entry is valid

- compares the mediastore and library file dates and sizes to determine if the file
needs to be resynchronized

- if the file needs to be resynchronized, the MME sets the filesaccurate field to 0,
to indicate to subsequent syncrhonization passes that the file’s information
needs to be updated

- if the file does not need to be synchronized, the MME leaves theaccurate field
set to 1 so that the file will not be resynchronized by subsequent synchronization
passes

May 4, 2009 Chapter 3 • MME Synchronization Events 431

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

• if the file isn’t in the library, the MME:

- adds the file to the library

- sets the file’svalid field to 1 and itsaccurate field to 0

When it finds a folder (directory) on the mediastore, the MME:

• adds the folder to thefolders table

• synchronizes the folder by looking for files and folders inside it.

The MME adds files only if their extensions match the media support extensions
defined by the in element<SyncFileMask> in the file configuration filemme.conf.
For more information, see “Configurable file skipping:<SyncFileMask>” in the
chapter Configuring Media Synchronizations in theMME Configuration Guide.

When the first synchronization pass is complete:

• the following MME table is updated and is accurate:

- mediastores

• thelibrary table and associated tables are updated, but are not guaranteed to be
accurate. The following key information from thelibrary is reliable:

- mediastore ID

- folder IDs

- file names

- file sizes

- title (iPod synchronizations only)

When it has completed the first synchronization pass, the MME sets to 1:

• thesyncflags field for the synchronized mediastore in themediastores table

• thesynced field for all synchronized folders in thefolders table

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

The following tables are updated:

• folders

• library

432 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

• mediastores

• playlists

MME_EVENT_MS_2PASSCOMPLETE

The MME delivers the eventMME_EVENT_MS_2PASSCOMPLETEto inform the
client application that it has completed the second pass of file and folder
synchronization.

When the second synchronization pass is complete:

• the MME library metadata for the media store being synchronized is complete and
accurate

When it has completed the second synchronization pass, the MME adds the value2 to
the value of:

• thesyncflags field for the synchronized mediastore in themediastores table

• thesynced field for all synchronized folders in thefolders table

Thus, when the MME has completed the second syncrhonization pass, the updated
fieldssyncflags andsynced in themediastores andfolders tables have the value 3.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

The following tables are updated:

• folders (synced column)

• library

• library_* (library_artists,library_genres, etc.)

MME_EVENT_MS_3PASSCOMPLETE

The MME delivers the eventMME_EVENT_MS_3PASSCOMPLETEwhen it has
completed the third pass of file and folder synchronization for a mediastore.

During the third synchronization pass the MME:

• compiles the playlist for the mediastore being synchronized

• updates the tableplaylist and, if required,playlistdatawith the playlist
information for the mediastore

May 4, 2009 Chapter 3 • MME Synchronization Events 433

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

When the third synchronization pass is complete the MME has accurate and complete
playlists for the mediastore.

When it has completed the second synchronization pass, the MME adds the value 4 to
the value of:

• thesyncflags field for the synchronized mediastore, in themediastores table

• thesynced field for all synchronized folders, in thefolders table

Thus, when the MME has completed the third syncrhonization pass, the updated fields
syncflags andsynced in themediastores andfolders tables have the value 7.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

The following tables are updated:

• folders (synced column)

• playlistdata

• playlists

MME_EVENT_MS_STATECHANGE

The MME delivers the eventMME_EVENT_MS_STATECHANGEwhen it has detected
that a mediastore state has changed. Mediastore state changes occur when a
mediastore:

• is inserted, and changes state from “non-existent” or “unavailable” to “active” or
“available”

• is removed, and changes state from “active” or “available” to “unavailable”

• is pruned and changes state to “non-existent”

• changes state from “active” to “available”, or vice versa

A mediastore state change indicates only the state of the mediastore in the system. It
does not provide information about the state of the mediastore synchronization.

434 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

Event data

The mediastore state data, inmme_ms_statechange_t:

• the mediastore ID (msid) of the mediastore, inmme_ms_statechange_t.msid

• the old (previous) state of of the mediastore, in
mme_ms_statechange_t.old_state

• the new (current) state of of the mediastore, in
mme_ms_statechange_t.new_state

• the device type, inmme_ms_statechange_t.device_type

• the mediastore type, inmme_ms_statechange_t.storage_type

Database tables updated

The following table is updated:

• mediastores

MME_EVENT_MS_SYNCCOMPLETE

The MME delivers the eventMME_EVENT_MS_SYNCCOMPLETEwhen it has
successfully completed all requested synchronization passes for a mediastore.

When the synchronization is complete:

• the MME has finished all synchronization activities required for the mediastore

• all MME metadata and playlist information for the mediastore is current and
accurate, and the client application can use the full library view

Different mediastore types may require different synchronization activities, including
a different number of synchronization passes. If it checks for the
MME_EVENT_MS_SYNCCOMPLETEevent, the client application does not need to
know the number of synchronization passes required for a media type. When it
receives theMME_EVENT_MS_SYNCCOMPLETEevent the client application knows
that the MME has successfully completed all requested synchronization activity
required for the mediastore.

Receiving the eventMME_EVENT_MS_SYNCCOMPLETEdoes not mean that there
will necessarily be files to play. For example, requesting only the second
synchronization pass won’t populate the MME tables with the minimum information
needed to build track sessions and playing tracks.

May 4, 2009 Chapter 3 • MME Synchronization Events 435

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

When the MME synchronizes prunable mediastores that it has synchronized earlier,
the MME may clean up unused metadata in its database. This clean up may take up to
several seconds, depending on the size of the MME database, and cause a
corresponding delay between delivery of theMME_EVENT_MS_*PASSCOMPLETE
event and delivery of theMME_EVENT_MS_SYNCCOMPLETEevent. For more
information, see “Database clean up during synchronization” in the chapter
Synchronizing Media of theMME Developer’s Guide.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

The following tables are updated:

• folders

• library

• library_* (library_artists,library_genres, etc.).

• mediastores.

• playlistdata

• playlists

For more details, see the information for the specific synchronization passes.

MME_EVENT_MS_SYNC_FIRST_EXISTING_FID

The MME delivers the eventMME_EVENT_MS_SYNC_FIRST_EXISTING_FID to
inform the client application that it has a track or file that it can begin playing. It
delivers this event under the following conditions:

• this is the first pass of a mediastore synchronization

• the MME has found the first playable track or file

Unlike MME_EVENT_MS_SYNCFIRSTFID, whose delivery confirms that all items in
the database are valid,MME_EVENT_MS_SYNC_FIRST_EXISTING_FID only
informs the client application that a playable file has been found. If the
synchronization operation is pruning files from the database, there is no guarantee that
all items in the database are valid.

436 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

The MME delivers this event on all (initial and subsequent) first synchronization
passes of a mediastore, and when a new file has been synchronized during file
synchronization (withmme_sync_file()).

Event data

The file ID (fid) and the mediastore ID (msid) of the first playable track or file:

• the ID of the mediastore being synchronized, inmme_first_fid_data_t.msid

• the file ID of the first playable track on this mediastore, in
mme_first_fid_data_t.fid

• during a first synchronization pass, the MME’s internal timestamp from the
library tablelast_sync field, in mme_first_fid_data_t.timestamp; set to 0
(zero) at the second synchronization pass

• the ID of the synchronization process that delivers the event, in
mme_first_fid_data_t.operation_id

Database tables updated

No database tables are updated.

MME_EVENT_MS_SYNCFIRSTFID

The MME delivers the eventMME_EVENT_MS_SYNCFIRSTFIDto:

• inform the client application that it has a track or file that it can begin playing

• confirm to the client application that all items in the database are valid

The MME delivers this event under the following conditions:

• this is the first pass of a mediastore synchronization

• the MME has found the first playable track or file

• if files must be removed from the database,after the MME has completed removal
of these files

The MME delivers this event on all (initial and subsequent) first synchronization
passes of a mediastore, and when a new file has been synchronized during file
synchronization (withmme_sync_file()).

Event data

The file ID (fid) and the mediastore ID (msid) of the first playable track or file, in
mme_first_fid_data_t:

• the ID of the mediastore being synchronized, inmme_first_fid_data_t.msid

• the file ID of the first playable track on this mediastore, in
mme_first_fid_data_t.fid

May 4, 2009 Chapter 3 • MME Synchronization Events 437

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

• the MME’s internal timestamp from thelibrary tablelast_sync field, in
mme_first_fid_data_t.timestamp

• the ID of the synchronization process that delivers the event, in
mme_first_fid_data_t.operation_id

Database tables updated

No database tables are updated.

MME_EVENT_MS_SYNC_FOLDER_COMPLETE

The MME delivers the eventMME_EVENT_MS_SYNC_FOLDER_COMPLETEwhen
it completes anon-recursive synchronization of all files in a folder, and when the child
folders in that folder have been enumerated.

Event data

The event data delivered differs between the first and second synchronization passes:

• first synchronization pass —mme_folder_sync_data_t:

- if the folder is new or has changed since the last synchronization,
mme_folder_sync_data_t.num_fileswith the number of files, and
mme_folder_sync_data_t.num_folderswith the number of child folders
in the synchronized folder

- if the folder is unchanged since the last synchronization,
mme_folder_sync_data_t.num_files and
mme_folder_sync_data_t.num_folders se to 0 (zero)

• second synchronization pass — the number of files that have changed since the last
synchronization, inmme_folder_sync_data_t.num_files; and
mme_folder_sync_data_t.num_folders set to 0.

Database table updated

The following table is updated:

• folders — the synchronization flags are set

MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE

The MME delivers the event
MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETEwhen it completes a
recursive synchronization of all files and child folders in a folder. It doesnot deliver
this event when is completes a non-recursive synchronization of a folder.

Event data

mme_folder_sync_data_t.num_folderswith the number of synchronized child
folders in this folder, andmme_folder_sync_data_t.num_files set to 0 (zero).

438 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

Database table updated

The following table is updated:

• folders — the synchronization flags are set

MME_EVENT_MS_SYNC_FOLDER_STARTED

The MME delivers the eventMME_EVENT_MS_SYNC_FOLDER_STARTEDwhen it
begins synchronization of a folder; specifically, delivery is:

• first synchronization pass — after the MME has inserted the folder information in
its database

• second synchronization pass — before the second pass begins on the contents of
the folder

Event data

mme_folder_sync_data_t, with the number of files and the number of child
folders in the folder being synchronized set to 0 (zero).

Database table updated

The following table is updated:

• folders

MME_EVENT_MS_SYNC_PENDING

The MME delivers the eventMME_EVENT_MS_SYNC_PENDINGwhen it has placed
a mediastore on the synchronization pending list because it does not have a
synchronization thread available to perform the synchronization.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation.

Database tables updated

No database tables are updated.

MME_EVENT_MS_SYNC_STARTED

The MME delivers the eventMME_EVENT_MS_SYNC_STARTEDwhen it has started
synchronization of a mediastore.

May 4, 2009 Chapter 3 • MME Synchronization Events 439

Synchronization events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

The following tables are updated:

• mediastores

MME_EVENT_MS_UPDATE

The MME delivers the eventMME_EVENT_MS_UPDATE when it writes new data to
the MME database during:

• a mediastore synchronization

• other operations that update thelibrary table, or alibrary_* table

Delivery of MME_EVENT_MS_UPDATE other than during a synchronization
operation indicates one of the following:

• an external CD changer that manages its own track sessions is playing a track that
isn’t in thelibrary

• a ripping operation has added metadata for a file to thelibrary table, or a
library_* table (<UpdateMetadata enable="true">)

• the MME uses metadata from thenowplaying table to update metadata in a
library table, or alibrary_* table (<UpdateLibraryFromNowplaying
enabled="true"/>)

Event data

This event carries data about the operation, inmme_ms_update_data_t.

Database tables updated

The MME updates different tables, depending on the operation that delivers the event.
The type of operation is indicated by the value ofmme_ms_update_data_t.flags

carried by the event.

flag=0 library

library_*

flag=MME_SYNC_OPTION_PASS_FILES

folders

440 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization events

library

mediastores

playlists

flag=MME_SYNC_OPTION_PASS_METADATA

folders

library

library_*

mediastores

flag=MME_SYNC_OPTION_PASS_PLAYLISTS

mediastores

playlists

playlistsdata

MME_EVENT_SYNCABORTED

The MME delivers the eventMME_EVENT_SYNCABORTEDwhen a synchronization
operation is aborted. When this event is delivered, the mediastore is partially
synchronized with the library. The extent of this synchronization can vary greatly,
depending on how far the synchronization had progressed.

Event data

The synchronization data, inmme_sync_data_t:

• the ID of the mediastore being synchronized

• the operation ID (0 for non-directed synchronizations) for the synchronization
operation

Database tables updated

No database tables are updated.

MME_EVENT_SYNC_ERROR

The MME delivers the eventMME_EVENT_SYNC_ERRORwhen an error occurs
during a synchronization operation. The cause of the error is carried in the event data.

Event data

The synchronization error code, inmme_sync_error_t.

Database tables updated

No database tables are updated.

May 4, 2009 Chapter 3 • MME Synchronization Events 441

Synchronization error events  2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_SYNC_SKIPPED

The MME delivers the eventMME_EVENT_SYNC_SKIPPEDwhen it has detected the
insertion of a mediastore, but has not automatically started synchronization of this
mediastore. When the client application receives this event it can request a
synchronization of the mediastore.

This event is delivered if a mediastore is inserted into the system and any of the
following conditions is true:

• The MME is configured tonot automatically synchronize mediastores.

• The MME is configured to automatically synchronize mediastores, but the
mediastore is of a type (iPod) that the MME does not automatically synchronize
unless expressly configured to do so; that is, the<ipod>/<auto_sync> permitted
attribute is set tofalse.

• An ievent plugin has indicated that synchronization should not proceed. The
conditions under which this situation could occur are:

- the system is configured to accept no more than a specified number of
mediastores (the<MaxMediastores> configuration element has been set)

- a new mediastore is inserted and the MME is unable to remove enough
mediastore data to permit the synchronization of the current media store

Event data

The ID of the inserted mediastore, in auint64_t.

Database tables updated

No database tables are updated.

Synchronization error events
The MME synchronization error events are defined by the enumerated type
mme_sync_error_type_t:

typedef enum mme_sync_error_type {
...
MME_SYNC_ERROR_*
...

} mme_sync_error_type_t;

The MME synchronization error events are:

• MME_SYNC_ERROR_MEDIABUSY

• MME_SYNC_ERROR_NETWORK

• MME_SYNC_ERROR_FOLDER_DEPTH_LIMIT

• MME_SYNC_ERROR_FOLDER_LIMIT

442 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization error events

• MME_SYNC_ERROR_LIB_LIMIT

• MME_SYNC_ERROR_NOTSPECIFIED.

• MME_SYNC_ERROR_READ

• MME_SYNC_ERROR_UNSUPPORTED

• MME_SYNC_ERROR_USERCANCEL

MME_SYNC_ERROR_MEDIABUSY

The MME delivers the eventMME_SYNC_ERROR_MEDIABUSY after it fails to start
start synchronization of a mediastore because the mediastore was being used by a
process, such as playback, that has higher priority than synchronization.

Event data

The ID of the skipped mediastore, in auint64_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_NETWORK

The MME delivers the eventMME_SYNC_ERROR_NETWORK when it is unable to
complete a synchronization because of a network error.

Event data

The ID of the mediastore that was not synchronized, in auint64_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_FOLDER_DEPTH_LIMIT

The MME delivers the eventMME_SYNC_ERROR_FOLDER_DEPTH_LIMIT when it
has skipped sychronizing a folder to avoid synchronizing beyond the permitted depth,
set by the<MaxRecursionDepth> configuration element. The MME delivers this
event thefirst time it skips a folder because it has reached the maximum configured
recursion depth.

Event data

Synchronization information inmme_sync_error_t, including

• msid — the mediastore that the limit was reached on

• operation_id— the ID of the synchronization operation

• param — the ID of the first folder in which the limit was reached

May 4, 2009 Chapter 3 • MME Synchronization Events 443

Synchronization error events  2009, QNX Software Systems GmbH & Co. KG.

Event data

Media status information, and the reason for delivery of the event, in
mm_media_status_event_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_FOLDER_LIMIT

The MME delivers the eventMME_SYNC_ERROR_FOLDER_LIMIT during the first
synchronization pass, when it has reached the configured maximum number of items
(files and folders) permitted in a folder. This error event does not indicate a terminal
event. It informs the client application that:

• the number of items it has synchronized in the current folder has reached the
maximum configured by the<MaxFolderItems> element in the MME
configuration file

• the synchronization operation will synchronize no more items from this folder

• synchronization will proceed normally for the rest of the mediastore, updating
metadata and thelast_sync column

Event data

This event carries:

• the operation ID of the synchronization operation, in
mme_ms_update_data_t.operation_id

• the ID of the mediastore being synchronized when the limit is reached, in
mme_ms_update_data_t.msid.

• the folder ID of the folder where the configured limit was reached, in
mme_sync_error.param.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_LIB_LIMIT

The MME delivers the eventMME_SYNC_ERROR_LIB_LIMIT during the first
synchronization pass, when it can add no more entries to thelibrary table. This
error event does not indicate a terminal event. It informs the client application that:

• the number of entries in thelibrary table has reached the limit set by
max_lib_entries

• the synchronization operation will not add more entries to thelibrary table

444 Chapter 3 • MME Synchronization Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Synchronization error events

• synchronization will proceed normally for the mediastore, updating metadata and
the last_sync column for entries in thelibrary table

Event data

This event carries:

• the operation ID of the synchronization operation, in
mme_ms_update_data_t.operation_id

• the ID of the mediastore being synchronized when the limit is reached, in
mme_ms_update_data_t.msid.

• the entry limit reached by the mediastore, inmme_sync_error.param.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_NOTSPECIFIED

The MME delivers the eventMME_SYNC_ERROR_NOTSPECIFIEDat any time
during a synchronization process that it must stop synchronization due to an error not
covered by the other error events.

Event data

The ID of the mediastore that was not synchronized, in auint64_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_READ

The MME delivers the eventMME_SYNC_ERROR_READ when it encounters a read
error that prevents the mediastore from being synchronized. Read errors can be caused
by scratched disks, or other similar faults in the mediastore.

Event data

The ID of the mediastore with the problem, in auint64_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_UNSUPPORTED

The MME delivers the eventMME_SYNC_ERROR_UNSUPPORTEDwhen it is unable
to start a synchronization because it does not support the mediastore format.

May 4, 2009 Chapter 3 • MME Synchronization Events 445

Synchronization error events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The ID of the mediastore that was not synchronized, in auint64_t.

Database tables updated

No database tables are updated.

MME_SYNC_ERROR_USERCANCEL

The MME delivers the eventMME_SYNC_ERROR_USERCANCELwhen it stopped
synchronization of mediastore in response to a cancellation request from the client
application.

Event data

The ID of the mediastore that was not synchronized, in auint64_t.

Database tables updated

No database tables are updated.

446 Chapter 3 • MME Synchronization Events May 4, 2009

Chapter 4

MME Playback Events

In this chapter. . .
Playback events 449
Playback error events 459

May 4, 2009 Chapter 4 • MME Playback Events 447

 2009, QNX Software Systems GmbH & Co. KG. Playback events

MME events are like other QNX Neutrino events. They are signals or pulses used to
notify a client application thread that a particular condition has occurred. Unlike
signals and pulses, events can be used to carry data.

This chapter includes:

• Playback events

• Playback error events

For other information about other types of MME events, see the following chapters in
this reference:

• MME Events

• MME Synchronization Events

• MME Media Copy and Ripping Events

• MME Metadata Events

For more information about events in general, see theQNX Neutrino Programmer’s
Guide.

Playback events
The MME delivers playback events (MME_EVENT_CLASS_PLAY) to the client
application to indicate the status or result of a playback activity.

The MME playback events are:

• MME_EVENT_DVD_STATUS

• MME_EVENT_FINISHED

• MME_EVENT_FINISHED_WITH_ERROR

• MME_EVENT_MEDIA_STATUS

• MME_EVENT_NEWOUTPUT

• MME_EVENT_NOWPLAYING_METADATA

• MME_EVENT_OUTPUTATTRCHANGE

• MME_EVENT_OUTPUTREMOVED

• MME_EVENT_PLAYAUTOPAUSED

• MME_EVENT_PLAY_ERROR

• MME_EVENT_PLAYLIST

• MME_EVENT_PLAYSTATE

May 4, 2009 Chapter 4 • MME Playback Events 449

Playback events  2009, QNX Software Systems GmbH & Co. KG.

• MME_EVENT_PLAY_WARNING

• MME_EVENT_RANDOMCHANGE

• MME_EVENT_REPEATCHANGE

• MME_EVENT_SCANMODECHANGE

• MME_EVENT_TIME

• MME_EVENT_TRACKCHANGE

• MME_EVENT_TRKSESSION

• MME_EVENT_TRKSESSIONVIEW_COMPLETE

• MME_EVENT_TRKSESSIONVIEW_INVALID

• MME_EVENT_TRKSESSIONVIEW_UPDATE

• MME_EVENT_VIDEO_STATUS

MME_EVENT_DVD_STATUS

The MME delivers the eventMME_EVENT_DVD_STATUSwhen there are changes to
the status of a DVD playback. These changes can be to a DVD:

• title

• chapter

• domain

• forbiddden UOP

Event data

The DVD status, inmm_dvd_status_event_t.

Database tables updated

No database tables are updated.

MME_EVENT_FINISHED

The MME delivers the eventMME_EVENT_FINISHED when it has finished playing a
track session and repeat mode is turned off so that no other playback will occur
automatically.

Event data

The ID of the track session, in auint64_t.

450 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback events

Database tables updated

The following tables are updated:

• trksessions

MME_EVENT_FINISHED_WITH_ERROR

The MME delivers the eventMME_EVENT_FINISHED_WITH_ERRORwhen it has
consecutively failed to initiate playback of the number of tracks defined by the
<ConsecutivePlayErrorsBeforeStop> configuration element. It delivers this
event to indicate that the current track session is not playable, and that it requires input
from the client application to continue.

When the client application receives anMME_EVENT_FINISHED_WITH_ERROR
event, it should assume that the current track session can’t be played to completion,
and take appropriate action. It may choose to callmme_next() to attempt playing
another track in the track session, to create a new track session, to request input from
the user, or to perform some other recovery task.

TheMME_EVENT_FINISHED_WITH_ERRORevent is delivered to indicate that the
MME was unable toinitiate playback of several consecutive tracks in a track session,
and that, therefore, the tracks in the track session are probably not readable — they
may be corrupt, in an unsupported format, etc. Once playback has started, read errors
are handled byio-media. See theMME Developer’s Guide chapter Playback Errors.

Event data

The ID of the track session, in auint64_t.

Database tables updated

The following table is updated:

• trksessions.

MME_EVENT_MEDIA_STATUS

The MME delivers the eventMME_EVENT_MEDIA_STATUSto indicate a change in
the status of media playback. Delivery of this event is triggered by a change to any of
the following:

• title

• chapter

• angle

• subtitle

• audio

May 4, 2009 Chapter 4 • MME Playback Events 451

Playback events  2009, QNX Software Systems GmbH & Co. KG.

At present, this event is delivered only:

• for iPod devices

• when a chapter changes (mm_media_status_reason_t =
MM_MEDIA_CHAPTER_UPDATE)

Event data

Media status information, and the reason for delivery of the event, in
mm_media_status_event_t.

Database tables updated

No database tables are updated.

MME_EVENT_NEWOUTPUT

The MME delivers the eventMME_EVENT_NEWOUTPUTwhen it has detected a new
output device in the system. The device can then be attached to a zone. If the device is
already part of a zone that is currently being used for playback, the MME will
automatically attach the new device to that zone.

Event data

The ID of the new output device, in auint64_t.

The following table is updated:

• outputdevices.

MME_EVENT_NOWPLAYING_METADATA

The MME delivers the eventMME_EVENT_NOWPLAYING_METADATA when it is
playing a track and has updated metadata in thenowplaying table. This behavior
means that the MME delivers:

• OneMME_EVENT_NOWPLAYING_METADATA event after every
MME_EVENT_TRACKCHANGE event.

• A subsequentMME_EVENT_NOWPLAYING_METADATA event every time
metadata is updated for the currently playing track.

For example, if the MME is playing a track from a streamed source, it can start
playback as soon as it has sufficient data to be able to continue playing without
gaps, before the entire track and its metadata are downloaded. In this case, each
time the MME receives new metadata for the track, it updates thenowplaying

table, and delivers theMME_EVENT_NOWPLAYING_METADATA event to inform
the client application of the update.

After receiving aMME_EVENT_NOWPLAYING_METADATA , the client application
should query thenowplaying table for new metadata.

452 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback events

In most cases the client application will receive a
MME_EVENT_NOWPLAYING_METADATA event immediately after receiving a
MME_EVENT_TRACKCHANGE event. There are, however, two exceptions to this
rule:

• If playback skips forward through tracks so quickly that any metadata that could be
retrieved would no longer apply to the current track, the MME doesnot deliver a
MME_EVENT_NOWPLAYING_METADATA event after each
MME_EVENT_TRACKCHANGE event.

• If the new currently playing track is on a device that delays before making
metadata available, the client application may experience a delay between
MME_EVENT_TRACKCHANGE andMME_EVENT_NOWPLAYING_METADATA
events. For more information, see “io-media option to set maximum wait for
metadata” in the chapter Configuring Other Components of theMME
Configuration Guide.

Event data

No data is delivered.

Database tables updated

The following table is updated:

• nowplaying

MME_EVENT_OUTPUTATTRCHANGE

The MME delivers the eventMME_EVENT_OUTPUTATTRCHANGEwhen any output
attribute changes.

Event data

The ID of the output where the change occured, in auint64_t.

Database tables updated

No database tables are updated.

MME_EVENT_OUTPUTREMOVED

The MME delivers the eventMME_EVENT_OUTPUTREMOVEDwhen it detects that
an output device has been removed. If the removed output device is the only active one
on a zone where playback is underway, the MME will stop playback.

Event data

The ID of the removed output device, in auint64_t.

May 4, 2009 Chapter 4 • MME Playback Events 453

Playback events  2009, QNX Software Systems GmbH & Co. KG.

Database tables updated

The following table is updated:

• outputdevices

MME_EVENT_PLAYAUTOPAUSED

The MME delivers the eventMME_EVENT_PLAYAUTOPAUSEDafter it has started
playing a paused track. When it delivers this event, the MME is waiting for the client
application to call the functionmme_play_set_speed() with speed set to 1000 in order
to begin playback of the track.

Event data

No data.

Database tables updated

No database tables are updated.

MME_EVENT_PLAY_ERROR

The MME delivers the eventMME_EVENT_PLAY_ERRORwhen a playback error has
occurred. Various playback errors trigger delivery of this event. The cause of the error
is carried in the event data.

Event data

The cause of the error and the offset inmme_play_error_t.

Database tables updated

The database tables updated depends on the error that triggers delivery of the event.

MME_EVENT_PLAYLIST

For future use.

MME_EVENT_PLAYSTATE

The MME delivers the eventMME_EVENT_PLAYSTATE when it changes the play
state or the play speed in the control context. The play state is the type of playback
underway in the control context. Examples of play states are playing, paused, seek to
time, stopped, slow forward, fast forward, slow reverse and fast reverse.

This event isnot delivered when playback changes tracksunless the play state or play
speed have changed.

Event data

The current playstate and speed, inmme_playstate_speed_t.

454 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback events

Database tables updated

No database tables are updated.

MME_EVENT_PLAY_WARNING

The MME delivers the playback eventMME_EVENT_PLAY_WARNING when
io-media has indicated that it has detected a playback situation that requires a
warning to the client application. The MME delivers this event if during playback of a
file that is being ripped (or copied)io-media, due to fast forward or some other
mechanism, playback advances so far that it risks over-running the end of the partially
ripped file.

When the client application receives aMME_EVENT_PLAY_WARNING event, it
should check the flags carried in the data structuremm_warning_info_t to
determine the best course of action to take.

The firstMME_EVENT_PLAY_WARNING event has
mm_warning_info_t.mm_warning set toMM_WARNING_READ_TIMEOUT,
indicating that playback is about to over-run the end of the ripped file, and that the
client application can respond before playback reaches the end of the ripped file and
the user hears a gap in the playback. SubsequentMME_EVENT_PLAY_WARNING
events havemm_warning_info_t.flags set toMM_WARNING_FLAG_AUDIBLE,
indicating that the user has encountered an audible gap in the playback.

Event data

mm_warning_info_t, with the appropriate warning flags set.

Database table updated

No database tables are updated.

MME_EVENT_RANDOMCHANGE

The MME delivers the eventMME_EVENT_RANDOMCHANGE after it has changed
the random play settings for a specified control context, or because a new track session
has been set for the control context.

To find out the current random play mode for a control context, call the function
mme_getrandom(). To change the random play mode of a control context, call the
functionmme_setrandom(). For more information about random mode settings, see
mme_setrandom().

The track number in a track session is determined differently in random playback and
sequential playback modes. Therefore, if a client application receives the event
MME_EVENT_RANDOMCHANGE it should call the function
mme_trksession_get_info() to refresh its track number information.

May 4, 2009 Chapter 4 • MME Playback Events 455

Playback events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The new random setting for the control context inmme_mode_random_t.

Database tables updated

The following tables are updated:

• track sessions

• controlcontexts

MME_EVENT_REPEATCHANGE

The MME delivers the eventMME_EVENT_REPEATCHANGEafter it has changed the
repeat play settings for a specified control context, or because a new track session has
been set for the control context. To find out the current repeat play mode for a control
context, call the functionmme_getrepeat(). To change the repeat play mode of a
control context, call the functionmme_setrepeat(). For more information about repeat
mode settings, seemme_setrepeat().

Event data

The new repeat setting for the control context, inmme_mode_repeat_t.

Database tables updated

The following tables are updated:

• track sessions

• controlcontexts

MME_EVENT_SCANMODECHANGE

The MME delivers the eventMME_EVENT_SCANMODECHANGEafter it has
changed the scan mode for a specified control context. To find out the current scan
mode for a control context, call the functionmme_getscanmode() to get the new
setting. To change the scan mode for a control context, call the function
mme_setscanmode().

Event data

No data.

Database tables updated

No database tables are updated.

MME_EVENT_TIME

A specified amount of time has passed during playback of a track.

456 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback events

Event data

A snapshot of current time information, inmme_time_t.

Database tables updated

No database tables are updated.

MME_EVENT_TRACKCHANGE

The MME delivers the eventMME_EVENT_TRACKCHANGE when a track change
occurs during playback.

Event data

This event returns the following data:

• the file ID (fid) of the track currently playing in
mme_event_trackchange_t.fid

• the file ID (fid_requested) of the requested track in
mme_event_trackchange_t.fid_requested.

• the offset (offset) of the requested track in
mme_event_trackchange_t.offset.

The requested and playing file IDs may be different when playback is requested during
a ripping operation.

Database tables updated

The following tables are updated:

• nowplaying

• track sessions

MME_EVENT_TRKSESSION

The MME delivers the eventMME_EVENT_TRKSESSIONwhen the track session in a
control context has changed and a new track session ID (trksessionid) has been set for
the control context, or when the number of tracks in a track session has changed.

Event data

The ID (trksessionid) of the new track session, in auint64_t.

Database tables updated

The following table is updated:

• controlcontexts

May 4, 2009 Chapter 4 • MME Playback Events 457

Playback events  2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_TRKSESSIONVIEW_COMPLETE

The MME delivers the eventMME_EVENT_TRKSESSIONVIEW_COMPLETEwhen it
has finished updating the track session view in thetrksessinview table.

Event data

The ID of the track session, in auint64_t.

Database tables updated

The following table is updated:

• trksessionview

This event is deliveredonly when the MME has written to thetracksessionview
table. For more information about configuring the MME track session view behavior,
see “Configuring playback behavior” in theMME Configuration Guide.

MME_EVENT_TRKSESSIONVIEW_INVALID

The MME delivers the eventMME_EVENT_TRKSESSIONVIEW_INVALID when a
track session has changed, rendering the data in thetrksessionview table invalid.
This event indicates that MME will delete the data in thetrksessionview table.

Event data

The ID of the track session whose information will be deleted from the
trksessionview table, in auint64_t.

Database tables updated

The following table is updated:

• trksessionview

MME_EVENT_TRKSESSIONVIEW_UPDATE

The MME delivers the eventMME_EVENT_TRKSESSIONVIEW_UPDATEwhen it has
updated the data in thetrksessionview table.

Event data

The ID of the track session whose data the MME has updated in the
trksessionview table, in auint64_t.

Database tables updated

The following table is updated:

• trksessionview

458 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback error events

MME_EVENT_VIDEO_STATUS

The MME deliversMME_EVENT_VIDEO_STATUSafter it has changed the status of a
video it is playing, including:

• video resolution

• video aspect ratio

This information is inmm_event_data_t.video_status.

To find out the status of a video, call the functionmme_video_get_status(). To change
video attributes, call the relevantmme_video_set_*() function.

Event data

No data.

Database tables updated

No database tables are updated.

Playback error events
The MME playback error events are defined by the enumerated type
mme_play_error_type_t:

typedef enum mme_play_error_type {
...

MME_PLAY_ERROR_*
...

} mme_play_error_type_t;

Playback errors are grouped by the type of command that can produce the error. This
definition is in the enumerated typemme_command_type_t:

typedef enum mme_command_type {
MME_COMMAND_TYPE_PLAY = 1,
MME_COMMAND_TYPE_BUTTON = 2

} mme_command_type_t;

The playback error events are:

• MME_PLAY_ERROR_BLOCKEDDOMAIN

• MME_PLAY_ERROR_BLOCKEDUOP

• MME_PLAY_ERROR_CORRUPT

• MME_PLAY_ERROR_DEVICEREMOVED

• MME_PLAY_ERROR_INPUTUNDERRUN

• MME_PLAY_ERROR_INVALIDFID

May 4, 2009 Chapter 4 • MME Playback Events 459

Playback error events  2009, QNX Software Systems GmbH & Co. KG.

• MME_PLAY_ERROR_INVALIDSAVEDSTATE

• MME_PLAY_ERROR_MEDIABUSY

• MME_PLAY_ERROR_NETWORK

• MME_PLAY_ERROR_NOEXIST

• MME_PLAY_ERROR_NOOUTPUTDEVICES

• MME_PLAY_ERROR_NORIGHTS

• MME_PLAY_ERROR_NOTSPECIFIED

• MME_PLAY_ERROR_OUTPUTFAILEDTOATTACH

• MME_PLAY_ERROR_OUTPUTUNDERRUN

• MME_PLAY_ERROR_PARENTALCONTROL

• MME_PLAY_ERROR_READ

• MME_PLAY_ERROR_REGION

• MME_PLAY_ERROR_UNSUPPORTEDCODEC

MME_PLAY_ERROR_BLOCKEDDOMAIN

The MME delivers the eventMME_PLAY_ERROR_BLOCKEDDOMAIN when it
blocks a user operation that is forbidden by a domain mask on the media source. For
more information about these domains, seemme_dvd_get_status().

Event data

The type of user operation that was attempted, in
mme_play_error_t.command_error.command, and:

• the file ID (fid): mme_play_error_t.command_error.fid, for play commands
(MME_COMMAND_TYPE_PLAY)

• the button:mme_play_error_t.command_error.button, for button
commands (MME_COMMAND_TYPE_BUTTON).

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_BLOCKEDUOP

The MME delivers the eventMME_PLAY_ERROR_BLOCKEDUOPwhen it blocks a
user operation. This sort of situation can occur when, for example, the user attempts to
use a forbidden play or button command.

460 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback error events

Event data

The type of user operation that was attempted, in
mme_play_error_t.command_error.command, and:

• for play commands (MME_COMMAND_TYPE_PLAY), the file ID (fid), in
mme_play_error_t.command_error.fid

• for button commands (MME_COMMAND_TYPE_BUTTON), the button, in
mme_play_error_t.command_error.button

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_CORRUPT

The MME delivers the eventMME_PLAY_ERROR_CORRUPTwhen the MME is
unable to play a file for which it has the correct codec.

Event data

The file ID (fid) of the corrupt file, inmme_play_error_t.fid.

Database tables updated

The following table is updated:

• library. Theplayable field for the file is set to 0.

MME_PLAY_ERROR_DEVICEREMOVED

The MME delivers the eventMME_PLAY_ERROR_DEVICEREMOVEDwhen the
mediastore (or device and mediastore) from which it is playing is removed from the
system. The MME will stop playback, deliver this error event, then deliver the event
MME_EVENT_PLAY_ERROR.

Event data

The mediastore ID (msid) of the mediastore with the file or track that was being
played when the mediastore was removed, inmme_play_error_t.msid.

Database tables updated

The following table is updated:

• mediastores

MME_PLAY_ERROR_INPUTUNDERRUN

The MME delivers the eventMME_PLAY_ERROR_INPUTUNDERRUNwhen it
encounters problems filling its input buffer and has an input underrun. An input
underrun is usually caused by slow input media. The

May 4, 2009 Chapter 4 • MME Playback Events 461

Playback error events  2009, QNX Software Systems GmbH & Co. KG.

MME_PLAY_ERROR_INPUTUNDERRUNsignals a warning: the input underrun
results in an audible gap during playback, but playback will continue.

Event data

The file ID (fid) of the file that had the input underrun, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_INVALIDFID

The MME delivers the eventMME_PLAY_ERROR_INVALIDFID when it is requested
to play an invalid file ID. This situation can occur if the requestedfid is not found in
thelibrary table, or if it is not included in the currently active track session.

Event data

The invalidfid number, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_MEDIABUSY

The MME delivers the eventMME_PLAY_ERROR_MEDIABUSY when it has
attempted to start playback of a file, but the mediastore is being used by another
operation and is locked.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_INVALIDSAVEDSTATE

The MME delivers the eventMME_PLAY_ERROR_INVALIDSAVEDSTATE if it
attempts but fails to resume playback on a mediastore. Delivery of this event indicates
that the data saved for the track session is incorrect or corrupt.

Event data

The file ID of the track where the error occurred, inmme_play_error_t.fid.

Database table updated

No database tables are updated.

462 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback error events

MME_PLAY_ERROR_NETWORK

The MME delivers the eventMME_PLAY_ERROR_NETWORK when a network error
had caused playback to fail.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_NOEXIST

The MME delivers the eventMME_PLAY_ERROR_NOEXIST when it has failed to
play a file because the file does not exist, or because the file’s specified content was
not found. This situation can occur in situations such as the following:

• A file is removed from a mediastore and the MME receives a request to play the file
before it has performed the first pass of a resynchronization on the mediastore.
Because the mediastore was not resynchronized, the MME could not know that the
file had been removed until it attempted to play the file.

• A file is corrupt and the MME cannot read its content.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_NOOUTPUTDEVICES

The MME delivers the eventMME_PLAY_ERROR_NOOUTPUTDEVICESwhen it
starts playback of a file, but no output devices are attached to the control context with
the playback.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_NORIGHTS

The MME delivers the eventMME_PLAY_ERROR_NORIGHTSwhen it encounters a
DRM protected file which it is not licensed to decrypt and cannot play.

May 4, 2009 Chapter 4 • MME Playback Events 463

Playback error events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_NOTSPECIFIED

The MME delivers the eventMME_PLAY_ERROR_NOTSPECIFIEDwhen playback
fails for a reason not covered by the other playback error events, or when the MME is
unable to determine the cause of the failure.

Event data

No event data is delivered.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_OUTPUTFAILEDATTACH

The MME delivers the eventMME_PLAY_ERROR_OUTPUTFAILEDATTACH when it
has failed to attach an output that is part of its current zone. The
MME_PLAY_ERROR_OUTPUTFAILEDATTACH signals a warning: playback
continues.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_PARENTALCONTROL

The MME delivers the eventMME_PLAY_ERROR_PARENTALCONTROLwhen it
parental control settings have prevented it from playing a requested track or file.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_READ

The MME delivers the eventMME_PLAY_ERROR_READ when it is playing a track or
file and it encounters a read error.

464 Chapter 4 • MME Playback Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playback error events

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_REGION

The MME delivers the eventMME_PLAY_ERROR_REGIONwhen it is unable to
continue playback because the regional settings for a mediastore do not correspond to
the regional settings for the device playing the mediastore.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_OUTPUTUNDERRUN

The MME delivers the eventMME_PLAY_ERROR_OUTPUTUNDERRUNwhen its
output buffer is drained during playback and the MME has encountered an output
underrun. An output underrun is usually caused by a slow system decode process,
which is unable to keep up with audio output at normal speed (1×). The
MME_PLAY_ERROR_OUTPUTUNDERRUNsignals a warning: the output underrun
results in an audible gap during playback, but playback will continue.

Event data

The file ID (fid) of the file that had the output underrun, inmme_play_error_t.fid.

Database tables updated

No database tables are updated.

MME_PLAY_ERROR_UNSUPPORTEDCODEC

The MME delivers the eventMME_PLAY_ERROR_UNSUPPORTEDCODECafter it
starts playback and determines that it does not have the codec it needs to decode the
stream it is attempting to play.

Event data

The file ID (fid) of the file that failed playback, inmme_play_error_t.fid.

Database tables updated

The following table is updated:

• library. Theplayable field for the file is set to 0.

May 4, 2009 Chapter 4 • MME Playback Events 465

Chapter 5

MME Media Copy and Ripping Events

In this chapter. . .
Media copying and ripping events 469
Media copying and ripping error events472

May 4, 2009 Chapter 5 • MME Media Copy and Ripping Events 467

 2009, QNX Software Systems GmbH & Co. KG. Media copying and ripping events

MME events are like other QNX Neutrino events. They are signals or pulses used to
notify a client application thread that a particular condition has occurred. Unlike
signals and pulses, events can be used to carry data.

This chapter includes:

• Media copy and ripping events

• Media copy and ripping error events

For other information about other types of MME events, see the following chapters in
this reference:

• MME Events

• MME Synchronization Events

• MME Playback Events

• MME Metadata Events

For more information about events in general, see theQNX Neutrino Programmer’s
Guide.

Media copying and ripping events
The MME delivers media copying and ripping events (MME_EVENT_CLASS_COPY)
to the client application to indicate the status or result of a media copying or ripping
activity.

The MME media copying and ripping events are:

• MME_EVENT_COPY_ERROR

• MME_EVENT_MEDIACOPIER_COPYFID

• MME_EVENT_MEDIACOPIER_SKIPFID

• MME_EVENT_MEDIACOPIER_STARTFID

• MME_EVENT_MEDIACOPIER_COMPLETE

• MME_EVENT_MEDIACOPIER_DISABLED

MME_EVENT_COPY_ERROR

The MME delivers the eventMME_EVENT_COPY_ERRORwhen it encounters a
copying or ripping error. The cause of the error is carried in the event data.

Event data

The copy error typemme_copy_error_type_t, inmme_copy_error_t.

May 4, 2009 Chapter 5 • MME Media Copy and Ripping Events 469

Media copying and ripping events  2009, QNX Software Systems GmbH & Co. KG.

Database tables updated

The MME updates different tables, depending on the error.

MME_EVENT_MEDIACOPIER_COPYFID

The MME delivers the eventMME_EVENT_MEDIACOPIER_COPYFIDwhen it has
finished copying or ripping a file.

Event data

The structuremme_copy_info_twith the IDs of:

• the source file that was copied (srcfid)

• the destination file that was created by the copy (dstfid)

• the entry in thecopyqueue table (cqid) for the file that was copied

Database tables updated

The following tables are updated:

• nowplaying

• library_* (library_artists,library_genres, etc.)

• copyqueue

MME_EVENT_MEDIACOPIER_SKIPFID

The MME delivers the eventMME_EVENT_MEDIACOPIER_SKIPFIDwhen it skips
copying or ripping of a specified file (fid) because the mediacopier is disabled, or
because playback has priority access to the media source with the file.

Event data

The structuremme_copy_info_twith the IDs of:

• the source file that was skipped (srcfid)

• the destination file was to be created by the copy (dstfid)

• the entry in thecopyqueue table (cqid) that was skipped

Database tables updated

The following table is updated:

• copyqueue

470 Chapter 5 • MME Media Copy and Ripping Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Media copying and ripping events

MME_EVENT_MEDIACOPIER_STARTFID

The MME delivers the eventMME_EVENT_MEDIACOPIER_STARTFID when it starts
a file copying or ripping operation.

Event data

The structuremme_copy_info_twith the IDs of:

• the source file that will be copied (srcfid)

• the destination file that will be created by the copy (dstfid)

• the entry in thecopyqueue table (cqid) for the file that will be copied

Database tables updated

The following table is updated:

• copyqueue

MME_EVENT_MEDIACOPIER_COMPLETE

The MME delivers the eventMME_EVENT_MEDIACOPIER_COMPLETEwhen it has
finished copying or ripping all files listed in the copy queue: the copy queue is empty.

Event data

No event data is delivered.

Database tables updated

The following table is updated:

• copyqueue.

MME_EVENT_MEDIACOPIER_DISABLED

The MME delivers the eventMME_EVENT_MEDIACOPIER_DISABLED when its
media copying and ripping capabilities have been disabled.

Event data

No event data is delivered.

Database tables updated

The following table is updated:

• copyqueue

May 4, 2009 Chapter 5 • MME Media Copy and Ripping Events 471

Media copying and ripping error events  2009, QNX Software Systems GmbH & Co. KG.

Media copying and ripping error events
The MME media copying and ripping error events are defined by the enumerated type
mme_copy_error_type_t:

typedef enum mme_copy_error_type {
...
MME_COPY_ERROR_*
...

} mme_copy_error_type_t;

The MME media copying and ripping error events are:

• MME_COPY_ERROR_CORRUPTION

• MME_COPY_ERROR_DEVICEREMOVED

• MME_EVENT_COPY_FATAL_ERROR

• MME_COPY_ERROR_FILEEXISTS

• MME_COPY_ERROR_MEDIABUSY

• MME_COPY_ERROR_MEDIAFULL

• MME_COPY_ERROR_NORIGHTS

• MME_COPY_ERROR_NOTSPECIFIED

• MME_COPY_ERROR_READ

• MME_COPY_ERROR_UNSUPPORTED_MEDIA_TYPE

• MME_COPY_ERROR_WRITE

MME_COPY_ERROR_CORRUPTION

The MME delivers the eventMME_COPY_ERROR_CORRUPTIONwhen it has
attempted to copy or rip a file from a mediastore and failed because the file is corrupt.
When the MME media copy process encounters this condition, it advances to the next
entry in the copy queue and attempts to copy or rip the file for that entry.

If the <DeleteOnNonRecoverableError>MME configuration option is enabled,
the MME deletes the copy queue entry for the corrupt file and delivers the
MME_EVENT_COPY_FATAL_ERRORevent.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_event_copy_error_t.cqid.

472 Chapter 5 • MME Media Copy and Ripping Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Media copying and ripping error events

Database tables updated

No database tables are updated.

MME_COPY_ERROR_DEVICEREMOVED

The MME delivers the eventMME_COPY_ERROR_DEVICEREMOVEDwhen it has
attempted to copy or rip a file from a mediastore or to a mediastore that has been
removed from the system. When the MME media copy process encounters this
condition, it moves to the next entry in the copy queue and attempts to copy or rip that
file.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_EVENT_COPY_FATAL_ERROR

The MME delivers the eventMME_EVENT_COPY_FATAL_ERRORwhen it has
deleted an entry from the copy queue table because it has determined that the item
cannot be copied or ripped.

This event is only delivered if the<DeleteOnNonRecoverableError>MME
configuration option is enabled, configuring the MME to delete from the copy queue
files that cannot be copied or ripped.

Event data

The code for the error that caused the copy or ripping to fail, inmme_copy_error_t.

Database tables updated

Tables are updated according to the error that causes the event to be delivered.

MME_COPY_ERROR_FILEEXISTS

The MME delivers the eventMME_COPY_ERROR_FILEEXISTSwhen it has
attempted to copy or rip a file that already exists in the destination mediastore. When
the MME media copy process encounters a file that already exists in the destination
mediastore, depending on the overwrite setting configured by the configuration
element<FileOverwrite>, it either skips the requested file and moves to the next
entry in the copy queue, or it overwrites the file.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

May 4, 2009 Chapter 5 • MME Media Copy and Ripping Events 473

Media copying and ripping error events  2009, QNX Software Systems GmbH & Co. KG.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_MEDIABUSY

The MME delivers the eventMME_COPY_ERROR_MEDIABUSY when it has
attempted to copy or rip from a mediastore that was already in use. When the MME
media copy process encounters a busy mediastore, it skips the requested file and
moves to the next entry in the copy queue.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_MEDIAFULL

The MME delivers the eventMME_COPY_ERROR_MEDIAFULL when the destination
mediastore does not have enough space to complete the requested media copying or
ripping operation. The MME may deliver this event before starting a media copying or
ripping operation, or during the operation.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_NORIGHTS

The MME delivers the eventMME_COPY_ERROR_NORIGHTSwhen it has attempted
to copy or rip a file from a mediastore and failed because the source file is DRM
protected and the system is not licensed to copy it. When the MME media copy
process encounters this condition, it advances to the next entry in the copy queue and
attempts to copy or rip the file for that entry.

If the <DeleteOnNonRecoverableError>MME configuration option is enabled,
the MME deletes the copy queue entry for the protected file and delivers the
MME_EVENT_COPY_FATAL_ERRORevent.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

474 Chapter 5 • MME Media Copy and Ripping Events May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Media copying and ripping error events

Database tables updated

No database tables are updated.

MME_COPY_ERROR_NOTSPECIFIED

The MME delivers the eventMME_COPY_ERROR_NOTSPECIFIEDwhen a media
copying or ripping operation fails for a reason not covered by the other media copying
and ripping error events, or when the MME is unable to determine the cause of the
failure.

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_READ

The MME delivers the eventMME_COPY_ERROR_READ when it is copying or
ripping a file and it encounters a read error.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_UNSUPPORTED_MEDIA_TYPE

The MME delivers the eventMME_COPY_ERROR_UNSUPPORTED_MEDIA_TYPE
when it has attemptet to rip a file, but has failed because the output format is
unsupported. If you receive this error, you should check your platform and its
supported encoders, and ensure that you rip into a supported media format.

Event data

The ID of the copy queue entry (cqid) of the file that could not be ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

MME_COPY_ERROR_WRITE

The MME delivers the eventMME_COPY_ERROR_WRITE when it is copying or
ripping a file and it encounters a write error.

May 4, 2009 Chapter 5 • MME Media Copy and Ripping Events 475

Media copying and ripping error events  2009, QNX Software Systems GmbH & Co. KG.

Event data

The ID of the copy queue entry (cqid) of the file that could not be copied or ripped, in
mme_copy_error_t.cqid.

Database tables updated

No database tables are updated.

476 Chapter 5 • MME Media Copy and Ripping Events May 4, 2009

Chapter 6

MME Metadata Events

In this chapter. . .
Metadata events 479

May 4, 2009 Chapter 6 • MME Metadata Events 477

 2009, QNX Software Systems GmbH & Co. KG. Metadata events

MME events are like other QNX Neutrino events. They are signals or pulses used to
notify a client application thread that a particular condition has occurred. Unlike
signals and pulses, events can be used to carry data.

This chapter includes:

• Metadata events

For other information about other types of MME events, see the following chapters in
this reference:

• MME Events

• MME Synchronization Events

• MME Playback Events

• MME Media Copy and Ripping Events

For more information about events in general, see theQNX Neutrino Programmer’s
Guide.

Metadata events
The MME delivers metadata events (MME_EVENT_CLASS_METADATA) to the client
application to indicate the status or result of a metadata retrieval operation, and for
successful operations, the metadata request ID.

The MME metadata events are:

• MME_EVENT_METADATA_IMAGE

• MME_EVENT_METADATA_INFO

MME_EVENT_METADATA_IMAGE

The MME delivers the eventMME_EVENT_METADATA_IMAGE after the client
application callsmme_metadata_image_load():

• to deliver the metadata request ID to the client application

• when the call tomme_metadata_image_load() is asynchronous, to indicate that the
function has completed its task

Event data

The metadata structure typemme_event_metatadata_image_t, with:

• the metadata request ID, as auint64_t

• an error number, as aint; set toEOK if the call to the function is successful

• the URL location of the requested image, in the structure
mme_metadata_image_url_t

May 4, 2009 Chapter 6 • MME Metadata Events 479

Metadata events  2009, QNX Software Systems GmbH & Co. KG.

Database tables updated

No database tables are updated.

MME_EVENT_METADATA_INFO

The MME delivers the eventMME_EVENT_METADATA_INFO after the client
application calls one of themme_metadata_getinfo_*() functions:

• to deliver the metadata request ID to the client application

• when the call to the<mme_metadata_getinfo_*() function is asynchronous, to
indicate that the function has completed its task

Event data

The metadata structure typemme_event_metatadata_info_t, with:

• the metadata request ID, as auint64_t

• an error number, as aint; set toEOK if the call to the function is successful

• amme_metadata_info_t that includes A NULL-terminated XML formated
string containing metadata.

Database tables updated

No database tables are updated.

480 Chapter 6 • MME Metadata Events May 4, 2009

Appendix A

MME Database Schema Reference

In this appendix. . .
Tables inmme 486
Tables inmme_library 499
Tables inmme_temp 507
Tables inmme_custom 508

May 4, 2009 Appendix: A • MME Database Schema Reference 481

 2009, QNX Software Systems GmbH & Co. KG.

This is a reference of the tables and indexes in the MME database.

Tables that begin with an underscore character (_) are not documented here. They are
for internal use only.

Tables:

• controlcontexts

• renderers

• zones

• zoneoutputs

• outputdevices

• slots

• languages

• mediastores

• metadataplugins

• playlists

• trksessions

• encodeformats

• copyqueue

• bookmarks

• trksessionview

• copy_incomplete

• mdi_image_cache

• ext_db_sync_state

• folders

• library

• library_genres

• library_artists

• library_albums

• library_composers

May 4, 2009 Appendix: A • MME Database Schema Reference 483

 2009, QNX Software Systems GmbH & Co. KG.

• library_conductors

• library_soloists

• library_ensembles

• library_opus

• library_categories

• library_languages

• db_sync

• playlistdata

• nowplaying

• mediastores_custom

• library_custom

• playlistdata_custom

Table diagrams:

484 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG.

mme

mme_library

mme_temp

mme_custom

Legend

K = Primary Key

U = Unique

N = Not Nullable

I = Integer

T = Text

B = Blob

controlcontexts
ccid KI

trksessionid NI
zoneid NI
rendid NI
name UNT

renderers
rendid KI

available NI
permanent NI

path NT

zones
zoneid KI
name UNT

trksessions
trksessionid KI
track_offset NI
saved_offset NI
savedposition NB

mode NI
random NI
repeat NI

tvcomplete NI
statement NT

trksessionview
sequentialid KI

fid NI
trksessionid NI

randomid I
zoneoutputs
zoneid NI

outputdeviceid NI

outputdevices
outputdeviceid KI

type NI
available NI

permanent NI
name NT

devicepath NT

library
fid KI

msid NI
folderid NI

ftype NI
accurate NI
last_sync NI

seen NI
artist_id NI

album_id NI
genre_id NI

year NI
size NI

category_id NI
composer_id NI

discnum NI
titlenum NI

tracknum NI
rating NI

date_added NI
date_modified NI

bitrate NI
audio_index NI

format NI
num_channels NI
language_id NI
samplerate NI

conductor_id NI
soloist_id NI

ensemble_id NI
opus_id NI

protected NI
last_played NI

fullplay_count NI
duration NI

copied_fid NI
playable NI

permanent NI
description NT

title T
filename NT

slots
slotid KI
active NI
msid NI

multimsid NI
slottype NI
zoneid NI

max_lib_entries NI
delete_at_start NI

path NT
name T

mediastores
msid KI
slotid NI

available NI
storage_type NI
trksessionid NI

lastseen NI
capabilities NI

active NI
location T

syncflags NI
concurrency NI
supported NI
last_sync NI

metadatapluginid NI
mssname NT

name T
identifier T

driver_identifier T
mountpath NT

languages
language_id KI

active NI
lang_code NT
language NT
unknown T

unknown_artist T
unknown_album T
unknown_genre T

unknown_category T
unknown_composer T

synchronizing T
unknown_language T
unknown_conductor T

unknown_soloist T
unknown_ensemble T

unknown_opus T
unknown_track T

unknown_chapter T
unknown_title T

unknown_group T

metadataplugins
metadatapluginid KI

name NT

playlists
plid KI

ownership NI
folderid NI

msid NI
mode NI
seen NI

date_modified NI
accurate NI
last_sync NI

size NI
signature NT
filename NT

name NT
statement T
seed_data T

folders
folderid KI

msid I
parentid NI
synced NI
seen NI

filecount NI
playlistcount NI
foldercount NI
foldersize NI
last_sync NI

foldername NT
basepath NT

hash B
collisions B

collision_names B

copyqueue
cqid KI
srcfid NI

srcmsid NI
destmsid NI
copyflags NI

copyattempts NI
encodeformatid NI

destfolder T
destfilename T

unknown_album T
unknown_artist T

encodeformats
encodeformatid KI

bitrate I
name UNT
mime NT

extension T

bookmarks
bookmarkid KI

fid I
msid I
name T
data NB

copy_incomplete
fid KI

mdi_image_cache
insertion_sequence KI

msid NI
fid NI

image_index NI
profile_index NI

size NI
hit_count NI

hit_sequence NI
file NT

ext_db_sync_state
unique_db_id NT

msid NI
data NB

library_genres
genre_id KI

genre UT

library_artists
artist_id KI

artist UT
library_albums

album_id KI
album UT

library_composers
composer_id KI

composer UT

library_conductors
conductor_id KI

conductor UT
library_soloists

soloist_id KI
soloist UT

library_ensembles
ensemble_id KI

ensemble UT

library_opus
opus_id KI

opus UT

library_categories
category_id KI

category UT

library_languages
language_id KI

language UT

db_sync
msid NI
fid NI

last_sync NI

playlistdata
oid KI
plid NI
fid NI

msid NI

nowplaying
ccid KI

playing NI
fid NI

msid NI
ftype NI
year NI

bitrate NI
samplerate NI

num_channels NI
size NI

discnum NI
tracknum NI

rating NI
copied_fid NI
filename NT

artist T
title T

album T
genre T

composer T
conductor T

soloist T
ensemble T

opus T
category T

description T

mediastores_custom
msid KI

library_custom
fid KI

playlistdata_custom
plid NI
fid NI

msid NI
oid KI

The MME Schema.

May 4, 2009 Appendix: A • MME Database Schema Reference 485

#controlcontexts
#renderers
#zones
#trksessions
#trksessionview
#zoneoutputs
#outputdevices
#library
#slots
#mediastores
#languages
#metadataplugins
#playlists
#folders
#copyqueue
#encodeformats
#bookmarks
#copy_incomplete
#mdi_image_cache
#ext_db_sync_state
#library_genres
#library_artists
#library_albums
#library_composers
#library_conductors
#library_soloists
#library_ensembles
#library_opus
#library_categories
#library_languages
#db_sync
#playlistdata
#nowplaying
#mediastores_custom
#library_custom
#playlistdata_custom

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Tables in mme
Table: controlcontexts

Thecontrolcontexts table defines MME control contexts. Control contexts define
where clients can connect to the MME and control it. Each control context can play
one media track at a time, manage its own list of items to play, and output playback to
one zone. Control contexts are statically configured and enumerated at startup time.

Primary key: ccid

Fields:

Field Description Type Default Nulls? References

ccid The control context ID. Integer yes

trksessionid The ID of the tracksession that is being used on
the control context.

Integer 0 no trksessions

zoneid The ID of the zone to which the control context is
outputting playback.

Integer 0 no zones

rendid The ID of the renderer that this control context
should use.

Integer no renderers

name The name of the control context. This name will
appear as /dev/mme/name

Text, unique no

Table: renderers
Therenderers table defines theio-media instances that exist in the system, and
the capabilities of theseio-media instances. A control context uses the specified
io-media to decoding and encode work.

Primary key: rendid

Fields:

Field Description Type Default Nulls? References

rendid The ID of the renderer instance. Integer yes

available The renderer availability. Set to 1 if this renderer can be
used, 0 if it can’t be used.

Integer 1 no

continued. . .

486 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Field Description Type Default Nulls? References

permanent Permanent renderers may not be removed. Integer 1 no

path The path to the renderer. For example:
/net/node/dev/io-media.

Text no

Table: zones
Thezones table defines the MME zones. The output devices associated with a zone
are listed in thezoneoutputs table.

Primary key: zoneid

Fields:

Field Description Type Default Nulls? References

zoneid The ID of the zone Integer yes

name The name of the zone Text, unique no

Table: zoneoutputs
Thezoneoutputs table lists the output devices that are associated with each zone.
Eachzoneid can have multiple rows to support multiple output devices.

No primary key.

Fields:

Field Description Type Default Nulls? References

zoneid The ID of the zone. Integer no zones

outputdeviceid The IDs of the output devices in the zone. Integer no outputdevices

Table: outputdevices
Theoutputdevices table lists known output devices. Output devices define where
media can be sent. An output device could be a GF layer, anio-audio PCM name, a
Bluetooth headset, etc.

Primary key: outputdeviceid

May 4, 2009 Appendix: A • MME Database Schema Reference 487

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Fields:

Field Description Type Default Nulls? References

outputdeviceid The ID of the output device. Integer yes

type The type of device, as defined by the enumerated
typemme_outputtype_t values:
OUTPUTTYPE_* .

Integer 0 no

available The availability of the output device. Set to 1 for
available.

Integer 1 no

permanent The device permanency. Set to 1 to make the
device permanent and forbid its removal.

Integer no

name The name of the device. This name can be shared
with end users.

Text no

devicepath The location of the output device, used to connect
to the output device. This path is not shared with
end users.

Text no

Table: slots
Theslots table lists the slots known to the MME. Slots define the physical locations
where the MME looks for new mediastores. The default setup assumes two USB mass
storage devices, one CD/DVD drive, and the hard drive. You may wish to customize
where the location of the hard drive. In addition, if you add control contexts and they
have their own slots, you must add them to this table. Note that the local control
context’s hard drive must be the first entry in the table, withmsid = 1.

Primary key: slotid

Fields:

Field Description Type Default Nulls? References

slotid The ID for the slot. Integer yes

active Indicates whether the slot is active (available), or
unavailable:
• 1 = active

Integer 0 no

msid The ID of the mediastore associated with this slot. Integer 0 no mediastores

continued. . .

488 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Field Description Type Default Nulls? References

multimsid Integer 0 no

slottype The type of slot. These correspond to the
MME_SLOTTYPE_* types defined in
<mme/interface.h>:
• 0 = standard
• 1 = USB
• 2 = CD/DVD
• 3 = harddrive
• 4 = media file system (io-fs)

Integer 0 no

zoneid The ID of the zone associated with this slot. Integer no zones

max_lib_entries The maximum number of library table entries an
active media store in this slot is permitted to use.
A value of 0 means there is no limit enforced.

Integer 0 no

delete_at_start If non-zero, mediastores that were listed as active
at shutdown in this slot are deleted instead of
being set to unvavailable.

Integer 0 no

path The filesystem path to this slot. Text no

name The slot name. This name is used as the default
for mediastores without names.

Text NULL yes

Indices:

Index name Fields

slots_msid_index msid

Table: languages
Thelanguages table defines strings that your application can use for multi-language
support.

Primary key: language_id

Fields:

May 4, 2009 Appendix: A • MME Database Schema Reference 489

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

language_id The language ID. Integer yes

active Indicates whether this is the active (current)
language.
• 1 = active

Integer 0 no

lang_code The 2-character ISO639-1 language code. Text no

language The language name. Text no

unknown String for"unknown". Text yes

unknown_artist String for"unknown artist" Text yes

unknown_album String for"unknown album" Text yes

unknown_genre String for"unknown genre" Text yes

unknown_category String for"unknown category" Text yes

unknown_composer String for"unknown composer" Text yes

synchronizing String for"synchronizing" Text yes

unknown_language Text yes

unknown_conductor Text yes

unknown_soloist Text yes

unknown_ensemble Text yes

unknown_opus Text yes

unknown_track String for building unknown title of CDDA
and DVD-Audio tracks

Text NULL yes

unknown_chapter String for building unknown title of
DVD-Video tracks

Text NULL yes

unknown_title String for building unknown title of
DVD-Video tracks

Text NULL yes

unknown_group String for building unknown title of
DVD-Audio tracks

Text NULL yes

Table: mediastores
Themediastores table lists the mediastores known to the MME. A mediastore is a
collection of media tracks and/or files that the MME can access and play. Where a slot
is the physical location of some media (for example, a CDROM drive), a mediastore
represents the media itself (for example, a CD).

Mediastores are managed by the MME, so you don’t need to customize this table.

Primary key: msid

490 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Fields:

Field Description Type Default Nulls? References

msid The mediastore ID. Integer yes

slotid The ID of the physical slot associated with
this mediastore.

Integer 0 no slots

available Indicates whether the mediastore is available:
• 0 = not available,
• 1 = available

Integer 0 no

storage_type The storage type, which corresponds to the
MME_STORAGETYPE_* types defined in
<mme/interface.h>.

Integer 0 no

trksessionid The last tracksession that was saved on this
mediastore.

Integer 0 no trksessions

lastseen The last time the mediastore was seen by the
MME. If there is no RTC in the system, this
value will increment each time the mediastore
is seen, but it will not show the true time.

Integer 0 no

capabilities The capabilities of this mediastore (for
example, can it be explored or
synchronized?). These capabilities
correspond to theMME_MSCAP_* type
defined in<mme/interface.h>.

Integer 0 no

active Indicates if a mediastore is active, or if a slot
change is required. A mediastore can not be
active if it is not available:
• 0 = not active,
• 1 = active (i.e. currently active slot in a
changer)

Integer 0 no

location The location of the device where the
mediastore is currently inserted:
• empty = not currently inserted in a slot, or is
in a device for which location has no meaning
• non-empty = location string that has
meaning only to the device (devices that only
support one location will always be set to
empty)

Text yes

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 491

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

syncflags Indicates which synchronizations have been
completed on the mediastore:
• 0 = none (not synchronized)
• 1 = pass 1 (files)
• 2 = pass 2 (metadata)
• 4 = pass 3 (playlists)
• others to be determined

Integer 0 no

concurrency Indicates how many concurrent readers are
supported by the mediastore: 1=“one reader”,
2=“two readers”, etc.

Integer 1 no

supported Indicates if the device is supported:
• 0 = not supported
• 1 = supported

Integer 1 no

last_sync The time (in nanoseconds from the reference)
of the last synchronization attempt of any
time on the mediastore.

Integer 0 no

metadatapluginid The metadataplugin that was used to sync the
mediastore. 0 means not specified.

Integer 0 no metadataplugins

mssname Internal use only. The MSS plugin that
handles this mediastore.

Text no

name The name of the mediastore (for example,
“memory stick”. This field may be null if the
mediastore name cannot be determined.

Text NULL yes

identifier A unique identifier, such as the FAT serial
number. Set to NULL to flag the mediastore
as invalid and ready to be deleted in the
background.

Text yes

driver_identifier A unique identifier, as provided by the device
driver.

Text yes

mountpath The mounted path of the mediastore. Text no

Indices:

Index name Fields

mediastores_identifier_index identifier

mediastores_driver_identifier_index driver_identifier

continued. . .

492 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Index name Fields

mediastores_active_index active

Table: metadataplugins
Themetadataplugins table lists the metadata syncronizers known to the MME.

Primary key: metadatapluginid

Fields:

Field Description Type Default Nulls? References

metadatapluginid The metadata plugin ID. Integer yes

name The name of the metadata plugin. Text no

Table: playlists
Theplaylists table holds playlists that your application can convert into track
sessions and play. A playlist is a collection of media tracks. Each playlist is defined by
an SQL statement that queries the library for tracks that meet some criteria.
Alternately, the SQL statement may query theplaylistdata table, which can
contain an arbitrary selection of tracks, grouped by a matching playlist ID.

Primary key: plid

Fields:

Field Description Type Default Nulls? References

plid The playlist ID. Integer yes

ownership Indicates who owns this playlist:
• 0 = owned by the MME
• 1 = owned by the device
• 2 = owned by the user

Integer 0 no

folderid The ID of the folder that the playlist is in. Integer 0 no folders

msid A link to a mediastore. If this playlist belongs to
more than one mediastore, then this msid is 0.

Integer 0 no mediastores

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 493

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

mode The playlist mode:
• 0 = library mode
• 1 = generated mode

Integer 0 no

seen Indicates that the file was seen during the latest
synchronization. This field is set to 0 at the
beginning of a synchronization, then set to 1 when
the file is found.

Integer 1 no

date_modified The date this playlist was last modified. Integer 0 no

accurate If this field is set to 1, the playlist is accurate. Integer 0 no

last_sync The time (in nanoseconds from the reference) of the
last playlist (pass 3) synchronization attempt for the
playlist.

Integer 0 no

size The size of the playlist file on the device. Integer 0 no

signature md5 hash of the playlist. Text ’0’ no

filename If the playlist points to a device, the filename of the
playlist on the device. This name is a path relative
to the basepath of the folder.

Text ” no

name The playlist name. Text no

statement An SQL statement that returns a list of file IDs
(fids), either from thelibrary table, or from the
playlistdata table.

Text yes

seed_data Used by playlist generators (i.e. mode = 1) Text yes

Table: trksessions
Thetrksessions table stores track sessions, which are lists of file IDs(fids) that the
MME can access and play. A track session can be generated by using a playlist, or by
any query to thelibrary table that results in a list of file IDs (selecting all tracks by
an artist, for example).

CAUTION: Your application shouldn’t write to this table directly. It can create track
sessions by calling themme_newtrksession() function.

The fields in thetrksessions table should only be accessed through MME function
calls. The MME may cache some of the values in this table, so if the client application
reads this table directly it may have incorrect data.

!

Primary key: trksessionid

494 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Fields:

Field Description Type Default Nulls? References

trksessionid Integer yes

track_offset Internal use only. Integer 0 no

saved_offset The saved fid used to resume the trksession (0 = not
saved).

Integer 0 no

savedposition The saved position in afid/bid that can be used for
resuming playback.

BLOB 0 no

mode The track session mode:
• 0 = library mode

Integer 0 no

random Integer 0 no

repeat Integer 0 no

tvcomplete Indicates if the track view was finished loading:
• 0 = no
• 1 = yes

Integer 0 no

statement The SQL statement that results in a list of file IDs
that the track session plays.

Text no

Table: encodeformats
Theencodeformats table defines encode formats that can be used by the MME.
Note that codecs that support multiple mime types or multiple bitrates will have
separate entries in this table.

Primary key: encodeformatid

Fields:

Field Description Type Default Nulls? References

encodeformatid The endcode format ID. Integer yes

bitrate The bitrate to encode at, in kilobytes. Integer 0 yes

name The name for the encode format. Text, unique no

mime The mime type to use. Text no

extension The output file extension. Text yes

May 4, 2009 Appendix: A • MME Database Schema Reference 495

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Table: copyqueue
Thecopyqueue table is a queue of files to copy from one mediastore to another.
While the files are being copied, they may also be encoded (“ripped”). If the files are
encoded, the encode format is defined by theencodeformats table.
Primary key: cqid

Fields:

Field Description Type Default Nulls? References

cqid Copy queue ID. Integer yes

srcfid The ID of the source file to copy. Integer no

srcmsid The ID of the source mediastore. Integer no

destmsid The ID of the destination mediastore. Integer no

copyflags Copy flags supplied by user Integer 0 no

copyattempts The number of failed copy attempts to make
before removing the item from the copy queue.

Integer 0 no

encodeformatid The encode format to use for the copy. Integer 1 no encodeformats

destfolder The destination folder basepath name, in the
format/xxxxxx/.

Text yes

destfilename The destination filename. Don’t add the
extension. If this field isNULL, the MME will
create a name.

Text yes

unknown_album Metadata used to replace unknown album (if
nonaccurate)

Text yes

unknown_artist Metadata used to replace unknown artist (if
nonaccurate)

Text yes

Table: bookmarks
Thebookmarks table contains information about all bookmarks for file IDs.

Primary key: bookmarkid

Fields:

496 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme

Field Description Type Default Nulls? References

bookmarkid The bookmark ID. Integer yes

fid The file ID of the bookmarked track. Integer yes library

msid The mediastore ID for the mediastore with the
bookmarked file.

Integer yes mediastores

name A name for the bookmark, specified with
mme_bookmark_create().

Text yes

data Data used for resuming playback at the proper
location. Internal use only.

BLOB no

Indices:

Index name Fields

bookmarks_index_fid fid

bookmarks_index_msid msid

Table: trksessionview
Thetrksessionview table contains a snapshot of the current track session. All its
fields are updated by the functionsmme_settrksession() and
mme_trksessionview_update().

Primary key: sequentialid

Fields:

Field Description Type Default Nulls? References

sequentialid The track file IDs (fid) in sequential order, based on
the results of the ORDER BY clauses in the SQL
statement used to create the track session.

Integer yes

fid The file ID of the track. Integer no

trksessionid The track session ID. Integer no

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 497

Tables in mme  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

randomid The track file IDs (fid), in pseudo-random order. If
random mode is turned on for the control context, the
MME will play tracks in the order they appear in this
field.

Integer yes

Indices:

Index name Fields

trksessionview_index_random trksessionid, randomid

trksessionview_index_seq trksessionid, sequentialid

Table: copy_incomplete
Primary key: fid

Fields:

Field Description Type Default Nulls? References

fid Integer yes

Table: mdi_image_cache
Theimagecache table contains a list of all image files stored in the persistent cache.

Primary key: insertion_sequence

Fields:

Field Description Type Default Nulls? References

insertion_sequence An id that keeps track of insertion order. Integer yes

msid The MSID the source image file was from. Integer no

fid The file ID of the track. Integer no

continued. . .

498 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_library

Field Description Type Default Nulls? References

image_index The image index of a given track Integer no

profile_index The profile index for a converted image. -1
not converted.

Integer no

size The size in bytes of the given index. Integer no

hit_count The number of cache hits for this entry. Integer no

hit_sequence A sequence number that indicates the last hit
file.

Integer no

file The relative path to the file within the cache. Text no

Table: ext_db_sync_state
Theext_db_sync_state table contains persistent state information for all extern
DBs that must stay in sync with the MME database.

No primary key.

Fields:

Field Description Type Default Nulls? References

unique_db_id Text no

msid The MSID that corresponds to the state. Integer no mediastores

data The state data of the external DB BLOB no

Tables in mme_library
Table: folders

Thefolders table stores the path of files found on mediastores and can be used to
hierarchically find folders.

Primary key: folderid

Fields:

May 4, 2009 Appendix: A • MME Database Schema Reference 499

Tables in mme_library  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

folderid The folder ID for the folder. Integer yes

msid The mediastore to which the folder belongs. Integer yes mediastores

parentid The parent folder for this folder. Set to 0 if there
is no parent folder.

Integer 0 no

synced If this field is set to 1, the folder has been
synchronized during the first synchronization
pass.

Integer 0 no

seen A flag to indicate if the folder was seen or not
seen during synchronization.

Integer 1 no

filecount The number of files in the folder. Integer 0 no

playlistcount The number of playlists in the folder. Integer 0 no

foldercount The number of subfolders in the folder. Integer 0 no

foldersize The size of the folder, in bytes. Integer 0 no

last_sync Reserved for the time (in nanoseconds from the
reference) of the last synchronization attempt on
the mediastore.

Integer 0 no

foldername The name of the folder (for example,Rolling

Stones).
Text no

basepath The full path of the folder (for example,
Music/Rolling Stones).

Text no

hash For internal use only. BLOB yes

collisions For internal use only. BLOB yes

collision_names For internal use only. BLOB yes

Table: library
Thelibrary table defines the media library used by the MME. Each entry in this
table is a media track, which you can use to build track sessions and playlists.

Thelibrary is managed by the MME, so you don’t need to customize it.

Primary key: fid

Fields:

500 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_library

Field Description Type Default Nulls? References

fid The file ID (fid) for the media track. Integer yes

msid The mediastore that this track is stored on. Integer 0 no mediastores

folderid The path in the mediastore where the track is
located.

Integer 0 no folders

ftype The type of the media track, which
corresponds to theFTYPE_* types defined in
<mme/meinterface.h>:
• 0 = unknown
• 1 = audio
• 2 = video
• 3 = audio and video
• 4 = photo

Integer 0 no

accurate Indicates if the metadata for the track is
known to be accurate.

Integer 0 no

last_sync The time (in nanoseconds from the reference)
of the last metadata synchronization attempt
for the track.

Integer 0 no

seen Indicates that the track has been identified on
the mediastore.

Integer 1 no

artist_id The ID of the track artist. Integer 1 no library_artists

album_id The ID of the track album. Integer 1 no library_albums

genre_id The ID of the track genre. Integer 1 no library_genres

year The year of the track. Integer 0 no

size The size of the track, in bytes. Integer 0 no

category_id The ID of the track category. Integer 1 no library_categories

composer_id The ID of the track composer. Integer 1 no library_composers

discnum The disc number of the content. This field is
useful for box sets.

Integer 0 no

titlenum The title/group number of the
CDDA/DVDV/DVDA.

Integer 0 no

tracknum The track/chapter number of the
CDDA/DVDV/DVDA.

Integer 0 no

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 501

Tables in mme_library  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

rating The rating (0 = unkown, 1 = worst, 255 =
best). Format specific rating is scaled to 1 -
255 range, for example, 1 stars = 60, 2 starts
= 125, ..., 5 starts = 255)

Integer 0 no

date_added The date the track entry was added to the
library table.

Integer 0 no

date_modified The date the track entry was modified in the
library table.

Integer 0 no

bitrate The track bitrate. Integer 0 no

audio_index The audio index of the track on the DVD. Integer 0 no

format The format of the track, as defined by the
MME_FORMAT_* values.

Integer 0 no

num_channels The number of audio channels on the track. Integer 0 no

language_id The ID of the track language. Integer 1 no library_languages

samplerate The sampling rate, in hertz, of the audio
stream.

Integer 0 no

conductor_id The ID of the track conductor. Integer 1 no library_conductors

soloist_id The ID of the track soloist. Integer 1 no library_soloists

ensemble_id The ID of the track ensemble. Integer 1 no library_ensembles

opus_id The ID of the track opus. Integer 1 no library_opus

protected Indicates if there is DRM on the track Integer 0 no

last_played The date this track was last played by the
MME.

Integer 0 no

fullplay_count The number of times this track has been
played by the MME.

Integer 0 no

duration The track length, in milliseconds. Integer 0 no

copied_fid The file ID of the copied file. This field is 0 if
the file has not been copied.

Integer 0 no

playable Indicates if the track is playable. Integer 1 no

permanent If this field is set to 1, the file cannot be
pruned.

Integer 0 no

description An arbitrary text description of the track. Text ” no

title The track title. Text NULL yes

continued. . .

502 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_library

Field Description Type Default Nulls? References

filename The file name of the media track. Text ” no

Table: library_genres
Primary key: genre_id

Fields:

Field Description Type Default Nulls? References

genre_id Integer yes

genre Text, unique yes

Table: library_artists
Primary key: artist_id

Fields:

Field Description Type Default Nulls? References

artist_id Integer yes

artist Text, unique yes

Table: library_albums
Primary key: album_id

Fields:

Field Description Type Default Nulls? References

album_id Integer yes

album Text, unique yes

May 4, 2009 Appendix: A • MME Database Schema Reference 503

Tables in mme_library  2009, QNX Software Systems GmbH & Co. KG.

Table: library_composers
Primary key: composer_id

Fields:

Field Description Type Default Nulls? References

composer_id Integer yes

composer Text, unique yes

Table: library_conductors
Primary key: conductor_id

Fields:

Field Description Type Default Nulls? References

conductor_id Integer yes

conductor Text, unique yes

Table: library_soloists
Primary key: soloist_id

Fields:

Field Description Type Default Nulls? References

soloist_id Integer yes

soloist Text, unique yes

Table: library_ensembles
Primary key: ensemble_id

Fields:

504 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_library

Field Description Type Default Nulls? References

ensemble_id Integer yes

ensemble Text, unique yes

Table: library_opus
Primary key: opus_id

Fields:

Field Description Type Default Nulls? References

opus_id Integer yes

opus Text, unique yes

Table: library_categories
Primary key: category_id

Fields:

Field Description Type Default Nulls? References

category_id Integer yes

category Text, unique yes

Table: library_languages
Primary key: language_id

Fields:

May 4, 2009 Appendix: A • MME Database Schema Reference 505

Tables in mme_library  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

language_id Integer yes

language Text, unique yes

Table: db_sync
Thedb_sync table is used by the generic handler for external database
synchronization plugins. It should be considered private to the MME.

No primary key.

Fields:

Field Description Type Default Nulls? References

msid The ID of the media store that the library table entry is
on.

Integer no mediastores

fid The ID of a library table entry that synchronizers have
been told about. (fid).

Integer no library

last_sync The internal timestamp value when the external database
synchronizers were last told about this file.

Integer 0 no

Table: playlistdata
Theplaylistdata table is available for storing any linear created playlists. They
can be selected using the “statement” from theplaylists table.

Primary key: oid

Fields:

Field Description Type Default Nulls? References

oid An order identifier. This can be used to assign an arbitrary
order to the playlist using the SQLORDER BYclause.

Integer yes

plid The ID of the playlist to which this track belongs. Integer no playlists

fid The track file ID (fid). Integer no library

msid The ID of the mediastore. Integer no mediastores

506 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_temp

Indices:

Index name Fields

library_index_folderid_msid_filename folderid,msid,filename

folders_index_parentid parentid

Tables in mme_temp
Table: nowplaying

Thenowplaying table holds information about the currently playing or last played
track for a control context. This information is maintained by the MME: your client
application can query it this table, but shouldn’t write to it. You can query this table
when your client receives aMME_EVENT_TRACKCHANGE event indicating that a
new track is playing. The information may be limited by the metadata available, so
some fields may not contain data for every track.

The MME doesn’t clear this table after a track stops playing, so if there’s no playing
track, it contains information about the last played track.

Primary key: ccid

Fields:

Field Description Type Default Nulls? References

ccid The ID for the control context where the track is
currently playing.

Integer yes controlcontexts

playing Reserved for future use. Integer 0 no

fid The file ID (fid) for the track (0 if unknown). Integer 0 no library

msid The ID of the mediastore with the track. Integer 0 no mediastores

ftype The track’s file type. See theftype field in the
library table.

Integer 0 no

year The track’s year. Integer 0 no

bitrate The track’s bitrate, in bytes per second. Integer 0 no

samplerate The track’s samplerate, in hertz. Integer 0 no

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 507

Tables in mme_custom  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

num_channels The track’s number of channels: 1=mono,
2=stereo.

Integer 0 no

size The track’s size, in bytes. Integer 0 no

discnum The track’s disc number. Integer 0 no

tracknum If the track is part of a collection (i.e. an album),
the track’s

Integer 0 no

rating The rating (0 = unkown, 1 = worst, 255 = best).
number in the collection.

Integer 0 no

copied_fid The file ID for the copied file, placed in the
library table by media copy and ripping
operations.

Integer 0 no

filename The filename of the track (empty string if
unknown).

Text ” no

artist The track’s artist. Text ” yes

title The track’s title. Text ” yes

album The track’s album. Text ” yes

genre The track’s genre. Text ” yes

composer The track’s composer. Text ” yes

conductor The track’s conductor. Text ” yes

soloist The track’s soloist. Text ” yes

ensemble The track’s ensemble. Text ” yes

opus The track’s opus. Text ” yes

category The track’s category. Text ” yes

description The track’s description. Text ” yes

Tables in mme_custom
Table: mediastores_custom

Themediastores_extra table is an optional extension to themediastores table.
It should have anmsid column so that it can be joined with thelibrary table where
msid=msid. You should create triggers so that when a row is added to or removed from
themediastores table it is also added to or removed from this table.

Primary key: msid

508 Appendix: A • MME Database Schema Reference May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Tables in mme_custom

Fields:

Field Description Type Default Nulls? References

msid The mediastore ID. Integer yes

Table: library_custom
Thelibrary_custom table is an optional extension to thelibrary table. It should
have anfid column so that it can be joined with thelibrary table wherefid=fid,
adding this table’s columns to the mainlibrary table. Some examples of columns
that could be added to thelibrary_custom table arerating andskip_count.
However, any user-defined columns can be added to this table. You should create
triggers so that when a row is added to or removed from thelibrary table it is also
added to or removed from this table.

Primary key: fid

Fields:

Field Description Type Default Nulls? References

fid The file ID. Integer yes

Table: playlistdata_custom
Theplaylistdata_custom table is an sample table placed here to support
application created playlists. It has the same fields as theplaylistdata table. See
the description of theplaylistdata table for information about this table and how it
can be used.

Primary key: oid

Fields:

Field Description Type Default Nulls? References

plid The playlist ID. Integer no playlists

fid The file ID. Integer no library

continued. . .

May 4, 2009 Appendix: A • MME Database Schema Reference 509

Tables in mme_custom  2009, QNX Software Systems GmbH & Co. KG.

Field Description Type Default Nulls? References

msid The mediastore ID. Integer no mediastores

oid The order identifier. Integer yes

510 Appendix: A • MME Database Schema Reference May 4, 2009

Index

!

$MSIDENTIFIER 139
$NO_PRESERVE_PATH 154
$PRESERVE_PATH 154
$PRESERVE_PATH_AFTER 154
_MME_MSCAP_MSS_MASK 199
“unsetting”

track sessions 323

A

aborting
directed synchronization 74
synchronizations 337

accurate
field in library 201

angle
video 387, 397

appending
streams to a track session 359
tracks to a track session 359

aspect_ratio 40, 46
aspect ratio

video 40, 46, 391
attributes

for output device 234, 249
output 216

audio 216
audio

codec 15
language for video 37
language language codes 31
on track 243

status of playback 50
video 389, 399

autopause 112, 306
Bluetooth 306
iPod 306
using with “gapless” playback 307

B

balance 234, 249
output 216

bitrate 19
Bluetooth

mme_setautopause() 306
stack (slot type definition) 328
supportedmme_button() commands 59

bookmarks 52, 54
playing from 226

bookmarks table 496
buffer

status 56
button

commands supported by devices 59
settings 59

buttons
for navigable tracks 58

byte_info 152

C

cache
clear image 183

May 4, 2009 Index 511

Index  2009, QNX Software Systems GmbH & Co. KG.

shared See Starting QDB in theQDB
Developer’s Guide

cancelling
directed synchronization 74
mediastore synchronizations 337

captions
settings 17
video 17

capture_format 41
capture format

video 391
changing

mediastore state 209, 434
chapter

getting information for a mediastore 110
information 376
seeking to on a DVD 291

character encoding 62
check_slottype_* 328
check_slottype_cd* 328
classes

event 284
cleaning up

after aborting copy or rip 141
clear

image cache 183
image from temporary storage 188

clearing
files from a file-based track session 361

client applications
compiling 5

clients
count in control context 116

close
playlist 258

codec
audio 15
type definitions 101
video 15, 41

comments
video director’s 17

compiling
client applications 5

configuration
device 70, 72

configuring

debug settings 297
connecting

client application to MME 64
connection

behavior 65
control context 64
flagsvariable 65
handle 64
mme_hdl_t 126
safety 126

constants 5
control context

ID 114
number of clients connected to 116

control contexts
connecting to 64
disconnecting from 76

controlcontext table 114
controlcontexts table 486
conventions

typographical xvi
copy_incomplete table 498
copy queue

remove files 157
copying See media copying

metadata handle 161
mme_metadata_hdl_t 161

copying files
clean up after aborting 141

copyqueue table 496
create

session for metadata 169

D

data structures 5
database

repair 339
time 357

db_sync table 506
debug

setting levels 297
settings 297

delay 234, 249
output 216

512 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

deleting
unavailable mediastores 68

deprecated
channel_type 15
mm_audio_type 18
mme_play_file() 230

destination
folder for ripping 154

detection
devices 330

device
configuration 27, 70, 72
getting attributes 234
output 218
path for connection 64
setting attributes 249
start detection 330
supported button commands 59
track sessions 243

Digital Rights Management See DRM
directory See folder
disconnecting 76

from the MME 76
display

mode for video 41, 391, 401
Dolby digital 16
domains

video 25
DRM 78

error 463
DTS 16
DVD

DVD-video region 78
reason for status event delivery 24
seeking to chapter 291
seeking to title 291
specification 80
status 80
UOP 23, 80

DVD-video
supportedmme_button() commands 59

E

encoded 216

encodeformatid 155
encodeformats table 495
end

session for metadata 171
enumerated types 5
errors

copy events 472
playback events 459
ripping events 472
synchronization events 442

events 411, 429, 449, 469, 479
classes 284
copy errors 472
general 423
getting 105
media copying 469
metadata 479
playback 449
playback errors 459
receiving 284
registering for 284
ripping 469
ripping errors 472
structures 412
synchronization 429
synchronization errors 442

explore
end 82
free structure 85
getting information about an item 87
numebr of entires of interest 97
start 99

explored files
filtering 95

explorer
copying metadata handle 161
handle 84
metadata 89
setting offset in folder 94

ext_db_sync_state table 499

F

fade 234, 249
output 216

May 4, 2009 Index 513

Index  2009, QNX Software Systems GmbH & Co. KG.

fast
playback 236, 251

file
get metadata 176, 179

files
metadata 195
name template string for ripping destination

154
navigation support 232, 372
playing 221
playing from bookmark 226
pruning settings 299
seeking to time in 293

filtering
explored files 95

flags
variable for connection 65

flags
media copying 134, 138
playlist 268
video information 40
video properties 44

folder
template string for ripping destination 154

folders
synchronization priority 313

folders table 499
format

capture for video 41
video 391

ftype
accuracy 10
updating 10

FTYPE* 10
functions 5

G

general
events 423

generaten
playlist 264

GF/video 216, 234, 249

H

handle
connection 126
explorer 84
metadata 182, 191
MME connection 64
playlist 266

header files
location 5

HTTP
stream

appending to a track session 359

I

identifier
metadata session 194

image
pointer 186

image
clear from temporary storage 188
load for a file 185
metadata URL 190

images
free at end of metadata session 171

index
video metadata 29

information
chapter 376
getting during mediastore exploration 87
getting for track 374
getting for track session 374
playback 232, 372
title 376
track 376
track session 363, 383

input
underrun 461

inserted mediastore
event 434

interval
notifications during playback 303

iPod
managing track sessions 58

514 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

mme_setautopause() 306
next track 214
previous track 282
supportedmme_button() commands 59
track sessions 243

is_mediafs_type 328
ISO 639-1 31, 37, 48
item

playlist
get 267

items
playlist

get count 270

J

jitter
in playback position reporting 304

L

language
audio for video 37
codes 31
locale 118, 308
preferred playback 129, 131
setting default 62
subtitle 48
video 395, 403

languages table 489
libraries

location 5
library_albums table 503
library_artists table 503
library_categories table 505
library_composers table 504
library_conductors table 504
library_custom table 509
library_ensembles table 504
library_genres table 503
library_languages table 505
library_opus table 505
library_soloists table 504

library table 500
load

image for a track 185
locale 118, 308
location

libraries 5
log

get levels 107
set level 310

M

mdi_image_cache table 498
media

codecs 101
formats 101
reason for status event delivery 28
type definitions 10

media copy
status 151

media copying
background 149, 159
cleaning up after 141
disable 145
enable 147
events 469
flags 134, 138
foreground 149, 159
information structure 154
mode 149, 159
preparation for 133
priority background 149, 159
remove files from copy queue 157
stop 145

media copying queue
clearing 143
files 133
populate 133

media device
configuration 27
information 27

mediacopier
adding files to queue 133
disabling 145

mediastore

May 4, 2009 Index 515

Index  2009, QNX Software Systems GmbH & Co. KG.

changing values for in a table 127
mark as inaccurate 201
restart 206
set value in table column 127

mediastores
capabilities 199
delete unavailable 68
getting chapter information 110
inserted 434
prune unavailable 68
removed 434
resuming track session 301
state change event 434
state change event data 209
states 208
synchronization 287, 337, 342, 345, 348

mediastores_custom table 508
mediastores table 490
memory

free at end of metadata session 171
metadata

pointer 174, 177, 180
metadata 29

clear handle 203
clear image cache 183
copying handle 161
create session 169
end session 171
events 479
for file 195
for track in track session 378
free memory and images 171
get data format 163
get for current track 173
get for specified file 176, 179
get from a file 204
get string format 165
get unsigned 167
handle 182
image URL 190
index for video 29
load image 185
mediacopier 137
retrieved by explorer API 89
session identifier 194
string type definitions 12

structure 191
unload image 188

METADATA_* 12
metadataplugins table 493
mm_audio_format_t 15
mm_audio_lang_ext 17
mm_audio_status_t 50
mm_audio_type 18
MM_AUTO_SCALE 44
mm_bitrate_t 19
MM_BITRATE_TYPE_CONSTANT(variable

bitrate) 19
MM_BITRATE_TYPE_UNKNOWN (unknown

bitrate) 19
MM_BITRATE_TYPE_VARIABLE (variable

bitrate) 19
mm_blocked_uops 20
MM_BUTTON_* 59
MM_BUTTON_GOUP 60
MM_BUTTON_NEXT 58
MM_BUTTON_PREV 58
mm_button_t 58, 59
MM_CAPTIONS_NORMAL 17
MM_CAPTURE_* 41, 391
MM_CODEC_NAME_MAX_LEN 15, 41
MM_DIRECTORS_COMMENTS* 17
mm_display

mode for video 22
mm_display_mode 22, 41
MM_DISPLAY_MODE_* 22, 41, 391
MM_DOMAIN_* 25
MM_DVD_*_UPDATE 25
mm_dvd_blocked 24
mm_dvd_domain 25
MM_DVD_PML_UPDATE 25
mm_dvd_status_event_t 24
mm_dvd_status_reason_t 25, 28
mm_dvd_status_t 23
mm_medatata_string_index 195
MM_MEDIA_* 28
mm_media_status_event_t 28
mm_media_status_t 27
MM_METADATA_* 29
MM_METADATA_*_STRINGS 195
mm_metadata_string_index_t 29
mm_metadata_t 29, 195

516 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

MM_SET_DISPLAY_MODE 44
MM_SET_FRAME_BUFFERS 44
MM_SET_VID_FRAME_SIZE 44
mm_subpict_lang_ext 31
MM_UOP_* 32
mm_uop_t 32
MM_VIDEO_* 40
mm_video_angle_info_t 36, 387
mm_video_audio_info_t 37, 387, 389
mm_video_info_t 391
mm_video_properties_t 43, 401
mm_video_status_t 46, 393
mm_video_subtitle_attr 48
mm_video_subtitle_info_t 48
MM_VISUAL_IMPARED_AUDIO 17
MM_WARNING_FLAG_* 422
mm_warning_flags_t 422
mm_warning_info_t 422
MM_WARNING_READ_TIMEOUT 422
mm_warnings_t 422
MME

connecting to 64
connection handle 64
disconnect from 76
events 105
shutting down 326

mme_audio_get_status() 50
codec 15, 41

mme_bookmark_create() 52
mme_bookmark_delete() 54
mme_bookmark_play() 226
MME_BUFFER_STATE_BUFFERING 56
MME_BUFFER_STATE_NORMAL 56
MME_BUFFER_STATE_PREFETCHING 56
mme_buffer_status_t 56
mme_button() 58
mme_byte_status_t 152
mme_charconvert_setup() 62
mme_command_type_t 459
mme_connect() 64
MME_COPY_ERROR_* 472
mme_copy_error_t 413
mme_copy_error_type_t 472
mme_copy_info_t 67
mme_copy_status_t 151
MME_COPY_UNITS_* 152

mme_copy_units_t 152
MME_DB_DELETION_* 68
mme_delete_mediastores() 68
mme_device_get_config() 70, 72
mme_directed_sync_cancel() 74
mme_disconnect() 76
mme_dvd_get_disc_region() 78
mme_dvd_get_status() 80
MME_EVENT_AUTOPAUSCHANGED 306
MME_EVENT_AUTOPAUSECHANGED 423
MME_EVENT_BUFFER_TOO_SMALL 423
MME_EVENT_CLASS_* 284
mme_event_class_t 411
mme_event_classes_t 284
MME_EVENT_COPY_ERROR 469
MME_EVENT_DEFAULT_LANGUAGE 131,

423, 424
mme_event_default_language_t 414, 424
MME_EVENT_DVD_STATUS 450
MME_EVENT_FINISHED 450
MME_EVENT_FINISHED_WITH_ERROR 451
MME_EVENT_MEDIA_STATUS 72
MME_EVENT_MEDIACOPIER_* 469
MME_EVENT_METADATA_* 479
MME_EVENT_METADATA_IMAGE 479
mme_event_metadata_image_t 414
MME_EVENT_METADATA_INFO 480
mme_event_metadata_info_t 415
mme_event_metadata_licensing_t 415
MME_EVENT_MS_*PASSCOMPLETE 429
MME_EVENT_MS_DETECTION_DISABLED

429
MME_EVENT_MS_DETECTION_ENABLED

429
MME_EVENT_MS_STATECHANGE 434
MME_EVENT_MS_SYNC_* 429
MME_EVENT_MS_UPDATE 440
MME_EVENT_NEWOUTPUT 452
MME_EVENT_NONE 423, 424
MME_EVENT_NOWPLAYING_METADATA

452
MME_EVENT_OUTPUTATTRCHANGE 453
MME_EVENT_PLAY_ERROR 454
MME_EVENT_PLAY_WARNING 455
MME_EVENT_PLAYAUTOPAUSED 306
MME_EVENT_PLAYLIST 454

May 4, 2009 Index 517

Index  2009, QNX Software Systems GmbH & Co. KG.

mme_event_queue_size_t 416
MME_EVENT_RANDOMCHANGE 455
MME_EVENT_REPEATCHANGE 456
MME_EVENT_SCANMODECHANGE 456
MME_EVENT_SHUTDOWN 423
MME_EVENT_SHUTDOWN_COMPLETED

423, 425
MME_EVENT_SYNCABORTED 337
MME_EVENT_SYNCABORTED 74
mme_event_t 413
MME_EVENT_TIME 221, 224, 228, 303, 456

limitations to accuracy 304
MME_EVENT_TRACKCHANGE 221, 224,

228, 457
MME_EVENT_TRKSESSION 457
MME_EVENT_TRKSESSIONVIEW_* 383
MME_EVENT_TRKSESSIONVIEW_COMPLETE

458
MME_EVENT_TRKSESSIONVIEW_INVALID

458
MME_EVENT_TRKSESSIONVIEW_UPDATE

458
mme_event_type_t 416
MME_EVENT_USERMSG 423
MME_EVENT_VIDEO_STATUS 459
MME_EXPLORE_* 89
mme_explore_end() 82
mme_explore_hdl_t 84
mme_explore_info_free() 85
mme_explore_info_get() 87
mme_explore_info_t 89
mme_explore_playlist_find_file() 92
mme_explore_position_set() 94

filtering files 95
MME_EXPLORE_RESOLVE_PLAYLIST_ITEM

88
mme_explore_size_get() 97
mme_explore_start() 99
mme_first_fid_data_t 416
mme_folder_sync_data_t 417
MME_FORMAT_* 101
mme_get_api_timeout_remaining() 103
mme_get_event() 105
mme_get_logging() 107
mme_get_title_chapter() 110
mme_getautopause() 112

mme_getccid() 114
mme_getclientcount() 116
mme_getlocale() 118
mme_getrandom() 120
mme_getrepeat() 122
mme_getscanmode() 124
mme_hdl_t 64, 126
mme_lib_column_set() 127
mme_media_get_def_lang() 129
mme_media_set_def_lang() 131, 424
MME_MEDIACOPIER_* 134, 138
mme_mediacopier_add_with_metadata() 137
mme_mediacopier_add() 133
mme_mediacopier_cleanup() 141
mme_mediacopier_clear() 143
mme_mediacopier_disable() 145
mme_mediacopier_enable() 147
mme_mediacopier_get_mode() 149
mme_mediacopier_get_status() 151
mme_mediacopier_info_t 133, 154
MME_MEDIACOPIER_MODE_* 149, 159
mme_mediacopier_mode_t 149, 159
mme_mediacopier_remove() 157
mme_mediacopier_set_mode() 159
MME_MEDIACOPIER_TEMPLATE_* 154
mme_metadata_alloc() 161
mme_metadata_create_session() 169
mme_metadata_extract_data() 163
mme_metadata_extract_string() 165
mme_metadata_extract_unsigned() 167
mme_metadata_free_session() 171
mme_metadata_getinfo_current() 173
mme_metadata_getinfo_file() 176
mme_metadata_getinfo_library() 179
mme_metadata_hdl_t 182

copying 161
mme_metadata_image_cache_clear() 183
mme_metadata_image_load() 185
mme_metadata_image_unload() 188
mme_metadata_image_url_t 190

pointer 186
mme_metadata_info_t 191

example XML 191
pointer 174, 177, 180

mme_metadata_session_t 194
mme_metadata_set() 195

518 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

mme_mode_random_t 197
mme_mode_repeat_t 198
mme_ms_clear_accurate() 201
MME_MS_EXPLORE_FLAGS_* 89
mme_ms_metadata_done() 203
mme_ms_metadata_get() 204
mme_ms_restart() 206
mme_ms_state_t 208
mme_ms_statechange_t 209
mme_ms_update_data_t 418
MME_MSCAP_* 199
mme_newtrksession() 211
mme_next() 214
mme_output_attr_t 216
mme_output_set_permanent() 218
MME_OUTPUTTYPE_* 220
mme_outputtype_t 220
mme_play_attach_output() 224
mme_play_command_error_t 419
mme_play_detach_output() 228
MME_PLAY_ERROR_* 459
MME_PLAY_ERROR_INVALIDSAVEDSTATE

462
mme_play_error_t 419
mme_play_error_track_t 420
mme_play_error_type_t 459
mme_play_file() 230
mme_play_get_info() 58, 232
mme_play_get_output_attr() 234
mme_play_get_status() 238
mme_play_get_zone() 240
mme_play_info_t 58, 110, 232, 242, 291
mme_play_offset() 244
mme_play_resume_msid() 247
mme_play_set_output_attr() 249
mme_play_set_speed() 236, 251
mme_play_set_zone() 253
mme_play_status_t 255
mme_play() 221
MME_PLAYLIST_* 256
mme_playlist_close() 258
mme_playlist_create() 260
mme_playlist_delete() 262
MME_PLAYLIST_FLAGS_* 268
mme_playlist_generate_similar() 264
mme_playlist_hdl_t 266, 272

mme_playlist_item_get() 267
mme_playlist_items_count_get() 270
MME_PLAYLIST_MODE_* 256
mme_playlist_open() 272
MME_PLAYLIST_OWNER_* 256
mme_playlist_position_set() 274
MME_PLAYLIST_RESOLVE_* 268
mme_playlist_set_statement() 276
mme_playlist_sync() 278
MME_PLAYMODE_* 101
MME_PLAYMODE_* 211
MME_PLAYSTATE_* 281
mme_playstate_speed_t 280
mme_playstate_t 255, 281
MME_PLAYSUPPORT_* 232, 243
MME_PLAYSUPPORT_NAVIGATION 110, 291
mme_prev() 282
MME_RANDOM_* 120, 197, 315
mme_register_for_events() 284
MME_REPEAT_* 198, 318
mme_resync_mediastore() 287
mme_rmtrksession() 289
mme_seek_title_chapter() 291
mme_seektotime() 293
mme_set_api_timeout() 295
mme_set_debug() 297
mme_set_files_permanent() 299
mme_set_logging() 310
mme_set_msid_resume_trksession() 301
mme_set_notification_interval() 303
mme_setautopause() 306

Bluetooth devices 306
iPod 306

mme_setlocale() 308
mme_setpriorityfolder() 313
mme_setrandom() 315
mme_setrepeat() 318
mme_setscanmode() 320
mme_settrksession() 322
mme_shutdown() 326
MME_SLOTTYPE_* 328
mme_start_device_detection() 330
mme_stop() 332
MME_STORAGETYPE_* 334
MME_STORAGETYPE_MEDIAFS_* 335
mme_sync_cancel() 337

May 4, 2009 Index 519

Index  2009, QNX Software Systems GmbH & Co. KG.

mme_sync_data_t 421
mme_sync_db_check() 339
mme_sync_directed() 342
MME_SYNC_ERROR_* 429, 442
MME_SYNC_ERROR_FOLDER_DEPTH_LIMIT

443
MME_SYNC_ERROR_FOLDER_LIMIT 444
MME_SYNC_ERROR_LIB_LIMIT 444
MME_SYNC_ERROR_MEDIABUSY 443
MME_SYNC_ERROR_NOTSPECIFIED 445
mme_sync_error_t 421, 429
mme_sync_error_type_t 442
MME_SYNC_ERROR_UNSUPPORTED 445
MME_SYNC_ERROR_USERCANCEL 446
mme_sync_file() 345
mme_sync_get_msid_status() 348
mme_sync_get_status() 350
MME_SYNC_OPTION_* 287, 342, 352
MME_SYNC_OPTION_PASS_* 354
mme_sync_status_t 354
mme_time_t 153, 255, 356
mme_timebase_set() 357
mme_trackchange_t 422, 457
mme_trksession_append_files() 359
mme_trksession_clear_files() 361
mme_trksession_get_info() 363
mme_trksession_resume_state() 366
mme_trksession_save_state() 368
mme_trksession_set_files() 370
mme_trksessionview_get_current() 372
mme_trksessionview_get_info() 374
mme_trksessionview_info_t 376
mme_trksessionview_metadata_get() 378
mme_trksessionview_readx() 380
mme_trksessionview_update() 383
mme_trksessionview_writedb() 385
mme_video_get_angle_info() 387
mme_video_get_audio_info() 389
mme_video_get_info() 391
mme_video_get_status() 393

codec 15, 41
mme_video_get_subtitle_info() 395
mme_video_info_t 39
mme_video_set_angle() 397
mme_video_set_audio() 399
mme_video_set_properties() 401

mme_video_set_subtitle() 403
mme_zone_create() 405
mme_zone_delete() 407
mode

playlist 256
MSIDENTIFIER See $MSIDENTIFIER
mute 234, 249

output setting 216

N

navigable tracks
buttons 58

navigation
of tracks or files 232, 372
track 243

next
track in track session 214

notifications
during playback 303
interval 303

nowplaying table 114, 507

O

offset
setting in explored folder 94

open
playlist 272

options
synchronization 352

output
attributes 216
underrun 465
zone for control context 240, 253
zones 405, 407

output device
attributes 234, 249
status 218

outputdevices table 487
owner

playlist 256

520 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

P

parental control
error 464

partially copied or ripped files
cleaning up 141

pathname delimiter in QNX documentation xvii
pause See autopause

playback 236, 251
permanent

output device 218
setting files as 299

playback
at specified offset in track session 244
events 449
fast 236, 251
getting random mode 120
getting repeat mode 122
information 232, 372
jitter in position reporting 304
notifications during 303
pause 236, 251
position 368
preferred language 129, 131
random mode 315
read error 464
repeat mode 318
resume track session 247
resuming for mediastore 301
reverse 236, 251
slow 236, 251
speed 236, 251, 280
states 281
status 238
time elapsed 238
time for track 238
track outside of a track session 230
warning 455

playback_pml 23
playlist

close 258
compose SQL statement 276
create 260
delete 262
file entry conversion to UTF-8 90
flags 268

generate 264
get file IDs 276
handle 266
item

get 267
items

get count 270
open 272
owner 256
position

set 274
resolve item 268
synchronization

specific 278
playlist synchronization plugin See PLSS
playlistdata_custom table 509
playlistdata table 506
playlists table 493
PLSS 272
pointer

image 186
metadata 174, 177, 180
mme_metadata_image_url_t 186
mme_metadata_info_t 174, 177, 180

position
playlist

set 274
pre-queuing

playback and autopause 307
previous

track in track session 282
priority

folder synchronization 313
properties

video 401
video display 43

pruning
disabling for specific files 299
unavailable mediastores 68

purge
image from temporary storage 188

Q

QCC 5

May 4, 2009 Index 521

Index  2009, QNX Software Systems GmbH & Co. KG.

R

random
getting random mode 120
playback mode 315
turn off mode 315

read
track session view information 380

Real-time Transport ProtocolSee RTP
receiving

events 284
region See locale

DVD-video 78
playback error 465

releasing
track sessions 323

removed mediastore
event 434

removing
track session from database 289

renderers table 486
repair

database 339
repeat

getting 122
turn off 318

repeat mode
set 318

resolve
playlist item 268

restart
mediastore 206

resuming
playback of a track session 301, 366

ripping
add a mediacopier 133
background 149, 159
clean up afer aborting 141
destination folder 154
enable 147
events 469
flags 134, 138
foreground 149, 159
information structure 154
mode 149, 159
preparation for 133

priority background 149, 159
remove files 157
status 151
stop 145
template string for destination file 154
template string for destination folder 154

RTP
stream

appending to a track session 359

S

scan mode 320
get 124

seeking
to time in track or file 293
to title and chapter 291

session
create for metadata 169
end metadata 171
identifier 194

set
table column 127

settings
debug 297
get for logging 107
log 310

shared
cache See Starting QDB in theQDB

Developer’s Guide
shutting down

MME 326
skipping

to next track 214
to previous track 282

slots
determining type 328
type definitions 328

slots table 488
slottype (field in slots table) 328
slow

playback 236, 251
speed

playback 236, 251, 280
SQL

522 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

statement for playlist 276
state

mediastore 208
playback 281
track session 366, 368

state change
mediastore 209, 434

status
audio playback 50
DVD 80
media copy 151
playback 238
ripping 151
synchronization 350
video 46, 393

stop
playback on track session 332

stopping
directed synchronization 74
MME 326
synchronizations 337

storage
type definitions 334

storage_type (field in mediastores table)
334

stream
appending to a track session 359

structures
events 412
mm_video_angle_info_t 36
mm_video_audio_info_t 37
mm_video_subtitle_info_t 48
mme_hdl_t 126
mme_time_t 356

subtitle
language 48
language codes 22, 31
language for audio 37

subtitles
languages for video 395, 403
video 403
video> 395

support
flag inmme_play_info_t 243

synchronization
cancelling 337

cancelling directed 74
database

repairing 339
directed on mediastore 342
directed to file 345
events 429
mediastore 287
options 287, 352
playlist 278
priority folder 313
repair

database 339
status 350
status of 348

T

tables
bookmarks 496
controlcontexts 486
copy_incomplete 498
copyqueue 496
db_sync 506
encodeformats 495
ext_db_sync_state 499
folders 499
languages 489
library 500
library_albums 503
library_artists 503
library_categories 505
library_composers 504
library_conductors 504
library_custom 509
library_ensembles 504
library_genres 503
library_languages 505
library_opus 505
library_soloists 504
mdi_image_cache 498
mediastores 490
mediastores_custom 508
metadataplugins 493
nowplaying 507
outputdevices 487

May 4, 2009 Index 523

Index  2009, QNX Software Systems GmbH & Co. KG.

playlistdata 506
playlistdata_custom 509
playlists 493
renderers 486
slots 488
trksessions 494
trksessionview 497
zoneoutputs 487
zones 487

time
database 357
left on unblocking timer 103
seeking to in track or file 293
total for track 238

time_info 152, 153
timer 103, 295
title

getting information for a mediastore 110
information 376
seeking to on a DVD 291

track
audio 243
creating bookmarks 52
deleting bookmarks 54
get metadata 173
getting metadata for 378
getting title information 110
gettting information 374
information 376
navigation 243
navigation support 232, 372
play on unsynchronized mediastore 230
play output on zone 224
playing 221
playing from bookmark 226
seeking to time in 293
stop playing output on zone 228
time played 238
video 243

track session
“unsetting” 323
appending tracks 359
clear files from file-based 361
creating new 211
current track in 363
getting information 374

information 363, 383
output

attach 224
detach 228

playback 366
playing 221
previous track 282
releasing 323
removing from database 289
resuming playback 247, 301
seeking to time in 293
setting 322
skip tracks 214
starting playback at specified offset 244
state 368
stopping 332
total tracks 363
updating 383
updating tracks 370

track session view
read information 380
write to database 385

track sessions
device 243

tracks
updating in a file-based track session 370

trksessions table 494
trksessionview_entry_file_t 381
trksessionview_entry_t 381
trksessionview table 383, 497
TRKVIEW_READ_FID 382
TRKVIEW_READ_FILE 382
troubleshooting

setting debug levels 297
setting verbosity levels 297

types
media 10
metadata strings 12
slot 328
storage 334

typographical conventions xvi

U

unblocking

524 Index May 4, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

timer 103, 295
underrun

input 461
output 465

unload
image from temporary storage 188

unregistering
for events 284

UOP 24, 32
DVD 23, 80
video 20

URL
metadata image 190

User Operation ProhibitionsSee UOP
UTF-8

playlist file entries 90

V

verbosity
setting levels 297

video 216
video

angle 387, 397
aspect ratio 40, 46, 391
audio 389, 399
audio properties 37
captions 17, 31
capture format 41, 391
codec 15, 41
description 391
dimensions 391, 401
director’s comments 17
display mode 22, 41, 391, 401
display properties 43
First Play 25
height 391
information 391
language codes 31
languages 395, 403
metadata index 29
on track 243
prohibitions 20
properties 43, 401
region 78

status 46, 393
subtitles 31, 395, 403
Title Domain 25
UOP 20
Video Manage Menu Domain 25
Video Title Set Menu Domain 25
width 391
zoom mode 401

video information
flags 40

video properties
flags 44

visually impaired
video captions for 17

volume 234, 249
output 216

W

writing
track session view to database 385

X

XML
example inmme_metadata_info_t 191

Z

zoneoutputs table 487
zones

for control context 240, 253
output 405, 407
output for control context 240, 253

zones table 487
zoom

video mode 401

May 4, 2009 Index 525

