QNX" Neutrino” Realtime Operating System

QNX Database
Developer’s Guide

For QNX” Neutrind” 6.3.x

0 2009, QNX Software Systems GmbH & Co. KG.

[0 2006-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems I nternational Corporation
175 Terence Matthews Crescent

Kanata, Ontario

K2Mm 1w8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email:i nf o@nx. com

Web: htt p: // www. gnx. conf

Electronic edition published February 13, 2009.
Technical support options

To obtain technical support for any QNX product, visit Bgport + Services area on our websiteww. gnx. com). You'll find a wide range of support options, including
community forums.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GnitiH &1d are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

February 13, 2009

> o N o

About This Guide vii

Typographical conventions iX
Note to Windows users X

Technical support X

Introduction 1

Starting QDB 5
Synopsis: 7

Options: 7
Database directory 9
Schema files 9

Starting the QDB server 10

The QDB Client gdbc 19
Synopsis: 21
Options: 21
Description 22

QDB Administration 23

Backing up and restoring databases 25

QDB Examples 27
Example 31

Datatypes in QDB 33
QDB Virtual Machine Opcodes 43
Writing User-Defined Functions 67

QDB Client APl Reference 77
qdb_backup() 80
qdb_bkcancel() 82

Contents il

[J 2009, QNX Software Systems GmbH & Co. KG.

v

Contents

qdb cell) 83
qdb_cell_length() 85
qdb _cell type() 87
qdb _collation() 89
gdb_column_ index() 91
qdb_column name() 92
qdb_columns() 93
qdb_connect() 94
qdb_data source() 96
qdb_disconnect() 98
qdb _freeresult() 99
qdb_getdbsize() 100
qdb_geterrmsg() 102
qdb_getoption() 104
qdb_getresult() 105
qdb_gettransstate() 107
qdb_last insert rowid() 109
qdb_mprintf() 111
qdb_parameters() 113
qdb_printmsg() 115
gdb_query() 117
qdb_rowchanges() 119
qdb rows() 121
gdb_setbusytimeout() 122
qdb_setoption() 124
gdb_snprintf() 126
qdb_statement() 128
qdb_stmt exec() 130
qdb_stmt free() 132
qdb_stmt init() 134
qdb_vacuum() 136
qdb_vmprintf() 138

QDB SQL Reference 139
General 141
Statements 141

Row ID and Autoincrement 143

Comment 145

expressions 146

QDB Keywords 153

ALTER TABLE 155

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

ANALYZE 156
ATTACH DATABASE 157
CREATE | NDEX 158
CREATE TABLE 159
CREATE TRI GGER 162
CREATE VI EW 165
DELETE 166

DETACH DATABASE 167
DROP | NDEX 168
DROP TABLE 169
DROP TRI GGER 170
DROP VI EW 171
EXPLAIN 172

I NSERT 173

ON CONFLICT 174
PRAGVA 176

REI NDEX 183
REPLACE 184
SELECT 185
TRANSACTI ON 188
UPDATE 190

VACUUM 191

Index 193

Contents

\Y

About This Guide

February 13, 2009 About This Guide Vii

[2009, QNX Software Systems GmbH & Co. KG. Typographical conventions

The QNX Database (QDB) Developer’s Guidecompanies the QDB database server
and is intended for application developers.
This table may help you find what you need in this book:

For information about:

See:

QDB Overview
QDB command-line options

Executing SQL statements from the
command-line

Managing a database

Introduction
Starting QDB
The QDB Clientqdbc

QDB Administration

Sample application QDB Example

Supported data types QDB Datatypes

Op codes QDB Op Codes

Writing your own SQL or collation Writing User-Defined Functions
functions

Client API QDB API reference

SQL commands SQL reference

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream== NULL)
Command options -IR

Commands make

Environment variables PATH

File and pathnames [dev/ nul |
Function names exit()
Keyboard chords Ctrl-Alt-Delete
Keyboard input somet hi ng you type

continued. ..

February 13, 2009 About This Guide X

Technical support [2009, QNX Software Systems GmbH & Co. KG.

Reference Example
Keyboard keys Enter
Program output | ogi n:

Programming constants ~ NULL

Programming data types unsi gned short
Programming literals OxFF, "nmessage string"
Variable names stdin

User-interface componentsCancel

We use an arrow-) in directions for accessing menu items, like this:
You'll find the Other... menu item undePer spective— Show View.

We use notes, cautions, and warnings to highlight important messages:

Q Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.

WARNING: Warningstell you about commands or proceduresthat could be
dangerousto your files, your hardware, or even your self.

Note to Windows users

In our documentation, we use a forward slashgs a delimiter irall pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support

If you have any questions, comments, or problems with a QNX product, please contact
Technical Support. For more information, see the How to Get Help chapter of the
Welcome to QNX Momentigglide or visit our websitemww. gnx. com

X About This Guide February 13, 2009

Chapter 1
Introduction

February 13, 2009 Chapter 1 e Introduction 1

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

QDB is a small-footprint, embeddable SQL database server that supports most
SQL-92 syntax. Itis designed as an easy-to-configure Neutrino resource manager.
QDB is based on the SQLite projettt p: / / www. sql i t e. or g), and inherits many
of SQLite’s features.

QDB has these features:

e support for most ANSI SQL-92 syntax

e transactions

e concurrent access

e synchronous safe writes

e triggers, views, multiple attached databases
e small footprint

e leverages all benefits of the Neutrino resource manager framework including
network access to databases using QNet

e simple API for accessing the database

e result storing for repeated use. Results can also be passed from one application to
another.

e in-memory database support

e auto-attach support, to join disparate databases into a single, virtual database

Chapter 1 e Introduction 3

Chapter 2
Starting QDB

February 13, 2009 Chapter 2 o Starting QDB 5

[J 2009, QNX Software Systems GmbH & Co. KG.

Synopsis:
gdb [-c config file] [- C policy]
[-1 tes] [-n mountpoint [-N control] [-o0 optior, option2 ..]]
[- P permissions [-R modé
[-r modg [-s routing
[-t timeoul [-T maxtimeouf [-vV] [-Wtimg [-X path
Options:

- ¢ config file Specify a configuration file of databases and policies. See the
“Configuration File” section below for more information.

- Cpolicy Specify a database connection sharing policy. pbley can be
one of:
e uni que
e private
® [euse
e share

See the “Sharing connections between clients” section below for
more information.

-1 test Perform a database integrity test at startup. fEsécan be one
of:
e none
e basic
e parti al

e full

See the “Database integrity testing” section below for more

information.

- n mountpoint The QDB resource manager mountpoint. By default this is
/ dev/ qdb.

- N control Name of the database control entry. By default this is
.control .

- 0 option Configure miscellaneous options. The options are:

e unbl ock=0] 1 — set whether or not to install an unblock
handler (that is, to allow a signal to interrupt an SQL
operation).

e t hreadmax — the maximum number of threads to allocate
to qdb; default is 64.

February 13, 2009 Chapter 2 o Starting QDB 7

[J 2009, QNX Software Systems GmbH & Co. KG.

e threadhi — the maximum number of threads that can be
kept in a blocked state ready to work.

e threadl o — the minimum number of threads to be kept in a
blocked state ready for work.
See alsdghread pool _create()in the Neutrino Library
reference

e tenpst or e=directory— set the directory name whegeb
places certain temporary files. You can set this torpf s
RAM disk location to prevent excessive disk access.

e bkcopy=Dbuffer size— set the size of the buffer to use when
making a backup or compressing. The default value is 64
KB, and is probably acceptable for most cases.

e trace —log SQL statements before QDB executes them.
You must set verbosity {) to six for this feature to work.

e profile—log SQL statements after QDB executes them,
as well as the time it took to execute them. You can
additionally specify the Wimeoption to log only SQL
statements that take more than the specified time, in
milliseconds. You must set verbosityw) to six for this
feature to work.

- P permissions Access permissions for the database and backup files. By default
this is0664.

-Rmode Set the database creation and recovery mode niddecan be
one of:
e manual
e auto
e set

See the “Database recovery” section below for more
information.

-r mode Set the connection recovery mode. Thedespecifies what
happens when a database problem is discovered and corrected. It
can be one of:

e manual — clients receiveESTALE errors until they
disconnect and reconnect.

e aut o — clients are automatically reconnected, and receive
no notification that a problem was detected and repaired.

- s routing@datg Name special collation routines and data. This setting specifies a
name (or wildcard pattern) of collation functions which expect
the format of data that you will pass in viglb_collation(). only
those registered collation functions that match this pattern will

8 Chapter 2 e Starting QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

get their setup function invoked (since the format of the data
must be known to the function). By default, all functions have
their startup functions invoked.

You can also use thes option to set the initial setup data. For
example- s cl dr @n_USwould set the magic function name
to “cldr”, and also invoke the setup function with the “ésS”
string at startup.

-t timeout Set the busy-wait timeout on database access, in milliseconds.
By default, this is 5000 milliseconds. See the “Busy timeout”
section below for more information.

- T max_timeout Set the maximum busy-wait timeout on internal database access,
in milliseconds. By default, this is 5000 milliseconds. See the
“Busy timeout” section below for more information.

-V Increase output verbosity. Messages are writtesi tagi nf o.

-V Replicate output messages to the console, as well as to
sl ogi nf o.

- Wtime Used in conjunction with theo profi | e option: log only

SQL statements that take longer thame (specified in
milliseconds). The default farmeis 5000 milliseconds.

- X path Set a script to run when the QDB encounters a corrupt database.
See “Handling corrupt databases” below.

Database directory

The QDB database directory can be on any QNX or POSIX filesystem with read/write
access (including memory-based filesystems, su¢hmpsf s). QDB can run from
QNX filesystems visible via Qnet, but caot run from an NFS filesystem.

Schema files

A schema file contains all the SQL commands to create the database schema the way
you want. Here’s an example:

CREATE TABLE cust oner s(
custonerid | NTEGER PRI MARY KEY AUTO NCRENENT,
firstname TEXT,
| ast name TEXT

)
Save that content indb/ cust orrer db. sql .

February 13, 2009 Chapter 2 o Starting QDB 9

[J 2009, QNX Software Systems GmbH & Co. KG.

Starting the QDB server

If you have any database schema files (for exanmiple/ cust oner db. sql), you
need to add them to the QDB configuration file before starting the QDB server. For
more information, see “The configuration file” below.

The QDB server must be run asot .

For debugging purposes, you should stath with - vvvvvvvV options to get very
verbose output. The option is cumulative, with each additionaladding a level of
verbosity, up to 7 levels. TheV option sends output to the console, as well as to
sl ogi nf o.

Once QDB is running, you can check to see that it sees your databases by rusining
/ dev/ qdb/ . Using the previous example, we should see a file called
/ dev/ qdb/ cust oner db.

Temporary storage filesystem

The filesystem the QDB uses for temporary storage must support POSIX file locking.
File locking is required for database vacuuming.

The QDB checks its temporary storage as follows:

e Ifthetenpstoreoption ¢ o tenpstore)is specified on the command line, the
QDB checks to see if the specified location:
- exists
- is writable
- isnot/ dev/ shnmem
- isnotalink to/ dev/ shnem
If all the above conditions are met, the QDB sets the internal temporary storage to

the location specified by theenpst or e option. If any of the above conditions are
not met, the QDB logs errors to tké og and fails to start up.

e Ifnotenpstoreoption ¢ o tenpstore)is specified on the command line, the
QDB uses the environment variabléV PDIR to obtain the location it should use
for temporary storage. The QBD checkg i1 PDIR exists and the location
specified by this variable:
- exists
- is writable
- isnot/ dev/ shnem
- isnotalink to/ dev/ shnem
If all the above conditions are met, the QDB sets the internal temporary storage to

the value ofTMPDIR. If any of the above conditions are not met, the QDB logs
errors to thesl og and fails to start up.

10 Chapter 2 o Starting QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Auto-attaching databases

Incorrect

Correct

Correct

February 13, 2009

You can create a list of databases that you'd like to be combined as if they formed a
single database. This is calladto-attachinga database. This is useful for breaking

up a database into separate pieces for performance reasons (each piece gets its own
lock, which makes multi-user access more responsive). It's also useful for moving
parts of a database to different storage mediums (such as a RAM filesystem).

The list of databases is read from a configuration file, specified bguhe Attach=
option. For more information, see “The configuration file” below.

When using th&ut o At t ach parameter to attach more than one database to another
database (attaching multiple sections to one section) you must make sure that the order
in which the sections are listed in the configuration file are the same as the order in
which they are listed via thaut o At t ach parameters. The examples below show
incorrect and correct lists. To simplify the examples, only the section headings are
shown; parameters are not shown.

Note that the section definition order does not match the attach order.

[me_Iibrary]
[mre_t enp]
[me_cust oni

[mre]

Auto Attach
Auto Attach
Auto Attach

mre_library
nme_cust om
nme_t enp

Note that the section definition order matches the attach order.

[me_Iibrary]
[mre_cust om
[mre_t enp]

[mre]

Auto Attach
Aut o Attach
Auto Attach

nmre_| i brary
me_cust om
me_t enp

Note that the attach order matches the section definition order.
[mre_library]

[mre_t enp]
[me_cust oni

Chapter 2 o Starting QDB 11

[J 2009, QNX Software Systems GmbH & Co. KG.

[mre]

Auto Attach
Auto Attach
Auto Attach

nmre_| i brary
me_t enp
me_cust om

Database integrity testing

Y

At startup, QDB tests the integrity of databases, according ithaption specified. It
will execute statements based on this option, as follows:

e none=— don’t perform a database integrity check.
e basi c='; — verify only that SQLite can parse a string.
e partial =’"PRAGMA databaselist;’ — validate the PRAGMA database list.

e ful | ="PRAGMA integrity_check;" — validate the database integrity.

The more verification the QDB performs at startup, the greater the time needed for
startup. For production environments, you will need to find the optimal balance
between the amount of verification required and the time needed to start the QDB.

Testing SQL statements

You can execute SQL statements on your QDB databases from the command-line
using theqdbc utility. Seeqdbc for more information.

The configuration file

12

QDB is configured with a single file, which is specified with tecommand-line

option. If this file is in the same location as the database SQL files (by default this is
/ db/), you can use relative paths in the configuration file to point to schema files and
database locations. Otherwise, you need to use absolute paths.

The configuration file is composed of lines of text. Blank lines are ignored, as is any
leading or trailing white space. Lines beginning withk eharacter are comments. The
configuration file consists of named sections, each defined by a name enclosed in
square bracketg (]). Following each section are parameter lines in the form
key=value Parameters apply to the current section.

Each section is the name of a database. This is the name presented dsdegdb,
and that clients use to establish a connection. The database is then configured using
the following parameters:

Fi | ename= Set the name of the actual database file. This is the raw SQLite
file. It can be an absolute path to any file location, or can be a
relative name (in which case it is relative to the directory which
holds the configuration file). At startup either this file must exist,
or the directory in which it will be created must exist (otherwise

Chapter 2 e Starting QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Schema=
Schema Fil e=

Client Schema=

Auto Attach=

Backup Dir=

Conpr essi on=

February 13, 2009

gdb will exit with an appropriate error). If the database file does
not exist, it is restored from the newest valid backup if possible,
or a blank database file is created.

These options describe the initial schema of the database (as
SQL commands which are used to create the initial set of tables,
indices, views, content, etc) of a new database (if it did not
already exist). In the first form, the SQL commands are in the
configuration file. The second form names a file (with either an
absolute or relative path) containing the SQL commands.

An initial schema is optional; without an initial schema, a new
database will just be empty.

This entry specifies a client schema, which is executed every
time a client callgdb_connect() YOu can use this mechanism
to implement cross-database triggers.

This entry specifies another database to be attached to the current
one (using the SQITTACH DATABASE statement whenever a
database connection is established). The name is the section
name of the other database, not a filename. You can specify
multiple databases, each on its ot o At t ach=line.

Attached databases are a convenience to provide access to tables
that are physically stored in a different database file. Facilities
exist in QDB to also include attached databases in other
maintenance operations, such as backup or vacuum.

See also “Auto-attaching databases” above.

This entry specifies a directory which is used to store a backup
of the database. UPi can specify multiple directories, each on its
ownBackup Dir=line, and they will be used in rotation to

store backup files. This feature ensures that should a backup be
interrupted or aborted by a power-failure, another, older, backup
is still available.

This directory must exist at startup (though it does not need to
contain a valid backup); otherwigglb exits with an appropriate
error. If any existing backup files are located in these directories,
they are sorted by date and overwritten oldest-to-newest when
performing backup operations, and used in newest-to-oldest
order to restore a missing or corrupt database.

This entry specifies a compression algorithm to apply to

backups. The supported options amne (for no compression),

| zo (for LZO compression), obzi p (for BZIP2 compression).
Thelzo compression algorithm is fastest, but thep algorithm

offers the highest compression. The compressed files are created

Chapter 2 o Starting QDB 13

[J 2009, QNX Software Systems GmbH & Co. KG.

14

Col | ati on=
Functi on=

with appropriate extensions added to the original database
filename. By default, backup files anet compressed.

These entries install user-provided collation (sorting) routines
and user functions (scalar or aggregate) routines respectively.
The argument format ig@library.so, wheretagis the symbol
name of the function description structure dibdary.sois the
name of the shared library containing the code. For more
information, see the Writing User-Defined Functions chapter.

QDB checks for the existence of the library and the specified
symbol at startup, and exits with an appropriate error if they're
not found.

Vacuum Att ached=
Backup Attached=

Si ze Attached=

Chapter 2 e Starting QDB

These entries control what maintenance operations should apply
by default to attached databases when a command is issued to
the main database. These options can have a value of

TRUE| FALSE, YES| NOor ON| OFF. The default setting for each

is FALSE. You can change the option multiple times within the
database section to apply differently to attached databases.

Here’s a sample configuration:

[db]

Vacuum At t ached = TRUE
Auto Attach = dbl
Vacuum At t ached = FALSE
Auto Attach = db2

In this example, gidb_vacuum()operation ordb will also
vacuumdbl but notdb2.

You can use th8ackup Attached=TRUE setting to provide a
facility similar to the old* . bks files. For more details on the
scope of maintenance operations with respect to attached
databases, refer b _vacuum() gdb_backup() and
qdb_getdbsize()

To create RAM-based databases, pointRhkeenane= option to
the RAM-disk file.

You can also create temporary databases by defining a database
with aFi | ename=: menory: entry. This action creates a

private, temporary, in-memory database, visible only in the
scope of the database connection. Each connection to such a
database has its own temporary file, which is removed when the
connection is closed.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Backup Vi a=

Conpress Vi

This entry specifies an interim directory into which the database
is copied as part of the backup. To make sure the database
backup is consistengdb places a read lock on the database
while it is copying and compressing it, so the database may be
locked a long time if the destination is slow (for example, flash).

For example, you could speciBackup Vi a=/ dev/ shmem

When backing up, QDB locks the database, copies it to

/ dev/ shmem and then releases the lock. Then, in a second step,
gdb performs the copy and compress operation into the location
specified byBackup Di r =, without needing to lock the

database.

a=TRUE| FALSE

This entry is used in conjunction with tlBackup Vi a= entry

and anyConpr essi on= setting specified for the backup. By
default, theBackup Vi a= makes a raw/uncompressed copy of

the database into the temporary directory, and then performs the
compression at the second step. This works if you have space,
and read-locks the database for the least amount of time, but you
can use less space (at the expense of more time) by compressing
during the first copy. FALSE is the default; if you make this

setting TRUE, then compression is done in the first step.

Sharing connections between clients

February 13, 2009

You can allow multiple clients to share a database connection. This is controlled by

the- C option.

uni que

private

reuse

share

Connection s

These modes are:

Each individual client request gets a new connection. This mode exists
for pre-3.3.1 SQLite libraries, which were not thread-safe in any way.

Each client has a private persistent connection for its session; this
connection is created when the client attaches and destroyed when it
detaches. This mode is the backwards-compatible mode; it is also the
mode forced when not using ti@B_CONN_DFLT_SHAREflag to
gdb_connect()

Like pri vat e, except that connections are returned to a pool rather
than being destroyed, and can be assigned from there to a new client for
use in its duration.

Like uni que, except a connection pool is also used. This mode
multiplexes all clients over a small number of active database
connections.

haring exists because a non-negligable amount of work must be done to

establish a database connection (QDB must allocate memory, access files, attach

Chapter 2 o Starting QDB 15

[J 2009, QNX Software Systems GmbH & Co. KG.

Database recovery

databases and callback functions, configure connection parameters, and so on), and if
clients do not assume any state, then this processing work can be avoided. The QDB
server detects if connection parameters have been changed by a client, and restores
them when the connection moves in or out of the poalrinque, r euse or shar e

modes.

This connection sharing should be safe (unless the client destructively modifies the
environment via SQL, such as by executinDETACH DATABASE statement).

However, for full backwards compatibility, connection sharing can be overridden on
eachqdb_connect()call, and the defaulti bqdb access mode igrivate

If a client is leaving open transactions across multiple caltydio statement()then it
needs a dedicated connectiqm i vat e or r euse or should not set the
QDB_CONN_DFLT_SHAREflag).

The- Roptions controls the recovery actions QDB performs when it encounters a
missing or corrupt database file. The options are:

aut o In this mode, file manipulation is fully automatic and a best-effort is
always made to establish a valid database connection (both at startup and
runtime). Files are backed up individually, and restored individually.

A corrupt or missing database file is restored from the most recent, valid
backup that can be located. If there is no such backup, then a blank
database is recreated from the original schema definition.

manual In this mode, the only action performed is to create a blank database
from the original schema definition if the database file is missing at
startup. Databases are not restored from backups. If the file is corrupt,
the server will not start. If the file is detected, missing, or corrupt at
runtime, no access to that database is permitted, and it will not be
restored or re-created. This mode is intended to allow the creation of a
new system, or to give manual control over error recovery (for example,
to preserve the corrupt database for later analysis).

set In this mode, backups of attached databases are treated as a coherent set,
so an error with any one of the component databases cals® restore
a complete and matching set of all database files. This is useful if
attached databases refer to each other.

Theset masteis the database that attaches other databases (by using the
Aut o At t ach option in the configuration file). Thieackup setontains

the set master and all attached databases thatBaaip Att ached
enabled. The set master can be backed up incrementally and still belong
to the set.

16 Chapter 2 o Starting QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Y

Busy timeout

QNX recommends the following in order to back up and restore your databases as a
coherent set:

e For the master database (the database to which the other databases are attached), in
the QDB configuration file:

- SettheBackup Attached option toTRUE, as follows:
Backup Attached = TRUE
- List the databases you want to attach. For example:

Aut o Attach
Aut o Attach

= me_library
= mre_custom

e Use the- R set option when starting QDB.

e When doing backups, calidb_backup()on the master database with theope
argument set tQDB_ATTACH_DEFAULT.

The two timeout settings are differentiated as follows:

e The-t option sets the default user-level timeout which applies to each
gdb_connect()connection, and can be privately modified with
gdb_setbusytimeout()

e The- T option sets the global internal timeout which applies to database
connections made without a client context. Examples include verifying existing
databases or constructing new databases at startup, and auto-attaching databases.

Handling corrupt databases

Sample script

February 13, 2009

The- X lets you providegdb with a program or script to run when it encounters a
corrupt database. If the program or script appears to run corrgdthywill continue.
The program or script is responsible for stopping and statjifigif a start of stop is
necessary.

Below is a sampledb startup command with theX:

qdb -c /etc/qdb.cfg -X /usr/bin/recover_db. sh

Below is a sample script that can be launchedbly when it encounters a corrupt
database:

recover _db. sh:

#!/ bi n/ sh

#

This script will kill gdb and nme,

Chapter 2 o Starting QDB 17

[J 2009, QNX Software Systems GmbH & Co. KG.

renove the database files
on disk, and restart qdb and nme.

sl ay gdb mre-generic
rm-f /fs/tnpfs/*
rm-f /mt/qdb_backup/*

#
#
#

Call an external program
to launch gqdb and the MVE.
[usr/ bi n/ mre-| aunch

ECF

To kill gdb without killing the script, sen&IGTERM (the default fors| ay). With
this methodydb keeps the thread used pppen()to start the script available and
logs output until the script quits.

If you sendSIGKILL, qdb is killed immediately. The script continues to run but its
output is lost.

Maintenance Commands

18

You can write some maintenance commands td thev/ qdb/ . cont r ol entry (and
read back the result). The current commands supported are (DB&NAMEIs the
name of the database):

backup DBNAME— make a backup of the databasglly backup()
vacuum DBNAME— vacuum the databasqdb_vacuum()

veri fy DBNAME— verify database integrity (like thel ful | command-line
option)

cancel DBNAME— cancel any in-progress backupglp_bkcancel()

Chapter 2 e Starting QDB February 13, 2009

Chapter 3
The QDB Client qdbc

February 13, 2009 Chapter 3 e The QDB Client qdbc 19

[J 2009, QNX Software Systems GmbH & Co. KG.

Synopsis:
gdbc [-a scopé |- B]
[-d databas¢ [-f formaf
[-a] [-S] [-t timeou} [-V] [-v[v...]] [sql
Options:
- a scope Set the scope of operation for th8, - S and- V options. This can be

- d database

-f format

-q
-S

-t timeout

February 13, 2009

one of:

e defaul t — act on attached databases as specified in the
configuration file (honoring the value of tMacuum At t ached,
Backup Attached,andSi ze Attached parameters). This
gives backwards-compatible behavior.

e all — always act on any attached databases, regardless of
configuration file settings.

e none — act only on the connected database itself, and never on
any attached databases.

Perform a backup (the equivalent of calliggb_backup(). The

scope of this operation is determined by the configuration file for the
database specified byl or QDBC_DBNAME, or by the- a option,

if specified.

The database you want to execute the SQL statement or other
operation on. If this isn’t specified, the value of the
QDBC_DBNAME environment variable is used.

Format for the output. If this option isn't specified, the simple format
is used by default. Can be one of:

e si npl e — plain text, including column names, with field data
separated by a pipe charactg) (default)

e htnl — HTML-encoded text

e sgm — SGML-encoded text

e dat a — plain text, without column names, with field data
separated by a tab character

Reset verbosity to quiet mode.

Print the database size information (the equivalent to calling
qdb_getdbsize()for the database specified by or
QDBC_DBNAME. The scope of this operation is determined by
the database configuration file, or the option, if specified.

Set the database connection timeout, in ms.

Chapter 3 e The QDB Client qdbc 21

[J 2009, QNX Software Systems GmbH & Co. KG.

Description

-V Perform a vacuum operation (the equivalent to calling
gdb_vacuum(). The scope of this operation is determined by the
configuration file for the database specified-layor
QDBC_DBNAME, or by the- a option, if specified.

-v[v...] Increase verbosity.

sql An SQL statement you want to run on the specified database. This
statement should be quoted, and end in a semicolon. If no SQL
statement is specifieddbc enters interactive mode and takes input
from the command-line, giving you &80QL prompt. When you are
finished entering SQL statements, press$-C to exit.

The QDB Client utility allows you to execute SQL statements opila database
without having to write code. It also allows you to perform backup, vacuum, and size
query operations. This can be useful when developing QDB applications.

The- B, - S, - Vandsql options are mutually exclusive; you cannot specify more than
one.

The result of each SQL statement is displayed on the standard outgdbbyif the

- g option isn’t set. You can also redirect a file containing SQL statements to QDB, for
example:qdbc < sql . txt. If you enter SQL from a command-line in a terminal,
gdbc enters interactive mode. In this mode, you can enter as many consecutive SQL
statements as you want. Statements entered in interactive mode don’t need to be
enclosed in quotation marks, but should end in a semicolon.

22 Chapter 3 ¢ The QDB Client gdbc February 13, 2009

Chapter 4
QDB Administration

February 13, 2009 Chapter 4 ¢ QDB Administration 23

[J 2009, QNX Software Systems GmbH & Co. KG.

The QDB offers special commands that you can issue to the database to make it easier
to administer. You can use these commands to add new databases, delete old ones,
perform backups, etc.

Backing up and restoring databases

You can back up databases to permanent storage (or any POSIX filesystem that allows
read/write access) in the following ways; by:

e callingqdb_backup()from a client application
e using the- b option toqdbc.

e using the resource manager interface:

echo backup dbname>/dev/ qdb/. control

These methods are affected by options in the QDB configuration file. See the
“Configuration File” section of the Starting QDB chapter for more information.

To restore a database, statib with the- R option set tcaut o. For more information
about this option, see the “Database Recovery” section in the Starting QDB chapter.

You can cancel a database backup in client code by caifitig bkcancel() You can
also cancel a backup operation using the resource manager interface:

echo cancel >/dev/qdb/.control

February 13, 2009 Chapter 4 ¢ QDB Administration 25

Chapter 5
QDB Examples

February 13, 2009 Chapter 5 ¢ QDB Examples 27

[J 2009, QNX Software Systems GmbH & Co. KG.

Your QDB client application should perform these general steps:
1 Connect to a database by calliggb_connect()

2 You can now query the database:

2a Execute a statement on the database by cafjdiy statement()
2b Get the results of the statement (if any) by callgutp_getresult()
2c Use the results by callingdb_cell().

2d Free the result by callingdb_freeresult()

2e Repeat executing statements and use the results, as required.

3 Close the database connection wdttbh _disconnect()

Connecting to the database

Y

Connecting to the database requires that you know the name of the database you want
to connect to, and you need a database handle thgtthelient library links against.

gdb_hdl _t *dbhandle; // The QDB dat abase handl e
dbhandl e = qdb_connect ("/ dev/ gdb/ cust oner db”, 0)
i f (dbhandl e == NULL) {

fprintf(stderr, "Connect failed: %\n", errno);

}

Two threads can share the same database connection, provided they coordinate
between themselves. Alternatively, each thread camdhll connect()and have its
own connection.

Executing a Statement

February 13, 2009

Executing statements against a QDB database requires that you know and follow the
QDB-supported SQL syntax, as described in the QDB SQL reference chapter. You
must, of course, connect to the database before attempting to execute statements
against it. See “Connecting to the database” above.

One example is to run the following query:

int rc;
gdb_hdl _t *dbhandl e;
rc = qdb_statenment (dbhandl e, "SELECT * FROM custoners;");
if (rc == -1) {
char *errnsg;
errnsg = qdb_geterrnmsg(dbhandl e);
fprintf(stderr, "QDB Error: %\n", errnsg);

}

It is important to escape any strings that you pass odio statement() The reason is
that if you pass in the string:

SELECT | ast nane FROM cust oner db WHERE | ast nane=" O Nei | ' ;

Chapter 5 ¢ QDB Examples 29

[J 2009, QNX Software Systems GmbH & Co. KG.

you would get an error, because the string in the WHERE clause would be just 'O’
with trailing garbage characters Neil’. The proper way to run that query is:

SELECT | ast nane FROM cust oner db WHERE | ast nane=" O ' Nei | " ;

The second single quotation mark) (s escaped by the first single quotation mark.

Getting the result of a query

Using aresult

Some queries give results, and others don't. For example, the data reswPDAGIE,

| NSERT, or DELETE statements always contain 0 rows. When runnirSglaeCT
statement, there may or may not be rows that matched your query, so it is always a
good idea to make sure that you have data by checking the return value of
gdb_statement()

This does not mean that you can't catlb_getresult()for statements witld rows in

the data result. In fact, it may be the only way to retrieve the result. If the connection
was opened with th@DB_CONN_STMT_ASYNC flag bit set, themdb_statement()

will return before the statement has been completed. With complex statements this
may mean a delayed error.

To help you debug your application, you can gsé_pri nt nsg(st dout,
result, QDB_FORMAT_SI MPLE) to print the fetched result tetdout()so that you
can visualize your data.

Here’s an example of getting the results of an operation:

gdb_result_t *result;
/1 requires a statenent previously run
result = qdb_getresul t (dbhandl e);

Memory for the results is allocated when the statement is run on the database, so you
must free the result structure or you will have memory leaks. Do this by calling
gdb_freeresult() as shown in the example later in this chapter. Neverfrozgi()

yourself.

A result is a block of memory containing a description of each cell and the cell’'s data.
There are functions that give you easy access to this data:

Function Name Use

gdb_columns() Returns the number of columns

gqdb_rows() Returns the number of rows. An empty result will return O.
qdb_cell_type() Returns the type of data in a ceQDB_INTEGER

QDB_REAL, QDB_TEXT, QDB_BLOB, QDB_NULL).

continued. ..

30 Chapter 5 ¢ QDB Examples February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Function Name Use

gdb_column name() Returns the column name from the database schema

qdb_cell() Returns the cell data asvai d pointer that can be cast to
the correct type

gdb_column index() Gets the column number that matches the passed in name
gdb_cell_length() Returns the length of a cell’s data

gdb_printmsg() Prints the contents of a result, which can be useful for
debugging

Disconnecting from the Server

To disconnect from the server when you no longer need to use it:

qdb_di sconnect (dbhandl e) ;

Example

#i ncl ude <uni std. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>

#i

ncl ude <qdb/ qdb. h>

*

/

Thi s sanpl e program connects to the database and does one | NSERT and one
SELECT.

The dat abase name is assuned to be /dev/qdb/custonerdb
wi th schema:
CREATE TABLE cust oner s(
custonerid | NTEGER PRI MARY KEY AUTO NCREMENT,
firstname TEXT,
| ast name TEXT

b T B T R I

~

)

int main(int argc, char **argv) {
int rc;
qdb_handl e_t hdl
gdb_result_t *res;
char *errnsg;

/'l Connect to the database

hdl = gdb_connect ("/dev/ qdb/ cust omrer db", 0);

if (hdl == NULL){
fprintf(stderr, "Error connecting to database: %\n", strerror(errno));
return EXI T_FAlI LURE

February 13, 2009 Chapter 5 ¢ QDB Examples 31

[J 2009, QNX Software Systems GmbH & Co. KG.

32

}

/1 INSERT a row into the database.
rc = qdb_st at enent (hdl

"I NSERT | NTO custoners(firstnane, |astnanme) VALUES(' Dan’, ' Cardanore’);");
if (rc == -1) {

errmsg = qdb_geterrnsg(hdl);

fprintf(stderr, "Error executing |INSERT statenent: %\n", errnsg);

return EXIT_FAI LURE

/'l SELECT one row fromthe dat abase

/1l This statement conbines the first and | ast nanmes together into their
[l full name.

rc = qdb_stat enent (hdl

"SELECT firstnane || ' ' || lastnane AS full name FROM custoners
LIMT 1;");
if (rc == -1) {

errmsg = qdb_geterrnsg(hdl);
fprintf(stderr, "Error executing SELECT statenent: %\n", errnsg);
return EXI T_FAI LURE

}

res = gqdb_getresult(hdl); // Get the result

if (res == NULL) {
fprintf(stderr, "Error getting result: 9%\n", strerror(errno));
return EXI T_FAI LURE

}

if (gdb_rows(res) == 1) {
printf("Got a custoner’s full nane: %\n", (char *)qdb_cell(res, 0, 0));

}
el se {

printf("No custonmers in the database!\n");
}

/'l Free the result
gdb_freeresult(res);

/1 Disconnect fromthe sever
qdb_di sconnect (hdl);

return EXI T_SUCCESS;

Chapter 5 ¢ QDB Examples February 13, 2009

Chapter 6
Datatypes in QDB

February 13, 2009 Chapter 6 e Datatypes in QDB 33

[J 2009, QNX Software Systems GmbH & Co. KG.

Storage classes

Column affinity

February 13, 2009

Each value stored in a QDB database (or manipulated by the database engine) has one
of the following storage classes:

e NULL — a NULL value.

e | NTEGER— a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes, depending on the
magnitude of the value.

e REAL — a floating-point value, stored as an 8-byte IEEE floating-point number.
e TEXT — atext string, stored using the database encoding (UTF-8).
e BLOB— a blob of data, stored exactly as it was input.

Any column in a database exceptlaRTEGER PRI MARY KEY may be used to store
any type of value. The exception to this rule is described below under “Other Affinity
Modes” as strict affinity mode.

All values supplied to QDB, whether as literals embedded in SQL statements or values
bound to pre-compiled SQL statements are assigned a storage class before the SQL
statement is executed. Under the circumstances described below, the database engine
may convert values between numeric storage clas$&EGER andREAL) andTEXT

during query execution.

Storage classes are initially assigned as follows:

e Values specified as literals as part of SQL statements are assigned storage class
TEXT if they are enclosed by single or double quotdSTEGERif the literal is
specified as an unquoted number with no decimal point or expoREAL, if the
literal is an unquoted number with a decimal point or exponent,Nad if the
value is aNULL. Literals with storage clas3L OB are specified using the€ ABCD
notation.

The storage class of a value that is the result of an SQL scalar operator depends on the
outermost operator of the expression.

In QDB, the type of a value is associated with the value itself, not with the column or
variable in which the value is stored. (This is sometimes catiedifest typing All

other SQL databases engines that we are aware of use the more restrictive system of
static typing where the type is associated with the container, not the value.

In order to maximize compatibility between QDB and other database engines, QDB
supports the concept of “type affinity” on columns. The type affinity of a column is the
recommended type for data stored in that column. The key here is that the type is
recommended, not required. Any column can still store any type of data, in theory. It
is just that some columns, given the choice, will prefer to use one storage class over
another. The preferred storage class for a column is callexdfiitsty.

Each column in an QDB database is assigned one of the following type affinities:

Chapter 6 o Datatypes in QDB 35

[J 2009, QNX Software Systems GmbH & Co. KG.

36

o TEXT

NUMERI C

e | NTEGER
e NONE

A column with TEXT affinity stores all data using the storage clasddls., TEXT or
BLOB. If numerical data is inserted into a column WitEXT affinity, it is converted to
text form before being stored.

A column withNUMERI C affinity may contain values using all five storage classes.
When text data is inserted intoNWMERI C column, an attempt is made to convert it to
an integer or real number before it is stored. If the conversion is successful, then the
value is stored using tHeNTEGER or REAL storage class. If the conversion cannot be
performed, the value is stored using reXT storage class. No attempt is made to
convertNULL or blob values.

A column that uses NTEGER affinity behaves in the same way as a column with
NUMERI C affinity, except that if a real value with no floating point component (or text
value that converts to such) is inserted, it is converted to an integer and stored using
thel NTEGER storage class.

A column with affinity NONE does not prefer one storage class over another. It makes
no attempt to coerce data before it is inserted.

Determination of column affinity

The type affinity of a column is determined by the declared type of the column,
according to the following rules:

1 If the datatype contains the string “INT”, then it is assigmed EGER affinity.

2 If the datatype of the column contains any of the strings “CHAR”, “BLOB”, or
“TEXT”, then that column ha3EXT affinity. Notice that the typ&ARCHAR
contains the string “CHAR” and is thus assigneeKT affinity.

3 If the datatype for a column contains the string “BLOB” or if no datatype is
specified, then the column has affinigNE.

4 Otherwise, the affinity iNUVERI C.

If you create a table using@REATE TABLE table AS SELECT. .. statement, then
all columns have no datatype specified, and they are given no affinity.

Column affinity example

CREATE TABLE t 1(
t TEXT,
nu NUVERI C,
i | NTEGER,
no BLOB

)

Chapter 6 e Datatypes in QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

- Storage classes for the follow ng row
- TEXT, REAL, | NTECER, TEXT
NSERT I NTO t1 VALUES(’'500.0’, ’'500.0', ’'500.0", '500.0");

- Storage classes for the follow ng row
- TEXT, REAL, | NTEGER, REAL
NSERT | NTO t1 VALUES(500.0, 500.0, 500.0, 500.0);

Comparison expressions

February 13, 2009

QDB features the binary comparison operatgrs, <=, >= and! =; | N, an operation
to test for set membership; and the ternary comparison opeBEDNEEN.

The results of a comparison depend on the storage classes of the two values being
compared, according to the following rules:

A value with storage clagsuULL is considered less than any other value (including
another value with storage clasisLL).

An | NTEGER or REAL value is less than anyeXT or BLOB value. When you
compare am NTEGER or REAL to anothell NTEGER or REAL, a numerical
comparison is performed.

A TEXT value is less than BLOB value. When you compare twikeXT values, the
C library functionmemcmp()s used to determine the result.

When you compare twBLOB values, the result is always determined using
memcmp()

QDB may attempt to convert values between the numeric storage clas§EGER
andREAL) andTEXT before performing a comparison. For binary comparisons, this is
done in the cases enumerated below. The term “expression” below refers to any SQL
scalar expression or literal other than a column value.

When a column value is compared to the result of an expression, the affinity of the
column is applied to the result of the expression before the comparison takes place.

When two column values are compared, if one columnIN&aEGER or NUMERIC
affinity and the other does not, theJMERIC affinity is applied to any values with
storage clasTEXT extracted from the noNUMERIC column.

When the results of two expressions are compared, no conversions occur. The
results are compared as they are presented. If a string is compared to a number, the
number will always be less than the string.

In QDB, the expressioa BETWEEN b AND c is equivalentta >= b AND a <=

C

, even if this means that different affinities are applied io each of the

comparisons required to evaluate the expression.

Expressions of the typ@ | N (SELECT b) are handled by the rules
enumerated above for binary comparisons (e.g. in a similar manaektd). For

Chapter 6 e Datatypes in QDB 37

[J 2009, QNX Software Systems GmbH & Co. KG.

example, ifo is a column value and is an expression, then the affinity lofis applied
to a before any comparisons take place.

QDB treats the expressian I N (x, y, z) asequivalentta = z ORa =y OR
a=z.

A comparison example

CREATE TABLE t 1(
a TEXT,
b NUMERI C,
c BLOB

)

-- Storage classes for the foll owi ng row
-- TEXT, REAL, TEXT
I NSERT | NTO t1 VALUES(' 500', ’'500', '500');

-- 60 and 40 are converted to '60" and 40" and val ues are conpared as TEXT.
SELECT a < 60, a < 40 FROM t 1;
1|0

-- Conparisons are nuneric. No conversions are required.
SELECT b < 60, b < 600 FROM t 1;
0|1

-- Both 60 and 600 (storage class NUMERIC) are |ess than ’ 500’
-- (storage class TEXT).

SELECT ¢ < 60, ¢ < 600 FROM t1;

0|0

Operators

All mathematical operators (which is to say, all operators other than the concatenation
operator| |) apply NUMERI C affinity to all operands prior to being carried out. If one

or both operands cannot be convertedt®ERI C, then the result of the operation is
NULL.

For the concatenation operat®gXT affinity is applied to both operands. If either
operand cannot be convertedT&XT (because it iNULL or aBLOB) then the result of
the concatenation iSULL.

Sorting, grouping and compound SELECTs

When values are sorted by @RDER BY clause, values with storage clag¢d L come
first, followed byl NTEGER andREAL values interspersed in numeric order, followed
by TEXT values (usually imnemcmp(prder) and, finallyBLOB values inmemcmp()
order. No storage class conversions occur before the sort.

When grouping values with theROUP BY clause, values with different storage

classes are considered distinct, except fWTEGER andREAL values, which are
considered equal if they are numerically equal. No affinities are applied to any values
as the result of &R0UP BY clause.

38 Chapter 6 o Datatypes in QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Other affinity modes

The compoundELECT operatordUNI ON, | NTERSECT andEXCEPT perform implicit
comparisons between values. Before these comparisons are performed, an affinity may
be applied to each value. The same affinity, if any, is applied to all values that may be
returned in a single column of the compouBEL ECT result set. The affinity applied is

the affinity of the column returned by the left-most compor&gitECTs that has a

column value (and not some other kind of expression) in that position. If for a given
COMPOUNASELECT column, none of the compone®ELECTS return a column value,

no affinity is applied to the values from that column before they are compared.

The above sections describe the operation of the database engine in normal affinity
mode. QDB features two other affinity modes, as follows:

e Strict affinitymode — if a conversion between storage classes is ever required, the
database engine returns an error and the current statement is rolled back.

e No affinitymode — no conversions between storage classes are ever performed.
Comparisons between values of different storage classes (excéTiBGER and
REAL) are always false.

User-defined collation sequences

By default, when QDB compares two text values, the result of the comparison is
determined usingnemcmp()regardless of the encoding of the string. QDB lets you
supply arbitrary comparison functions, known as user-defined collation sequences, to
be used instead ashemcmp()See the chapter Writing User-Defined Functions for

more information.

Aside from the default collation sequenBENARY, implemented usingnemcmp()
QDB features two extra built-in collation sequences intended for testing purposes,
NOCASE andREVERSE:

e Bl NARY — Compare string data usimgemcmp()regardless of text encoding.
e REVERSE — Collate in the reverse order B NARY.

e NOCASE — The same aBI NARY, except the 26 upper-case characters used by the
English language are converted to their lower-case equivalents before the
comparison is performed.

Assigning Collation Sequences from SQL

February 13, 2009

Each column of each table has a default collation type. If a column requires a collation
type other thamBl NARY, you can define the collation type by specifyin@@.LATE
clause as part of theREATE TABLE column definition.

Whenever two text values are compared by QDB, a collation sequence is used to
determine the results of the comparison according to the following rules.

For binary comparison operators, €, >, <, and=), if either operand is a column, then
the default collation type of the column determines the collation sequence to use for

Chapter 6 e Datatypes in QDB 39

[J 2009, QNX Software Systems GmbH & Co. KG.

the comparison. If both operands are columns, then the collation type for the left
operand determines the collation sequence used. If neither operand is a column, then
the BI NARY collation sequence is used.

The expressiorn BETWEEN y and z is equivalenttox =y AND x < z. The
expressiorx | N (SELECT y ...) is handled in the same way as the expression
= y for the purposes of determining the collation sequence to use. The collation
sequence used for expressions of the farmN (y, z ...) isthe default collation
type ofx if x is a column, oBI NARY otherwise.

An ORDER BY clause that is part of 8ELECT statement may be assigned a collation
sequence to be used for the sort operation explicitly. In this case, the explicit collation
sequence is always used. Otherwise, if the expression sorted@D&ER BY clause

is a column, then the default collation type of the column is used to determine sort
order. If the expression is not a column, then B&ARY collation sequence is used.

Collation Sequences Example

The examples below identify the collation sequences that would be used to determine
the results of text comparisons that may be performed by various SQL statements.
Note that a text comparison may not be required, and no collation sequence used, in
the case of numeri&LOB or NULL values.

CREATE TABLE t 1(

a, -- default collation type Bl NARY
b COLLATE BI NARY, -- default collation type Bl NARY
¢ COLLATE REVERSE, -- default collation type REVERSE
d COLLATE NOCASE -- default collation type NOCASE

)

-- Text conparison is performed using the BINARY col | ati on sequence.
SELECT (a = b) FROM t 1;

-- Text conparison is performed using the NOCASE col | ati on sequence.
SELECT (a = d) FROM t1;

-- Text conparison is performed using the BINARY col | ati on sequence.
SELECT (d = a) FROM t 1;

-- Text conparison is perfornmed using the REVERSE col | ati on sequence.
SELECT (' abc’ =c¢) FROMt1;

-- Text conparison is performed using the REVERSE col | ati on sequence.
SELECT (¢ = "abc’) FROM t1;

-- Grouping is perforned using the NOCASE col | ati on sequence
-- (i.e. values "abc’ and 'ABC are placed in the sanme group).
SELECT count (*) GROUP BY d FROM t 1;

-- Grouping is perforned using the BINARY col |l ati on sequence.
SELECT count(*) GROUP BY (d || ') FROMt1;

40 Chapter 6 o Datatypes in QDB February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

-- Sorting is perfornmed using the REVERSE col | ati on sequence.
SELECT * FROM t1 ORDER BY c;

-- Sorting is perfornmed using the BINARY col |l ati on sequence.
SELECT * FROMt1l ORDER BY (c || '');

-- Sorting is perfornmed using the NOCASE col |l ati on sequence.
SELECT * FROMt1l ORDER BY c¢ COLLATE NOCASE;

February 13, 2009 Chapter 6 e Datatypes in QDB 41

Chapter 7
QDB Virtual Machine Opcodes

February 13, 2009 Chapter 7 ¢ QDB Virtual Machine Opcodes 43

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

Each instruction in the virtual machine consists of an opcode and up to three operands
namedPl, P2andP3. P1 may be an arbitrary integelP2 must be a non-negative
integer.P2is always the jump destination in any operation that might cause a jump.
P3is a null-terminated string aMULL . Some operators use all three operands, some
use one or two, and some use none.

The virtual machine begins execution on instruction number 0. Execution continues
until:

1 aHal t instruction is seen, or
2 the program counter becomes one greater than the address of last instruction, or
3 there is an execution error.

When the virtual machine halts, all memory that it allocated is released, and all
database cursors it may have had open are closed. If the execution stopped due to an
error, any pending transactions are terminated, and changes made to the database are
rolled back.

The virtual machine also contains an operand stack of unlimited depth. Many of the
opcodes use operands from the stack. See the individual opcode descriptions for
details.

The virtual machine can have zero or more cursors. Each cursor is a pointer into a
single table or index within the database. There can be multiple cursors pointing at the
same index or table. All cursors operate independently, even cursors pointing to the
same indexes or tables. The only way for the virtual machine to interact with a
database file is through a cursor. Instructions in the virtual machine can create a new
cursor (Open), read data from a cursor (Column), advance the cursor to the next entry
in the table (Next) or index (Nextldx), and many other operations. All cursors are
automatically closed when the virtual machine terminates.

The virtual machine contains an arbitrary number of fixed memaory locations with
addresses beginning at zero and growing upward. Each memory location can hold an
arbitrary string. The memory cells are typically used to hold the result of a scalar
SELECT that is part of a larger expression.

The virtual machine contains a single sorter. The sorter is able to accumulate records,
sort those records, then play the records back in sorted order. The sorter is used to
implement theORDER BY clause of é8ELECT statement.

The virtual machine contains a sindist, which stores a list of integers. This list is

used to hold the row IDs for records of a database table that needs to be modified. The
WHERE clause of aruPDATE or DELETE statement scans through the table and writes

the row ID of every record to be maodified into the list. Then the list is played back and
the table is modified in a separate step.

The virtual machine can contain an arbitrary numbesei Each set holds an
arbitrary number of strings. Sets are used to implemenit thgperator with a constant
right-hand side.

Chapter 7 e« QDB Virtual Machine Opcodes 45

[J 2009, QNX Software Systems GmbH & Co. KG.

The virtual machine can open a single external file for reading. This external read file
is used to implement theOPY command.

Finally, the virtual machine can have a single set of aggregators. An aggregator is a
device used to implement tl@&ROUP BY clause of é8ELECT. An aggregator has one

or more slots that can hold values being extracted by the select. The number of slots is
the same for all aggregators and is defined by the AggReset operation. At any point in
time, a single aggregator is current or “has focus”. There are operations to read or
write to memory slots of the aggregator in focus. There are also operations to change
the focus aggregator and to scan through all aggregators.

Viewing programs generated by QDB

Every SQL statement that QDB interprets results in a program for the virtual machine.
However, if you precede the SQL statement with the keyvixeLAl N, the virtual
machine doesn’t execute the program. Instead, the instructions of the program are
returned like a query result. This feature is useful for debugging and for learning how
the virtual machine operates, and for profiling an SQL statement. The following is an
example of the output from the statem&xPLAI N DELETE FROM t bl 1 WHERE

t wo<20; :

addr opcode pl p2 p3
0 Transacti on 0 0
1 VerifyCookie 219 0
2 Li st Open 0 0
3 Open 0 3 tbl 1l
4 Rewi nd 0 0
5 Next 0 12
6 Col um 0 1
7 I nt eger 20 0
8 Ge 0 5
9 Recno 0 0
10 ListWite 0 0
11 Got o 0 5
12 Cl ose 0 0
13 Li st Rewi nd 0 0
14 OpenWite 0 3
15 Li st Read 0 19
16 MoveTo 0 0
17 Del et e 0 0
18 Got o 0 15
19 Li st Cl ose 0 0
20 Conmi t 0 0

All you have to do is add thEXPLAI Nkeyword to the front of the SQL statement. But
if you use the expl ai n command taydb first, it will set up the output mode to make
the program more easily viewable.

You can put the QDB virtual machine in a mode where it will trace its execution by
writing messages to standard output; and you can use the non-standaRRSQIA,
comments to turn tracing on and off. To turn tracing on, enter:

46 Chapter 7 ¢ QDB Virtual Machine Opcodes February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

The opcodes

February 13, 2009

PRAGVA vdbe trace=on;
You can turn tracing back off by entering a similar statement but changing the value

ontooff.

There are currently 125 opcodes defined by the virtual machine. All currently defined
opcodes are described in the list below.

AbsVal ue

Add

Addl mm

AggFi nal

AggSt ep

And

Aut oCommi t

Bi t And

Treat the top of the stack as a numeric quantity. Replace it with
its absolute value. If the top of the stacNBLL, its value is
unchanged.

Pop the top two elements from the stack, add them together, and
push the result back onto the stack. If either element is a string,
then it is converted to a double using thi®f() function before

the addition. If either operand i$ULL, the result isNULL.

Add the valueP1to whatever is on top of the stack. The result
is always an integer.

To force the top of the stack to be an integer, just add 0.

Execute the finalizer function for an aggregd®d.is the
memory location that is the accumulator for the aggregate.

P2is the number of arguments that the step function takes and
P3is a pointer to the FuncDef for this function. TR

argument is not used by this opcode. It is there only to
disambiguate functions that can take varying numbers of
arguments. Th@3argument is needed only for the degenerate
case where the step function was not previously called.

Execute the step function for an aggregate. The functiorPRas
argumentsP3is a pointer to the FuncDef structure that
specifies the function. Use memory locati®has the
accumulator.

TheP2arguments are popped from the stack.

Pop two values off the stack. Take the logical AND of the two
values and push the resulting boolean value back onto the stack.

Set the database auto-commit flag?tb(1 or 0). If P2is true,

roll back any currently active btree transactions. If there are any
active VMs (apart from this one), then tlhevMm T or

ROLLBACK statement fails.

This instruction causes the VM to halt.

Pop the top two elements from the stack. Convert both elements
to integers. Push back onto the stack the bitwise AND of the
two elements. If either operandN&JLL, the result isNULL.

Chapter 7 ¢ QDB Virtual Machine Opcodes 47

[J 2009, QNX Software Systems GmbH & Co. KG.

48

Bi t Not

Bit O

Bl ob

Cal | back

C ear

Cl ose

Col | Seq

Col umm

Chapter 7 ¢ QDB Virtual Machine Opcodes

Interpret the top of the stack as an value. Replace it with its
ones-complement. If the top of the stackNigLL, its value is
unchanged.

Pop the top two elements from the stack. Convert both elements
to integers. Push back onto the stack the bitwise OR of the two
elements. If either operand MULL, the result iSNULL .

P3 points to a blob of dat®1 bytes long. Push this value onto
the stack. This instruction is not coded directly by the compiler.
Instead, the compiler layer specifies@m HexBl ob opcode,

with the hexadecimal string representation of the bloBas

This opcode is transformed to @®_BI ob the first time it is
executed.

PopP1values off the stack and form them into an array. Then
invoke the callback function using the newly formed array as
the third parameter.

Delete all contents of the database table or index whose root
page in the database file is given By But, unlikeDest r oy,
do not remove the table or index from the database file.

The table being cleared is in the main database fiRRifs 0. If
P2is 1, then the table to be cleared is in the auxiliary database
file that is used to store tables create USDRFATE

TEMPORARY TABLE.

See alsoDest r oy

Close a cursor previously openedRis If P1is not currently
open, this instruction is a no-op.

P3is a pointer to &ol | Seq struct. If the next call to a user
function or aggregate calfglite3GetFuncCollSeq(jhis

collation sequence will be returned. This is used by the built-in
min(), max()andnullif() functions.

Interpret the data that cursBrl points to as a structure built
using theMakeRecor d instruction. (See theakeRecor d

opcode for additional information about the format of the data.)
Push onto the stack the value of theth column contained in

the data. If there are fewer th&®2+1 values in the record, push
aNULL onto the stack.

If the KeyAsDat a opcode has previously executed on this
cursor, then the field might be extracted from the key rather than
the data.

If P1is negative, then the record is stored on the stack rather
than in a table. IP1is -1, the top of the stack is used RAfLis
-2, the next on the stack is used, and so forth. The value pushed

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

Concat

Cont ext Pop

Cont ext Push

Cr eat el ndex

Creat eTabl e

Del et e

is always just a pointer into the record that is stored further
down on the stack. The column value is not copied. The number
of columns in the record is stored on the stack just above the
record itself.

If the column contains fewer tha?2 fields, then push BULL.

Or if P3is of typeP3 MEM, then push thé3value. TheP3

value will be the default value for a column that has been added
using theALTER TABLE ADD COLUWNcommand. IfP3is an
ordinary string, just pushULL. WhenP3is a string, it is

really just a comment describing the value to be pushed, not a
default value.

Look at the firstP1+2 elements of the stack. Append them all
together with the lowest element first. The origiRdh2
elements are popped from the stacRHis 0 and retained iP2
is 1. If any element of the stack MULL, then the result is
NULL.

WhenPL1lis 1, this routine makes a copy of the top stack
element into memory obtained frosgliteMalloc()

Restore the Vdbe context to the state it was in when

Cont ext Push was last executed. The context stores the last
insert row ID, the last statement change count, and the current
statement change count.

Save the current Vdbe context, so that it can be restored by a
Cont ext Pop opcode. The context stores the last insert row ID,
the last statement change count, and the current statement
change count.

Allocate a new index in the main database fil@#is 0 or in
the auxiliary database file R2is 1. Push the page number of
the root page of the new index onto the stack.

Allocate a new table in the main database filB#is O or in the
auxiliary database file iP2is 1. Push the page number for the
root page of the new table onto the stack.

The difference between a table and an index is this: A table
must have a 4-byte integer key and can have arbitrary data. An
index has an arbitrary key but no data.

See alsoCr eat el ndex

Delete the record at which tH&l cursor is currently pointing.

The cursor will be left pointing at either the next or the previous
record in the table. If it is left pointing at the next record, then
the nexiNext instruction will be a no-op. Hence it is OK to
delete a record from within gext loop.

Chapter 7 e« QDB Virtual Machine Opcodes 49

[J 2009, QNX Software Systems GmbH & Co. KG.

50

Dest r oy

Di stinct

Di vi de

Dr opl ndex

Chapter 7 ¢ QDB Virtual Machine Opcodes

If the OPFLAG NCHANGE flag ofP2is set, then the row
change count is incremented (otherwise not).

If P1is a pseudo-table, then this instruction is a no-op.

Delete an entire database table or index whose root page in the
database file is given byl

The table being destroyed is in the main database fi#it 0.

If P2is 1 then the table to be cleared is in the auxiliary database
file that is used to store tables create USIREATE

TEMPORARY TABLE.

If AUTOVACUUM is enabled, then it is possible that another

root page might be moved into the newly deleted root page in
order to keep all root pages contiguous at the beginning of the
database. The former value of the root page that moved — its
value before the move occurred — is pushed onto the stack. If
no page movement was required (because the table being
dropped was already the last one in the database), then a zero is
pushed onto the stack. If AUTOVACUUM is disabled, then a

zero is pushed onto the stack.

See alsod ear

Use the top of the stack as a record created usitkgRecor d.
P1lis a cursor on a table that declared as an index. If that table
contains an entry that matches the top of the stack, then fall
through. If the top of the stack matches no entryil) then

jump toP2.

The cursor is left pointing at the matching entry if it exists. The
record on the top of the stack is not popped.

This instruction is similar ttNot Found except that this
operation does not pop the key from the stack.

The instruction is used to implement tbeSTI NCT operator on
SELECT statements. ThB1table is not a true index but rather a
record of all results that have been produced so far.

See alsoFound, Not Found, | sUni que, Not Exi st's

Pop the top two elements from the stack, divide the first element
(what was on top of the stack) from the second element (the
next on stack), and push the result back onto the stack. If either
element is a string, then it is converted to a double using the
atof() function before the division. Division by zero returns
NULL. If either operand i§NULL, the result isNULL .

Remove the internal (in-memory) data structures that describe
the index name®3in databas®1. This is called after an index
is dropped in order to keep the internal representation of the
schema consistent with what is on disk.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

DropTabl e
DropTri gger
Dup

Eq

Remove the internal (in-memory) data structures that describe
the table name@&3in databasé>1. This opcode is called after a
table is dropped in order to keep the internal representation of
the schema consistent with what is on disk.

Remove the internal (in-memory) data structures that describe
the trigger name@3in databasé1. This is called after a

trigger is dropped in order to keep the internal representation of
the schema consistent with what is on disk.

Make a copy of thé>1th element of the stack and push it to the
top of the stack. The top of the stack is element 0, so the
instructionbDup 0 0 0 will make a copy of the top of the stack.

If the content of théP1th element is a dynamically allocated
string, then a new copy of that string is mad@#is 0. If P2is
note0, then just a pointer to the string is copied.

Also see théPul | instruction.

Pop the top two elements from the stack. If they are equal, then
jump to instructionP2. Otherwise, continue to the next
instruction.

If the 0x100 bit of P1is true and either operand N&JLL, then
take the jump. If th@x100 bit of P1is clear, then fall through
if either operand isNULL.

If the 0x200 bit of P1is set and either operandN8JLL, then
both operands are converted to integers prior to comparison.
NULL operands are converted to zero and nai-L operands
are converted to 1. Thus, for example, with200 set,
NULL==NULL is true, whereas it would normally b&ULL.
Similarly, NULL==123 is false wherdx200 is set, but isNULL
when the0x 200 bit of P1is clear.

The least significant byte ¢f1 (mask Oxff) must be an affinity
character - 'n’,'t’, i’ or '0’ - or 0x00. An attempt is made to
coerce both values according to the affinity before the
comparison is made. If the byte is 0x00, then numeric affinity is

used.

Once any conversions have taken place, and neither value is
NULL, the values are compared. If both values are blobs, or
both are text, thememcmp(js used to determine the results of
the comparison. If both values are numeric, then a numeric
comparison is used. If the two values are of different types, then
they are unequal.

If P2is zero, do not jump. Instead, push an integer 1 onto the
stack if the jump would have been takemn,a00 if not. Push a
NULL if either operand waslULL.

Chapter 7 ¢ QDB Virtual Machine Opcodes 51

[J 2009, QNX Software Systems GmbH & Co. KG.

52

Expire

Fi f oRead

Fifowite

For cel nt

Found

Functi on

Chapter 7 ¢ QDB Virtual Machine Opcodes

If P3is notNULL, it is a pointer to a collating sequence (a
Col | Seq structure) that defines how to compare text.

Cause precompiled statements to expire. An expired statement
fails with an error code of QDBSCHEMA if it is ever executed
(via sqlite3 _step().

If P1is 0, then all SQL statements expire PL is non-zero,
then only the currently executing statement is affected.

Attempt to read a single integer from the FIFO and push it onto
the stack. If the FIFO is empty push nothing but instead jump to
P2

Write the integer on the top of the stack into the FIFO.

Convert the top of the stack into an integer. If the current top of
the stack is not numeric (meaning that iS@dLL or a string that
does not look like an integer or floating-point number), then pop
the stack and jump tB2. If the top of the stack is numeric, then
convert it into the least integer that is greater than or equal to its
current value ifP1is O, or to the least integer that is strictly
greater than its current valueRflLis 1.

The top of the stack holds a blob constructedvBkeRecor d.
P1lis an index. If an entry that matches the top of the stack
exists inP1, then jump taP2. If the top of the stack does not
match any entry ifP1then fall through. Thé1 cursor is left
pointing at the matching entry if it exists. The blob is popped
off the top of the stack.

This instruction is used to implement th& operator where the
left-hand side is &ELECT statementP1is not a true index but
is instead a temporary index that holds the results of the
SELECT statement. This instruction just checks to see if the
left-hand side of thé N operator (stored on the top of the stack)
exists in the result of thBELECT statement.

See alsoDi sti nct, Not Found, | sUni que, Not Exi st's

Invoke a user functionR3is a pointer to a Function structure
that defines the function) witR2 arguments taken from the
stack. Pop all arguments from the stack and push back the
result.

P1lis a 32-bit bitmask indicating whether or not each argument
to the function was determined to be constant at compile time.
If the first argument was constant, then bit (Rifis set. This is
used to determine whether metadata associated with a user
function argument using theglite3_set auxdata()API may be
safely retained until the next invocation of this opcode.

See alsoAggSt ep andAggFi nal

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Cosub

Got o

Hal t

HexBl ob

| dxDel et e

| dxGE

February 13, 2009

This opcode works just like thieg opcode except that the jump

is taken if the second element down on the stack is greater than
or equal to the top of the stack. See twgopcode for additional
information.

Push the current address plus 1 onto the return address stack,
then jump to addred32.

The return address stack is of limited depth. If too many
OP_Gosub operations occur without intervenir@_Ret ur ns,
then the return address stack will fill up and processing will
abort with a fatal error.

An unconditional jump to addre$®. The next instruction
executed will be the one at ind€&2 from the beginning of the
program.

This works just like theeq opcode except that the jump is taken
if the second element down on the stack is greater than the top
of the stack. See theq opcode for additional information.

Exit immediately. All open cursors, FIFOs, etc. are closed
automatically.

P1lis the result code returned Isglite3 exec() sqlite3 reset()

or sqlite3 finalize() For a normal halt, this should lgbB_OK

(0). For errors, it can be some other valueR ffis non-zero,
thenP2 will determine whether or not to rollback the current
transaction. Do not roll back P2is OE_Fail. Do the rollback

if P2is OE_Rollback. IfP2is OE_Abort, then back out all
changes that have occurred during this execution of the VDBE,
but do not rollback the transaction.

If P3is not null, then it is an error message string.

There is an impliedHal t 0 0 0 instruction inserted at the
very end of every program. So a jump past the last instruction of
the program is the same as executiizg t .

P3is an UTF-8 SQL hex encoding of a blob. The blob is
pushed onto the VDBE stack.

The first time this instruction executes, in transforms itself into
aBl ob opcode with a binary blob &23.

The top of the stack is an index key built using ¥ekel dxKey
opcode. This opcode removes that entry from the index.

The top of the stack is an index entry that omits the row ID.
Compare the top of stack against the index #hts currently
pointing to. Ignore the row ID on thelindex.

Chapter 7 ¢ QDB Virtual Machine Opcodes 53

[J 2009, QNX Software Systems GmbH & Co. KG.

54

| dxGT

| dxIl nsert

| dxI sNul

[dXLT

| dxRowi d

Chapter 7 ¢ QDB Virtual Machine Opcodes

If the P1index entry is greater than or equal to the top of the
stack then jump t®2. Otherwise fall through to the next
instruction. In either case, the stack is popped once.

If P3is the" +" string (or any other noNULL string), then the
index taken from the top of the stack is temporarily increased by
an epsilon prior to the comparison. This makes the opcode work
like | dxGT except that if the key from the stack is a prefix of the
key in the cursor, the result is false whereas it would be true
with | dxGT.

The top of the stack is an index entry that omits the ROWID.
Compare the top of stack against the index #hts currently
pointing to. Ignore the ROWID on thel index.

The top of the stack might have fewer columns tiRdn

If the P1index entry is greater than the top of the stack then
jump toP2. Otherwise fall through to the next instruction. In
either case, the stack is popped once.

The top of the stack holds an SQL index key made using the
Makel dxKey instruction. This opcode writes that key into the
index P1. Data for the entry is nil.

This instruction works only for indexes. The equivalent
instruction for tables i©®P_I nsert .

The top of the stack contains an index entry such as might be
generated by thshkel dxKey opcode. This routine looks at the
first P1fields of that key. If any of the fird®1 fields areNULL,
then a jump is made to addreB&. Otherwise it falls straight
through.

The index entry is always popped from the stack.

The top of the stack is an index entry that omits the ROWID.
Compare the top of stack against the index #hts currently
pointing to. Ignore the ROWID on thel index.

If the P1index entry is less than the top of the stack then jump
to P2. Otherwise fall through to the next instruction. In either
case, the stack is popped once.

If P3is the" +" string (or any other non-NULL string), then the
index taken from the top of the stack is temporarily increased by
an epsilon prior to the comparison. This makes the opcode work
like | dxLE.

Push onto the stack an integer which is the last entry in the
record at the end of the index key pointed to by cuRbr This
integer should be the row ID of the table entry to which this
index entry points.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

See alsoRowi d.

| f Pop a single boolean from the stack. If the boolean popped is
true, then jump to p2. Otherwise continue to the next
instruction. An integer is false if zero, and true otherwise. A
string is false if it has zero length, and true otherwise.

If the value popped of the stackN&JLL, then take the jump if
Plis true, and fall through iP1is false.

I f MenrPos If the value of memory celPlis 1 or greater, jump t®2. This
opcode assumes that memory ¢&llholds an integer value.

| f Not Pop a single boolean from the stack. If the boolean popped is
false, then jump to P2. Otherwise continue to the next
instruction. An integer is false if zero, and true otherwise. A
string is false if it has zero length, and true otherwise.

If the value popped of the stackN&JLL, then take the jump if
P1lis true and fall through iP1is false.

I nsert Write an entry into the table of curs®1. A new entry is
created if it doesn't already exist or the data for an existing entry
is overwritten. The data is the value on the top of the stack. The
key is the next value down on the stack. The key must be an
integer. The stack is popped twice by this instruction.

If the OPFLAG_NCHANGE flag of P2is set, then the row
change count is incremented (otherwise not). If the
OPFLAG_LASTROWID flag of P2is set, then row ID is stored
for subsequent return by tisglite3 last insert_row ID()
function (otherwise it's unmodified).

This instruction works only on tables. The equivalent
instruction for indexes iP_1 dxI nsert .

I nt 64 P3is a string representation of an integer. Convert that integer
to a 64-bit value and push it onto the stack.

I nt eger Push the 32-bit integer valul onto the stack.

IntegrityCk Do an analysis of the currently open database. Push onto the
stack the text of an error message describing any problems. If
there are no errors, pusto& onto the stack.

The root page numbers of all tables in the database are integer
values on the stack. This opcode pulls as many integers as it can
off of the stack and uses those numbers as the root pages.

If P2is not zero, the check is done on the auxiliary database
file, not the main database file.

This opcode is used for testing purposes only.

February 13, 2009 Chapter 7 e« QDB Virtual Machine Opcodes 55

[J 2009, QNX Software Systems GmbH & Co. KG.

I sNul | If any of the topabgqP1) values on the stack aMULL, then
jump toP2. Pop the stackltimes ifPLlis greater than 0. IP1
is less than 0, leave the stack unchanged.

I sUni que The top of the stack is an integer record number. Call this
record numbeR. The next on the stack is an index key created
usingMakel dxKey. Call it K. This instruction pop®f from the
stack but it leave& unchanged.

Plis anindex. So it has no data and its key consists of a record
generated by ORPMakeRecord where the last field is the row ID
of the entry that the index refers to.

This instruction asks if there is an entry®i where the field
matche but the row ID is different fronR. If there is no such
entry, then there is an immediate jumpRa. If any entry does
exist where the index string matchiésout the record number is
not R, then the record number for that entry is pushed onto the
stack and control falls through to the next instruction.

See alsoDi st i nct, Not Found, Not Exi st s, Found

Last The next use of thRowi d, Col umm, or Next instruction forP1
will refer to the last entry in the database table or index. If the
table or index is empty anBl2 is greater than 0O, then jump
immediately toP2. If P2is 0 or if the table or index is not
empty, fall through to the following instruction.

Le This works just like theEq opcode, except that the jump is taken
if the second element down on the stack is less than or equal to
the top of the stack. See titg opcode for additional
information.

LoadAnal ysi s Read thesqgl i t e_st at 1 table for databasB1 and load the
content of that table into the internal index hash table. This will
cause the analysis to be used when preparing all subsequent
queries.

Lt This works just like theeq opcode, except that the jump is taken
if the second element down on the stack is less than the top of
the stack. See theg opcode for additional information.

MakeRecor d Convert the tombqP1) entries of the stack into a single entry
suitable for use as a data record in a database table or as a key in
an index. The details of the format are irrelevant as long as the
OP_Col umm opcode can decode the record later and as long as
the sglite3VdbeRecordCompard()nction correctly compares
two encoded records. Refer to source code comments for the
details of the record format.

The original stack entries are popped from the staéklifs
greater than 0 but remain on the stacRfifis less than 0.

56 Chapter 7 ¢« QDB Virtual Machine Opcodes February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

MakeRecor dl

Mem ncr

Mem nt

Menload

Memviax

MenmVbve

MenmNul |

If P2is not zero and one or more of the entries lHté L, then
jump to the address given IB2. This feature can be used to
skip a uniqueness test on indexes.

P3 may be a string that iB1 characters long. The nth character
of the string indicates the column affinity that should be used
for the nth field of the index key (i.e. the first characte P&f
corresponds to the lowest element on the stack).

The mapping from character to affinity is as follows:

e n=NUMERIC
e i =INTEGER
o t =TEXT
e 0=NONE

If P3is NULL, then all index fields have the affinity NONE.

This opcode works justP_MakeRecor d except that it reads an
extra integer from the stack (thus reading a totadlo$(P1+1)
entries) and appends that extra integer to the end of the record
as a variant. This results in an index key.

Increment the integer valued memory dellby 1. If P2is not
zero and the result after the increment is exactly 1, then jump to
P2

This instruction throws an error if the memory cell is not
initially an integer.
Store the integer valuBlin memory cellP2.

Push a copy of the value in memory locatiBth onto the stack.

If the value is a string, then the value pushed is a pointer to the
string that is stored in the memory location. If the memory
location is subsequently changed (using ®@mStore), then

the value pushed onto the stack will change too.

Set the value of memory cafll to the maximum of its current
value and the value on the top of the stack. The stack is
unchanged.

This instruction throws an error if the memory cell is not
initially an integer.

Move the content of memory cdi2to memory cellP1. Any
prior content ofPlis erased. Memory ceR2is left containing
aNULL.

Store aNULL in memory cellP1.

Chapter 7 ¢ QDB Virtual Machine Opcodes 57

[J 2009, QNX Software Systems GmbH & Co. KG.

58

Mentst or e

MoveGe

MoveG

MovelLe

Movelt

Mul tiply

Must Bel nt

Chapter 7 ¢ QDB Virtual Machine Opcodes

Write the top of the stack into memory locati&i. P1should
be a small integer, since space is allocated for all memory
locations between 0 arfll inclusive.

After the data is stored in the memory location, the stack is
popped once iP2is 1. If P2is zero, then the original data
remains on the stack.

Pop the top of the stack and use its value as a key. Reposition
cursorP1so that it points to the smallest entry that is greater
than or equal to the key that was popped from the stack. If there
are no records greater than or equal to the key,Rhid not

zero, then jump t¢2.

See alsoFound, Not Found, Di sti nct, MoveLt, MoveG& ,
Movele.

Pop the top of the stack and use its value as a key. Reposition
cursorP1so that it points to the smallest entry that is greater
than the key from the stack. If there are no records greater than
the key, andP2is not zero, then jump t82

See alsoFound, Not Found, Di sti nct, MbveLt, MoveGe,
Movele.

Pop the top of the stack and use its value as a key. Reposition
cursorP1so that it points to the largest entry that is less than or
equal to the key that was popped from the stack. If there are no
records less than or equal to the key, &&is not zero, then

jump toP2.

See alsoFound, Not Found, Di sti nct, MoveG , MoveGe,
Movelt .

Pop the top of the stack and use its value as a key. Reposition
cursorP1so that it points to the largest entry that is less than the
key from the stack. If there are no records less than the key, and
P2is not zero, then jump tB2

See alsoFound, Not Found, Di sti nct, MoveG , MoveGe,
Movele.

Pop the top two elements from the stack, multiply them
together, and push the result back onto the stack. If either
element is a string, then it is converted to a double using the
atof() function before the multiplication. If either operand is
NULL, the result isNULL.

Force the top of the stack to be an integer. If the top of the stack
is not an integer and cannot be converted into an integer with
out data loss, then jump immediatelyR@, or if P2is 0, raise a
QDB_MISMATCH exception.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Negati ve

NewRowi d

Next

Noop

Not

Not Exi st's

February 13, 2009

If the top of the stack is not an integer aR@is not zero andP1
is 1, then the stack is popped. In all other cases, the depth of the
stack is unchanged.

This works just like theeq opcode, except that the jump is taken
if the operands from the stack are not equal. Se&thepcode
for additional information.

Treat the top of the stack as a numeric quantity. Replace it with
its additive inverse. If the top of the stackN&JLL, its value is
unchanged.

Get a new integer record numbeowid) used as the key to a
table. The record number is not previously used as a key in the
database table that curdet points to. The new record number
is pushed onto the stack.

If P2is greater than 0, thelA2is a memory cell that holds the
largest previously generated record number. No new record
numbers are allowed to be less than this value. When this value
reaches its maximum,@DB_FULL error is generated. THe2
memory cell is updated with the generated record number. This
P2 mechanism is used to help implement the
AUTOINCREMENT feature.

Advance cursoP1so that it points to the next key/data pair in
its table or index. If there are no more key/data pairs, then fall
through to the following instruction; if the cursor advance was
successful, jump immediately ®2.

See alsoPr ev

Do nothing. This instruction is often useful as a jump
destination.

Interpret the top of the stack as a boolean value, and replace it
with its complement. If the top of the stackN&JLL, its value is
unchanged.

Use the top of the stack as a integer key. If a record with that
key does not exist in table &1, then jump toP2. If the record
does exist, then fall through. The cursor is left pointing to the
record if it exists. The integer key is popped from the stack.

The difference between this operation aud Found is that
this operation assumes the key is an integer andRh a
table whereaslot Found assumes key is a blob constructed
from MakeRecor d andP1is an index.

See alsoDi st i nct, Found, Not Found, | sUni que.

Chapter 7 ¢ QDB Virtual Machine Opcodes 59

[J 2009, QNX Software Systems GmbH & Co. KG.

60

Not Found

Not Nul |

Nul |

Nul | Row

OpenPseudo

OpenRead

Chapter 7 ¢ QDB Virtual Machine Opcodes

The top of the stack holds a blob constructed by MakeRecord.
Plis an index. If no entry exists iR1that matches the blob,
then jump toP1. If an entry does existing, fall through. The
cursor is left pointing to the entry that matches. The blob is
popped from the stack.

The difference between this operation @nidt i nct is that
Di sti nct does not pop the key from the stack.

See alsoDi sti nct, Found, Not Exi st's, | sUni que.

Jump toP2if the topP1values on the stack are all ngULL.
Pop the stack iP1times if Plis greater than zero. Plis less
than zero, then leave the stack unchanged.

Push aNULL onto the stack.

Move the cursoP1to a null row. AnyOP_Col unm operations
that occur while the cursor is on the null row will always push a
NULL onto the stack.

Open a new cursor that points to a fake table that contains a
single row of data. Any attempt to write a second row of data
causes the first row to be deleted. All data is deleted when the
cursor is closed.

A pseudo-table created by this opcode is useful for holding the
NEW or OLD tables in a trigger.

Open a read-only cursor for the database table whose root page
is P2in a database file. The database file is determined by an
integer from the top of the stack. A 0 means the main database
and a 1 means the database used for temporary tables. Give the
new cursor an identifier d1. TheP1values need not be
contiguous, but alP1 values should be small integers. Itis an
error forP1to be negative.

If P2is 0, then take the root page number from the next of the
stack.

There will be a read lock on the database whenever there is an
open cursor. If the database was unlocked prior to this
instruction then a read lock is acquired as part of this

instruction. A read lock allows other processes to read the
database but prohibits any other process from modifying the
database. The read lock is released when all cursors are closed.
If this instruction attempts to get a read lock but fails, the script
terminates with &BUSY error code.

TheP3value is a pointer to &ey| nf o structure that defines
the content and collating sequence of inde3is NULL for
cursors that are not pointing to indexes.

See als@penWite.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

OpenVirtua

penWite

Par seSchema

Pop

Prev

Pul

Push

Open a new cursdPlto a transient or virtual table. The cursor
is always opened for reading and writing, even if the main
database is read-only. The transient or virtual table is deleted
automatically when the cursor is closed.

P2is the number of columns in the virtual table. The cursor
points to a BTree table P3is 0, and to a BTree index R3is
not 0. If P3is notNULL, it points to akey| nf o structure that
defines the format of keys in the index.

Open a read/write cursor namBd on the table or index whose
root page iP2. If P2is 0, then take the root page number from
the stack.

TheP3value is a pointer to &ey| nf o structure that defines
the content and collating sequence of indeX@3is NULL for
cursors that are not pointing to indexes.

This instruction works just lik&penRead, except that it opens
the cursor in read/write mode. For a given table, there can be
one or more read-only cursors or a single read/write cursor, but
not both.

See als@penRead.

Pop two values off the stack. Take the logical OR of the two
values and push the resulting boolean value back onto the stack.

Read and parse all entries from the QIMBASTER table of
databasé1 that match the\HERE clauseP3.

This opcode invokes the parser to create a new virtual machine,
then runs the new virtual machine. It is thus a reentrant opcode.

PopP1elements off the top of the stack and discarded.

Back up cursoP1 so that it points to the previous key/data pair
in its table or index. If there is no previous key/value pair, then
fall through to the following instruction. If the cursor backup
was successful, then jump immediatelyR2

Remove thé”1th element from its current location on the stack
and push it back on top of the stack. The top of the stack is
element O, s®ull 0 0 Oisano-opPull 1 0 0swaps the
top two elements of the stack.

See also th&up instruction.

Overwrite the value of th@1th element down on the stacRl
is 0 is the top of the stack) with the value of the top of the stack.
Then pop the top of the stack.

Chapter 7 ¢ QDB Virtual Machine Opcodes 61

[J 2009, QNX Software Systems GmbH & Co. KG.

ReadCooki e Read cookie numbd?2 from databas®1 and push it onto the
stack. A value oP2==0 is the schema version, whiR2==1 is
the database formaR2==2 is the recommended pager cache
size, and so forthP1==0 is the main database file aRd==1 is
the database file used to store temporary tables.

There must be a read-lock on the database (either a transaction
must be started or there must be an open cursor) before
executing this instruction.

Real The string valud?3is converted to a real and pushed on to the
stack.
Renai nder Pop the top two elements from the stack, divide the first (the

element that was on top of the stack) from the second (the
element that was next on the stack) and push the remainder after
division onto the stack. If either element is a string, then it is
converted to a double using tha&of() function before the

division. Division by zero returnsiULL . If either operand is

NULL, the result isNULL.

Reset Count This opcode resets the VM's internal change counter to B1If
is true, then the value of the change counter is copied to the
database handle change counter (returned by subsequent calls to
sqlite3_changes() before it is reset. This is used by trigger
programs.

Ret urn Jump immediately to the next instruction after the last
unreturnedoP_Gosub. If an OP_Return has occurred for all
OP_Gosub, then processing aborts with a fatal error.

Rewi nd The next use of th®owi d, Col umm, or Next instruction forP1
will refer to the first entry in the database table or index. If the
table or index is empty ane2>0, then jump immediately tB2.

If P2is O or if the table or index is not empty, fall through to the
following instruction.

RowDat a Push onto the stack the complete row data for cuPdbrThere
is no interpretation of the data. It is just copied onto the stack
exactly as it is found in the database file.

If the cursor is not pointing to a valid row,NULL is pushed
onto the stack.

Rowi d Push onto the stack an integer which is the key of the table entry
thatP1lis currently pointing to.

RowKey Push onto the stack the complete row key for cubrThere
is no interpretation of the key. It is just copied onto the stack
exactly as it is found in the database file.

62 Chapter 7 ¢ QDB Virtual Machine Opcodes February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Sequence

Set Cooki e

Set NuntCol umms

ShiftlLeft

Shi ft Ri ght

Sor t

St at enent

February 13, 2009

If the cursor is not pointing to a valid row,NULL is pushed
onto the stack.

Push onto the stack an integer which is the next available
sequence number for cursBi. The sequence number on the
cursor is incremented after the push.

Write the top of the stack into cookie numide2 of database
P1 A value of P2==0 indicates the schema version, while a
value ofP2==1 indicates the database formB2==2 is the
recommended pager cache size, and so f&t1r=0 is the main
database file anB1==1 is the database file used to store
temporary tables.

A transaction must be started before executing this opcode.

Before theOP_Col unm opcode can be executed on a cursor, this
opcode must be called to set the number of fields in the table.

This opcode sets the number of columns for cuisbto P2.

If OP_KeyAsDat ais to be applied to cursd?l, it must be
executed before this op-code.

Pop the top two elements from the stack, convert both elements
to integers, and push back onto the stack the second element
shifted left byN bits, whereN is the top element on the stack. If
either operand iSIULL, the result iSNULL.

Pop the top two elements from the stack, convert both elements
to integers, andush back onto the stack the second element
shifted right byN bits, whereN is the top element on the stack.

If either operand iNULL, the result isNULL .

This opcode does exactly the same thingasRewi nd, except
that it increments an undocumented global variable used for
testing.

Sorting is accomplished by writing records into a sorting index,
then rewinding that index and playing it back from beginning to
end. We use theP_Sort opcode instead afP_Rewi nd to do

the rewinding so that the global variable will be incremented
and regression tests can determine whether or not the optimizer
is correctly optimizing out sorts.

Begin an individual statement transaction which is part of a
larger BEGIN..COMMIT transaction. This opcode is needed so
that the statement can be rolled back after an error without
having to roll back the entire transaction. The statement
transaction will automatically commit when the VDBE halts.

Chapter 7 ¢ QDB Virtual Machine Opcodes 63

[J 2009, QNX Software Systems GmbH & Co. KG.

64

String

String8

Subt ract

ToBl ob

Tol nt

ToNuneri c

ToText

Transacti on

Chapter 7 ¢ QDB Virtual Machine Opcodes

The statement is begun on the database file with iflexT he
main database file has an index of 0, and the file used for
temporary tables has an index of 1.

The string valué’3is pushed onto the stack.®3is 0, then a
NULL is pushed onto the stacR3is assumed to be a
null-terminated string encoded with the database native
encoding.

P3 points to a null-terminated UTF-8 string. This opcode is
transformed into al@P_St ri ng before it is executed for the
first time.

Pop the top two elements from the stack, subtract the first (the
element that was on top of the stack) from the second (the
element that was next on the stack) and push the result back
onto the stack. If either element is a string, then it is converted
to a double using thatof() function before the subtraction. If
either operand isIULL, the result iSNULL.

Force the value on the top of the stack to be a BLOB. If the
value is numeric, convert it to a string first. Strings are simply
reinterpreted as blobs with no change to the underlying data.

A NULL value is not changed by this routine; it remaiigLL .

Force the value on the top of the stack to be an integer. If the
value is currently a real number, drop its fractional part. If the
value is text or blob, try to convert it to an integer using the
equivalent ofatoi() and store 0 if no such conversion is possible.

A NULL value is not changed by this routine. It remaiigLL .

Force the value on the top of the stack to be numeric (either an
integer or a floating-point number. If the value is text or blob,
try to convert it to an using the equivalentaibi() or atof() and
store 0 if no such conversion is possible.

A NULL value is not changed by this routine. It remaiigLL.

Force the value on the top of the stack to be text. If the value is
numeric, convert it to an using the equivalenipointf(). Blob
values are unchanged and are afterwards simply interpreted as
text.

A NULL value is not changed by this routine. It remaiigLL.
Begin a transaction. The transaction ends whénrani t or
Rol | back opcode is encountered. Depending on@hie

CONFLI CT setting, the transaction might also be rolled back if
an error is encountered.

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

P1lis the index of the database file on which the transaction is
started. Index 0 is the main database file and index 1 is the file
used for temporary tables.

If P2is non-zero, then a write transaction is started. A
RESERVED lock is obtained on the database file when a write
transaction is started. No other process can start another write
transaction while this transaction is underway. Starting a write
transaction also creates a rollback journal. A write transaction
must be started before any changes can be made to the database.
If P2is 2 or greater, then an EXCLUSIVE lock is also obtained

on the file.

If P2is zero, then a read lock is obtained on the database file.

Vacuum Vacuum the entire database. This opcode will cause other
virtual machines to be created and run. It may not be called
from within a transaction.

Vari abl e Push the value of variablel onto the stack. A variable is an
unknown in the original SQL string as handed to
sqlite3_compile() Any occurrence of the character in the
original SQL is considered a variable. Variables in the SQL
string are number from left to right beginning with 1. The
values of variables are set using gwgdite3 bind() API.

Veri f yCooki e Check the value of global database parameter number 0O (the
schema version) and make sure it is equda2P1is the
database number, which is 0 for the main database file, 1 for the
file holding temporary tables, and some higher number for
auxiliary databases.

The cookie changes its value whenever the database schema
changes. This operation is used to detect when the cookie has
changed and the current process needs to reread the schema.

Either a transaction needs to have been started OPa@pen
needs to be executed (to establish a read lock) before this
opcode is invoked.

February 13, 2009 Chapter 7 e« QDB Virtual Machine Opcodes 65

Chapter 8
Writing User-Defined Functions

February 13, 2009 Chapter 8 e Writing User-Defined Functions 67

[J 2009, QNX Software Systems GmbH & Co. KG.

There are two types of user-defined functions you can write for QDB to use: functions
that transform some data (callsdalar or aggregatefunctions), and functions that

order data (calledollation functions). The first type is invoked using tBELECT SQL
statement, while the second by using @@ LATE clause. An example of a built in

scalar function isABS() while BINARY ()is an example of a built in collation function.

To define functions that QDB can use, you need to compile them into a DLL. You then
tell QDB to load the DLL by setting théol | at i on andFunct i on options in the
QDB configuration file for each required function.

User scalar/aggregate functions

These are specified in the configuration file with Buact i on = tag@library.so
option, wherdibrary.sois the name of a DLL containing your code (this can be an
absolute path or a filename within th® LIBRARY _PATH search) andagis the
name of thest ruct qdb_f unct i on entry describing the function. This is set up as
follows:

static void nyfunc(sqlite3 context *context, int narg, sqlite3 value **val ue)

{
}

struct qdb_function ftag = { "func", SQ.I TE UTF8, 1, NULL, nyfunc, NULL, NULL };

February 13, 2009

The tag value in this casefis ag, the function name as visible to SQLfianc, and
the function called isnyfunc() which can retrieve the 4th field (heKtJLL) as its
sqlite3 user data().

Thef t ag was used to clarify the example. You would probably use the rfame
here so it was the same as the SQL name.

There can be multiple functions defined (in the same or different DLLS), but each must
have aFunct i on=entry in the configuration file for the database it is associated with,
and each must havesar uct qdb_f uncti on with a unique name describing it.

Theqdb_funct i on structure has these members:

struct qdb_function {

char *narme;
i nt encodi ng;
i nt nar g;
voi d *arg;
voi d (*func)(struct sqlite3 context *, int, struct Mem **);
voi d (*step)(struct sqlite3 context *, int, struct Mem **);
voi d (*final)(struct sqglite3 context *);
b
name The name used for this function in SQL statements. This is

limited to 255 bytes, exclusive of the zero-terminator, and it can't
contain any special tokens, or start with a digit. Any attempt to

Chapter 8 e Writing User-Defined Functions 69

[J 2009, QNX Software Systems GmbH & Co. KG.

encoding

narg

arg

fung step final

User collation routines

create a function with an invalid name will result in an
SQLITE_ERROR error.

The character encoding of strings passed to your function. Can be
one of:

e SQLITE UTF8
e SQLITE UTF16

e SQLITE UTF16BE
e SQLITE UTF16LE

The number of arguments that the function or aggregate takes. If
this argument is -1, then the function or aggregate may take any
number of arguments. The maximum number of arguments to a
new SQL function is 127. A number larger than 127 for the third
argument results in aBQLITE_ERRORerror.

An arbitrary pointer. The function implementations can gain
access to this pointer using tbglite_user _data() API.

Pointers to your function or aggregate. A scalar function requires
an implementation of thiunccallback only;NULL pointers

should be passed as thepandfinal arguments. An aggregate
function requires an implementation stepandfinal, andNULL
should be passed fdunc. Specifying an inconsistent set of
callback values, such afancand afinal, or anstepbut nofinal,
results in arSQLITE_ERRORreturn.

Collation routines can be used to order results froBERECT statement. You can
provide your own routine, and tedldb to use it by providing th&€OLLATE keyword to
the ORDER BY clause.

These routines are specified in the configuration file withciid at i on =
tag@library.sooption, wherdibrary.sois the name of a DLL object containing your
code (this can be an absolute path or a filename withi.ibeL IBRARY _PATH
search) andag is the name of thet ruct qdb_col | ati on entry describing the
collation. This is set up as follows:

static int nysort(void *arg, int

{
}

return(0);

1, const void *sl1, int |12, const void *s2)

struct qdb_collation ctag = { "nosort", SQ.I TE UTF8, NULL, nysort, NULL };

The tag value in this case ds ag, the collation name as visible to SQL will be
nosort, and the function called isiysort() which is passed in the 3rd field (here

70 Chapter 8 o Writing User-Defined Functions February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

NULL) as itsarg argument (refer to SQLite docs anlite3 create collation for more
detail).

Q Thect ag was used to clarify the example. You would probably use the narser t
here so it was the same as the SQL name.

There can be multiple collation sequences defined (in the same or different DLLS), but
each must have @l | at i on=entry in the configuration file for the database it is
associated with, and each must hawa auct qgdb_col | ati on of a uniqgue name
describing it. This replaces the old mechanism of an array of

qdb_col I nodul e_I i st _t always namednit_col | _|ist.

Theqdb_col | ati on structure has these members:

struct qdb_collation {

char *narme;
i nt encodi ng;
voi d *arg;
i nt (*compare) (void *, int, const void *, int, const void *);
i nt (*setup)(void *, const void *, int, char **);
b
name The name used for this function in SQL statements. This is limited to

255 bytes, exclusive of the zero-terminator, and it can’t contain any
special tokens, or start with a digit. Any attempt to create a function
with an invalid name will result in an SQLITEERROR error.

encoding The character encoding of strings passed to your function. Can be one
of:

e SQLITE_UTF8
e SQLITE_UTF16

e SQLITE UTF16BE
e SQLITE_UTF16LE

arg An arbitrary pointer to user data that is passed as the first argument to
your function each time it's invoked. The function implementations can
gain access to this pointer using talite_user data() API.

compare A pointer to your collation function.

setup A pointer to a setup function to allow dynamic configuration of sort
order at runtime. See below.

The setupfunction takes this form:

int (*setup)(void *arg, const void *data int nbytes char **errmsg;

The parameters of the setup function are:

February 13, 2009 Chapter 8 e Writing User-Defined Functions 71

[J 2009, QNX Software Systems GmbH & Co. KG.

voi d *arg The context pointer. This is the same as#ngto thecompare
function, and is passed in from tlaeg element of the
gdb_col I ati on structure.

const voi d *data
int nbytes

The configuration data, used to configure the sort. When invoked
from startup, this ilNULL and0. When invoked at runtime, it is

the data provided to thgdb_collation() function. QDB does not
interpret the format in any way; the DLL must cooperate with the
caller ofgdb_collation() to exchange data of a known format.

char ** errmsg A pointer to an error message string that is available to
gdb_geterrmsg(displayed on failure (actually, from startup
QDB will fail it, from runtime qdb_collation() will fail and this
string will be available to it agdb_geterrmsg()

The function should return a POSPEf{rno, or EOK if it succeeds.

If a collation entry has a non-NULEetupentry, then this is invoked at startup and
passedNULL for dataand 0 fornbytes which it can use as a hint to go into some
default configuration. Then, whenever you agb_collation(), the setup function is
invoked with new data.

If a collation has no dynamic configuration, then it can us&JjaL setup entry in the
struct qdb_col | ation,and it can’t be dynamically configured.

Example

Here is an example of a table-driven collation algorithm, which uses the data pointer
arg to say what table to use. The DLL would have the following entries exported from
it:

uca_t _en_US

_ - b
uca_t _fr_FR_

{..
{ ... b

int UCAsort(void *arg, int |1, const void *s1, int |2, const void *s2) { }

struct gqdb_collation en_US = {
"en_US", SQLITE_UTF8, & en_US , UCAsort, NULL };

struct gqdb_collation fr_FR = {
"fr_FR', SQ.ITE_UTF8, & fr_FR_, UCAsort, NULL };

Note that both collations call theCASort()routine, but they pass in different data
pointers & en_US_vs& fr_FR), where those are tables inside the DLL that tell it
how to sort in English or French. This is passed as the first argument to the function,
arg.

You would install these to QDB in the configuration file as:

[DB]
Collation = en_US@usr/lib/libgdb_uca. so
Collation = fr_FR@usr/Ilib/libqgdb_uca. so

72 Chapter 8 o Writing User-Defined Functions February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

SQLite C/C++ API

This is an abridged version of the C/C++ APl documentation for SQLite, which covers
just the functions you might call in user-defined functions. For the full API
documentation, see the SQLite websitesm. sql i t e. or g).

When consulting SQLite documentation, ensure that it corresponds to the SQLite
library version that QDB is using.

sqlite3_result_*

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

sglite3 result_blob(sqglite3 context*, const void*, int n, void(*)(void*));
sglite3 result_double(sqglite3 context*, double);

sglite3 result_error(sqlite3 context*, const char*, int);

sqlite3 result_errorl6(sqlite3 context*, const void*, int);

sqglite3 result_int(sqglite3 context*, int);

sqlite3 result_int64(sqlite3 context*, long long int);

sglite3 result _null(sqglite3 _context*);

sglite3 result _text(sqglite3 context*, const char*, int n, void(*)(void*));
sqlite3 result _text16(sqglite3 context*, const void*, int n, void(*)(void*));
sqlite3 result_textl6be(sqlite3 context*, const void*, int n, void(*)(void*));
sqlite3 result_textl16le(sqlite3 context*, const void*, int n, void(*)(void*));
sglite3 result_value(sqglite3 context*, sqlite3 val ue*);

User-defined functions invoke these routines in order to set their return value. The
sqlite3 result value()routine returns an exact copy of one of the arguments to the
function.

Your user-defined function should pass as the first argumentoiiet e3_cont ext *
that was passed to it by QDB.

sqlite3_value_*

const void *sqlite3 value_bl ob(sqglite3 val ue*);

int sqlite3_value_bytes(sqglite3 val ue*);

int sqlite3_value_bytesl6(sqglite3 value*);

doubl e sqglite3 val ue_doubl e(sqglite3 val ue*);

int sqlite3 value_ int(sqlite3 value*);

long long int sqlite3_value_int64(sqlite3 val ue*);
const unsigned char *sqlite3 value_ text(sqglite3 val ue*);
const void *sqlite3 value_text16(sqlite3 val ue*);
const void *sqlite3 val ue textl6be(sqlite3 value*);
const void *sqlite3 value text16le(sqlite3 value*);
int sqlite3 value type(sqlite3 value*);

This group of routines returns information about arguments to a user-defined function.
User-defined function implementations use these routines to access their arguments.

Thesqlite3 value type()routine returns one of:
e SQLITE_INTEGER

e SQLITE_FLOAT

February 13, 2009 Chapter 8 e Writing User-Defined Functions 73

[J 2009, QNX Software Systems GmbH & Co. KG.

e SQLITE_TEXT
e SQLITE BLOB

e SQLITE_NULL

If the result is a BLOB, then theglite3 value _blob() routine returns the number of
bytes in that BLOB. No type conversions occur. If the result is a string (or a number
since a number can be converted into a string), swite3 value bytes()converts the
value into a UTF-8 string and returns the number of bytes in the resulting string. The
value returned does not include th@00 terminator at the end of the string. The

sqlite3 value_bytes16()youtine converts the value into a UTF-16 encoding and
returns the number of bytes (not characters) in the resulting string\ 000

terminator is not included in this count.

These routines attempt to convert the value where appropriate. For example, if the
internal representation is FLOAT, and a text result is requestaihtf() is used
internally to do the conversion automatically. The following table details the
conversions that are applied:

Internal Type Requested Type Conversion

NULL | NTEGER Resultis 0

NULL FLOAT Resultis 0.0

NULL TEXT Result isSNULL pointer

NULL BLOB Result isNULL pointer

| NTEGER FLOAT Convert from integer to float

| NTEGER TEXT ASCII rendering of the integer
| NTEGER BLOB Same as for NTEGERto TEXT
FLOAT | NTEGER Convert from float to integer
FLOAT TEXT ASCII rendering of the float
FLOAT BLOB Same a$LOAT to TEXT

TEXT | NTEGER Useatoi()

TEXT FLOAT Useatof()

TEXT BLOB No change

BLOB | NTEGER Convert toTEXT, then useatoi()
BLOB FLOAT Convert toTEXT, then usetof()
BLOB TEXT Add a\ 000 terminator if needed

74 Chapter 8 o Writing User-Defined Functions February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

sqglite3 user _data
void *sqglite3 user_data(sqlite3 _context*);

Thearg member to theydb_f unct i on struct used to register user functions is
available to the implementation of the function using this call.

February 13, 2009 Chapter 8 e Writing User-Defined Functions 75

Appendix A
QDB Client API Reference

February 13, 2009 Appendix: A ¢ QDB Client AP| Reference 77

[J 2009, QNX Software Systems GmbH & Co. KG.

February 13, 2009

These functions handle operations that directly involve the QDB. Using these
functions, your client application can:

attach to a database session
set database properties
create and execute SQL statements

inspect the results SELECT queries

Appendix: A e QDB Client AP Reference

79

g d b_ backu p () 0 2009, QNX Software Systems GmbH & Co. KG.
Start a database backup

Synopsis:
#i ncl ude <qdb/ qdb. h>
i nt gqdb_backup(qdb_hdt _t *db,
i nt scope);
Arguments:
db A pointer to the database handle.
scope The scope of the backup. Possible values are:
e QDB_ATTACH_DEFAULT — Act on attached databases as specified in
the configuration file (honouring the value of ti@cuum At t ached,
Backup Attached,andSi ze Attached parameters. This gives
backwards-compatable behavior.
e QDB_ATTACH_ALWAYS — Always act on any attached databases,
regardless of configuration file settings.
e QDB_ATTACH_NEVER— Act only on the connected database itself,
and never on any attached databses.
Library:
gdb
Description:
This function performs a backup on the connected databdisand optionally any
attached databases, depending orsttepeargument. Backups are controlled in the
configuration file, via th&ackup Di r = andConpr essi on=options. For more
information about these options, see the Configuration File section of the chapter
Starting QDB.
A client can cancel a backup operation by callaab _bkcancel() If a backup is
cancelled (either by a client or via the QDB resource manager interface), the call to
gdb_backup()fails and returns 1, with errno set toEINTR.
Returns:

>0 Success.

-1 An error occurred€drrnois set).

Classification:
ONX Neutrino

80 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_ backu P ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_bkcancel()

February 13, 2009 Appendix: A e« QDB Client API Reference 81

g d b_ bkcancel () 0 2009, QNX Software Systems GmbH & Co. KG.
Cancel a database backup

Synopsis:
#i ncl ude <qdb/ qdb. h>
i nt gqdb_bkcancel (qdb_hdl _t *hd|,
i nt *nactive) ;
Arguments:
hdl A pointer to the database handle.
nactive A pointer to a location where the function stores the number of backup
operations that were aborted. You can use this if you want to know if a
backup was interrupted and needs to be rescheduled, or sétuttoif
you don't need this information.
Library:
gdb
Description:
This function cancels all active backup operations for any databases on the QDB
server associated with the specifiedl handle.
Returns:

>0 Success.

-1 An error occurred€rrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_backup()

82 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_Cel | ()
Return a cell's data

Synopsis:
#i ncl ude <qdb/ qdb. h>
void * qdb_cell (qdb_result_t *res
i nt row,
int col);
Arguments:
res A pointer to a result structure to check.
row The row number of the cell, where the first row i 0.
col The column number of the cell, where the first column is 0.
Library:
qdb
Description:
This function returns the data from one cell from a database query result. The returned
pointer points to the beginning of the data. You must cast the pointer to the appropriate
data type. For example:
uint64_t storage_type = *(uint64_t*)qgdb_cell(res, 0, 0);
Returns:

A pointer A pointer to the beginning of the cell’s data.

NULL An error occurredédrrno is set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

February 13, 2009 Appendix: A e« QDB Client AP| Reference 83

g d b_Cel I () [2009, ONX Software Systems GmbH & Co. KG.

See also:
gdb_cell_length() gdb_cell type()

84 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_Cel |_| eng th ()
Return the length of a cell’'s data

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gdb_cell length(gqdb_result t *res
i nt row,
int col);
Arguments:
res A pointer to a result structure to check.
row The row number of the cell.
col The column number of the cell.
Library:
qdb
Description:
This function returns the length of a specified cell in a database query result. This is
useful for datatypes that are variable-length, sucQ@B_TEXT andQDB_BLOB.
Q For QDB_TEXT, this function does not count the terminating character.
Returns:

>-1 The length of the specified cell’s data, in bytes.

-1 An error occurreddrrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

February 13, 2009 Appendix: A e« QDB Client API Reference 85

g d b_Cel I_l eng th () [0 2009, ONX Software Systems GmbH & Co. KG.

See also:
gdb_cell(), qdb_cell type()

86 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_Cel I_typ e()
Return a cell’'s datatype

Synopsis:
#i ncl ude <qdb/ qdb. h>

int gdb_cell _type(qdb_result_t *res
i nt row,
int col);

Arguments:

res A pointer to a result structure to check.

row The row number of the data cell.

co The column number of the data cell.

Library:
qdb

Description:

This function returns the type of the specified cell, which you can use to cast the cell
data to the proper C datatype. The datatypes that can be returned are defined in
<qdb/ gqdb. h>. They are:

Return Type ANSI C Type VariableLength
QDB_UNSUPPORTED NULL No
QDB_INTEGER int64_t No
QDB_REAL doubl e No
QDB_TEXT char * Yes
QDB_BLOB void * Yes
QDB_NULL NULL No

If the data can have variable length, then you should check its length by calling
gdb_cell_length() The text typeQDB_TEXT (char *) is always null-terminated.

Returns:
>-1 The datatype of the specified cell.

-1 An error occurred€rrmois set).

February 13, 2009 Appendix: A e« QDB Client AP| Reference 87

g d b_Cel I_typ e() [0 2009, ONX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:
qdb_cell(), qdb_cell_length()

88 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_CO [lation O

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

February 13, 2009

Change the runtime configuration of user-defined collation sequences

#i ncl ude <qdb/ qdb. h>

int gdb_collation(qdb_hdl _t *db,

voi d *data
i nt nbytes
i nt reindex);
db A pointer to the database handle.
data A pointer to arbitrary configuration data used by the user-defined

collation library.
nbytes The length ofdata, in bytes.

reindex A flag to indicate if QDB should reindex any database indexes that would
be affected by changing the collation. If any indexes exist that have a
COLLATE component, then these must be regenerated to reflect the
potentially new sorting order.

gdb

This function is used to configure special user-defined collation sequences attached to
the database, defined Iyl | at i on= entries in the configuration file. Treetup()

function of each entry is invoked with the specifigataandnbytes and any error

raised by that function is returned to the client. Otherwise, the collation routine is
expected to use the data in a proprietary manner to configure itself to a new sort order.
The collation routine and the client must both know what format this configuration

data is in. You might consider use strings as a simple self-documenting extensible
format (e.g.getsubopt(style).

0 Success.

-1 An error occurredérro s set).

ONX Neutrino

Appendix: A e« QDB Client AP| Reference 89

g d b_CO [lation () 0 2009, QNX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_query()

90 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_CO lum n_i ndex ()

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

See also:

February 13, 2009

Find a column by name

#i ncl ude <qdb/ qdb. h>

int gdb_col um_index(qdb_result_t *result
const char *name);

result A pointer to a result structure to check.

name The name of the column to get the index number for.

gqdb

This function returns the index for specified column naname

>-1 The index of the specified column

-1 An error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

gdb_column_name() qdb_columns()

Appendix: A e« QDB Client API Reference 91

g d b_CO lum Nn_nam e() [2009, QNX Software Systems GmbH & Co. KG.
Return a column’s name

Synopsis:

#i ncl ude <qdb/ qdb. h>

char * qdb_col umm_nane(qdb_result _t *res

int col);

Arguments:

res A pointer to a result structure to check.

col The index of the column name to return.
Library:

qdb
Description:

This function returns the name of a specified column inctidxas defined in a

database schema when the table was created.
Returns:

A pointer A pointer to the specified column’s name.

NULL An error occurreddrrnois set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

gdb_column index() qdb_columns()

92 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_CO lumns O
Return the number of columns in a result

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gqdb_colums(qdb _result _t *reg;
Arguments:
res A pointer a result structure to check.
Library:
gdb
Description:
This function returns the number of columns in the result structsdf your query
matches 0 rows, you can still have a value greater than O for the number of columns.
You should usedb_rows()to determine if the results are empty.
Returns:

>-1 The number of columns in the result set.

-1 An error occurred€rrois set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

gdb_column index() qdb_column name()

February 13, 2009 Appendix: A e« QDB Client API Reference 93

g d b_CO nn eCtO 0 2009, QNX Software Systems GmbH & Co. KG.
Connect to a database

Synopsis:
#i ncl ude <qdb/ qdb. h>

gdb_hdl _t *qdb_connect (const char *dbname
int flags);

Arguments:

dbname The database device name (for exampbiev/ qdb/ cust oner db).

flags Flags which can be used to control attributes of the connection. This
argument can be, or a combination of:

e QDB_CONN_DFLT_SHARE— Use the default database connection
share mode (as given to th€ command line option tqdb). Without
this flag, a private connection is forced.

e QDB_CONN_NONBLOCKING — If this bit is set,qdb_statement()
fails and returns immediately (settimgrno to EBUSY) if the database
file is locked. By defaultqdb_statement(Jvaits for at least the busy
timeout period (set usingdb_setbusytimeout))if the database is
locked, before failing and returning.

Setting this bit also makes subsequent callgdb_connect()
non-blocking (as if the T commandline option wag).

e QDB_CONN_STMT_ASYNC — Execute statements asynchronously.
In this modegdb_statement(ynay return before the statement has
completed execution against the database. See “Using asynchronous
mode” below.

Library:
gqdb

Description:

This function connects to the database specifiedtnjame and returns a pointer to
the database connection. You need to call this function for every database, or for
concurrent access to one database.

Two threads can share the same database connection, provided they coordinate
between themselves. Alternatively, each thread camdhll connect()and have its
own connection.

You should disconnect all connections with a calfjtth _disconnect(Wwhen you're
finished using them.

94 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_CO nn eCt()

Using asynchronous mode

Returns:

Classification:

See also:

February 13, 2009

By default, QDB completes execution of statements against a database before
returning fromgdb_statement() However, you can connect to QDB using
asynchronous mode by setting fQpB_CONN_STMT_ASYNC in flags

While some errors (such as syntax errors) can be caught bgdoretatement()
returns in this mode, others, such as database constraint violations, may not be
generated until the statement is completed. These errors are available only to a
subsequengidb_getresult()call.

The advantage of asynchronous operation is that it allows parallelism between the
client application and the database engine, especially in cases where the client will
later retrieve the statement result anyway (for exaniie ECT statements). The

danger of asynchronous operation is that the client must be aware that the statement
may not necessarily have completed or indicated all errors, and must be coded to call
gdb_getresult()to retrieve any errors.

The mode you should use depends on the type of operation you are doing. If itis
primarily SELECT statements, then you can use asynchronous mode and let the
database engine run, since you are calling back in anyway for the row/results. If you
are primarily doing database maintenance (thatNSERT, UPDATE, andDELETE
statements), then you probably want synchronous statement execution so you can just
use one API call.

A valid pointer to an opaque database connectiatb(hdl _t), NULL if an error
occurred €rrnois set).

ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

gdb_disconnect()qdb_setbusytimeout(db_statement()

Appendix: A e« QDB Client API Reference 95

g d b_d ata_S ou rce() 0 2009, QNX Software Systems GmbH & Co. KG.

Extract the data source for a specific database

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gqdb_data source(qdb_hdl _t *db,
char *buffer,
i nt buffer_length) ;
Arguments:
db A pointer to the database handle.
buffer A buffer to hold the resulting source path information.
buffer_length The length ofbuffer.
Library:
qdb
Description:
This function provides a path to the source used to initialize the database. This source
may be one of several paths, depending on the state of the specified database when
qdb is started and the database initialized:
e |If the database is empty, the string will be empty.
e If the database is created with a schema only, the string will be the path to the
schema file used to create the database.
¢ |If the database is created with a schema and initialized with a data schema, then the
string will be a colon delimited list cdchemadata schemgidata schemaz]
¢ |If the database is created from an existing database that is not corrupted (and not a
backup database), then the string will be the path to that database which will be the
same as the Filename entry.
e |If the database is created from a backup database, then the string will be the path to
the restoring database from one of the Backup Dir entries.
Returns:
>0 Success.
-1 An error occurred€rrnois set).

96 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_d at a sou rce()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_connect()

February 13, 2009 Appendix: A e« QDB Client API Reference 97

g d b_d isconn eCtO 0 2009, QNX Software Systems GmbH & Co. KG.
Disconnect from a database

Synopsis:
#i ncl ude <qdb/ qdb. h>
i nt gqdb_di sconnect(qdb_hdt _t *hdl);
Arguments:
hdl A pointer to the database handle to disconnect from.
Library:
qdb
Description:
This function disconnects from a database connected to previousjgiibyonnect()
You should disconnect from all connections when you have finished with them.
Returns:

>0 Success.

-1 An error occurredédrrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:
gdb_connect()

98 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_freeres u Ito
Free the result of an SQL statement

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gdb_freeresult(qdb result_t *reg;
Arguments:
res A pointer a result structure to free.
Library:
gdb
Description:
Results returned fromgdb_getresult()need to be freed using this function when
you're finished using them.
Returns:

0 Success.

-1 An error occurredédrrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_getresult()

February 13, 2009 Appendix: A e« QDB Client API Reference 99

gdb_getdbsize()

[J 2009, QNX Software Systems GmbH & Co. KG.

Return the size of a database

#i ncl ude <qdb/ qdb. h>

i nt gqdb_getdbsize(qdb_hdt t * hdl,

Synopsis:
Arguments:
hdl
scope
page size
total_pages
free_pages
Library:
gqdb
Description:

i nt scope

ui nt 32_t * page size
uint 32_t *total pages
uint32_t *free_pages) ;

A pointer to the database handle.

Describes the scope of the operation. See the description ettpe
argument taqdb_backup()for more information.

A pointer to a location where the function stores the size (in
kilobytes) of a page in the database file.

A pointer to a location where the function stores the number of pages
in the database file.

A pointer to a location where the function stores the number of pages
that aren’t being used to store data.

This function fills in arguments with information about the size (in kilobytes) of the
database file associated with the database hdntilld he size of the database on the
filesystem igpage size x total_pages

If you vacuum the databasedb gets rid of the free pages so that the total pages goes
down, free pages goes to 0, and the database file size becomes smaller. For more
information, see th#¥ ACUUMSQL commandgdb_vacuum()function, and the

aut o_vacuumsection of the PRAGMA command.

For a database to be included in the size count for a database han@dezthe
At t ached option for that database file must be seTRUE in the QDB configuration

file.

100 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_g etdbsi Ze()

Returns:

>0 Success.
-1 An error occurredérro s set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_vacuum() PRAGMA, VACUUM

February 13, 2009 Appendix: A e QDB Client APl Reference 101

g d b_g eterrms g () 0 2009, QNX Software Systems GmbH & Co. KG.
Return last error

Synopsis:
#i ncl ude <qdb/ qdb. h>
const char * qdb_geterrnsg(qgdb_hdl t *hdl);
Arguments:
hdl A pointer to the database handle.
Library:
gdb
Description:
This function returns a pointer to a string containing an error message from the server
for the most recent call to:
e (db_statement()
e (qdb_getresult()
e qdb_getoption()
e (qdb _setoption()
e (qdb_busytimeout()
e qdb vacuum()
e (qdb_backup()
e (db_getdbsize()
You typically call this function after one of the above functions fails. If the error
occurred within the SQL library, the returned string is an SQLite error message. If the
error occurred in the QDB system, the returned string is a P@&ix message.
Returns:

A pointer to string if there is an error message, or a pointer to an empty string if there
is no error.

Classification:
ONX Neutrino

102 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_g eterrms g ()

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

gdb_backup() gdb_getdbsize()qdb_getoption() gdb_getresult() qdb_setoption()
gdb_statement()gdb_vacuum()

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 103

g d b_g eto pt| on () 0 2009, QNX Software Systems GmbH & Co. KG.
Return the value for a database session option

Synopsis:

#i ncl ude <qdb/ qdb. h>

int gqdb_getoption(qdb_hdt _t *hdl,

i nt option);

Arguments:

hdl A pointer to the database handle.

option The option you'd like to query. Segdb_setoption()for a list of database

options.

Library:

qdb
Description:

This function returns the value of tlogptionfor the databashkdl.
Returns:

=0 The value of the option passed, eitleef‘off”) or 1 (“on”).

-1 The specified option isn’'t supportedr(nois set).

Classification:
ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:
gdb_setoption()

104 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_g etresu It()

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

February 13, 2009

Return the result of an SQL statement

#i ncl ude <qdb/ qdb. h>

gdb_result _t* qdb_getresult(qdb_hdt t *hdl);

hdl A pointer to the database handle

gdb

After running aSELECT statement on the database, you can retrieve its result using
this function. All rows that matched the query are returned into one result, which is
returned as gdb_r esul t _t structure. You can get further information about the
result using these functions:

e qdb cell()

e qdb_cell_length()

e (qdb_column index()
e (db _column name()
e (qdb_columns()

e qdb_printmsg()

e (qdb_rows()

The result needs to be freed by calligdb_freeresult()once you've finished using it.

A pointer to the query result, ®ULL if an error occurreddrrno is set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

Appendix: A ¢ QDB Client APl Reference 105

g d b_g etresu It() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:

qgdb_cell(), gdb_cell length() gdb_column index() gdb_column name()
gdb_columns() gdb_printmsg() qdb_rows()

106 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_g ettran SStateo

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

February 13, 2009

Return the size of a database

#i ncl ude <qdb/ qdb. h>

int gdb_gettransstate(qdb_hdl t *hdl);

hdl A pointer to the database handle.

gdb

This function returns the connection state for the current QDB connection. If the
connection is in an SQL transaction, this function returns 1, and O if it the connection
is notan SQL transaction. It returns -1 if there’s an SQL error (you can use
gdb_geterrmsg(to get the error string).

You can use this function to determine how to clean up after an SQL error, for
example when you execute several commands including a transaction and need to
determine which statement casued the error.

=0 There is no SQL transaction in progress.
>1 An SQL transaction is in progress.

-1 An SQL error occurredgrnois set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

Appendix: A ¢ QDB Client API Reference 107

g d b_g ettran SState() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:
gdb_geterrmsg()

108 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_l as t_l n Sert_rOWi d ()

Synopsis:

Arguments:

Library:

Description:

Returns:

February 13, 2009

Return the last inserted row primary key

#i ncl ude <qdb/ qdb. h>

uint64 t gdb_last _insert _row d(qdb_hdt t *hdl
gdb_result _t *result);

hdl A pointer to the database handle. You can pagélid. if you provide
result andQDB_OPTION LAST_INSERT_ROWID option has been set by
gdb_setoption()(it's on by default).

result A pointer to a result set you want to query. If you paisi L, the function
queries theydb server connectiohdl for the last executed
gdb_statement()

qdb

Each entry in a QDB table has a unique integer key called the row ID. The row ID is
always available as an undeclared column naR@tVID, OID, or _ROWID . If the
table has a column of typ®ITEGER PRIMARY KEY, then that column is another an
alias for therowid.

This function returns the row ID of the lasNSERT. It first looks inresult (if the
QDB_OPTION_LAST_INSERT_ROWID option has been set lmdbh _setoption(),
returning the information for the statement that produced the resuésuiitis NULL,
or QDB_OPTION_LAST_INSERT _ROWID is off, the function queries the database
handlehdl and returns the information about the last executed statement.

If this function returns 0, checirrno to make sure that it iEOK, indicating that no
rows were inserted (you should stno to 0 before calling this function if you want
to distinguish between an error addows). If errnois set, then there was an error
with the request.

If an | NSERT occurs within a trigger, then the rowid of the inserted row is returned by
this function as long as the trigger is running. But once the trigger terminates, the
value returned by this routine reverts to the last value inserted before the trigger fired.

>0 The integer primary key of the last row inserted

0 An error occurreddrrnois set), or no rows were inserted.

Appendix: A ¢ QDB Client APl Reference 109

g d b_l aSt_i ns ert_ rowid () 0 2009, QNX Software Systems GmbH & Co. KG.

Classification:
ONX Neutrino

Safety
Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_setoption() qdb_statement()

110 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_m pr in tf()

Synopsis:

Arguments:

Library:

Description:

February 13, 2009

Print formatted output to a new string

#i ncl ude <qdb/ qdb. h>

char * qdb_nprintf(const char* fmt ...);

fmt A pointer to a formatting string to process. The formatting string determines
what additional arguments you need to provide. For more information, see
printf() in the NeutrinoLibrary Reference

qdb

This function is a variant ofprintf() from the standard C library. The resulting string
is written into memory obtained fromalloc(), so there is never a possibility of buffer
overflow. This function also implements some additional formatting options that are
useful for constructing SQL statements.

Theqdb_statement(function also allows you to format strings in this way, and
doesn’t require that you remember to free the resulting string. Howedbrmprintf()
may be useful for building queries from multiple strings.

You should callfree()to free the strings returned by this function.

All the usualprintf() formatting options apply. In addition, there i$4q option. The

% option works like¥%s: it substitutes a null-terminated string from the argument list.
But %g also doubles every’ character (every escaped single quotatiom)is

designed for use inside a string literal. By doubling evwerycharacter, it escapes that
character and allows it to be inserted into the string.

For example, suppose some string variable contains text as follows:

char *zText = "It’s a happy day!";
You can use this text in an SQL statement as follows:

gdb_nprintf(db, "I NSERT INTO table VALUES(' %’)",
zText);

Because theg format string is used, the' character ireTextis escaped, and the SQL
generated is as follows:

I NSERT | NTO tabl el VALUES('It’’'s a happy day!’)

This is correct. Had you usex instead ofrg, the generated SQL would have looked
like this:

Appendix: A ¢ QDB Client APl Reference 111

gdb_mprintf()

] 2009, QNX Software Systems GmbH & Co. KG.

Returns:

Classification:

See also:

I NSERT | NTO tabl el VALUES('It’s a happy day!’);

This second example is an SQL syntax error. As a general rule, you should always use
9%g instead ofs when inserting text into a string literal.

Thev®Q option works like¥g except that it also adds single quotes around the outside
of the total string. Or, if the parameter in the argument listhNUAL pointer,%Q
substitutes the textNULL" (without single quotes) in place of th& option. So, for
example, one could say:

char *zSQL = sqlite3 nprintf ("I NSERT I NTO table VALUES(%)) ", zText);
sqlite3_exec(db, zSQ., 0, 0, 0);
sqlite3 free(zSQ);

The code above will render a correct SQL statement ire8@Lvariable even if the
ZTextvariable is aNULL pointer.

An escaped string Success.

NULL An error occurreddrrnois set).

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

gdb_snprintf(), gdb_vmprintf(), printf() in the NeutrinoLibrary Reference

112 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_ param eters O
Get or set database connection parameters

Synopsis:
#i ncl ude <qdb/ qdb. h>
int qdb_paraneters(qgdb_hdl _t *db,
i nt mask
i nt bits);
Arguments:
db A pointer to the database handle.
mask A bitmask of the bits you want to set or unset.
bits The bits you want to set. If a bit is imaskbut not inbits, it's knocked
down.
Library:
qdb
Description:
This function queries or modifies the database connection parameters. You can set or
unset theQDB_CONN_BLOCK_FOREVERandQDB_CONN_STMT_ASYNC
parameters (see the description of tlagsargument passed tglb_connect()for a
description of these flags). You can’'t change @@B_CONN_DFLT_SHAREflag. The
function returns the value of the old flags, so they can be temporarily changed and
restored.
Returns:

> 1 The value of the old flags.

-1 An error occurred.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 113

g d b_p arameters () [2009, QNX Software Systems GmbH & Co. KG.

See also:
gdb_connect()

114 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_ P rintms g 0

Synopsis:

Arguments:

Library:

Description:

Returns:

Errors:

Classification:

February 13, 2009

Print data from a query result

#i ncl ude <qdb/ qdb. h>

int qdb_printmsg(FlLE *file,

file
result

format

gdb

qdb_result _t *result
int format);

A file handle where the function can send the results.
The query result you want to print.

The format you want the results in. Can be one of:

e QDB_FORMAT_SIMPLE— minimal formatting.

e QDB_FORMAT_HTML — HTML formatting, suitable for viewing in a
web browser.

e QDB_FORMAT_COLUMN — column formatting, so that results appear
under column names.

This function prints the results of an SGELECT query on a QDB database. You
must specify a standard file stream, sucliagout .

>0

-1

EINVAL

Success.

An error occurred€drrnois set).

Invalid format specified

ONX Neutrino

Appendix: A ¢ QDB Client APl Reference 115

g d b_p rintms g () [0 2009, ONX Software Systems GmbH & Co. KG.

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_mprintf()

116 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_q u ery()
Perform a database query

Synopsis:
#i ncl ude <qdb/ qdb. h>
gdb_result _t *qgdb_query(
qdb_hdl _t *db,
i nt size hint,
const char *fmt, ...);
Arguments:
db A pointer to the database handle.
size hint An estimate (in bytes) of how much memory to initially allocate to
receive the database result. Specifying a value of 0 will use a default
initial setting. If you know the rough order of magnitude of the result in
advance (either very small or very large), then you can improve
performance by specifying that value in thige_hint. In all cases, the
full result will be received.
fmt A string that controls the format of the output, as described in
qdb_statement()
Library:
gdb
Description:
This convenience function provides a single-interface alternative to calling
gdb_statement(andqgdb_getresult() and offers a potential performance improvement
if the statement and result communication can be made with a single context switch.
Returns:

=0 Success.

-1 An error occurreddrrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

February 13, 2009 Appendix: A ¢ QDB Client API Reference 117

g d b_q u ery() [0 2009, ONX Software Systems GmbH & Co. KG.

See also:
gdb_statement()qdb_getresult()

118 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_ rowchan ges O

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

February 13, 2009

Return the number of rows affected by a statement

#i ncl ude <qdb/ qdb. h>

uint64_t gdb_rowchanges(qdb_hdt _t *hdl
qdb_result _t *result);

hdl A pointer to the database handle. You can pagélid. if you provide
result andQDB_OPTION ROW_CHANGESoption has been set by
gdb_setoption()(it's on by default).

result A pointer to a result set you want to query. If you paisi L, the function
queries the result from the last executgth statement(pn hdl.

gdb

This function returns the number of rows that were affected in a statement. It first
looks inresult (if the QDB_OPTION _ROW_CHANGESoption has been set by
gdb_setoption(), returning the number of rows for the statement that produced the
result. Ifresultis NULL, or QDB_OPTION ROW_CHANGES:Is off, the function
gueries the database handi#l and returns the information about the last executed
statement.

If this function returns 0, checirrno to make sure that it iEOK, indicating that no
row was affected (you should setrno to 0 before calling this function if you want to
distinguish between an error a0dows). If errnois notEOK then there was an error
with the request.

>0 The number of rows affected

0 An error occurreddrrnois set), or 0 rows were affected.

ONX Neutrino

Safety

Interrupt handler No

continued. ..

Appendix: A ¢ QDB Client APl Reference 119

g d b_rOWC han ges () [0 2009, ONX Software Systems GmbH & Co. KG.

Safety
Signal handler No
Thread Yes

See also:
gdb_setoption() qdb_statement()

120 Appendix: A ¢ QDB Client API Reference February 13, 2009

00 2009, QNX Software Systems GmbH & Co. KG. g d b_rOWS ()
Return the number of rows in a result

Synopsis:

#i ncl ude <qdb/ qdb. h>

int gdb_rows(qdb_result_t *reg;
Arguments:

res A pointer a result structure to check.
Library:

gdb
Description:

This function returns the number of rows in the result. If your query matched no rows

in the database, then this function returns 0.
Returns:

>-1 The number of rows in the result set.

-1 An error occurreddrrnois set).

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_rowchanges()

February 13, 2009 Appendix: A e QDB Client APl Reference 121

g d b_Setb u Sytl meo Ut() [2009, QNX Software Systems GmbH & Co. KG.

Set the busy timeout delay for a database connection

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <qdb/ qdb. h>

i nt gdb_setbusytinmeout (qdb_hdt _t *hd|
i nt timeout);

hdl A pointer to the database handle to set the timeout for.

timeout The timeout delay, in ms. This value may also be:

e QDB_TIMEOUT_NONBLOCK — the equivalent of a 0 timeout. This
means that calls tqdb_statement(yeturn immediately with failure if
the database file is locked.

e QDB _TIMEOUT_BLOCK — the equivalent of an infinite timeout
period. Calls taydb_statement(will wait forever, or until the
database is unlocked and the call succeeds.

qdb

This function sets the busy timeout delay for the database connection specifidd by
The initial value is specified on tleglb commandline with thet option, with a

default of 5000 ms. Specifying a value of 0 is the same as
QDB_TIMEOUT_NONBLOCK.

The timeout is the amount of time that a client will attempt to access a database before
it returnseBUSY. If two clients attempt to write to the database, for example, the
database is locked while the first client is writing, and the second client’s attempt will
fail if the busy timeout period expires.

TheQDB_CONN_NONBLOCKING flag bit is affected by the timeout value. If you set
or toggleQDB_CONN_NONBLOCKING, the busy timeout value itself is set to O or
back to the t default. Similarly, if you set the timeout to be
QDB_TIMEOUT_NONBLOCK, theQDB_CONN_NONBLOCKING bit is set.

(TheQDB_CONN_NONBLOCKING flag bit is set withgdb_connect()and toggled
with qdb_parameters()

122 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_Setb u Sytl meo Ut()

Returns:

=0 Success. The previous busy timeout setting is returned.
-1 An error occurredérro s set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_connect() gdb_parameters()qdb_statement()

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 123

gdb_setoption()

[J 2009, QNX Software Systems GmbH & Co. KG.

Set an option for a database connection

Synopsis:

Arguments:

Library:

Description:

Returns:

#i ncl ude <qdb/ qdb. h>

int gqdb_setoption(qdb_hdt _t *hdl,

hdl

option

value

qdb

i nt option
i nt value);

A pointer to the database handle to set the option for.

The option to set; can be one of:

QDB_OPTION_LAST_INSERT_ROWID — automatically put the last
inserted ROWID into any result you fetch. If this option isn't set, that
data isn't included in the result structure, and calling

qdb_last insert_rowid() will query the database connection for this
information instead.

By default, this option is on.

QDB_OPTION_ROW_CHANGES— put the number of rows affected by
a statement into any result you fetch. If this option isn’t set, that data
isn’t included in the result structure, and calligdb_rowchanges(will
query the database connection for this information instead.

By default, this option is on.

QDB_OPTION_COLUMN_NAMES — populate the column names into
theqdb_resul t _t thatis returned frongdb_getresult() If this option
isn’t set, that data isn't provided, and callingh_column index()

won't work.

By default, this option is on.

The value to set the option to: eithe(" off") or1 (" on").

This function sets options for the database connediainBy default, all of these
options are on.

=0

-1

Success. The previous value fationis returned.

The option specified isn’t supportedr(no is set).

124 Appendix: A ¢ QDB Client API Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

gdb_setoption()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

gdb_column_ index() qdb_getresult() qdb_last_insert rowid(), gqdb_rowchanges()

February 13, 2009

Appendix: A e QDB Client API Reference

125

g d b_S np rin tf() 0 2009, QNX Software Systems GmbH & Co. KG.
Print formatted output to a string, up to a given maximum number of characters

Synopsis:
#i ncl ude <qdb/ qdb. h>
char * qdb_snprintf(int n,
char *buf,
const char *format ...);
Arguments:
n The maximum number of characters to store in the buffer, including a
terminating null character. The function will always write a
zero-terminator ih is positive.
buf A pointer to the buffer where you want the function to store the formatted
string.
format A pointer to a formatting string to process. The formatting string
determines what additional arguments you need to provide. For more
information, see@rintf() in the NeutrinoLibrary Reference
Library:
gqdb
Description:

This function is a variant of thenprintf() from the standard C library. However, it is
different fromsnprintf()in these ways:

e (qdb_snprintf() returns a pointer to the buffer rather than the number of characters
written

e the order of ther andbuf parameters is reversed
e qdb_snprintf() always writes a zero-terminatornfis positive

For more information about additional formatting options, ggke_mprintf().

CAUTION: You shouldn’t use the return value of this function. In future versions, it
may be changed to return the number of characters written rather than a pointer to the
buffer.

Returns:

A pointer tobuf Success.

NULL An error occurredérrno is set).

126 Appendix: A ¢ QDB Client API Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

gdb_snprintf()

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:

gdb_mprintf(), printf() in the NeutrinoLibrary Reference

February 13, 2009

Appendix: A e QDB Client API Reference

127

g d b_Statem ent O [2009, QNX Software Systems GmbH & Co. KG.

Execute an SQL statement

Synopsis:

Arguments:

Library:

Description:

#i ncl ude <qdb/ qdb. h>

int gqdb_statenent(qdb_hdt _t *hdl,
const char *format]

)

hdl A pointer to the database handle.

format A string that controls the format of the output, as described below. The
formatting string determines what additional arguments you need to
provide. The string that results from the combinatioricsfmatand the
additional arguments is executed as a statement on the database referred to
by hdl.

qdb

This function executes against the database all statements in the string generated by
the combination oformatand any additional arguments. A statement must be
completed with a semicolon. The string may contain multiple statements as long as
they are separated by semicolons. There’s no arbitrary restriction on the length of the
command string.

The format string and additional arguments work in the same way as the arguments for
printf(), and all the same conversion specifiers apply. There are additional conversion
type specifiers¥g and¥Q, which in general should be used instead®ffor inserting

text into a literal string. Thég type specifier properly escapes special characters for
SQL. For more information, segdb_mprintf().

If you are passing in multiple statements, the function returns the number of affected
rows only for the last statement.

By default, the SQL statement is executed on the database lgfbretatement()

returns. However, if the connection is in asynchronous mode, this function can return
before the statement is executed, and it may not report errors. In this case, you need to
call gdb_getresult()to retrieve any errors generated by the statement. For more
information, see “Using asynchronous mode'tjiutt_connect()

128 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_Statem ent()

Returns:

>0 Success.
-1 An error occurredérro s set).

Classification:
ONX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_mprintf(), gdb_vmprintf(), printf() in the NeutrinoLibrary Reference

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 129

g d b_Stm t_ exec () 0 2009, QNX Software Systems GmbH & Co. KG.
Execute a precompiled statement

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gqdb_stnt_exec(qdb_hdl _t *hdl,
i nt stmtid
gdb_bi ndi ng_t *bindings
ui nt 8_t binding count) ;
Arguments:
hdl A pointer to the database handle.
stmtid The ID of a pre-compiled statement, returneddolp_stmt init().
bindings An array ofqdb_bi ndi ng_t structures filled in with pointers to
data that will be bound in to the variable parameters in the
pre-compiled statement. See below.
binding_count The number of items ibindings
Library:
gdb
Description:

This function executes a precompiled statement that was previously prepared with
gdb_stmt init().

The qdb_bi ndi ng_t structure
Theqdb_bi ndi ng_t structure has at least these members:
i nt index The index of the variable parameter in the precompiled statement that

this data should be bound to. The placeholder is in the foranpf
wheren is a number between 1 and 999.

i nt type The type of the data. Can be one QDB_NULL, QDB_BLOB,
QDB_TEXT, QDB_INTEGER or QDB_REAL.

i nt len The length of thelataargument. This number should excludeo’
for QDB_TEXT, should besi zeof (ui nt 64_t) for QDB_INTEGER
and sizeof(double) fopDB_REAL.

voi d *data A pointer to the data to be bound in.
You can initialize an instance ofdb_bi ndi ng_t using one of the convenience
macros below. In the macro prototypédnd is the address of thgdb_bi ndi ng_t

structure| is theindexmembert is thetypemember] is thelen member, andi is the
data

130 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_Stm t_exeC ()

QDB_SETBINDbind, i, t, I, d)

Bind in any type of data.
QDB_SETBIND INT(bind, i, d)

Bind in an integer.
QDB_SETBIND NULLbind, i)
Bind in NULL.
QDB_SETBIND TEXT(bind, i, d)
Bind in text.

There is a limit to the amount of data that can be sent to a database when using
gdb_stmt exec() This limit is thelesserof the following values:

e the limits set by the database

o x=231. (binding count+ 1) x 12, wherex is the data limit, in bytes

Returns:

>0 Success.

-1 An error occurreddrrnois set).

Examples:
Seeqdb_stmt init().

Classification:

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_stmt free(), gdb_stmt init()

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 131

g d b_Stm t_free() 00 2009, QNX Software Systems GmbH & Co. KG.
Free a precompiled statement

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gdb_stnt free(qdb_hdl _t *hdl,
i nt stmtid)
Arguments:
hdl A pointer to the database handle.
stmtid The ID of a pre-compiled statement to free, returnedjtly_stmt init().
Library:
gqdb
Description:
This function frees a statement previously compiledjidip_stmt init(). It's not
strictly necessary to call this function, as all precompiled statements are freed when
you callqdb_disconnect()
Returns:
>0 Success.
-1 An error occurred€rrnois set).
Examples:

Seeqdb_stmt init().
Classification:

QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

132 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_St m t_free()

See also:
gdb_stmt exec() gdb_stmt init()

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 133

g d b_Stm t_l n |t() [2009, QNX Software Systems GmbH & Co. KG.
Initialize a precompiled statement

Synopsis:
#i ncl ude <qdb/ qdb. h>
int gdb_stnt _init(qdb_hdl _t *hdl,
const char *sqg|,
uint 32_t len)
Arguments:
hdl A pointer to the database handle.
sql An SQL statement. This statement may contain variable parameters of the
form ?n, wheren is a number between 1 and 999. These placeholders can be
filled in with data on a subsequent callqdb_stmt exec() Parameters that
aren't filled in are interpreted a¢ULL. For more informatin, see
“Parameters” in the description of expressions, in the appendix: SQL
Expressions Reference.
len The length ofsqgl.
Library:
gdb
Description:
This function initializes a prepared (precompiled) SQL statement. A prepared
statement is compiled once, and can be executed multiple times (with calls to
gdb_stmt exec(). This function returns a statement ID for the precompiled statement,
which you need to pass in tlb_stmt exec()
QDB executes precompiled statements faster than uncompiled statements, so this
approach can optimize your application’s performance when executing frequently
used statements.
You can free precompiled statements usjalp stmt free(), although all precompiled
statements are freed when you agdb_disconnect()
Returns:

>0 Success. The returned value is the prepared statement ID, which you pass to
qdb_stmt exec()andgdb_stmt free().

-1 An error occurred€drrnois set).

134 Appendix: A ¢ QDB Client API Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. g d b_St m t_l n |t()

Examples:
The following code snippet shows how you could compile and execute a simple
statement:
i nt stntid;
gdb_bi ndi ng_t qgbi nd[2] ;
ui nt 64_t meid, linmit;
const char *sql = "SELECT fid FROM library WHERE nsi d=?1 LIMT ?2;";

stmid = qdb_stnt_init(db, sql, strlen(sql)+1);

if (stnmtid ==-1) {
/1l Could not conpile
return -1;

}

nsid = 1;

[imt = 10;

QDB_SETBI ND_| NT(&gbi nd[0], 1, msid);
QDB_SETBI ND_| NT(&qgbi nd[1], 2, linit);

if (gqdb_stnt_exec(db, stntid, gbind, 2) == -1) {
/'l Coul d not execute
return -1;

}

gdb_stm free(db, stntid);

Q Note the+1 added to the length of the string returneddbsten() this sends QDB the
final NULL character required of a valid string.

Classification:
QNX Neutrino

Safety

Interrupt handler No

Signal handler No
Thread Yes

See also:
gdb_stmt exec() qdb_stmt free()

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 135

gdb_vacuum()

[0 2009, QNX Software Systems GmbH & Co. KG.

Vacuum a database

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

#i ncl ude <qdb/ qdb. h>

int gdb_vacuum (qdb_hdt _t *hdl,
i nt scope) ;

hdl A pointer to the database handle.

scope Describes the scope of the operation. See the description ettpe
argument taydb_backup()for more information.

gdb

This function starts a vacuum operation on the specified database, as well as any
auto-attached databases (databases listed in the specified dataad#&). This is an
alternative to using thgACUUMcommand for each database.

You can callgdb_getdbsize(}o determine whether a database should be vacuumed.

If the auto-vacuum mode is set (see the PRAGMA SQL command for details),
databases are vacuumed whenever free space is created. By default, auto-vacuum
mode is off.

>0 Success.

-1 An error occurred€rrnois set).

QNX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

136 Appendix: A ¢ QDB Client API Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. g d b_VaC uum ()

See also:
VACUUM

February 13, 2009 Appendix: A ¢ QDB Client APl Reference 137

gdb_vmprintf()

[0 2009, QNX Software Systems GmbH & Co. KG.

Print formatted output to a new string

Synopsis:

Arguments:

Library:

Description:

Returns:

Classification:

See also:

#i ncl ude <qdb/ qdb. h>

char * qdb_vnprintf(const char* fmt
va_ list arg);

fmt A pointer to a formatting string to process. The formatting string determines
what additional arguments you need to provide. For more information, see
printf() in the NeutrinoLibrary Reference

arg A variable-argument list of the additional arguments, which you must have
initialized with theva_start() macro.

gdb

This function is a variant of thesprintf() from the standard C library. For more
information about additional formatting options, st mprintf().

An formatted string, oNULL if an error occurreddrrnois set).

ONX Neutrino

Safety

Interrupt handler No
Signal handler No
Thread Yes

gdb_mprintf(), qdb_snprintf(), printf(), va_start() andvsprint() in the Neutrino
Library Reference

138 Appendix: A ¢ QDB Client API Reference February 13, 2009

Appendix B
QDB SQL Reference

February 13, 2009 Appendix: B ¢ QDB SQL Reference 139

[J 2009, QNX Software Systems GmbH & Co. KG.

QDB supports a sub-set of ANSI SQL-92. This appendix provides information about
supported capabilities, organized into the following topis:

e General information

e [nformation about Statements

General
General information is organized into the following topics:
e Row ID and Autoincrement
e Comments
e Expressions
e Keywords
Statements

The statements described in this appendix are:
e ALTER TABLE

e ANALYZE

e ATTACH DATABASE
e CREATE | NDEX

e CREATE TABLE

e CREATE TRI GGER
e CREATE VI EW

e DELETE

e DETACH DATABASE
e DROP | NDEX

e DROP TABLE

e DROP TRI GGER

e DROP VI EW

e EXPLAIN

e | NSERT

e ON CONFLICT

e PRAGVA

February 13, 2009 Appendix: B ¢ QDB SQL Reference 141

[J 2009, QNX Software Systems GmbH & Co. KG.

e REI NDEX

e REPLACE

e SELECT

e TRANSACTI ON
e UPDATE

e VACUUM

142 Appendix: B ¢ QDB SQL Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Row ID and Autoincrement
Automatically incrementing values

Description:

In QDB, every row of every table has a 64-bit signed integer row ID. The row ID for
each row is unigue among all rows in the same table.

You can access the row ID of an QDB table using one the special column names
ROW D, _ROW D _, ord D. However, if you declare an ordinary table column to use

one of those special names, then the use of that name refers to the declared column,
not to the internal row ID.

If a table contains a column of typRTEGER PRIMARY KEY, then that column
becomes an alias for the row ID. You can then access the row ID using any of four
different names: the original three names described above, or the name given to the
INTEGER PRIMARY KEY column. All these names are aliases for one another and
work equally well in any context.

When you insert a new row into a QDB table, you can either specify the row ID as part
of thel NSERT statement, or the database engine can assign it automatically. To specify
a row ID manually, just include it in the list of values to be inserted. For example:

CREATE TABLE test1(a INT, b TEXT);
I NSERT INTO test1(rowid, a, b) VALUES(123, 5, 'hello');

If no row ID is specified on the insert, an appropriate row ID is created automatically.
By default, QDB gives the newly created row a row ID that is one larger than the
largest row ID in the table prior to the insert. If the table is initially empty, then QDB
uses arow ID of 1. If the largest row ID is equal to the largest possible integer
(9223372036854775807), then the database engine starts picking candidate IDs at
random until it finds one that isn’t previously used.

The normal row ID selection algorithm described above will generate monotonically
increasing unique row IDs as long as you never use the maximum row ID value and
you never delete the entry in the table with the largest row ID. If you ever delete rows
or if you ever create a row with the maximum possible row ID, then row IDs from
previously deleted rows might be reused when creating new rows, and newly created
row IDs might not be in strictly ascending order.

The AUTO NCREMENT Keyword

If a column has the typeNTEGER PRIMARY KEY AUTOINCREMENTthen a slightly

different row ID selection algorithm is used. The row ID chosen for the new row is

one larger than the largest row ID that has ever before existed in that same table. If the
table has never before contained any data, then the database engine uses a row ID of 1.
If the table has previously held a row with the largest possible row ID, then new

INSERTSs are not allowed, and any attempt to insert a new row fails wigibB_FULL

error.

QDB keeps track of the largest row ID that a table has ever held using the special
QDB_SEQUENCEtable. TheQDB_SEQUENCEtable is created and initialized
automatically whenever a normal table that contain8@nROINCREMENT column is

February 13, 2009 Appendix: B ¢ QDB SQL Reference 143

Row ID and Autoincrement 2009, QNX Software Systems GmbH & Co. KG.

144

created. The content of tt@DB_SEQUENCEtable can be modified using ordinary
UPDATE, | NSERT, andDELETE statements. But make sure you know what you are
doing before you undertake such changes — making modifications to this table will
likely perturb theAUTOINCREMENT key generation algorithm.

The behavior implemented by t&TO NCREMENT keyword is subtly different from

the default behavior. WitAUTO NCREMENT, rows with automatically selected row

IDs are guaranteed to have row IDs that have never been used before by the same table
in the same database. And the automatically generated row IDs are guaranteed to be
monotonically increasing. These are important properties in certain applications. But

if your application does not require this behavior, you should probably stay with the
default behavior, since the useAfTO NCREMENT requires QDB to perform

additional work as each row is inserted and thus caUSBERTS to run a little more

slowly.

Appendix: B ¢ QDB SQL Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. Comment

Synopsis:

Description:

February 13, 2009

SQL comment

-- single-line

/* multiple-lines [*/]

Comments aren’'t SQL commands, but can occur in SQL queries. They are treated as
whitespace by the parser. They can begin anywhere whitespace can be found,
including inside expressions that span multiple lines.

SQL comments extend only to the end of the current line.

C comments can span any number of lines. If there is no terminating delimiter, they
extend to the end of the input. This is not treated as an error. A new SQL statement
can begin on a line after a multiline comment ends. C comments can be embedded
anywhere whitespace can occur, including inside expressions, and in the middle of
other SQL statements. C comments do not nest. SQL comments inside a C comment
will be ignored.

Appendix: B ¢ QDB SQL Reference 145

expressions

[0 2009, QNX Software Systems GmbH & Co. KG.

SQL expressions

Synopsis:

Description:

expr binary-op expr|

expr [NOT] { LIKE | GLOB } expr [ESCAPE expq |
unary-op expr|

(expr)

[[database-name] [table-name.] column-name|
literal-value |

parameter |

function-name(expr-list | *) |

expr | SNULL |

expr NOTNULL |

expr [NOT] BETWEEN expr AND expr |

expr [NOT] IN (value-list) |

expr [NOT] I N (select-statemen) |

expr [NOT] | N [database-name] table-name|

[EXI STS] (select-statemenj |

CASE [exp] (WHEN expr THEN expr)+ [ELSE exprj END |
CAST (expr AS type)

expr COLLATE collation-name

SQL expressions are subcomponents of most other commands. QDB understands the
following binary operators, in order from highest to lowest precedence:

The supported unary prefix operators are:

- + ! ~ NOT

The COLLATE operator can be thought of as a unary postfix operator.Cthe ATE
operator has the highest precedence. It always binds more tightly than any prefix
unary operator or any binary operator.

The unary operator [Operator +] is a no-op. It can be applied to strings, numbers, or
blobs and it always gives as its result the value of the operand.

Note that there are two variations of the equals and not equals operators. Equals can be
either = or ==. The non-equals operator can be either <>orThe| | operator is
“concatenate” — it joins together the two strings of its operands. The operator %
outputs the remainder of its left operand modulo its right operand.

146 Appendix: B ¢ QDB SQL Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. expressions

Literal values

Parameters

LI KE

February 13, 2009

The result of any binary operator is a numeric value, except fof theoncatenation
operator, which gives a string result.

A literal value is an integer number or a floating point number. Scientific notation is
supported. The “.” character is always used as the decimal point even if the locale
setting specifies “,” for this role — the use of “,” for the decimal point would result in
syntactic ambiguity. A string constant is formed by enclosing the string in single
guotation marks (). A single quotation mark within the string can be encoded by
putting two single quotes in a row, as in Pascal. C-style escapes using the backslash
character are not supported because they are not standard SQL. BLOB literals are
string literals containing hexadecimal data and preceded by a single “x” or “X”

character. For example:

X' 53514697465’

A literal value can also be the tokéULL.

A parameter specifies a placeholder in the expression for a literal value that is filled in
at runtime usingydb_stmt exec() Parameters can take several forms:

NNN A question mark followed by a numbeéMNN, holds a spot for the
NNN-th parameterNNN must be between 1 and 999.

? A guestion mark that is not followed by a number holds a spot for the
next unused parameter.

‘AAAA A colon followed by an identifier name holds a spot for a named
parameter with the nam®AAA Named parameters are also humbered.
The number assigned is the next unused number. To avoid confusion, it is
best to avoid mixing named and numbered parameters.

@AAAA An “at” sign works exactly like a colon.

$AAAA A dollar-sign followed by an identifier name also holds a spot for a
named parameter with the narARAAA The identifier name in this case
can include one or more occurrences af and a suffix enclosed in
“(...)" containing any text at all. This syntax is the form of a variable
name in the Tcl programming language.

Parameters that are not assigned values ugithgstmt exec()are treated asULL.

TheLl KE operator does a pattern-matching comparison. The operand to the right
contains the pattern; the left-hand operand contains the string to match against the
pattern.

Appendix: B ¢ QDB SQL Reference 147

expressions

[0 2009, QNX Software Systems GmbH & Co. KG.

G.OB

Column Names

SELECT statements

A percent symbol(%) in the pattern matches any sequence of zero or more characters
in the string. An underscore J in the pattern matches any single character in the
string. Any other character matches itself or its lower/upper case equivalent (i.e.
case-insensitive matching). (A bug: QDB understands only upper/lower case for 7-bit
Latin characters. Hence thé KE operator is case sensitive for 8-bit iso8859

characters or UTF-8 characters. For example, the expresaiorLl KE ' A" is TRUE

but’ @ LIKE ’ A& isFALSE.).

If the optionalESCAPE clause is present, then the expression followingBBeAPE

keyword must evaluate to a string consisting of a single character. This character may
be used in th&| KE pattern to include literal percent or underscore characters. The
escape character followed by a percent symbol, underscore or itself matches a literal
percent symbol, underscore or escape character in the string, respectively. The infix
LI KE operator is implemented by calling the user functi@a(X,Y).

The GLOB operator is similar ta| KE, but uses the UNIX file-globbing syntax for its
wildcards. Also,GLOB is case sensitive, unlikel KE. Both GLOB andLI KE may be
preceded by th&8iOT keyword to invert the sense of the test. The ir#OB operator is
implemented by calling the user functigiob(X,Y)and can be modified by overriding
that function.

A column name can be any of the names defined irCREATE TABLE statement or
one of the following special identifierROW D, O D, or _ROW D _. These special
identifiers all describe the unique random integer key fthekey associated with
every row of every table. The special identifiers only refer to the row key if the
CREATE TABLE statement does not define a real column with the same name. Row
keys act like read-only columns. A row key can be used anywhere a regular column
can be used, except that you cannot change the value of a row keyJRDAME or

| NSERT statementSELECT * ... does not return the row key.

SELECT statements can appear in expressions as either the right-hand operand of the
| Noperator, as a scalar quantity, or as the operand &xasTS operator. As a scalar
guantity or the operand of drN operator, theSELECT should have only a single

column in its result. Compoun®8ELECTS (connected with keywords likeNIl ON or

EXCEPT) are allowed. With th&XI STS operator, the columns in the result set of the
SELECT are ignored and the expression returiRJE if one or more rows exist and

FALSE if the result set is empty. If no terms in tISELECT expression refer to value in

the containing query, then the expression is evaluated once prior to any other
processing and the result is reused as necessary. $EIECT expression does contain
variables from the outer query, then tRELECT is reevaluated every time it is needed.

When aSELECT is the right operand of theN operator, the N operator return§RUE
if the result of the left operand is any of the values generated by the selectNThe
operator may be preceded by theT keyword to invert the sense of the test.

148 Appendix: B ¢ QDB SQL Reference February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. expressions

CAST

Functions

Core Functions

February 13, 2009

When aSELECT appears within an expression but is not the right operand of\an
operator, then the first row of the result of tRELECT becomes the value used in the
expression. If th&sELECT yields more than one result row, all rows after the first are
ignored. If theSELECT yields no rows, then the value of tISELECT is NULL.

A CAST expression changes the datatype ofdkprinto the type specified bype
wheretypecan be any nonempty type name that is valid for the type in a column
definition of aCREATE TABLE statement.

Both simple and aggregate functions are supported. A simple function can be used in
any expression. Simple functions return a result immediately based on their inputs.
Aggregate functions may only be used iSELECT statement. Aggregate functions
compute their result across all rows of the result set.

The functions shown below are available by default.

abqX) Return the absolute value of argumeént

coalescéX,Y,...) Return a copy of the first naduLL argument. If all arguments
areNULL, thenNULL is returned. There must be at least 2
arguments.

glob(X,Y) This function is used to implement tixe GLOB Y syntax of
QDB.

hexX) The argument is interpreted as a BLOB. The result is a

hexadecimal rendering of the content of that blob.

ifnull (X,Y) Return a copy of the first noORULL argument. If both
arguments ar8lULL, thenNULL is returned. This behaves the
same agoalesce(pnbove.

last_insert_rowid()

Return the row ID of the last row inserted from this connection
to the database. This is the same value that would be returned
from theqdb _last insert_rowid().

length(X) Return the string length of in characters.

like(X,Y [,Z]) This function is used to implement the LI KE Y [ESCAPE
Z] " syntax of SQL. If the optionadtSCAPE clause is present,
then the user-function is invoked with three arguments.
Otherwise, it is invoked with two arguments only.

lower(X) Return a copy of stringk will all characters converted to lower
case.

Appendix: B ¢ QDB SQL Reference 149

expressions

[0 2009, QNX Software Systems GmbH & Co. KG.

150

ltrim (X [, Y])

maxX.Y,...)

min(X,Y,...)

nullif (X,Y)

quotgX)

randont(*)

randomblol§N)

replacgX,Y,Z)

roundX[, Y])

rtrim(X [,Y])

soundegX)

sqglite_version()

Appendix: B ¢ QDB SQL Reference

Return a string formed by removing any and all characters that
appear inY from the left side ofX. If the Y argument is omitted,
spaces are removed.

Return the argument with the maximum value. Arguments may
be strings in addition to numbers. The maximum value is
determined by the usual sort order. Note tmeix()is a simple
function when it has 2 or more arguments but converts to an
aggregate function if given only a single argument.

Return the argument with the minimum value. Arguments may
be strings in addition to numbers. The minimum value is
determined by the usual sort order. Note timét() is a simple
function when it has 2 or more arguments but converts to an
aggregate function if given only a single argument.

Return the first argument if the arguments are different,
otherwise returmULL .

This routine returns a string which is the value of its argument
suitable for inclusion into another SQL statement. Strings are
surrounded by single-quotes with escapes on interior quotes as
needed. BLOBSs are encoded as hexadecimal literals. The
current implementation ofACUUMuses this function. The
function is also useful when writing triggers to implement
undo/redo functionality.

Return a random integer between147483648 and
+2147483647.

Return aN-byte blob containing pseudo-random bytisis.
should be a postive integer.

Return a string formed by substituting stridgor every
occurrance of striny in string X. The Bl NARY collating
sequence is used for comparisons.

Round off the numbeK to Y digits to the right of the decimal
point. If theY argument is omitted, O is assumed.

Return a string formed by removing any and all characters that
appear inY from the right side oK. If the Y argument is
omitted, spaces are removed.

Compute the soundex encoding of the stiagrhe string
"2000" is returned if the argument SULL.

Return the version string for the SQLite library that is running.
Example:" 2.8.0

February 13, 2009

[0 2009, ONX Software Systems GmbH & Co. KG. expressions

subst(X,Y,2) Return a substring of input string that begins with the/-th
character and which i& characters long. The left-most
character o is number 1. IfY is negative the first character of
the substring is found by counting from the right rather than the
left. QDB is configured to support UTF-8, so characters indices
refer to actual UTF-8 characters, not bytes.

trim(X [, Y]) Return a string formed by removing any and all characters that
appear inY from both sides oK. If the Y argument is omitted,
spaces are removed.

typeof(X) Return the type of the expressioh The possible return values
are

e "null"
e "integer"
e "real"
e "text"
e "Dbl ob"

QDB'’s type handling is explained in the chapter Datatypes in
QDB.

upper(X) Return a copy of input strink converted to all upper-case
letters. The implementation of this function uses the C library
routinetoupper () which means it may not work correctly on
UTF-8 strings.

Aggregate Functions

In any aggregate function that takes a single argument, that argument can be preceded
by the keywordDl STI NCT. In such cases, duplicate elements are filtered before being
passed into the aggregate function. For example, the functiant (di sti nct X)

will return the number of distinct values of columinstead of the total number of
nonNULL values in columrX.

avgX) Return the average value of all noiLL X within a group. String and
BLOB values that don't look like numbers are interpreted as 0. The
result ofavg()is always a floating point value, even if all inputs are
integers.

couniX) The first form returns the number of times thats notNULL in a group.
The second form (with no argument) returns the total number of rows in
the group.

maxX) Return the maximum value of all values in the group. The usual sort
order is used to determine the maximum.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 151

expressions

[0 2009, QNX Software Systems GmbH & Co. KG.

min(X)

sunm(X)
total(X)

Return the minimum nomUJLL value of all values in the group. The
usual sort order is used to determine the minimtidLL is returned
only if all values in the group ansULL.

Return the numeric sum of all non-NULL values in the group. If there
are no non-NULL input rows or all values ax&JLL, thensum()returns
NULL, andtotal() returns 0.0NULL is not normally a helpful result for
the sum of now rows, but the SQL standard requires it, and most other
SQL database engines implemsom()that way, so QDB does it in the
same way in order to be compatible. Tiogal() function is provided as a
convenient way to work around this design problem in the SQL
language.

The result oftotal() is always a floating point value. The resultsafm()
is an integer value if all nONULL inputs are integers. If any input to
sum()is neither an integer or MULL, thensum()returns a floating point
value which might be an approximation to the true sum.

Thesum()function throws an “integer overflow” exception if all inputs
are integers oNULL and an integer overflow occurs at any point during
the computation. Theotal() function never throws an exception.

152 Appendix: B ¢ QDB SQL Reference February 13, 2009

0 2009, QNX Software Systems GmbH & Co. KG. QDB KeyWO rds
SQL keywords recognized by QDB

Description:

The SQL standard specifies a huge number of keywords that yoootaise as the

names of tables, indexes, columns, databases, user-defined functions, collations,
virtual table modules, or any other named object. The list of keywords is so long that
few people can remember them all. For most SQL code, your safest bet is to never use
any word in the English language as the name of a user-defined object.

If you want to use a keyword as a name, you need to quote it. There are three ways of
quoting keywords in QDB:

" keywor d’ A keyword in single quotes is interpreted as a literal string if it
occurs in a context where a string literal is allowed, otherwise it is
understood as an identifier.

"keywor d" A keyword in double-quotes is interpreted as an identifier if it
matches a known identifier. Otherwise it is interpreted as a string
literal.

[keywor d] A keyword enclosed in square brackets is always understood as an

identifier. This is not standard SQL. This quoting mechanism is used
by MS Access and SQL Server and is included in QDB for
compatibility.

Quoted keywords are unaesthetic. To help you avoid them, QDB allows many
keywords to be used unquoted as the names of databases, tables, indices, triggers,
views, columns, user-defined functions, collations, attached databases, and virtual
function modules. In the list of keywords that follows, keywords that can be used as
identifiers are shown in italics. Keywords that must be quoted in order to be used as
identifiers are shown in bold.

QDB adds new keywords from time to time when it take on new features. So to
prevent your code from being broken by future enhancements, you should normally
qguote any identifier that is a word in English, even if you do not have to.

The following are the keywords currently recognized by QDB:

ABORT AUTOINCREMENT COMMIT

ADD BEFORE CONFLICT

AFTER BEGIN CONSTRAINT

ALL BETWEEN CREATE

ALTER BY CROSS

ANALYZE CASCADE CURRENT DATE

AND CASE CURRENTTIME

AS CAST CURRENT TIMESTAMP
ASC CHECK DATABASE

ATTACH COLLATE DEFAULT

February 13, 2009 Appendix: B ¢ QDB SQL Reference 153

QDB Keywords

2009, QNX Software Systems GmbH & Co. KG.

Special names

DEFERRABLE INNER REFERENCES
DEFERRED INSERT REINDEX
DELETE INSTEAD RENAME
DESC INTERSECT REPLACE
DETACH INTO RESTRICT
DISTINCT IS RIGHT
DROP ISNULL ROLLBACK
EACH JOIN ROW

ELSE KEY SELECT

END LEFT SET

ESCAPE LIKE TABLE
EXCEPT LIMIT TEMP
EXCLUSIVE MATCH TEMPORARY
EXPLAIN NATURAL THEN

FAIL NOT TO

FOR NOTNULL TRANSACTION
FOREIGN NULL TRIGGER
FROM OF UNION

FULL OFFSET UNIQUE
GLOB ON UPDATE
GROUP OR USING
HAVING ORDER VACUUM

IF OUTER VALUES
IGNORE PLAN VIEW
IMMEDIATE PRAGMA VIRTUAL

IN PRIMARY WHEN
INDEX QUERY WHERE
INITIALLY RAISE

The following words arenot keywords in QDB, but are used as names of system

objects. They can be used as identifiers for a different type of object.

e ROWD_
e MAIN
e OD

e ROND

e SQLI TE_MASTER
e SQLI TE_SEQUENCE
e SQLI TE_TEMP_MASTER

e TEMP

154 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. AL TER TABL E

Synopsis:

Description:

February 13, 2009

Rename or add a new column to an existing table

ALTER TABLE [database-name] table-name{ RENAME TO new-table-namie |
{ADD [COLUWN] column-de}

QDB'’s version of theALTER TABLE command lets you add a new column to or
rename an existing table. It isn’t possible to remove a column from a table.

TheRENAME TOsyntax is used to rename the table identified by
[database-nam$able-nameo new-table-nameThis command cannot be used to
move a table between attached databases, only to rename a table within the same
database.

If the table being renamed has triggers or indexes, then these remain attached to the
table after it has been renamed. However, if there are any view definitions or
statements executed by triggers that refer to the table being renamed, these are not
automatically modified to use the new table name. If this is required, the triggers or
view definitions must be dropped and recreated to use the new table name by hand.

The ADD [COLUWN] syntax is used to add a new column to an existing table. The new
column is always appended to the end of the list of existing columnscadluenn-def

may take any of the forms permissible IICREATE TABLE statement, with the

following restrictions:

e The column may not haveRRI MARY KEY or UNI QUE constraint.

e The column may not have a default valueQtfRRENT_TIME, CURRENT _DATE or
CURRENT_TIMESTAMP.

e If a NOT NULL constraint is specified, then the column must have a default value
other tharNULL.

The execution time of thaLTER TABLE command is independent of the amount of
data in the table. ThaLTER TABLE command runs as quickly on a table with 10
million rows as it does on a table with one row.

After ADD COLUMN has been run on a database, that database will not be readable by
QDB until the database ACUUMEd.

Appendix: B ¢ QDB SQL Reference 155

ANALYZE

[J 2009, QNX Software Systems GmbH & Co. KG.

Analyze indexes to optimize queries

Synopsis:

Description:

ANALYZE [database-name] [table-namg

The ANALYZE command gathers statistics about indexes and stores them in a special
tables in the database where the query optimizer can use them to help make better
index choices. If no arguments are given, all indexes in all attached databases are
analyzed. If a database name is given as the argument, all indexes in that database are
analyzed. If the argument is a table name, then only indexes associated with that table
are analyzed.

Thedatabase-namean be the name of arattacheddatabase. You don’t have to
supply the database name of non-attached database; if you daiuse

The initial implementation stores all statistics in a single table naswg¢dt e_st at 1.

Future enhancements may create additional tables with the same name pattern except
with the 1 changed to a different digit. Tkgl i t e_st at 1 table cannot b®&ROPped,

but all the content can HBELETEd, which has the same effect.

156 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. ATTACI_I DATABASE

Synopsis:

Description:

February 13, 2009

Add a database to the current connection

ATTACH [DATABASE] database-filenameé\S database-name

The ATTACH DATABASE statement adds another database file to the current database
connection. If the filename contains punctuation characters, it must be placed inside
guotation marks. The namesi n andt enp refer to the main database and the

database used for temporary tables. These cannot be detached. Attached databases are
removed using thBETACH DATABASE statement.

You can read from and write to an attached database, and you can modify the schema
of the attached database.

You cannot create a new table with the same name as a table in an attached database,
but you can attach a database which contains tables whose names are duplicates of
tables in the main database. Itis also permissible to attach the same database file
multiple times.

Tables in an attached database can be referred to using the syntax
database-name.table-nami¢an attached table doesn't have a duplicate table name in
the main database, it doesn'’t require a database name prefix. When a database is
attached, all of its tables which don’t have duplicate names become the default table of
that name. Any tables of that name attached afterwards require the table prefix. If the
default table of a given name is detached, then the last table of that name attached
becomes the new default.

Transactions involving multiple attached databases are atomic. There is a
compile-time limit of 10 attached database files.

Appendix: B ¢ QDB SQL Reference 157

CREATE I NDEX [J 2009, QNX Software Systems GmbH & Co. KG.

Create an index

Synopsis:

Description:

CREATE [UNI QUE] I NDEX [IF NOT EXI STS] [database-name] index-name
ON table-name(column-name[, column-namg*)

column-name=

nane [COLLATE collation-nane] [ASC | DESC]

The CREATE | NDEX command consists of the keywor@REATE | NDEX followed by

the name of the new index, the keywadd, the name of a previously created table that

is to be indexed, and a parenthesized list of names of columns in the table that are used
for the index key. Each column name can be followed by one ofAftzor DESC

keywords to indicate sort order, but the sort order is ignored in the current
implementation. Sorting is always done in ascending order.

The COLLATE clause following each column name defines a collating sequence used
for text entires in that column. The default collating sequence is the collating sequence
defined for that column in theREATE TABLE statement. If no collating sequence is
otherwise defined, the built-ial NARY collating sequence is used.

There are no arbitrary limits on the number of indexes that can be attached to a single
table, nor on the number of columns in an index.

If the UNI QUE keyword appears betwe@REATE andl NDEX, then duplicate index
entries are not allowed. Any attempt to insert a duplicate entry will result in an error.

The exact text of eacBREATE | NDEX statement is stored in theyl i t e_nmast er or
sqglite_tenp_master table, depending on whether the table being indexed is
temporary. Every time the database is opened;REATE | NDEX statements are read
from thesql i t e_mast er table and used to regenerate QDB’s internal representation
of the index layout.

If the optionall F NOT EXI STSclause is present and another index with the same
name aleady exists, then this command becomes a no-op.

Indexes are removed with tHEROP | NDEX command.

158 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. CREATE TABL E

Create a table

Synopsis:

CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXI STS] [database-namg
table-name (
column-def[, column-def *
[, constraint *

)

CREATE [TEMP | TEMPCORARY] TABLE [database-namg
table-nameAS select-statement

column-def =
name [typd [[CONSTRAI NT namé column-constrairjt*

type =

typename|

typename(number) |
typename(number, number)

column-constraint=

NOT NULL [conflict-clause] |

PRI MARY KEY [sort-ordeff [conflict-clause] [AUTO NCREMENT] |
UNI QUE [conflict-clause] |

CHECK (expr) |

DEFAULT value |

COLLATE collation-name

constraint =

PRI MARY KEY (column-list) [conflict-clause] |
UNI QUE (column-list) [conflict-clause] |
CHECK (expr) [conflict-clause]

conflict-clause=
ON CONFLI CT conflict-algorithm

Description:

A CREATE TABLE statement is followed by the name of a new table and a
parenthesized list of column definitions and constraints. The table name can be either
an identifier or a string. Tables names that begin withi t e_ are reserved for use by

the engine.

Each column definition is the name of the column followed by the datatype for that
column, then one or more optional column constraints. The datatype for the column
does not restrict what data may be put in that column. See the chapter Datatypes in
QDB for additional information. Th&NI QUE constraint causes an index to be created
on the specified columns. This index must contain unique keysCDhEATE clause
specifies what text-collating function to use when comparing text entries for the
column. The built-inBI NARY collating function is used by default.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 159

CREATE TABL E 2009, QNX Software Systems GmbH & Co. KG.

The DEFAULT constraint specifies a default value to use when doingN8&ERT. The

value may beNULL, a string constant or a number. The default value may also be one
of the special case-independant keywoZTRRENT _TI ME, CURRENT _DATE or
CURRENT _TI MESTAMP. If the value iSNULL, a string constant or number, it is literally
inserted into the column whenever BRSERT statement that does not specify a value
for the column is executed.

If the value iISCURRENT_TI ME, CURRENT _DATE or CURRENT_TI MESTAMP, then the
current UTC date and/or time is inserted into the columns.dERRENT _TI ME, the

format isHH:MM:SS For CURRENT _DATE, the format isYYYY-MM-DDThe format
for CURRENT_TI MESTAMPIS YYYY-MM-DD HH:MM:SS

Specifying aPRI MARY KEY normally just creates ENI QUE index on the

corresponding columns. However, if primary key is on a single column that has
datatypelNTEGER, then that column is used internally as the actual key of the B-Tree
for the table. This means that the column may only hold unique integer values.
(Except for this one case, QDB ignores the datatype specification of columns and
allows any kind of data to be put in a column regardless of its declared datatype.)

If a table does not have dNTEGER PRIMARY KEY column, then the B-Tree key will

be a automatically generated integer. The B-Tree key for a row can always be accessed
using one of the special name®WID, OID, or _ROWID_. This is true regardless of
whether or not there is dNTEGER PRIMARY KEY. An INTEGER PRIMARY KEY

column can also include the keywos TOINCREMENT. The AUTOINCREMENT

keyword modifies the way that B-Tree keys are automatically generated. Additional
detail on automatic B-Tree key generation is available separately.

According to the SQL standar&@RIMARY KEY should implyNOT NULL.

Unfortunately, due to a long-standing coding oversight, this is not the case in SQLite.
SQLite allowsNULL values in @RIMARY KEY column. We could change SQLite to
conform to the standard (and we might do so in the future), but by the time the
oversight was discovered, SQLite was in such wide use that we feared breaking legacy
code if we fixed the problem. So for now we have chosen to contain alloMing s

in PRIMARY KEY columns. Developers should be aware, however, that we may

change SQLite to conform to the SQL standard in future and should design new
programs accordingly.

If the TEMP or TEMPORARY keyword is used, then the created table is visible only

within that same database connection and is automatically deleted when the database
connection is closed. Any indexes created on a temporary table are also temporary.
Temporary tables and indexes are stored in a separate file distinct from the main
database file.

If a database-names specified, then the table is created in the named database. Itis an
error to specify both database-namand theTEMP keyword, unless the

database-namist enp. If no database name is specified, andTa®P keyword is not
present, the table is created in the main database.

The optionalconflict-clausefollowing each constraint allows the specification of an
alternative default constraint conflict resolution algorithm for that constraint. The

160 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. CREATE TABL E

February 13, 2009

default iSABORT. Different constraints within the same table may have different
default conflict resolution algorithms. If@PY, | NSERT, or UPDATE command

specifies a different conflict resolution algorithm, then that algorithm is used in place
of the default algorithm specified in tlBREATE TABLE statement. See the sectioN
CONFLI CT for additional information.

CHECK constraints are now supported and enforced.

There are no arbitrary limits on the number of columns or on the number of constraints
in a table. As well, there is no arbitrary limit on the amount of data in a row.

TheCREATE TABLE AS form defines the table to be the result set of a query. The
names of the table columns are the names of the columns in the result.

The exact text of eacBREATE TABLE statement is stored in thegyl i t e_mast er

table. Every time the database is openedCREATE TABLE statements are read from
thesqgl i t e_mast er table and used to regenerate QDB’s internal representation of the
table layout. If the original command wasCREATE TABLE AS, then an equivalent
CREATE TABLE statement is synthesized and storeddhi t e_mast er in place of

the original command. The text GREATE TEMPORARY TABLE statements is stored
inthesqglite_tenp_naster table.

If the optionall F NOT EXI STSclause is present and another table with the same
name aleady exists, then this command becomes a no-op.

Tables are removed using tbeOP TABLE statement.

Appendix: B ¢ QDB SQL Reference 161

CREATE TRI QER [J 2009, QNX Software Systems GmbH & Co. KG.

Create a trigger

Synopsis:

Description:

CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXI STS] trigger-name
[BEFORE | AFTER] database-evenON [database-name]
table-name trigger-action

CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXI STS] trigger-name
| NSTEAD OF database-evenON [database-name]
view-name trigger-action

database-event
DELETE |

| NSERT |

UPDATE |

UPDATE OF column-list

trigger-action =
[FOR EACH ROW] [WHEN expression]
BEG N
trigger-step ; [trigger-step;]*
END

trigger-step =
update-statement insert-statement
delete-statemen} select-statement

The CREATE TRI GGER statement is used to add triggers to the database schema.
Triggers are database operations (iigger-action) that are automatically performed
when a specified database event @atabase-evehioccurs.

A trigger may be specified to fire wheneveDELETE, | NSERT or UPDATE of a
particular database table occurs, or whenevedRIDATE of one or more specified
columns of a table are updated.

At this time, QDB supports onlfOR EACH ROWtriggers, notFOR EACH

STATEMENT triggers. Hence explicitly specifyingOR EACH ROWis optional.FOR
EACH ROwimplies that the SQL statements specifiedrager-stepsmay be executed
(depending on th&HEN clause) for each database row being inserted, updated or
deleted by the statement causing the trigger to fire.

Both theWHEN clause and th&igger-stepsmay access elements of the row being
inserted, deleted or updated using references of the K& column-nameand

OLD. column-namgwherecolumn-names the name of a column from the table that the
trigger is associated witlOLD andNEWreferences may only be used in triggers on
trigger-evens for which they are relevant, as follows:

162 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. CREATE TRI (I;ER

Command Valid references

| NSERT NEWreferences are valid
UPDATE NEWandCOLD references are valid
DELETE OLDreferences are valid

If a WHEN clause is supplied, the SQL statements specifiddgger-stepsare
executed only for rows for which thaHEN clause is true. If n@®\HEN clause is
supplied, the SQL statements are executed for all rows.

The specifiedrigger-timedetermines when thigigger-stepswill be executed relative
to the insertion, modification or removal of the associated row.

An ON CONFLI CT clause may be specified as part of @DATE or | NSERT
trigger-step However if anON CONFLI CT clause is specified as part of the statement
causing the trigger to fire, then this conflict handling policy is used instead.

Triggers are automatically dropped when the table that they are associated with is
dropped.

Triggers may be created on views, as well as ordinary tables, by specifyBEAD

OF in the CREATE TRI GGER statement. If one or moi@\ | NSERT, ON DELETE or

ON UPDATE triggers are defined on a view, then it is not an error to execute an

| NSERT, DELETE or UPDATE statement on the view, respectively. Thereafter,
executing an NSERT, DELETE or UPDATE on the view causes the associated triggers
to fire. The real tables underlying the view are not modified (except possibly
explicitly, by a trigger program).

Example:

Assuming that customer records are stored inctitomers(jable, and that order
records are stored in treeders()table, the following trigger ensures that all associated
orders are redirected when a customer changes his or her address:

CREATE TRI GGER updat e_cust onmer _address UPDATE OF address ON custoners
BEG N
UPDATE orders SET address = new. address
WHERE cust ormer _nanme = ol d. nang;
END;

With this trigger installed, executing the statement:

UPDATE custoners SET address = '1 Main St.’
VWHERE nane = ' Jack Jones’;

causes the following to be automatically executed:

UPDATE orders SET address = '1 Main St.’
VWHERE cust onmer _nane = ’Jack Jones’;

Note that triggers may behave oddly when created on tabled WitEGER PRI MARY
KEY fields. If aBEFORE trigger program modifies theNTEGER PRI MARY KEY field

February 13, 2009 Appendix: B ¢ QDB SQL Reference 163

CREATE TRI (IER 2009, QNX Software Systems GmbH & Co. KG.

164

of a row that will be subsequently updated by the statement that causes the trigger to
fire, then the update may not occur. The workaround is to declare the table with a
PRIMARY KEY column instead of anNTEGER PRI MARY KEY column.

A special SQL functiorRAISE()may be used within a trigger-program, with the
following syntax

RAI SE (ABORT, error-message) |
RAI SE (FAI'L, error-message) |

RAI SE (ROLLBACK, error-message) |
RAI SE (| GNORE)

When one of the first three forms is called during trigger-program execution, the
specifiedON CONFLI CT processing is performed (eith&BORT, FAI L or ROLLBACK)
and the current query terminates. An error code@fl TE_CONSTRAI NT is returned
to the user, along with the specified error message.

WhenRAISHEI GNORE) is called, the remainder of the current trigger program, the
statement that caused the trigger program to execute and any subsequent trigger
programs that would of been executed are abandoned. No database changes are rolled
back. If the statement that caused the trigger program to execute is itself part of a
trigger program, then that trigger program resumes execution at the beginning of the
next step.

Triggers are removed using tb&OP TRI GGER statement.

Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. CREATE VI EW

Synopsis:

Description:

February 13, 2009

Create a view

CREATE [TEMP | TEMPORARY] VIEW[IF NOT EXI STS] [database-namq
view-nameAS select-statement

The CREATE VI EWcommand assigns a name to a prepackad:CT statement.
Once the view is created, it can be used infFR&Mclause of anotheBELECT in place
of a table name.

The TEMP or TEMPORARY keyword means the view that is created is visible only to the
process that opened the database and is automatically deleted when the database is
closed.

If a database-namis specified, then the view is created in the named database. Itis an
error to specify both @database-namand theTEMP keyword, unless the
database-names t enp. If no database name is specified, andTB®P keyword is not
present, the table is created in the main database.

You cannotCOPY, DELETE, | NSERT or UPDATE a view. Views are read-only in QDB.
However, in many cases you can uUseRh GGER on the view to accomplish the same
thing. Views are removed with tHeROP VI EwWcommand.

Appendix: B ¢ QDB SQL Reference 165

DEL ETE [J 2009, QNX Software Systems GmbH & Co. KG.

Remove records from a table

Synopsis:

DELETE FROM [database-name] table-name[WHERE expi

Description:

The DELETE command is used to remove records from a table. The command is
followed by the name of the table from which records are to be removed.

Without aWHERE clause, all rows of the table are removed. WHERE clause is
supplied, only those rows that match the expression are removed.

166 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. DETACI_I DATABASE

Synopsis:

Description:

February 13, 2009

Detach from a database

DETACH [DATABASE]| database-name

This statement detaches an additional database connection previously attached using
the ATTACH DATABASE statement. It is possible to have the same database file
attached multiple times using different names, and detaching one connection to a file
will leave the others intact.

This statement will fail if QDB is in the middle of a transaction.

Appendix: B ¢ QDB SQL Reference 167

DROP | NDEX

[J 2009, QNX Software Systems GmbH & Co. KG.

Remove an index

Synopsis:

Description:

DROP | NDEX [| F EXI STS] [database-name] index-name

TheDROP | NDEX statement removes an index added with@GREATE | NDEX
statement. The index named is completely removed from the disk. The only way to
recover the index is to reenter the appropriegREATE | NDEX command.

The DROP | NDEX statement does not reduce the size of the database file in the default
mode. Empty space in the database is retained for INSERTS. To remove free

space in the database, use #eUUMcommand. IfAUTOVACUUM mode is enabled

for a database, then space will be freed automaticallpfgP | NDEX.

The optionall F EXI STS clause suppresses the error that would normally result if the
index does not exist.

168 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. DRO:) TABL E

Synopsis:

Description:

February 13, 2009

Remove a table

DROP TABLE [F EXI STS] [database-namg table-name

TheDROP TABLE statement removes a table added with@GREATE TABLE

statement. The name specified is the table name. It is completely removed from the
database schema and the disk file. The table can not be recovered. All indexes
associated with the table are also deleted.

The DROP TABLE statement does not reduce the size of the database file in the default
mode. Empty space in the database is retained for IN8ERTS. To remove free

space in the database, use ¥eUUMcommand. IfAUTOVACUUM mode is enabled

for a database, then space will be freed automaticallpfgP TABLE.

The optionall F EXI STS clause suppresses the error that would normally result if the
table does not exist.

Appendix: B ¢ QDB SQL Reference 169

DRO:) TRI (ER [J 2009, QNX Software Systems GmbH & Co. KG.

Remove an index

Synopsis:
DROP TRI GGER [I F EXI STS] [dat abase-nane .] trigger-nane

Description:

TheDROP TRI GGER statement removes a trigger created byGREATE TRI GGER
statement. The trigger is deleted from the database schema.

Q Triggers are automatically dropped when the associated table is dropped.

170 Appendix: B ¢ QDB SQL Reference February 13, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. DROD VI EW

Synopsis:

Description:

February 13, 2009

Remove a view

DROP VIEW [I F EXI STS] vi ew nane

TheDROP VI EWstatement removes a view created by GREATE VI Ewstatement.
The name specified is the view name. It is removed from the database schema, but no
actual data in the underlying base tables is modified.

Appendix: B ¢ QDB SQL Reference 171

EXPLAI N [J 2009, QNX Software Systems GmbH & Co. KG.

Report VM instructions for a command

Synopsis:

EXPLAI N sql-statement

Description:

The EXPLAI Ncommand modifier is a non-standard extension. The idea comes from a
similar command found in PostgreSQL, but the operation is completely different.

If the EXPLAI Nkeyword appears before any other QDB SQL command then instead
of actually executing the command, the QDB library will report back the sequence of
virtual machine instructions it would have used to execute the command had the
EXPLAI Nkeyword not been present. This is useful for performance analysis.

For additional information about virtual machine instructions see the documentation
on QDB opcodes for the virtual machine.

172 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. I NSERT

Synopsis:

Description:

February 13, 2009

Insert data into a table

I NSERT [OR conflict-algorithnj | NTO [database-name]
table-name[(column-lis)] VALUES(value-lis) |

| NSERT [OR conflict-algorithn} | NTO [database-name]
table-name[(column-lis)] select-statement

Thel NSERT statement comes in two basic forms. The first form (with\AeUES

keyword) creates a single new row in an existing table. IEalmmn-listis specified,

then the number of values must be the same as the number of columns in the table. If a
column-listis specified, then the number of values must match the number of specified
columns. Columns of the table that do not appear in the column list are filled with the
default value, or wittNULL if no default value is specified.

The second form of theENSERT statement takes its data fronS8BLECT statement.

The number of columns in the result of tBELECT must exactly match the number of
columns in the table if no column list is specified, or it must match the number of
columns named in the column list. A new entry is made in the table for every row of
the SELECT result. TheSELECT may be simple or compound. If tt&ELECT

statement has abRDER BY clause, thedRDER BY is ignored.

The optionalconflict-clauseallows the specification of an alternative
constraint-conflict resolution algorithm to use during this one commandO$ee
CONFLI CT for additional information. For compatibility with MySQL, the parser
allows the use of the single keywoREPLACE as an alias for NSERT OR REPLACE.

Appendix: B ¢ QDB SQL Reference 173

O\I CO\IFL I C-I_ [J 2009, QNX Software Systems GmbH & Co. KG.

Deal with a conflict

Synopsis:

ON CONFLICT { ROLLBACK | ABORT | FAIL | 1 GNORE | REPLACE }

Description:

The ON CONFLI CT clause is not a separate SQL command. It is a non-standard clause
that can appear in many other SQL commands. It is given its own section in this
document because it is not part of standard SQL and therefore might not be familiar.

The syntax for the&dN CONFLI CT clause is as shown above for tREATE TABLE
command. For theNSERT andUPDATE commands, the keyword3N CONFLI CT are
replaced byOR, to make the syntax seem more natural. For example, instead of
I NSERT ON CONFLI CT | GNORE we havel NSERT OR | GNORE. The keywords
change but but the meaning of the clause is the same either way.

TheON CONFLI CT clause specifies an algorithm used to resolve constraint conflicts:

ROLLBACK When a constraint violation occurs, an immedig@:LBACK occurs,
thus ending the current transaction, and the command aborts with a
return code oSQLITE_CONSTRAINT. If no transaction is active (other
than the implied transaction that is created on every command) then
this algorithm works the same ABORT.

ABORT When a constraint violation occurs, the command backs out any prior
changes it might have made and aborts with a return code of
SQLITE_CONSTRAINT. But NnOROLLBACK is executed, so changes
from prior commands within the same transaction are preserved. This
is the default behavior.

FAI L When a constraint violation occurs, the command aborts with a return
code ofSQLITE_CONSTRAINT. Any changes to the database that the
command made prior to encountering the constraint violation are
preserved and are not backed out. For example, URDATE
statement encountered a constraint violation on the 100th row that it
attempts to update, then the first 99 row changes are preserved but
changes to rows 100 and beyond never occur.

| GNORE When a constraint violation occurs, the one row that contains the
constraint violation is not inserted or changed. But the command
continues executing normally. Other rows before and after the row that
contained the constraint violation continue to be inserted or updated
normally. No error is returned.

REPLACE When aUNIQUE constraint violation occurs, the pre-existing rows that
are causing the constraint violation are removed prior to inserting or

174 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. O\l CO\":I_ I CT

updating the current row. Thus, the insertion or update always occurs.
The command continues executing normally. No error is returned. If a
NOT NULL constraint violation occurs, theULL value is replaced by

the default value for that column. If the column has no default value,
then theABORT algorithm is used. If &HECK constraint violation

occurs, then the GNORE algorithm is used.

When this conflict resolution strategy deletes rows in order to satisfy a
constraint, it does not invoke delete triggers on those rows. This may
change in a future release.

The algorithm specified in ther clause of & NSERT or UPDATE overrides any
algorithm specified in @REATE TABLE. If no algorithm is specified anywhere, the
ABORT algorithm is used.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 175

PRAG\/A [J 2009, QNX Software Systems GmbH & Co. KG.
Modify or query the library

Synopsis:

PRAGVA name [= valug | function(arg)

Description:

The PRAGVA command is a special command used to modify the operation of the QDB
process or to query the library for internal (non-table) data. ARGEVA command is
issued using the same interface as other QDB commandsS{ELECT or | NSERT),

but is different in the following important respects:

e Specific pragma statements may be removed and others added in future releases of
QDB. Use with caution!

e No error messages are generated if an unknown pragma is issued. Unknown
pragmas are simply ignored. This means if there is a typo in a pragma statement
the library does not inform the user of the fact.

e Some pragmas take effect during the SQL compilation stage, not the execution
stage. This means if using the C-languagéte3 prepare() sqlite3 step()
sqlite3 finalize() API (or similar in a wrapper interface), the pragma may be
applied to the library during theqlite3 prepare()call.

e The pragma command is unlikely to be compatible with any other SQL engine.

The pragmas that take an integer value also accept symbolic names. Theairings

t rue, andyes are equivalent to 1. The string$f , f al se, andno are equivalent to

0. These strings are case-insensitive, and do not require quotes. An unrecognized
string will be treated as 1, and will not generate an error. When the value is returned, it
is as an integer.

The available pragmas fall into four basic categories:

1 Pragmas used to modify the operation of the QDB process in some manner, or
to query for the current mode of operation:
e Auto Vacuum
e Cache Size
e Case Sensitivity
e Count Changes
e Default Cache Size
e Full Column Names
e Full Column Names
e Legacy File Format
e Page Size

176 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. PRAG\/A

e Short Column Names
e Synchronous
e Temp Store

2 Pragmas used to query the schema of the current database:

Foreign Key List
Index Info

Index List
Table Info

3 Pragmas used to query or modify the databases two version values, the
schema-version and the user-version:

e Schema and User Version

4 Pragmas used to debug the library and verify that database files are not
corrupted:

e Integrity Check

Auto vacuum
PRAGVA aut o_vacuum
PRAGVA auto_vacuum= 0 | 1;

Query or set the auto-vacuum flag in the database.

Normally, when a transaction that deletes data from a database is committed, the
database file remains the same size. Unused database file pages are marked as such
and reused later on, when data is inserted into the database. In this ma@etihusi
command oqdb_vacuum()is used to reclaim unused space.

When the auto-vacuum flag is set, the database file shrinks when a transaction that
deletes data is committed (Th&CUUMcommand is not useful in a database with the
auto-vacuum flag set). To support this functionality, the database stores extra
information internally, resulting in slightly larger database files than would otherwise
be possible.

It is possible to modify the value of the auto-vacuum flag only before any tables have
been created in the database. No error message is returned if an attempt to modify the
auto-vacuum flag is made after one or more tables have been created.

Auto vacuum mode is off by default. Frequent vacuum operations can be costly on
storage media with slow write-access times (such as NOR flash memory); when
databases are stored on such media, you should considergadingacuum(or the
VACUUMSQL statement) rather than turning on auto-vacuum mode.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 177

PRAGVA

2009, QNX Software Systems GmbH & Co. KG.

Cache size

Case sensitivity

Count changes

Default cache size

Full column names

PRAGVA cache_si ze;
PRAGVA cache_si ze = Number-of-pages

Query or change the maximum number of database disk pages that QDB will hold in
memory at once. Each page uses about 1.5 KB of memory. The default cache size is
2000 pages. If you are doindPDATES or DELETES that change many rows of a

database and you do not mind if QDB uses more memory, you can increase the cache
size for a possible speed improvement.

When you change the cache size usingdhehe_si ze pragma, the change endures
only for the current session. The cache size reverts to the default value when the
database is closed and reopened. Useléti@ul t _cache_si ze pragma to
permanently change the cache size.

PRAGVA case_sensitive_like;
PRAGVA case_sensitive like = 0| 1;

The default behavior of thiel KE operator is to ignore case for Latinl characters.

Hence, by defaulta’ LIKE ’ A" istrue. Thecase_sensitive_l| i ke pragma can
be turned on to change this behavior. Wheise_sensi ti ve_| i ke is enabled; a’

LI KE * A is false, but a’ LI KE *a’ is still true.

PRAGVA count _changes;
PRAGVA count _changes = 0 | 1;

Query or change theount-changeflag. Normally, when theount-changeflag is not
set,| NSERT, UPDATE andDELETE statements return no data. Whewunt-changess

set, each of these commands returns a single row of data consisting of one integer
value: the number of rows inserted, modified or deleted by the command. The
returned change count does not include any insertions, modifications or deletions
performed by triggers.

PRAGVA default _cache_si ze;
PRAGVA default _cache_size = Number-of-pages

Query or change the maximum number of database disk pages that QDB will hold in
memory at once. Each page uses 1 KB on disk and about 1.5 KB in memory. This
pragma works like theache_si ze pragma with the additional feature that it changes
the cache size persistently. With this pragma, you can set the cache size once and that
setting is retained and reused every time you reopen the database.

PRAGVA ful |l _col um_nanes;
PRAGVA full _columm_nanes = 0 | 1;

Query or change thill-column-namedlag. This flag affects the way QDB names
columns of data returned ISELECT statements when the expression for the column is
a table-column name or the wildcard Normally, such result columns are named

178 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. PRAG\/A

Legacy file format

Page size

table-naméalias column-namé the SELECT statement joins two or more tables
together, or simplgolumn-naméf the SELECT statement queries a single table.
When thefull-column-namedlag is set, such columns are always named

table-naméalias column-nameegardless of whether or not a join is performed.

If both theshort-column-nameandfull-column-namesire set, then the behavior
associated with th&ull-column-nameslag is exhibited.

PRAGMA | egacy _file_format;
PRAGVA | egacy file format = ON | OFF

This pragma sets or queries the value ofldgacy file_formatflag. When this flag is

on, new SQLite databases are created in a file format that is readable and writable by
all versions of SQLite going back to 3.0.0. When the flag is off, new databases are
created using the latest file format which might not be readable or writable by older
versions of SQLite.

This flag affects only newly created databases. It has no effect on databases that
already exist.

PRAGVA page_si ze;

PRAGVA page_si ze = bytes

Query or set the page size of the database. The page size may be set only if the
database has not yet been created. The page size must be a power of two greater than
or equal to 512 and less than or equal to 8192.

Short column names

Synchronous

February 13, 2009

PRAGVA short col utm_nanes;
PRAGVA short _colum_nanes = 0 | 1;

Query or change thghort-column-nameftag. This flag affects the way QDB names
columns of data returned IS8ELECT statements when the expression for the column is
a table-column name or the wildcard Normally, such result columns are named
table-naméalias column-namé the SELECT statement joins two or more tables
together, or simplgolumn-naméf the SELECT statement queries a single table.

When theshort-column-namefag is set, such columns are always named
column-nameegardless of whether or not a join is performed.

If both theshort-column-nameandfull-column-namesire set, then the behavior
associated with th&ull-column-nameslag is exhibited.

PRAGVA synchronous;

PRAGVA synchronous = FULL; (2)
PRAGVA synchronous = NORMAL; (1)
PRAGVA synchronous = OFF; (0)

Query or change the setting of tegnchronouslag. The first (query) form will return
the setting as an integer. When synchronoudJisL (2), the QDB database engine
will pause at critical moments to make sure that data has actually been written to the

Appendix: B ¢ QDB SQL Reference 179

PRAGVA

2009, QNX Software Systems GmbH & Co. KG.

Temp store

disk surface before continuing. This ensures that if the operating system crashes or if
there is a power failure, the database will be uncorrupted after rebo@ting.

synchronous is very safe, but it is also slow. When synchronoN®MAL, the QDB
database engine will still pause at the most critical moments, but less often than in
FULL mode. There is a very small (though non-zero) chance that a power failure at
just the wrong time could corrupt the databas®l®@RMAL mode. But in practice, you

are more likely to suffer a catastrophic disk failure or some other unrecoverable
hardware fault. With synchronoFF (0), QDB continues without pausing as soon as

it has handed data off to the operating system. If the application running QDB crashes,
the data will be safe, but the database might become corrupted if the operating system
crashes or the computer loses power before that data has been written to the disk
surface. On the other hand, some operations are as much as 50 or more times faster
with synchronouFF.

The default seting iSULL.

PRAGVA tenp_store;

PRAGVA tenp_store = DEFAULT; (0)
PRAGVA tenp_store = FILE, (1)
PRAGVA tenp_store = MEMORY; (2)

Query or change the setting of ttemp _storeparameter. Whetemp storeis

DEFAULT (0), the compile-time C preprocessor magi®MP_STORES used to
determine where temporary tables and indexes are stored. Wimgnstoreis

MEMORY (2), temporary tables and indexes are kept in memory. Wiki@p storeis

FILE (1), temporary tables and indexes are stored in a file. The
tenp_store_directorypragma can be used to specify the directory containing this
file. When thetemp storesetting is changed, all existing temporary tables, indexes,
triggers and views are immediately deleted.

It is possible for the library compile-time C preprocessor symiteP_STOREo
override this pragma setting. The following table summarizes the interaction of the
TEMP_STORBEpreprocessor macro and thenp_st or e pragma. It shows the
storage used foFEMP tables and indexes:

TEMP_STORE PRAGMAtemp_store Storage

Any File
File
File
Memory
Memory
File

N N P P O
= O N B+ O

continued. ..

180 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. PRAG\/A

Foreign key list

Index info

Index list

Table info

TEMP_STORE PRAGMAtemp_store Storage

2 2 Memory
3 Any Memory

PRAGVA forei gn_key |i st (table-namg;

For each foreign key that references a column in the argument table, invoke the
callback function with information about that foreign key. The callback function will
be invoked once for each column in each foreign key.

PRAGVA i ndex_i nf o(index-namg;

For each column that the named index references, invoke the callback function once
with information about that column, including the column name and the column
number.

PRAGVA i ndex_| i st (table-namg;

For each index on the named table, invoke the callback function once with information
about that index. Arguments include the index name and a flag to indicate whether or
not the index must be unique.

PRAGVA t abl e_i nf o(table-namg;

For each column in the named table, invoke the callback function once with
information about that column, including the column name, data type, whether or not
the column can b8lULL, and the default value for the column.

Schema and user version

February 13, 2009

PRAGMVA [dat abase.] schema_ver si on;

PRAGVA [dat abase.] schenma_versi on = integer ;
PRAGVA [dat abase.] user _version;

PRAGVA [dat abase.] user _versi on = integer ;

The pragmaschena_ver si on anduser _ver si on are used to set or get the value
of the schema-versioanduser-versionrespectively. Both thechema-versioand the
user-versiorare 32-bit signed integers stored in the database header.

The schema-versiois usually manipulated only internally by QDB. It is incremented

by QDB whenever the database schema is modified (by creating or dropping a table or
index). The schema version is used by QDB each time a query is executed to ensure
that the internal cache of the schema used when compiling the SQL query matches the
schema of the database against which the compiled query is actually executed.

Appendix: B ¢ QDB SQL Reference 181

PF\)AG\/A 2009, QNX Software Systems GmbH & Co. KG.

Subverting this mechanism by usiRr@AGVA schema_ver si on to modify the
schema-version is potentially dangerous and may lead to program crashes or database
corruption. Use with caution!

Theuser-versions not used internally by QDB. It may be used by applications for any
purpose.

Integrity check
PRAGVA integrity check;
PRAGVA i ntegrity check(intege

The command does an integrity check of the entire database. It looks for out-of-order
records, missing pages, malformed records, and corrupt indexes. If any problems are
found, then strings are returned (as multiple rows with a single column per row) which
describe the problems. At mastegererrors will be reported before the analysis

quits. The default value fdntegeris 100. If no errors are found, a single row with the
valueok is returned.

182 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. REI NDEX

Synopsis:

Description:

February 13, 2009

Recreate indexes from scratch

REI NDEX collation name|
([database-name] table | index-name)

TheREI NDEX command is used to delete and recreate indexes from scratch. This is
useful when the definition of a collation sequence has changed.

In the first form, all indexes in all attached databases that use the named collation
sequence are recreated. In the second forfrddfabase-name] { table-name|
index-name} identifies a table, then all indexes associated with the table are rebuilt. If
an index is identified, then only this specific index is deleted and recreated.

If no database-names specified and there exists both a table or index and a collation
sequence of the specified name, then indexes associated with the collation sequence
only are reconstructed. This ambiguity may be dispelled by always specifying a
database-namehen reindexing a specific table or index.

Appendix: B ¢ QDB SQL Reference 183

REPLACE [J 2009, QNX Software Systems GmbH & Co. KG.

Alias for I NSERT OR REPLACE

Synopsis:
REPLACE | NTO [dat abase-nane .] table-nanme [(colum-list)]
VALUES (val ue-list) |
REPLACE | NTO [dat abase-nane .] table-name [(colum-list)]
sel ect - st at enent
Description:

The REPLACE command is an alias for tHeNSERT OR REPLACE variant of the
I NSERT command. This alias is provided for compatibility with MySQL.

184 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. SEL EC-I_

Query a database

Synopsis:
SELECT [ALL | DI STI NCT] result [FROM table-lisf
[WHERE expf
[GROUP BY expr-lisf
[HAVI NG expi
[compound-op selégct
[ORDER BY sort-expr-list
[LIMT integer [(OFFSET | ,) integef]
result =
result-column[, result-columah*
result-column =
* | table-name. * | expr [[AS] string]
table-list =
table [join-op table join-arg$*
table =
table-name[AS aliag] |
(select) [AS aliag|
join-op =
, | [NATURAL] [LEFT | RIGHT | FULL]
[OUTER | INNER | CROSS] JON
join-args =
[ON exp] [USING (id-list)]
sort-expr-list =
expr [sort-orde] [, expr [sort-ordef] *
sort-order =
[COLLATE collation-name] [ASC | DESC]
compoundop =
UNION | UNION ALL | I NTERSECT | EXCEPT
Description:

The SELECT statement is used to query the database. The resulSEfECT is zero or
more rows of data where each row has a fixed number of columns. The number of
columns in the result is specified by the expression list in betweeB®hECT and
FROMkeywords. Any arbitrary expression can be used as a result. If a result
expression ig, then all columns of all tables are substituted for that one expression. If
the expression is the name of a table followed bythen the result is all columns in

that one table.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 185

SELECT

2009, QNX Software Systems GmbH & Co. KG.

DI STI NCT keyword

VWHERE clause

GROUP BY clauses

ORDER BY clauses

LI M T clauses

TheDI STI NCT keyword causes a subset of result rows to be returned, in which each
result row is differentNULL values are not treated as distinct from each other. The
default behavior is that all result rows be returned, which can be made explicit with the
keywordALL.

The query is executed against one or more tables specified afteRtvkeyword. If
multiple tables names are separated by commas, then the query is against the cross
join of the various tables. The full SQL-92 join syntax can also be used to specify
joins. A sub-query in parentheses may be substituted for any table namerRQkie
clause. The entireROMclause may be omitted, in which case the result is a single row
consisting of the values of the expression list.

TheWHERE clause can be used to limit the number of rows over which the query
operates.

The GROUP BY clauses causes one or more rows of the result to be combined into a
single row of output. This is especially useful when the result contains aggregate
functions. The expressions in tlBROUP BY clause danot have to be expressions that
appear in the result. THeAVI NGclause is similar tWHERE except thaHAVI NG

applies after grouping has occurred. TH¥/I NGexpression may refer to values, even
aggregate functions, that are not in the result.

The ORDER BY clause causes the output rows to be sorted. The argumeRDER

BY is a list of expressions that are used as the key for the sort. The expressions do not
have to be part of the result for a SIm@ELECT, but in a compoun@®ELECT each

sorting expression must exactly match one of the result columns. Each sorting
expression may be optionally followed bycal LATE keyword and the name of a

collating function used for ordering text and/or keywoA®C or DESC to specify the

sort order.

TheLl M T clause places an upper bound on the number of rows returned in the result.
A negativeLl M T indicates no upper bound. The optio@&FSET following LIM T
specifies how many rows to skip at the beginning of the result set. In a compound
query, theLl M T clause may appear only on the firgtlLECT statement. The limit is
applied to the entire query, not to the individsLECT statement to which it is

attached. Note that if theFFSET keyword is used in thel M T clause, then the limit

is the first number and the offset is the second number. If a comma is used instead of
the OFFSET keyword, then the offset is the first number and the limit is the second
number. This seeming contradiction is intentional — it maximizes compatibility with
legacy SQL database systems.

186 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. SEL ECT

Compund SELECT statements

February 13, 2009

A compoundSELECT is formed from two or more simpI8ELECTs connected by one

of the operator&NI ON, UNI ON ALL, | NTERSECT, or EXCEPT. In a compound

SELECT, all the constituenSELECTs must specify the same number of result columns.
There may be only a singleRDER BY clause at the end of the compouBELECT.

TheUNI ONandUNI ON ALL operators combine the results of tBELECTS to the right
and left into a single big table. The difference is thativi ON all result rows are

distinct, whereas itwNI ON ALL there may be duplicates. Th&TERSECT operator

takes the intersection of the results of the left and rigfitECTs. EXCEPT takes the
result of leftSELECT after removing the results of the rigBELECT. When three or

more SELECTSs are connected into a compound, they group from left to right.

Appendix: B ¢ QDB SQL Reference 187

TRANSAC-I_I O\I [J 2009, QNX Software Systems GmbH & Co. KG.

Manually start, end, commit, or rollback a transaction

Synopsis:
BEG N [DEFERRED | | MVEDI ATE | EXCLUSI VE] [TRANSACTI ON [namé]
END [TRANSACTI ON [namé]
COW T [TRANSACTI ON [namé]
ROLLBACK [TRANSACTI ON [namé]
Description:

QDB supports transactions with rollback and atomic commit. The optional transaction
name is ignored. QDB currently doesn'’t allow nested transactions.

No changes can be made to the database except within a transaction. Any command
that changes the database (basically, any SQL command othesgh&aT) will
automatically start a transaction if one is not already in effect. Automatically started
transactions are committed at the conclusion of the command.

Transactions can be started manually usingglB@ N command. Such transactions
usually persist until the nextOMM T or ROLLBACK command. But a transaction will
alsoROLLBACK if the database is closed or if an error occurs andRdle BACK
conflict-resolution algorithm is specified. See the documentation o@Nhe

CONFLI CT clause for additional information about tReLLBACK conflict-resolution
algorithm.

In QDB, transactions can be deferred, immediate, or exclusive. Deferred means that

no locks are acquired on the database until the database is first accessed. Thus with a
deferred transaction, ttBEG N statement itself does nothing. Locks are not acquired

until the first read or write operation. The first read operation against a database
creates &HAREDIock and the first write operation createRBSERVEDIock.

Because the acquisition of locks is deferred until they are needed, it is possible that
another thread or process could create a separate transaction and write to the database
after theBEG N on the current thread has executed. If the transaction is immediate,
thenRESERVEDIocks are acquired on all databases as soon aBa@ieN command is
executed, without waiting for the database to be used.

After aBEG N | MVEDI ATE, you are guaranteed that no other thread or process will be
able to write to the database or d8&G N | MVEDI ATE or BEG N EXCLUSI VE.

Other processes can continue to read from the database, however. An exclusive
transaction causesXCLUSIVE locks to be acquired on all databases. Aft@Ea N
EXCLUSI VE, you are guaranteed that no other thread or process will be able to read or
write the database until the transaction is complete.

188 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. TRANSACTI O\I

Locks

This is a description of the meaning ®HARED, RESERVED andEXCLUSIVE locks:

SHARED The database may be read but not written. Any number of processes
can holdSHAREDlocks at the same time, hence there can be many
simultaneous readers. But no other thread or process is allowed to
write to the database file while one or m@dAREDIocks are
active.

RESERVED A RESERVEDIock means that the process is planning on writing to
the database file at some point in the future but that it is currently
just reading from the file. Only a singRESERVEDIock may be
active at one time, though multipHAREDlocks can coexist with a
singleRESERVEDIock.

EXCLUSIVE An EXCLUSIVE lock is needed in order to write to the database file.
Only oneEXCLUSIVE lock is allowed on the file and no other locks
of any kind are allowed to coexist with &@XCLUSIVE lock. In
order to maximize concurrency, QDB works to minimize the amount
of time thatEXCLUSIVE locks are held.

The default behavior for QDB is a deferred transaction.

TheCOwM T command does not actually perform a commit until all pending SQL

commands finish. Thus if two or moBELECT statements are in the middle of

processing and @OwM T is executed, the commit will not actually occur until all

SELECT statements finish.

Returns:

An attempt to executeOVM T might result in arSQLITE_BUSY return code. This

indicates that another thread or process has a read lock on the database that prevented
the database from being updated. WigawvM T fails in this way, the transaction

remains active and theOvM T can be retried later after the reader has had a chance to
clear.

February 13, 2009 Appendix: B ¢ QDB SQL Reference 189

UPDATE

[J 2009, QNX Software Systems GmbH & Co. KG.

Change the value of columns

Synopsis:

Description:

UPDATE [OR conflict-algorithm] [database-namg table-name
SET column-name= expr [, column-name= expi *
[WHERE expf

The UPDATE statement is used to change the value of columns in selected rows of a
table. Each assignment in &RDATE specifies a column name to the left of the equals
sign and an arbitrary expression to the right. The expressions may use the values of
other columns. All expressions are evaluated before any assignments are made. A
WHERE clause can be used to restrict which rows are updated.

The optionalconflict-clauseallows the specification of an alternative constraint
conflict resolution algorithm to use during this one command.@e€ONFLI CT for
additional information.

190 Appendix: B ¢ QDB SQL Reference February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG. VACLJUM

Synopsis:

Description:

See also:

February 13, 2009

Clean up a table or index

VACUUM [index-or-table-namle

TheVACUUMcommand is a QDB extension modeled after a similar command found in
PostgreSQL. IVACUUMis invoked with the name of a table or index, then it is
supposed to clean up the named table or index. The index or table name argument is
ignored.

When an object (table, index, or trigger) is dropped from the database, it leaves behind
empty space. This makes the database file larger than it needs to be, but can speed up
insertions. In time, insertions and deletions can leave the database file structure
fragmented, which slows down disk access to the database contents.

TheVACUUMcommand cleans the main database by copying its contents to a
temporary database file and reloading the original database file from the copy. This
eliminates free pages, aligns table data to be contiguous, and otherwise cleans up the
database file structure. It is not possible to perform the same process on an attached
database file.

This command will fail if there is an active transaction. This command has no effect
on an in-memory database.

An alternative to using theACUUMcommand is the auto-vacuum mode. You can set
the auto-vacuum mode using tRBAGVA SQL extension:

gdb_st at enent (&db, "PRAGVA auto_vacuum

;")s /1 on
gdb_st at enent (&b, "PRAGVA aut o_vacuum "

1
0;"); Il off

gdb_vacuum() PRAGMA

Appendix: B ¢ QDB SQL Reference 191

Index

ROND 143

A

ABORT 174
abs() 149
administration

QDB 25
affinity

column 35
aggregate

functions 69, 151
ALTER TABLE 155
ANALYZE 156
analyze

database 156
asynchronous mode 95
ATTACH DATABASE 157
attached database

analyze 156
auto

vacuum 177
auto-vacuum mode 191
AUTO NCREMENT

keyword 143
avg() 151

B

backing up

February 13, 2009

databases 25
backup 18
backup

database 80

cancelling 82
busy

timeout 17
busy timeout

setting 122

C

C++API 73
cache size 178
default 178
cancel 18
case sesitivity 178
CAST 149
cell
data 30
cell data
getting 83
changes
count 178
check
integrity 182
classes
storage 35
clause
GROUP BY 186
LIMT 186
ORDER BY 186
VWHERE 186

Index

193

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

client

QDB 21
clients

sharing connections 15
coalesce() 149
collation

functions 69

user-defined 89
collation routines

user 70
collation sequences

assigning from SQL 39

user-defined 39
column

affinity 35

determining affinity 36

full names 178

name 91,92

names 148

short names 179
comments

SQL 145
comparison

expressions 37
compound

SELECT statements 187
COMPOUNOSELECT statments 38
configuration file 12
connecting to the database

example 29
connections

sharing between clients 15
conventions

typographical ix
corrupt database

recovering from 17
count changes 178
count() 151
CREATE | NDEX 158
CREATE TABLE 159
CREATE TRI GGER 162
CREATE VI EW 165

194 Index

D

data
cell 30
maximum that can be sent
withgdb _stmt exec() 131
data source
extracting 96

database
analyse 156
attach 157

backingup 25
busy timeout 17
connecting 94
detach from 167
directory 9
disconnecting 98
maintenance commands 18
recovering from corrupt 17
recovery 16
recovery script 17
restoringup 25
database size
getting 100
datatypes 35
DELETE 166
DETACH DATABASE 167
disconnecting
server (example) 31
DI STI NCT
keyword 186
DROP | NDEX 168
DROP TABLE 169
DROP TRI GGER 170
DRCP VI EW 171

E

error message
getting 102

example
using aresult 30

examples
connecting to the database 29, 31
disconnecting the server 31

February 13, 2009

[0 2009, QNX Software Systems GmbH & Co. KG. Index

executing a statement 29 G

getting result of a query 30

inserting 31 generated

program 31 programs (viewing) 46

QDB 29 GLOB operator 148
EXCEPT glob() 149

operator 187 GROUP BY
EXCLUSIVE clause 186

lock 189 grouping 38

executing a statement
example 29
EXPLAIN 172

expressions H
comparison 37
non-standard 172 hex() 149
SQL 146
I
F ifnull) 149
| GNORE 174
FAIL 174 index
featurgsB . create 158
i Q drop 168
e index info 181
legacy format 179 index list 181
filesystem indexes
temporary storage 10 recreate 183
filesystems indices
NFS 9 cleaningup 191
supported 9 | NSERT 173
flag INTEGER PRIMARY KEY AUTOINCREMENT
synchronous 179 143
foreign . ;
integrit
key list 181 %:h()a/ck 182
format | NTERSECT
legacy file 179 operator 187
full
column names 178
functions
aggregate 69, 151 K
collation 69
default 149 key list
scalar 69 foreign 181
writing user-defined 69 keyword
DI STINCT 186
keywords

February 13, 2009 Index 195

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

QDB 153

L

last insert rowid() 149
legacy format
file 179
length() 149
LI KE operator 147
like() 149
LIMT
clause 186
list
foreign key 181
literal values 147
lock
EXCLUSIVE 189
RESERVED 189
SHARED 189
lower() 149
Itrim() 149

M

maintenance
commands 18
max() 149, 151
min 151
min() 149
modes
auto-vacuum 191

N

names
column 148,178,179
NFS
filesystems 9
non-attached database
analyze 156
non-standard

196 Index

expressions 172
nullif() 149

O

objects
system 154
oD 143
ON CONFLICT 174
opcodes
QDB virtual machine 45
operator
GLOB 148
LI KE 147
operators 38
EXCEPT 187
| NTERSECT 187
UNION 187
UNI ON ALL 187
options
getting 104
QDB 7
QDBclient 21
setting 124
ORDER BY
clause 186

P

page
size 179
parameters
getting 113
SQL 147
pathname delimiter in QNX documentation
PRAGVA 176
pre-compiled statements
freeing 132
prepared statements
executing 130
initializing 134
programs
viewing QDB-generated 46

X

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

Q

QDB
administration 25
examples 29
gdb_backup() 80
gdb_bkcancel() 82
qgdb_cell length() 30, 85
qdb_cell_type() 30, 87
qdb _cell() 30, 83
gdb_collation() 89
gdb_column index() 30, 91
gdb_column name() 30, 92
gdb_columns() 30
QDB_CONN_BLOCK_FOREVER 113
QDB_CONN_DFLT_SHARE 113
QDB_CONN_NONBLOCKING 122
QDB_CONN_STMT_ASYNC 113
gdb_connect() 94
gdb_data source() 96
gdb_disconnect() 98
qdb _freeresult() 99
gdb_getdbsize() 100
gdb_geterrmsg() 102
gdb_getoption() 104
gdb_getresult() 105
gdb_gettransstate() 107
gdb_last insert rowid() 109
gdb_mprintf() 111

QDB_OPTION_COLUMN_NAMES 124
QDB_OPTION LAST_INSERT ROWID 109,

124

QDB_OPTION_ROW_CHANGES 119, 124

gdb_parameters() 113
gdb_printmsg() 30, 115
qdb_query() 117
gdb_result_t 93,99, 121
gdb_rowchanges() 119
gdb _rows() 30
gdb_setbusytimeout() 122
gdb_setoption() 124
gdb_snprintf() 126
gdb_statement() 128
gdb_stmt exec() 130
maximum data 131
gdb_stmt free() 132

February 13, 2009

qdb_stmt init() 134
QDB_TIMEOUT_BLOCK 122

QDB_TIMEOUT_NONBLOCK> 122

qdb vacuum() 136
gdb_vmprintf() 138
QDB client
description 22
options 21
QDB configuration file 12
gdbc 21
query
convenience function 117
example of how to get result
getting result 30
quote() 149

R

random() 149
randomblob() 149
records
delete from tables 166
recovery
database 16
recreate
indexes 183
REI NDEX 183
REPLACE 174,184
replace() 149
RESERVED
lock 189
restoring up
databases 25
result (using)
example 30
results
columnsin 93
datatype 87
freeing 99
length 85
printing 115
rowsin 121
ROLLBACK 174
round() 149
row D 143

30

Index

197

Index

[J 2009, QNX Software Systems GmbH & Co. KG.

last 109
ROND 143
rows

affected by statement 119
rterim() 149

S

scalar

functions 69
schema

version 181
schema files 9
SELECT 185

column 148

compound statements 187

SELECT statement
results 105
sequences
collation 39
server

example of how to disconnect

SHARED
lock 189
sharing

connections between clients 15

short
column names 179
size
page 179
sorting 38
soundex() 149
SQL
comments 145
errors 102
expressions 146
REPLACE 184
results, printing 115
SQL statement
running 128
sqlite_version() 149
SQLiteC 73
sqlite3 result * 73
sqlite3 user _data 75
sqlite3 value * 73

198 Index

sqlite3 value type() 73
starting the QDB 10
statement (executing)

example 29
statements

SELECT 148
storage

classes 35
store

temp 180
strings

formatting 111, 126, 138
substr() 149
sum() 151
support X
synchronous

flag 179
system

objects 154

T

table

create 159

drop 169
table info 181
tables

cleaningup 191
technical support x
temp

store 180
temp storeparameter 180
temporary storage

filesystem 10
timeout

busy 17

setting for busy 122
total() 151
TRANSACTI ON 188
transaction state

getting 107
trigger

create 162

drop 170
trim() 149

February 13, 2009

[J 2009, QNX Software Systems GmbH & Co. KG.

Index

typeof() 149
typographical conventions ix

U

UNI ON
operator 187
UNI ON ALL
operator 187
UPDATE 190
upper(X)() 149
user
collation routines 70
version 181
user-defined functions
writing 69

Vv

VACUUM 191
vacuum 18
vacuum

auto 177
vacuuming 136
values

literal 147
verify 18
version

schema 181

user 181
view

create 165

drop 171
viewing

QDB-generated 46
virutal machine

opcodes 45
W
VWHERE

clause 186

February 13, 2009

Index

199

