
To Resource Manager or Not to Resource Manager
Authored by: Mario Charest
Updated by: Thomas Fletcher

This article assumes you have a general idea of what a resource manager is. But by way of a quick
summary, let's define a resource manager as a program that provides an interface through the pathname
space, using the standard I/O functions read(), write(), devctl(), select(), etc.

In this article, I'll be referring to two different operating systems: QNX 4 and QNX Neutrino.

QNX 4 I/O managers

Under QNX 4, the equivalent of a Neutrino resource manager is called an I/O manager, which can be
somewhat cumbersome to use. There was very little documentation available on I/O managers; only in the
last one to two years has a decent template/library been made available to help developers write their own
I/O managers. Although this is an improvement, the template/library was provided only as a convenience
and comes with no guaranty. Many developers have never written an I/O manager under QNX 4, simply
because they felt it was too complex to do so.

For these reasons, the concept of a resource manager isn't well known to the QNX 4 community, and even
less known to people who are new to Neutrino. I've had many discussions with fellow programmers about
the benefits and drawbacks of resource managers. Most of these programmers have QNX 4 backgrounds
and felt uneasy with the concept. It was difficult for them to create a design that can unleash the power of
the resource manager.

Personally, I perceive the jump from QNX 4's Send()/Receive()/Reply() model to Neutrino's resource
managers to be like moving from C to C++. It's not only the language that differs, but how you solve
problems. If you have a QNX 4 background and have never used an I/O manager, you'll need to change the
way you think. The rest of this article describes my own experience with resource managers and how I've
solved problems with them. I myself have converted from the QNX 4 I/O manager mindset to the Neutrino
resource manager concept. It wasn't easy, but boy am I glad I did!

Three examples

The text below describes three different resource managers I have written or helped design for various
projects. We'll start with the simplest example and move on to more complex examples.

For those who aren't familiar with resource managers, you might want to read the documentation for a
better understanding before you continue. (See: "Writing a resource manager" in the Programmer's Guide.)

GPS example

Without going into the fine details of a GPS device, in general the unit sends a stream of data every second.
The stream is composed of information organized in command groups. Here's an example of the output
from a GPS:

$GPGSA,A,3,17,16,22,31,03,18,25,,,,,,1.6,1.0,1.2*39
$GPGGA,185030.30,4532.8959,N,07344.2298,W,1,07,1.0,23.8,M,-32.0,M,,*69
$GPGLL,4532.8959,N,07344.2298,W,185030.30,A*12
$GPRMC,185030.00,A,4532.8959,N,07344.2298,W,0.9,116.9,160198,,*27

© 2004, 2007, QNX Software Systems. All rights reserved.

$GPVTG,116.9,T,,,0.9,N,1.7,K*2D
$GPZDA,185030.30,16,01,1998,,*65
$GPGSV,2,1,08,03,55,142,50,22,51,059,51,18,48,284,53,31,23,187,52*78
Each line corresponds to a data set. Here's the C structure of some of
the data sets:
typedef struct GPSRMC_s {
double UTC;
int Status;
Degree_t Latitude;
NORTHSOUTH Northing;
Degree_t Longitude;
EASTWEST Easting;
float Speed;
float Heading;
} GPSRMC_t;
typedef struct GPSVTG_s {
float Heading;
float SpeedInKnots;
float SpeedInKMH;
} GPSVTG_t;
typedef struct GPSUTM_s {
UTM_t X;
UTM_t Y;
} GPSUTM_t;

When I first designed the driver for QNX 4, I chose to provide one API per GPS format command:
gps_get_rmc(), gps_get_vtg(), get_get_utm(), etc. Internally, each function would Send() a message with
a different command and the reply was the data last received by the GPS.

Finally, it came time to port the driver to QNX Neutrino. Although I could have kept the same architecture
used in the QNX 4 design, I felt it was time to overcome my apprehensions about resource managers. I took
a deep breath and decided to dive in.

The first obstacle was that read() and write() are half-duplex operations -- they can't be used to send a
command and get data back. Actually, I guess one could do this:

GPSUTM_t utm;
Int cmd = GPS_GET_GSA;
fd = open("/dev/gps1", O_RDWR);
write(fd, &cmd, sizeof(cmd));
read(fd, &data, sizeof(data));
close(fd);

But this code looks unnatural. Nobody would expect read() and write() to be used in that way, so this
approach was a no go. I thought about using devctl() to send a command and request specific data, but my
gut feeling was telling me it wasn't the "resource managerish" way of doing it. Then it hit me. Why not
have a different path for every command set? The driver would create the following pathnames:

/dev/gps1/gsa.txt
/dev/gps1/gsa.bin

© 2004, 2007, QNX Software Systems. All rights reserved.

/dev/gps1/gga.bin
/dev/gps1/gga.txt
So a program wanting to get GSA information would do this:
gps_gsa_t gsa;
int fd;
fd = open ("/dev/gps1/gsa.bin", O_RDONLY);
read(fd, &gsa, sizeof(gsa));
close (fd);

Now, I don't know about you, but this looks darn clean to me! The logic behind the .txt and .bin extensions
is that data returned by the read() would be in ASCII format if the .txt file is used. If the .bin file is used
instead, the data is returned in a C structure for easier use. But why support *.txt if most programs would
prefer to use the binary representation? The reason is simple.

From the shell you could type:

cat /dev/gps1/rmc.txt

and you would see:

GPRMC,185030.00,A,4532.8959,N,07344.2298,W,0.9,116.9,160198,,*27

Can you feel the power?! You now have access to the GPS data from the shell. Wait, there's more! You
want to know all the commands the GPS supports.

From the shell, type:

ls /dev/gps1

Or from a C program use opendir()/readdir(). You also want your program to be informed when there's
new data available. Simply use select() or ionotify() instead of polling on the data. Contrary to what you
might think, it's quite simple to support these features from within the resource manager.

Database example

This particular design asked for a program to centralize file access. Instead of having each program handle
the specific location of the data files (on the hard disk or in FLASH or RAM), we decided that one program
would handle it. Furthermore, file updates done by one program required that all programs using that file be
notified. So instead of having each program notify each other, only one program would take care of the
notification. That program was cleverly named "database". ;-)

The original design included the following API: db_read(), db_write(), db_update_notification(), etc.
When I was brought into the project, it became obvious to me this was a nice fit for a resource manager.
The API was changed to open(), read(), write(), select(), ionotify(), etc. Sound familiar? ;-)

Client programs were seeing one path only:

/dbase/filename

Of course, much like the QNX Neutrino Package Filesystem manager, files found in /dbase/" were not
physically there. Files could be scattered all over the place.

© 2004, 2007, QNX Software Systems. All rights reserved.

The database resource manager program looked at the filename during open() and decided where the file
needed to go or to read from. This, of course, depended on the specific field in the filename. For example,
if the file had a .tmp extension, it would go to the RAM disk.

The real beauty of this design is that the designer of the client program could test their application without
having the database program running. The open() would be handled directly by the filesystem.

To support notification of a file change, a client would use ionotifiy() or select() on the file descriptor of
the files. Unfortunately, that feature isn't supported natively by the filesystem.

I2C example

I am currently writing a driver for an I2C bus controller of the PowerPC MPC860 (lovely CPU, by the
way). The I2C bus is simply a 2-wire bus. It's extremely cheap to implement, hardware-wise. The bus
supports up to 127 devices on the bus and each device can handle 256 commands. When devices want to
read or write information to or from another device, they must first be set up as a master to own the bus.
Then the device sends out the device address and command register number. The slave then acts upon the
command received.

Now that you know everything there is to know about I2C bus, let me take you through my design phases. I
want to cover this example last because it's the one I found the most exciting.

At first, I thought a resource manager wouldn't apply in this case. All read() and write() operations require
a device address and command register. I thought about using devctl(), but I'm allergic to devctl()! I can't
say exactly why, but their usage looks ugly to me.

Since I couldn't find a way to not use devctl, I was sticking with sending custom messages and hiding the
MsgSend() in an API. I presented the API to the customer and they agreed on it.

Then at 7:45am the next morning, I stubbed my little toe on a chair leg. That must have stimulated some
part of my brain, because during breakfast a solution popped into my head. (Isn't it weird that one minute
you're thinking about throwing a chair out the window and the next you have a solution to a problem you
thought you already solved?)

Here's what I came up with:

Each device would live under its own directory and each register would have a filename.

/dev/i2c1//

Actually, I had already thought about that before the toe accident, but had rejected it. What was new this
time is the idea that each filename (127 devices * 256 registers = 32512 filenames) doesn't really need to
exist. Each device would be created live, as it's required. Therefore, each open() is actually an
O_CREATE.

To prevent any problems caused by a high number of possibly existing files, I decided an ls command of
the /dev/i2c1 would return nothing! Slightly unintuitive I know, but I think it's worth the benefit.

Then another idea came to me. I decided to add an option allowing filenames that were open at least once
to be made visible if ls is used. At this point, it's important to clarify that the existence of the filenames is
totally handled by the resource manager. The OS itself is not used in that process. So it's not a problem if
filenames respond to open requests but not to ls.

© 2004, 2007, QNX Software Systems. All rights reserved.

One element was left to solve: the I2C bus has a concept of baud rate. Guess what? There are already C
functions to set up baud rates. And I could make it work via the stty command from the shell. Very cool!

At this stage I was happy with the new design. Anybody using the driver doesn't have to worry about
libraries or include files because there are none! The resource manager, at no cost, allows each command
register to be accessed via the shell, or for that matter, though SAMBA from a Linux or Windows machine.
Access via the shell makes debugging so easy -- there's no need to write custom test tools, it's unbelievably
flexible, not to mention the support for separate permissions for each and every command register of every
device!

Now I'm all set. I'm ready to send the new spec to the customer, when BANG! -- another set of neurons
fired. The following code lacks clarity in my opinion:

fd = open ("/dev/i2c1/34/45");
read(fd, &variable, sizeof(variable));
close(fd);

Would it be much better to have this instead?:

fd = open ("/dev/i2c1/flash/page_number");
read(fd, &page_number, sizeof(page_number));
close (fd);

Of course, one could use #define to show meaningful information, but that wasn't satisfactory. To solve
this problem, I created a configuration file that the driver could read to create an alias. The configuration
file looked like this:

[4=temperature_sensor]
10=max
11=min
12=temperature
13=alarm
[5=flash]
211=page_number

The field inside [] defines the device address and name. The data that follows specifies each register of that
device. I see two main advantages to this approach:

• The configuration file's format helps document the program.
• If the hardware is changed and devices are assigned new addresses, you simply change the

configuration file -- there's no program to recompile. That you got to love!

These predefined devices would always show via the ls command. Time to give myself a pat on the back. ;-
)

When not to resource manager

There are times when a resource manager isn't required.

© 2004, 2007, QNX Software Systems. All rights reserved.

The most obvious case would be if a program doesn't need to receive messages. But still, if your program is
event-driven, you might want to look at using the dispatch library to handle internal events. In the future, if
your program ever needs to receive messages, you can easily turn it into a resource manager.

Another case might be if your program interfaces only with its children. The parent has access to all the
children's information required to interface with them.

In any case, I think I'm biased; I'd actually make every attempt to turn everything into a resource manager.

I really like it when I can get my resource manager client to use only the POSIX API. That means less
documentation to write, not to mention very portable code. Of course, in many cases, providing an API on
top of the POSIX API is often very desirable. You could hide the details of devctl() or custom messages.
The internals of the API could then be changed if you have to port to a different OS.

If you must transfer high volumes of data at a very high rate, a resource manager can be a problem. Since
resource managers basically interface via IPC kernel primitives, they're slower then memcpy(). ;-) But
nothing prevents you from using a mix of shared memory, POSIX API, and custom messages, all to be
hidden in your own API. It wouldn't be too difficult to have the API detect whether or not the resource
manager is local and to use shared memory when local and IPC when remote -- a way to get the best of
both worlds.

Conclusion

Hopefully, this document will help you get a grasp of some of the power of resource managers. They may
be unsettling at first, but in my honest opinion, they're definitely worth the learning curve.

Please feel free to contact me about your experience with resource managers. I'm curious to see how
creative people can get with their own resource managers. There are plenty of possibilities; I only scratched
the surface.

© 2004, 2007, QNX Software Systems. All rights reserved.

	To Resource Manager or Not to Resource Manager
	QNX 4 I/O managers
	Three examples
	GPS example
	Database example
	I2C example
	When not to resource manager
	Conclusion

