
QNX Neutrino Resource Managers: Using
MsgSend() and MsgReply()
Authored by: Chris McKillop
Updated by: Thomas Fletcher

This article will show, by example, how to write a QNX Neutrino resource manager skeleton.

If you were previously developing using QNX 4, then this article you will get a comfortable feeling
of still being able to use a single numeric ID (like a process ID) as the basis for establishing
communication.

If you are a first time user, then welcome aboard!

The skeleton sample code is also a good base to use for their expansion into other areas (beyond
what QNX 4 was capable of) when they have the opportunity.

Note: If you haven't read the QNX Neutrino (Neutrino) System Architecture guide, you should do
so before going on, it has some good stuff!

IPC under the two OSs

Since many of the people reading this will not have written a line of code for QNX 4, they may
need to be brought up to speed with the differences between IPC (inter-process communication)
on QNX Neutrino and QNX 4. First, both OSs use a notion of Send/Receive/Reply for messaging.
This IPC mechanism is (generally) used in a synchronous manner - the sending process waits for
a reply from the receiver and a receiver waits for a message to be sent. This provides a very easy
call-response synchronization.

QNX 4 approach

Under QNX 4, the Send() function call needed only the process ID of the receiving process. QNX
4 also provided a very simple API for giving a process name and, in turn, looking up that name to
get a process ID. So you could name your server process, and then your client process could
look up that name, get a process ID (pid), and then Send the server data and wait for a reply.
This model worked well in a non-threaded environment.

QNX Neutrino approach

Since QNX Neutrino included proper thread support, the notion of having a single conduit into a
process didn't make a lot of sense, so a more flexible system was designed. To perform a
MsgSend() under QNX Neutrino, you no longer need a pid, but rather a connection ID (coid).
This coid is obtained from opening a connection to a channel. Processes can now create multiple
channels and can have different threads service any (or all) of them. The issue now becomes:
How does a client get a coid in the first place so it can open a connection to get the coid it needs
to perform the MsgSend()?

© 2004, 2007, QNX Software Systems. All rights reserved.

There are many different ways this kind of information sharing can occur, but the method that falls
in line with the QNX Neutrino design ideals is for the server to also be a Resource Manager.

A Resource Manager is a term for a process that handles resources in the filesystem. The kernel
(procnto) is itself a Resource Manager - /dev/null, /proc, and several other resources are
handled by procnto in the same way any other process handle them. Under QNX Neutrino, and
other POSIX systems, when you call open() you get back a file descriptor (fd). But this fd is also
a coid!!! So instead of registering a name, as in QNX 4, your server process registers a path in
the filesystem and the client opens that path to get the coid to talk to the server.

A client/server example

The best way to learn is by example. We'll now go over a simple client/server that can be used as
the starting point for any similar project. There are two source files - I recommend that you right-
click on each one and open them in a separate browser windows. This way you can keep the
code in one window while you read this article in another.

server.c
client.c

The two source files are easily built by invoking:

qcc -o client client.c
qcc -o server server.c

from the command line. Note that you must run server as root - a requirement in order to use the
resmgr_attach() function.

The server

Let's begin with the server. If you've had a chance to read over the chapter on “Writing a
Resource Manager” in the Programmer's Guide, you'll see some similarities between this
example and that one, but also some differences. If you haven't read this guide, I recommend
that you do.

The first action the server will take is to create a dispatch handle (dpp) using dispatch_create().
This handle will be used later when making other calls into the dispatch portion of the library. This
is important - the bottom layer of a resource manager is the dispatch layer. This layer takes care
of receiving incoming messages and routing them to the right layer above (resmgr, message,
pulse).

After the dispatch handle is created, the server sets up the variables needed to make a call into
resmgr_attach(). But since we're not using the resmgr functionality for anything more then
getting a connection ID to use with MsgSend(), the server sets up everything to defaults. We
don't need (or want) to worry about I/O and connection messages right now (like the messages
that open/close/read/write/... generate); we just want them to work and do the right thing.
Luckily, there are defaults built into the C library to handle these types of messages for you, and
iofunc_func_init() sets up these defaults. The call to iofunc_attr_init sets up the attribute
structure so that the entry in the filesystem has the specified attributes.

Finally, the call to resmgr_attach() is made. For our purposes, the most important parameter is
the third. In this case we're registering the filesystem entry serv. Since an absolute path wasn't
given, the entry will appear in the same directory where the server was run. All of this will give us

© 2004, 2007, QNX Software Systems. All rights reserved.

http://www.qnx.com/download/download/9880/server.c
http://www.qnx.com/download/download/9881/client.c

a filesystem entry that can be open()'d and close()'d, but generally behaves the same as
/dev/null. But that's fine, since we want to be able to MsgSend() data to our server, not write()
data to the server.

Now that the resmgr portion of the setup is complete, we need to tell the dispatch layer that we'll
be handling our own messages in addition to the standard I/O and connection messages handled
by the resmgr layer. In order for the dispatch layer to know the general attributes of the
messages we'll be receiving, the message_attr structure is filled with information. In this case
we're telling it that the number of message parts we're going to receive is 1 with a max message
size of 4096 bytes.

Once we have these attributes defined, we can register our intent to handle messages with the
dispatch layer by invoking message_attach(). With this call we're setting up message_callback
to be the handler of messages of type _IO_MAX + 1 up to and including messages of _IO_MAX
+ 2. There's even the option of having a pointer to arbitrary data passed into the callback, but we
don't need that so we're setting it to NULL.

Some people might now be asking, "Message type _IO_MAX + 1?!? I don't see anything in the
MsgSend() docs for setting a message type!". This is true. However, in order to play nice with the
dispatch later, all incoming messages should have a 32-bit integer at the start of the message
indicating the message type. Although this may seem restrictive to a new QNX developer, the
reason it's in place is that most designs will end up using some sort of message identification
anyway, and this just forces you into a particular style. This will become clearer when we look at
the client. But now let's finish the server.

Now that we've registered both the resmgr and message handlers with the dispatch layer, we
simply create a context for the dispatch layer to use while processing messages by calling
dispatch_context_alloc and then start receiving and processing data. This is a two-step
process:

1. The server calls dispatch_block(), which will wait for incoming messages and pulses.
2. Once there's data available, we call into dispatch_handler() to do the right thing based

on the message data. It's inside the dispatch_handler call that our message_callback
will be invoked, when messages of the proper type are received.

Finally, let's look at what the message_callback actually does when a proper message is
received. When a message of type _IO_MAX + 1 or _IO_MAX + 2 is received, our callback will
be invoked. We get the message type passed in via the type parameter. The actual message
data can be found in ctp->msg. When the message comes in, the server will print out the
message type and the string that was sent from the client. It then prints out the offset from
_IO_MAX of the message type and then finally formats a reply string and sends the reply back to
the client via ctp->rcvid using MsgReply(). The server walk-through is now complete!

The client

The client is much simpler. It uses the open() function to get a coid (the server's default resmgr
setup takes care of all of this on the server side), and performs a MsgSend() to the server based
on this coid and waits for the reply. When the reply comes back, the client prints out the reply
data. The client can be optionally given the command-line option -n# (where # is the offset from
_IO_MAX) to use for the message. If you give anything over 2 as the offset, the MsgSend() will
fail, since the server hasn't set up handlers for those messages! Neat, eh? Also, remember that
since the server registers a relative pathname, the client must be run from the same directory as
the server.

© 2004, 2007, QNX Software Systems. All rights reserved.

These examples are very basic, but still cover a lot of ground. There are many other things you
can do using this same basic framework:

• Register different message_callbacks based on different message types.
• Register to receive pulses in addition to messages using pulse_attach().
• Override the default I/O message handlers so that clients can also use read() and write()

to interact with your server.
• Use thread-pools to make your server multi-threaded.

Many of these topics are covered in the Neutrino Programmer’s Guide in the section on Writing a
Resource Manager which is a great place to expand your knowledge using this client/server as a
sample to expand on.

© 2004, 2007, QNX Software Systems. All rights reserved.

	QNX Neutrino Resource Managers: Using MsgSend() and MsgReply()
	IPC under the two OSs
	QNX 4 approach
	QNX Neutrino approach
	A client/server example
	The server
	The client

