
Protecting Your Data in a Multi-Threaded App 
Authored by: John Fehr 
Updated by: Thomas Fletcher 

The most important part of your application is most likely the data you're manipulating. If that data 
is corrupted, your application is useless. It's pretty straightforward to make sure your single-
threaded application doesn't accidentally corrupt its data. Multi-threaded applications require 
some additional diligence on the part of the developer however. 

The overlap problem 

The problem with multi-threaded applications is that you could have one section of code 
modifying your data, while another section is reading and using that same data. If the write and 
read overlap, you could have some serious complications!  

Why don't you try creating a little application and some data to be modified? 

#include <stdio.h> 
#include <pthread.h> 
typedef struct { 
 int a; 
 int b; 
 int result; 
 int result2; 
 int use_count; 
 int use_count2; 
 int max_use; 
 int max_use2; 
} app_data; 

Pass your app_data structure to a thread that reads the data and uses the a and b variables 100 
times whenever a is set to five. You'll use a local "uses" variable to count 100 of your uses. You'll 
also increment the application's "use_count" in case someone else wants to keep track of how 
many times your data has been used. You'll add a small usleep here to make sure the scheduler 
gives other threads a chance to run. Here's the code for your data user: 

void *user_thread(void *data) { 
 int uses=0; 
 app_data *td=(app_data*)data; 
 while(uses<td->max_use) { 
  if (td->a==5) { 
   td->result+=(td->a+td->b); 
   td->use_count++; 
   uses++; 
  } 

© 2004, 2007, QNX Software Systems. All rights reserved. 



  usleep(1); 
 } 
 return 0; 
} 

Now, make some code that changes your data. You'll want to continue changing a and b until 
they've been used elsewhere (your user_thread, in this case) 100 times. Your change will be 
simple: you'll simply toggle your a value between 5 and 50 and fake a CPU-intensive calculation 
for b with a usleep(1000) call. This means that a will be changed and ~1ms later b will be 
changed. You'll have a ~1ms gap where a and b should not be used elsewhere in the application 
since they haven't been set to what you want yet: 

void *changer_thread(void *data) { 
 app_data *td=(app_data*)data; 
 while ((td->use_count+td->use_count2)<(td->max_use+td->max_use2)) { 
  if (td->a==5) { 
   td->a=50; 
   td->b=td->a+usleep(1000); 
  } else { 
   td->a=5; 
   td->b=td->a+usleep(1000); 
  } 
  usleep(1); 
 } 
 return 0; 
} 

Wrap it all up in your main() by creating the app_data instance, spawning your two threads, 
waiting for them to finish, and printing the results. They should be: 

Int main(int argc, char **argv) { 
 pthread_t ct,ut,st; 
 app_data td={5,5,0,0,0,0,100,0}; 
 void *retval; 
 pthread_create(&ut,NULL,user_thread,&td); 
 pthread_create(&ct,NULL,changer_thread,&td); 
 pthread_join(ct,&retval); 
 pthread_join(ut,&retval); 
 printf("result should be %d, is %d\n",td.max_use*(5+5),td.result); 
 return 0; 
} 

Now build this program and see how she runs:  

$ gcc assets.c -o assets 

$ ./assets 

The result that should be ~1000, is not, in this case it is 3967 (your result might be different 
depending on your CPU speed).  

© 2004, 2007, QNX Software Systems. All rights reserved. 



Clearly this isn't what you want! Why did you get such a weird result? 

The problem is that the user_thread is waiting until a is set to 5, and when it is, it adds the a and 
b values (which should both be 5) to the result variable. However, since the b variable is taking 
so long to get calculated, it sometimes uses the old b value (50) instead of the new one (5). You 
need to protect your data somehow so that the user_thread can't use the data until you've 
protected it! 

Mutexes 

Welcome to the wonderful world of the mutex (mutual exclusion). As the name implies, mutexes 
help you make sure that certain code or data is only accessed by one thread at a time.  

Mutexes are very easy to use. Once a mutex has been created, you simply put a 
pthread_mutex_lock() in front of the code you want to protect and pthread_mutex_unlock() 
right after that code. In this case, you want to protect both the modification of the a and b 
variables as well as their use. First, though, you need to put in code to create and delete the 
mutex. Put the mutex into this handy structure: 

typedef struct { 
 int a; 
 int b; 
 int result; 
 int result2; 
 int use_count; 
 int use_count2; 
 int max_use; 
 int max_use2; 
 pthread_mutex_t mutex; 
} app_data; 

Create and destroy the mutex in your main() function. In this example, you'll pass NULL as the 
attr parameter to use the default attributes for the mutex: 

int main(int argc, char **argv) { 
 pthread_t ct,ut,st; 
 app_data td={5,5,0,0,0,0,100,0}; 
 void *retval; 
 pthread_mutex_init(&td.mutex,NULL); 
 pthread_create(&ut,NULL,user_thread,&td); 
 pthread_create(&ct,NULL,changer_thread,&td); 
 pthread_join(ct,&retval); 
 pthread_join(ut,&retval); 
 pthread_mutex_destroy(&td.mutex); 
 printf("result should be %d, is %d\n",td.max_use*(5+5),td.result); 
 return 0; 
} 

© 2004, 2007, QNX Software Systems. All rights reserved. 



Now, you put the lock/unlock functions around the code you want to protect (when you're reading 
or writing the a or b variables). Change the while() loop in the user thread to read: 

while(uses<td->max_use) { 
 pthread_mutex_lock(&td->mutex); 
 if (td->a==5) { 
  td->result+=(td->a+td->b); 
  td->use_count++; 
  uses++; 
 } 
 pthread_mutex_unlock(&td->mutex); 
 usleep(1); 
} 

Also, change the changer thread's while() loop to read: 

while ((td->use_count+td->use_count2)<(td->max_use+td->max_use2)) { 
 pthread_mutex_lock(&td->mutex); 
 if (td->a==5) { 
  td->a=50; 
  td->b=td->a+usleep(1000); 
 } else { 
  td->a=5; 
  td->b=td->a+usleep(1000); 
 } 
 pthread_mutex_unlock(&td->mutex); 
 usleep(1); 
}  

This time when you compile and run it you get a result that should be ~1000, and is ~1000 which 
is exactly the result you want. :) 

What if you have one thread that's changing your assets, but more than one other thread that just 
wants to read your assets? 

Add another thread that needs to read a and b as well: 

void *subtracter_thread(void *data) { 
 int use=0; 
 app_data *td=(app_data*)data; 
 while(use<td->max_use2) { 
  pthread_mutex_lock(&td->mutex); 
  if (td->a==50) { 
   td->result2-=(td->a+td->b); 
   use++; 
   td->use_count2++; 
  } 

© 2004, 2007, QNX Software Systems. All rights reserved. 



  pthread_mutex_unlock(&td->mutex); 
  usleep(1); 
 } 
 return 0; 
} 

You'll also need to modify main() to spawn the new thread and set your max_use2 variable in 
your app_data structure: 

int main(int argc, char **argv) { 
 pthread_t ct,ut,st; 
 app_data td={5,5,0,0,0,0,100,100}; 
 void *retval; 
 pthread_mutex_init(&td.mutex,NULL); 
 pthread_create(&ut,NULL,user_thread,&td); 
 pthread_create(&ct,NULL,changer_thread,&td); 
 pthread_create(&st,NULL,subtracter_thread,&td); 
 pthread_join(st,&retval); 
 pthread_join(ct,&retval); 
 pthread_join(ut,&retval); 
 pthread_mutex_destroy(&td.mutex); 
 printf("result should be %d, is %d\n",td.max_use*(5+5),td.result); 
 printf("result2 should be %d, is %d\n",-
(td.max_use2*(50+50)),td.result2); 
 return 0; 
} 

If you compile and run this, you get just what you wanted: 

result should be 1000, is 1000 

result2 should be -10000, is -10000 

But wait. Shouldn't the user_thread and the subtracter_thread read a and b at the same time? 
(Remember that with mutexes anything wrapped in the lock/unlock pair can't be executed at the 
same time as another piece of code wrapped in the lock/unlock pair.) Neither of them change a or 
b, so it would be nice if you could let both of them read a and b at the same time - just not when 
the changer_thread is changing them. 

Rwlocks 

With rwlocks, another locking mechanism, you can easily implement this kind of behavior. Unlike 
mutexes, rwlocks can be locked either as read or as write. As long as they're not locked for write 
access, any threads can lock for read and unlock as much as they want. However, once they're 
locked for write access, all read locks occurring afterwards are blocked until the write lock is 
unlocked. Sounds perfect? 

© 2004, 2007, QNX Software Systems. All rights reserved. 



First you'll need to change your mutex to a rwlock in your structure: 

typedef struct { 
 int a; 
 int b; 
 int result; 
 int result2; 
 int use_count; 
 int use_count2; 
 int max_use; 
 int max_use2; 
 pthread_rwlock_t rwl; 
} app_data; 

Next, modify your main() so that the rwlock is initialized instead of a mutex. You use NULL again 
as the attr argument to get the default behavior:  

int main(int argc, char **argv) { 
 pthread_t ct,ut,st; 
 app_data td={5,5,0,0,0,0,100,100}; 
 void *retval; 
 pthread_rwlock_init(&td.rwl); 
 pthread_create(&ut,NULL,user_thread,&td); 
 pthread_create(&ct,NULL,changer_thread,&td); 
 pthread_create(&st,NULL,subtracter_thread,&td); 
 pthread_join(st,&retval); 
 pthread_join(ct,&retval); 
 pthread_join(ut,&retval); 
 pthread_rwlock_destroy(&td.rwl); 
 printf("result should be %d, is %d\n",td.max_use*(5+5),td.result); 
 printf("result2 should be %d, is %d\n",-
(td.max_use2*(50+50)),td.result2); 
 return 0; 
} 

Finally, you change the pthread_mutex_lock to pthread_rwlock_rdlock and the 
pthread_mutex_unlock to pthread_rwlock_unlock in your user_thread and changer_thread. 
That takes care of the read access. You also replace the pthread_mutex_lock to 
pthread_rwlock_wrlock and the pthread_mutex_unlock to pthread_rwlock_unlock in your 
changer_thread function, to take care of the write access. Here's your new code: 

void *user_thread(void *data) { 

 int uses=0; 

 app_data *td=(app_data*)data; 

 while(uses<td->max_use) { 

  pthread_rwlock_rdlock(&td->rwl); 

  if (td->a==5) { 

   td->result+=(td->a+td->b); 

© 2004, 2007, QNX Software Systems. All rights reserved. 



   td->use_count++; 

   uses++; 

  } 

  pthread_rwlock_unlock(&td->rwl); 

  usleep(1); 

 } 

 return 0; 

} 

void *changer_thread(void *data) { 

 app_data *td=(app_data*)data; 

 while ((td->use_count+td->use_count2)<(td->max_use+td->max_use2)) { 

  pthread_rwlock_wrlock(&td->rwl); 

  if (td->a==5) { 

   td->a=50; 

   td->b=td->a+usleep(1000); 

  } else { 

   td->a=5; 

   td->b=td->a+usleep(1000); 

  } 

  pthread_rwlock_unlock(&td->rwl); 

  usleep(1); 

 } 

 return 0; 

} 

void *subtracter_thread(void *data) { 

 int use=0; 

 app_data *td=(app_data*)data; 

 while(use<td->max_use2) { 

  pthread_rwlock_rdlock(&td->rwl); 

  if (td->a==50) { 

   td->result2-=(td->a+td->b); 

   use++; 

   td->use_count2++;  

  } 

  pthread_rwlock_unlock(&td->rwl); 

  usleep(1); 

 } 

 return 0; 

} 

© 2004, 2007, QNX Software Systems. All rights reserved. 



That's it! 

Now the subtracter_thread and the user_thread can read the data at the same time, but the 
changer_thread can't access the data at the same time as either the subtracter_thread or the 
user_thread. 

One final note on the use of rwlocks: they are not recursive and therefore are not promotive. In 
other words, you can't lock your rwlock over and over again without unlocking first. You also 
can't lock your rwlock for read and then for write without unlocking first. This tradeoff was done to 
keep the rwlock as lightweight (in terms of size and speed) as possible. 

I hope I've helped you figure out how, where, and why to use mutexes and rwlocks! 

© 2004, 2007, QNX Software Systems. All rights reserved. 


	Protecting Your Data in a Multi-Threaded App 
	The overlap problem 
	Mutexes 


