
Pay the Piper
Authored by: John Fehr
Updated by: Thomas Fletcher

Implementing an efficient buffered piping mechanism between two threads can be quite a
challenge. Obviously we need some kind of locking mechanism on the pipe's buffer so that we
don't overwrite or overread data. There are a number of methods we could use, and mutexes
seem to be a good choice, since they're quite lightweight. But is it the best solution? Let’s find
out.

A slow tune.

Lets start our implementation with a structure that we'll use to hold the buffered data and pointers:

 #include <pthread.h>
 // buffer size
 #define BSIZE 1024
 typedef struct
 {
 char buf[BSIZE]; // our buffered data
 int rpos; // current read position
 int wpos; // current write position
 int full; // if rpos==wpos, is the buffer full or
empty?
 pthread_mutex_t mutex; // lock for our buffer
 } piper_t;

You gotta keep em separated!

That seems pretty straight forward. Our pipe read and write functions will be almost identical,
except we'll be setting the full flag in the writer (when the buffer gets totally full), and we'll be
resetting it in the reader, since we'll always be reading at least one byte.

Another difference of course, will be that we're moving the wpos pointer in the writer, and the
rpos pointer in the reader.

Finally, in both cases we check the full flag if the read and write positions are identical. In the
writer, if the full flag is set and the read and write positions are identical, this means that there is
no room in the buffer to write more bytes, so we release our lock, and try again after a very short
delay. In the reader, if the full flag is not set and the read and write positions are identical, this
means that the buffer is totally empty, so we release our lock, and try again after a very short
delay.

Sound straight forward? Here's the code:

 // Write any number of bytes to the pipe, even if there are more
 // than the buffersize of the pipe.
 int pipe_write(piper_t *p,char *data,int len)
 {
 // keep looping until we've written all the data we want
 while (len>0)

© 2004, 2007, QNX Software Systems. All rights reserved.

 {
 int towrite;
 // lock our pipe
 pthread_mutex_lock(&p->mutex);
 // if we have no room to write, we unlock the mutex,
 // delay a bit, and try again.
 if (p->wpos==p->rpos && p->full)
 {
 pthread_mutex_unlock(&p->mutex);
 usleep(100);
 continue;
 }
 // figure out how many bytes we can write this loop
 if (p->rpos<=p->wpos)
 towrite=BSIZE-p->wpos;
 else
 towrite=(p->rpos-p->wpos);
 if (towrite>len) towrite=len;
 // copy our buffer and move the write pointer
 memcpy(&p->buf[p->wpos],data,towrite);
 p->wpos=(p->wpos+towrite)%BSIZE;
 // move our buffer pointer and decrement our len left
 data+=towrite;
 len-=towrite;
 // check if we're now 'full'
 if (p->wpos==p->rpos) p->full=1;
 // unlock our pipe so the reader can access it if neccessary.
 pthread_mutex_unlock(&p->mutex);
 }
 return 0;
 }
 // Read any number of bytes from the pipe, even if there are more
 // than the buffersize of the pipe.
 int pipe_read(piper_t *p,char *data,int len)
 {
 // keep looping until we've gotten all the data we requested
 while (len>0)
 {
 int toread;
 // lock our pipe
 pthread_mutex_lock(&p->mutex);
 // if we have no room to read, we unlock the mutex,
 // delay a bit, and try again.
 if (p->rpos==p->wpos && !p->full)
 {
 pthread_mutex_unlock(&p->mutex);
 usleep(100);
 continue;
 }
 // figure out how much we can read this loop
 if (p->rpos<p->wpos)
 toread=(p->wpos-p->rpos);
 else
 toread=BSIZE-p->rpos;
 if (toread>len) toread=len;

© 2004, 2007, QNX Software Systems. All rights reserved.

 // copy our buffer and move the read pointer
 memcpy(data,&p->buf[p->rpos],toread);
 p->rpos=(p->rpos+toread)%BSIZE;
 // move our buffer pointer and decrement our len left
 data+=toread;
 len-=toread;
 // indicate that the buffer is no longer completely full
 p->full=0;
 // unlock our pipe so the writer can access it if neccessary.
 pthread_mutex_unlock(&p->mutex);
 }
 return 0;
 }

I need two lines, and a picture ID.

Now we'll need two threads, one reading from the pipe, and the other writing to the pipe. To make
sure that it works over a wide variety of buffer sizes, we'll write from 1 to BSIZE*2-1 bytes in the
writer thread, and read from BSIZE*2-1 to 1 byte in the reader thread. This should be exhaustive
enough to give our pipe a good workout. Here are the two functions for our two threads:

 void *writer(void *ptr)
 {
 char data[BSIZE*2];
 int i;
 piper_t *p=(piper_t*)ptr;
 char n=0;
 for (i=1;i<BSIZE*2;i++)
 {
 int j;
 for (j=0;j<i;j++)
 data[j]=n++;
 pipe_write(p,data,i);
 }
 printf("Completed writer task.n");
 }
 void *reader(void *ptr)
 {
 char data[BSIZE*2];
 int i;
 piper_t *p=(piper_t*)ptr;
 char n=0;
 for (i=BSIZE*2-1;i>0;i--)
 {
 int j;
 pipe_read(p,data,i);
 // verify our data
 for (j=0;j<i;j++)
 {
 if (data[j]!=n) printf("data is %d, should be %dn",data[j],n);
 n++;
 }
 }
 printf("Completed reader task.n");
 }

© 2004, 2007, QNX Software Systems. All rights reserved.

Let 'er rip!

Looks like we're ready to go except for the main(). All we do there is launch a reader thread, run
the writer in the main thread, and wait for the reader thread to finish:

 main()
 {
 piper_t p;
 pthread_t rthread;
 void *retval;
 // make sure the buffer is clear before we start
 memset(&p,0,sizeof(p));
 // initialize our pipe's mutex
 pthread_mutex_init(&p.mutex,NULL);
 // start our reader thread
 pthread_create(&rthread,NULL,&reader,&p);
 // run our writer
 writer(&p);
 // wait for the reader thread to finish
 pthread_join(rthread,&retval);
 // destroy our pipe's mutex
 pthread_mutex_destroy(&p.mutex);
 }

Now we can compile and run this code:

$ gcc piper.c -o piper -O2
$ time ./piper

Your mileage may vary but on my machine it takes about 4 seconds to finish. We are sending
about 1024*1024=1 MB of data through our pipe, so this doesn't seem like an ideal solution.
There's got to be something faster!

Our first idea might be to take out the delays. If we try it, we'll notice that our CPU usage is now
pinned, and after 20 seconds or so, we give up. The problem is that because QNX RTOS is
realtime; a thread doesn't get rescheduled unless you explicitly do it, which is what the very small
delay effectively did for us. If we replace the delay with sched_yield(), which explicitly
reschedules the thread, we get a remarkable improvement. We still have the extra poling loops
though, which is quite wasteful.

It'd be nice if we could just somehow block until someone signals us that there's room in the
buffer to read or write data.

You guessed it, there is!

Conditionally yours.

Conditional variables do exactly what we want, and in fact work very closely with mutexes. We
can signal that a conditional variable is set with pthread_cond_signal(). If we've locked our
mutex, and we need to wait for our condition variable to be set, and that conditional variable can
be set only in another thread that needs access to the same data (i.e. locks our mutex), we can
simply call pthread_cond_wait(). It unlocks the mutex we specify, while at the same time
blocking until the conditional variable we specify has been set. When the conditional variable we

© 2004, 2007, QNX Software Systems. All rights reserved.

specify has been set, it once again locks the mutex, and continues. We can set the conditional
variable as often as we want; it will be ignored (and not queued) unless there is another thread
waiting on it. This means we don't have to add logic to figure out if another thread is actually
waiting for a signal before signaling. And as we all know, the less complex the code, the less
chance of bugs wandering in.

Using conditional variables also removes the polling from our code, since the conditional variable
is set only when there is data to be read/written, so we don't have to loop around again to check.
Removing polling is a very good thing.

Lets put the conditional variable code into our application. There's 4 portions we need to modify.
First, add a pthread_cond_t variable to our piper_t structure:

 typedef struct
 {
 char buf[BSIZE]; // our buffered data
 int rpos; // current read position
 int wpos; // current write position
 int full; // if rpos==wpos, is the buffer full or
empty?
 pthread_mutex_t mutex; // lock for our buffer
 pthread_cond_t cond; // our conditional variable
 } piper_t;

Now, we replace the lines:

 pthread_mutex_unlock(&p->mutex);
 usleep(100);
 continue;

with:

 pthread_cond_wait(&p->mutex, &p->mutex);

in the pipe_write and pipe_read functions. In this example we know that we only have two
threads communicating so we don’t need to re-check the condition predicate. If we were woken
up, it was because there is something for us to do (the mutex ensures the mutual exclusion in this
case to prevent us from missing a signal from the “other thread”). If we had multiple threads
reading and writing the buffer, then we would have to re-validate our predicate before we
continued ... and if it wasn’t satisfied then wait again.

The mutex is automatically unlocked while we're waiting for the conditional variable to be set, and
then re-locked before returning from the pthread_cond_wait() function call.)

We'll also need to add pthread_cond_signal() calls to both the pipe_write and pipe_read
functions, just before the mutexes are unlocked:

 pthread_cond_signal(&p->cond);
 pthread_mutex_unlock(&p->mutex);

© 2004, 2007, QNX Software Systems. All rights reserved.

Finally, we'll need to initialize and destroy the conditional variable in our main():

 main()
 {
 piper_t p;
 pthread_t rthread;
 void *retval;
 // make sure the buffer is clear before we start
 memset(&p,0,sizeof(p));
 // initialize our pipe's mutex
 pthread_mutex_init(&p.mutex,NULL);
 // initialize our conditional variable
 pthread_cond_init(&p.cond,NULL);
 // start our reader thread
 pthread_create(&rthread,NULL,&reader,&p);
 // run our writer
 writer(&p);
 // wait for the reader thread to finish
 pthread_join(rthread,&retval);
 // destroy our pipe's mutex
 pthread_mutex_destroy(&p.mutex);
 // destroy our pipe's conditional variable
 pthread_cond_destroy(&p.cond);
 }

If we recompile and run it again as before, we see (to put it mildly) a remarkable improvement. On
my machine, it takes under 1/20th of a second! Conditional variables are very handy, wouldn't
you say?

That's the end?

I hope I've illustrated at least one use for conditional variables. The best use for them is in places
where we want to signal a blocked thread on the off chance that it might be waiting for our signal,
but doesn't have to be. It can make life much easier in many multithreaded applications.

© 2004, 2007, QNX Software Systems. All rights reserved.

	Pay the Piper
	A slow tune.
	You gotta keep em separated!
	I need two lines, and a picture ID.
	Let 'er rip!
	Conditionally yours.
	That's the end?

