
Handling Mount Requests in Your Resource
Manager
Authored by: Thomas Fletcher
Updated by: Thomas Fletcher

Mount requests can provide a very convenient and flexible interface for programs that need to
enable and disable components of their resource managers' systems.

But the procedure remains a bit of a black art, partly because it's one of the less-documented
features of QNX Neutrino. (It was added after our initial documentation was written.) Hopefully
this article will help to shed some light on this relatively simple and useful feature.

Mount Components

There are three main areas to consider when using and building mount functionality into your
resource manager. They are:

• mount utility
• mount function call
• mount callout in the resource manager

These components represent the stream of communication for the mount request. For the
purposes of this article, we'll start in the middle with the mount function call and work our way out.

The mount function call is at the bottom of the mount utility and represents a client's access point
to the resource manager. The function is implemented in the C library, is defined in
<sys/mount.h>, and described in the Neutrino Library Reference.

Mount Function Call

Here's a typical example of a mount function call:

int mount(const char *special_device,
 const char *mount_directory,
 int flags,
 const char *mount_type,
 const void *mount_data,
 int mount_datalen);

Most of the arguments are clear and well documented, but one that may need a bit more
explanation is the interpretation of the flags field.

To support the mounting of non-existent special devices (like NFS devices) or arbitrary strings
(such as shared object or DLL names), we needed to massage the arguments to this function
slightly. Such adjustment is necessary because the mount utility has two methods (-T and -t) for
specifying the mount type.

© 2004, 2007, QNX Software Systems. All rights reserved.

In the general case where special_device is an actual device, a typical mount utility command
may look like:

% mount -t qnx4 /dev/hd0t77 /mnt/fs

In this case the special_device is /dev/hd0t77 and the mount_directory is /mnt/fs and the
mount type is qnx4. In this case, the mount request should be directed only to the process
responsible for managing the special_device. That is to say the resource manager that has
provided the /dev/hd0t77 path into the pathname space. In this type of scenario the resource
manager is given an OCB for the special_device (/dev/hd0t77) rather than the string
/dev/hd0t77. This simplifies the processing in the resource manager since having the OCB, which
is an internal data pointer, for the special device implies that the server doesn’t have to
recursively communicate with itself to get a handle for the device.

A less frequently used, but very useful case, is where the special_device is not an actual device.
An example of this situation may look like:

% mount -T io-net /lib/dll/npm-qnet.so

Note that mountpoint is missing from the command line. In this case, NULL (or /) acts as an
implied mount_directory which will cause the process handling the request (ie. io-net) to take
the appropriate action when it receives the mount request. The special_device is /lib/dll/npm-
qnet.so and the type is io-net. In these cases, you want to avoid having the special device
interpreted as being provided by the same process that will handle the mount request. So while
the file /lib/dll/npm-qnet.so is probably handled by some filesystem process, we're actually
interested in mounting a network interface that is managed by the network manager process.
Ideally, the mount callout will receive only the special device string /lib/dll/npm- qnet.so and not
the OCB for the device.

The behavioral difference between the -t and -T options for the mount utility can be obtained by
or'ing in _MFLAG_OCB to the standard mount flags parameter. If you don't want to use the
OCB method of performing the mount request, use -T ==> _MFLAG_OCB.

Mount requests are connection requests, which means they operate on a path in the same way
that the open() or unlink() calls do. The requests are sent along the path specified by dir. When
a resource manager receives a request to mount something, the information is already provided
in the same way that it would be for an open() for creation request, namely in the msg-
>connect.path variable.

Mount in the Resource Manager

Your resource manager will be called upon to perform a mount request via the mount()
resmgr_connect function callout, defined as:

int mount(resmgr_context_t *ctp,
 io_mount_t *msg,
 RESMGR_HANDLE_T *handle,
 io_mount_extra_t *extra);

© 2004, 2007, QNX Software Systems. All rights reserved.

The only field here that differs from the other connect functions is the io_mount_extra_t
structure. It's defined in <sys/iomsg.h> as:

typedef struct _io_mount_extra {
 uint32_t flags; /* _MOUNT_? or ST_? flags above */
 uint32_t nbytes; /* Size of entire structure */
 uint32_t datalen; /* Length of the data structure following */
 uint32_t zero[1];
 union { /* If EXTRA_MOUNT_PATHNAME these set*/
 struct { /* Sent from client to resmgr framework */
 struct _msg_info info; /* Special info on first mount, path info on
remount */
 } cl;
 struct { /* Server receives this structure filled in */
 void * ocb; /* OCB to the special device */
 void * data; /* Server specific data of len datalen */
 char * type; /* Character string with type information */
 char * special; /* Optional special device info */
 void * zero[4]; /* Padding */
 } srv;
 } extra;
} io_mount_extra_t;

This structure will be provided with all of the pointers already resolved, so you can use it without
doing any extra fiddling.

Where:

• flags - Flag fields provided to the mount command containing the common mount flags
defined in <sys/mount.h>

• nbytes - Size of the entire mount-extra message and is: sizeof(_io_mount_extra)
+ datalen + strlen(type) + 1 + strlen(special) + 1

• datalen - Size of the data pointer.
• info - Used by the resource manager layer.
• ocb - OCB of the special device if it was requested via the _MOUNT_OCB flag. NULL

otherwise.
• data - Pointer to the user data of length datalen.
• type - NULL terminated string containing the mount type, such as nfs, cifs, qnx4.
• special - NULL terminated string containing the special device if it was requested via the

_MOUNT_SPEC flag. NULL otherwise.

© 2004, 2007, QNX Software Systems. All rights reserved.

In order to receive mount requests, the resource manager should register a NULL path with an
FTYPE of _FTYPE_MOUNT and with the flags _RESMGR_FLAG_FTYPEONLY. This would be
done with code that looks something like:

mntid = resmgr_attach(dpp, /* Dispatch pointer */
 &resmgr_attr, /* Dispatch attributes */
 NULL, /* Attach at "/" */
 /* We are a directory and only want matching
ftypes */
 _RESMGR_DIR | _RESGMR_FTYPE_ONLY,
 _FTYPE_MOUNT,
 mount_connect, /* Only mount filled in */
 NULL, /* No io handlers */
 &handle) /* Handle to pass to mount callout */

Again, we're attaching at the root of the pathname space so that we'll be able to receive the full
path of the new mount requests in the msg->connect structure.

Adding the FTYPEONLY flag will ensure that this request will only be used when there is a
FTYPE_MOUNT style of connection. Once this is done, the resource manager is ready to start
receiving mount requests from users.

An outline of a sample mount handler would look something like this:

int io_mount(...) {
 Do any sanity checks that you need to do.
 Check type against our type w/ strcmp(), since there may be no name
for REMOUNT/UNMOUNT flags.
 Error with ENOENT out if no match.
 If no name, check the validity of the REMOUNT/UNMOUNT request.
 Parse arguments or set up your data structure.
 Check to see if we are remounting (_MOUNT_REMOUNT)
 Change flags, etc., if you can remount.
 Return EOK.
 Check to see if we are unmounting _MOUNT_UNMOUNT
 Change flags, etc., if you can unmount.
 Return EOK.
 Create a new node and attach it at the msg->connect.path point (unless
some other path is implied based on the input variables and the
resource manager) with resmgr_attach().
 Return EOK.
}

What's important to notice here is that each resource manager that registers a mount handler will
potentially get a chance to examine the request to see if it can handle it. This means that you
have to be rigorous in your type and error checking to make sure that the request is indeed
destined for your manager. If your manager returns anything other than ENOSYS or ENOENT it's
assumed that the request was valid for this manager, but there was some other sort of error. Only
errors of ENOSYS or ENOENT will cause the request to "fall through" to other resource
managers.

© 2004, 2007, QNX Software Systems. All rights reserved.

When you unmount, you would perform any cleanup and integrity checks that you need and then
call resmgr_detach() with the ctp->id field. In general, you should only support umounted calls
on the root of a mounted filesystem.

Mount Utility

By covering the mount library function and the operation in the resource manager, we have pretty
well covered the mount utility. The usage for the utility is shown here for reference:

mount [-wreuv] -t type [-o options] [special] mntpoint
mount [-wreuv] -T type [-o options] special [mntpoint]
mount

-t Indicates the special device, if it is present, is generally a real device and the same server will
handle the mountpoint.

-T Indicates the special device is not a real device but rather a key for the server. The server will
autocreate an appropriate mountpoint if mntpoint is not specified.

-v Increases the verbosity

-w Mount read/write

-r Mount read only

-u Mount for update (remount)

However, if you're writing a mount handler, there may be occasions when you want to do custom
parsing of arguments and provide your own data structure to your server. This is why the mount
command will always first try and call out to a separate program named mount_XXX, where XXX
is the type that you specified with the -t option. To see just what would be called (in terms of
options, etc.), you can use the -v options, which should provide you with the command line that
would be exec()'ed.

In order to help with the argument parsing, there is a utility function that can be called to help strip
out common flags. The function is defined in <sys/mount.h> as:

char *mount_parse_generic_args(char *options, int *flags);

and you would use it in the following manner:

while ((c = getopt(argv, argc, "o:"))) {
switch (c) {
case 'o':
if ((mysteryop = mount_parse_generic_args(optarg, &flags))) {
//You can do your own getsubopt type processing here
//mysteryop is stripped of the common options.
}
break;
}
}

© 2004, 2007, QNX Software Systems. All rights reserved.

Currently, the stripped options are:

"ro", "rw", "noexec", "exec", "nosuid", "suid",

"nocreat", "creat", "noatime", "atime", "remount",

"update", "before", "after"

Which are in turn converted to appropriate _MOUNT_XXX values.

Conclusions

Adding mount capability to your resource manager is relatively pain-free. Along with providing a
convenient user interface, it can be used to some extent as a mechanism for implementing
dynamic changes to a running system.

For more information on writing a resource manager, read the documentation "Writing a
Resource Manager." Rob Krten's book, "Getting Started with Neutrino 2.0" is also an invaluable
reference.

© 2004, 2007, QNX Software Systems. All rights reserved.

	Handling Mount Requests in Your Resource Manager
	Mount Components
	Mount Function Call
	Mount in the Resource Manager
	Mount Utility
	Conclusions

