
Pathname Resolution with a Bit on Union Mountpoints
Authored by: Thomas Fletcher
Updated by: Thomas Fletcher

Like previous QNX operating systems, Neutrino is a microkernel-based, message-passing
system. The OS itself is generally built up from a number of separate server processes that
communicate to each other via message passing.

In a Neutrino system, servers create channels (via ChannelCreate()). Clients then connect to
these channels (via ConnectAttach()) before they can send messages.

The ConnectAttach() call requires a node ID (nid), process ID (pid), and channel ID (chid). The
call then returns a connection ID (coid), which can then be used either directly with MsgSend()
or indirectly as a file descriptor (fd) with functions such as read() and write().

The pathname space

At the heart of any message communication system is the ability to locate and connect to a
service by some symbolic name. In Neutrino, one way to do this conversion from a name to a
connection ID is through the pathname space.

The task of managing names/entries in the pathname space is distributed among several parties
in Neutrino:

• The process manager (Proc) manages the mountpoints in the system, which are
generally created with resmgr_attach().

• Individual servers are responsible for pathname/entry validation below their mountpoints.
This applies only to servers that attach a pathname with the RESMGR_FLAG_DIR
attribute.

• The client (indirectly through the C Library) is responsible for managing "traffic". It
provides the glue for translating the server/mountpoint responses from Proc to requests
targeting the individual servers.

Clear as mud? An example will hopefully help here. Let's say we have three servers:

• Server A - a single device that generates numbers. Its mountpoint is /dev/random.
• Server B - a flash filesystem. Its mountpoint is /bin. It contains ls and echo.
• Server C - a QNX 4 filesystem. Its mountpoint is /. It contains bin/true and bin/false.

Mountpoint Server
/ Server C (filesystem)
/bin Server B (filesystem)
/dev/random Server A (device)

© 2004, 2007, QNX Software Systems. All rights reserved.

At this point, the process manager's internal mount table would look like this:

Mountpoint Server
/ Server C (filesystem)
/bin Server B (filesystem)
/dev/random Server A (device)

Of course, each "Server" name is actually an abbreviation for the nid,pid,chid for that particular
server channel.

Now, suppose our client wants to send a message to Server A. The client code will look like this:

 int fd;
 fd = open("/dev/random", ...);
 read(fd, ...);
 close(fd);

In this case, the C library will request from Proc the servers that could potentially handle the path
/dev/random. Proc will return a list of servers:

• Server A (most likely; longest path match)
• Server C (least likely; shortest path match)

From this information, the C library will then contact each server in turn and send it an "open"
message, including the component of the path that the server should validate:

• Server A receives path ""; the request came in on the same path as the mountpoint.
Server C (if Server A denies the request) receives path "dev/random", since its
mountpoint was "/".

What is important to note here is that as soon as one server positively acknowledges the request,
the remaining servers are not contacted.

This is fairly straightforward with single device entries, where the first server is generally the
server that will handle the request. Where it becomes interesting is in the case of unioned
filesystem mountpoints.

Unioned filesystem mountpoints

In a typical UNIX system, when the filesystems are mounted as above, you might have one of two
configurations:

• Server B mounted after Server A (most likely):
/
/bin
/bin/ls
/bin/echo

• Server A mounted after Server B:
/
/bin
/bin/true
/bin/false

© 2004, 2007, QNX Software Systems. All rights reserved.

In both cases, only one of the filesystems provides a listing for the contents of the directory /bin,
even though both filesystems have entries for this directory.

Under a Neutrino system, you would see the following due to the unioning of the mountpoints:

/
/bin
/bin/ls
/bin/echo
/bin/true
/bin/false

What's happening here is that the resolution for the path /bin takes place as before, but rather
than limit the return to just one connection ID, all the servers are contacted and asked about their
handling for the path:

 DIR *dirp;
 dirp = opendir("/bin", ...);
 closedir(dirp);

which results in:

• Server B receives path ""; the request came in on the same path as the mountpoint.
• Server C receives path "bin", since its mountpoint was "/".

The result now is that we have a collection of file descriptors to servers who handle the path /bin
(in this case two servers); the actual directory name entries are read in turn when a readdir() is
called. If any of the names in the directory are accessed with a regular open, then the normal
resolution procedure takes place and only one server is accessed.

Why overlay mountpoints?

This overlaying of mountpoints is a very handy feature for things like field updates and servicing.
It also makes for a more unified system, where pathnames result in connections to servers
regardless of what services they're providing, giving us a more unified API.

How to see a server's mountpoints

You can cut through the layers and take a look at the services offered by one single server by
exploring the /proc/mount directory. While somewhat cryptic, this method lets you see which
processes have mounted to which locations. And in the case of filesystems, you can access
those filesystems without the unioning of the path entries.

The numbered entries correspond to the nid,pid,chid,handle,ftype entries . . . just in case you
were wondering. =;-)

© 2004, 2007, QNX Software Systems. All rights reserved.

	Pathname Resolution with a Bit on Union Mountpoints
	The pathname space
	Unioned filesystem mountpoints
	Why overlay mountpoints?
	How to see a server's mountpoints

