
© 2004, 2007, QNX Software Systems. All rights reserved.

Dragon Drop
Authored by: John Fehr
Updated by: Mikhail Nefedov

One of the least used and least understood features of the QNX Photon microGUI is its flexible method of
drag and drop. In this article, we'll unravel some of the mysteries behind this very useful data transport
method.

Any kind of data can be dragged and dropped, but there are a few standard types that we should use if we
want other "drag 'n drop"-aware applications to be able to communicate with us. The most common is
probably plain text, but image data is also often transmitted.

Aren't dragons a myth?

At the moment, there are very few QNX Photon applications that readily accept any kind of drag and drop
information. So, in order to show you how this works, we'll have to run two copies of our sample program.

Dragon bible

The standard user method of starting a drag is by left clicking the mouse on our widget and then moving
the mouse holding the mouse button down. If this is already used for some other functionality, then the
drag should only be started while also holding the control key down. If possible, we should use this
standard with any applications we want to drag information out of.

OK, let's write some code! Let's start with something simple - a little application (call it dnd.c) that contains
a PtList widget, a PtText widget, and three little baby PtButton widgets. Each of the buttons will have
slightly different checkered images. Here's our code:

 #include <stdio.h>
 #include <photon/PtProto.h>
 #include <photon/PtWidget.h>
 #include <photon/PtWindow.h>
 #include <photon/PtList.h>
 #include <photon/PtText.h>
 #include <photon/PtButton.h>
 // Create a checkerboard 16x16 image.
 PhImage_t *create_checkerboard(short color1,short color2)
 {
 PhImage_t *i;
 PhGC_t *ogc;
 char *bits;
 int a,b;
 i=PhCreateImage(NULL,16,16,Pg_IMAGE_DIRECT_565,NULL,0,1);
 bits=i->image;
 for (a=0;a<16;a++,bits+=i->bpl)
 for (b=0;b<16;b++)
 ((short*)bits)[b]=(((a/2)+(b/2))&1)?color1:color2;
 return i;
 }
 int main()
 {

© 2004, 2007, QNX Software Systems. All rights reserved.

 PtArg_t args[5];
 PtWidget_t *win,*list,*text,*button1,*button2,*button3;
 PhImage_t *image1,*image2,*image3;
 PhDim_t dim={200,300};
 PhPoint_t pos={50,50};
 char *items[]={"one","two","three","four"};
 PtInit("/dev/photon");
 // create our window
 PtSetArg(&args[0],Pt_ARG_DIM,&dim,0);
 PtSetArg(&args[1],Pt_ARG_POS,&pos,0);
 PtSetArg(&args[2],Pt_ARG_WINDOW_TITLE,"Dragon Droppings",0);
 win=PtCreateWidget(PtWindow,Pt_NO_PARENT,3,args);
 // create our text widget
 dim.w=150;dim.h=25;pos.x=25;pos.y=200;

PtSetArg(&args[2],Pt_ARG_FLAGS,Pt_TRUE,Pt_SELECTABLE|Pt_SELECT_NOREDRAW
);
 text=PtCreateWidget(PtText,win,3,args);
 // create our list widget
 dim.w=dim.h=150;pos.x=pos.y=25;
 list=PtCreateWidget(PtList,win,3,args);
 // add a few items to our list widget
 PtListAddItems(list,(const char **)items,4,1);
 image1=create_checkerboard(0xff70,0x0000);
 image2=create_checkerboard(0x07ff,0xffff);
 image3=create_checkerboard(0x0000,0xffff);
 // create first button widgets
 dim.w=dim.h=26;pos.x=25;pos.y=250;
 PtSetArg(&args[2],Pt_ARG_LABEL_TYPE,Pt_IMAGE,0);
 PtSetArg(&args[3],Pt_ARG_LABEL_IMAGE,image1,0);
 button1=PtCreateWidget(PtButton,win,4,args);
 // create second button widget
 pos.x=150;
 PtSetArg(&args[3],Pt_ARG_LABEL_IMAGE,image2,0);
 button2=PtCreateWidget(PtButton,win,4,args);
 // create our third button widget
 pos.x=78;dim.w=50;
 PtSetArg(&args[3],Pt_ARG_LABEL_IMAGE,image3,0);
 button3=PtCreateWidget(PtButton,win,4,args);
 PtRealizeWidget(win);
 PtMainLoop();
 }

That seems straightforward enough. We added the Pt_SELECTABLE|Pt_SELECT_NOREDRAW flags
to the text because we'll need them later. We can compile this with 'gcc dnd.c -o dnd -lph' to try
it out. Not too exciting, is it?

What a drag!

Why don't we add drag capability to our list widget? The best time to start a drag would be when the left
mouse button is down and we move the mouse. The perfect solution would be to use a
Pt_CB_OUTBOUND callback. Let's add the following code after the list creation function call:

PtAddCallback(list,Pt_CB_OUTBOUND,list_outbound,0);

© 2004, 2007, QNX Software Systems. All rights reserved.

We should also add some code that will initiate the drag in our list_outbound() function. To do this, we
create a PtTransportCtrl_t object with the PtCreateTransportCtrl() function, add some simple inline
data (i.e. the data is copied) with the PtTransportType() function, and start the dragging with the
PtInitDnd call. (The Pt_DND_SILENT call tells the drag-and-drop routines not to inform the source
widget of the drag- and-drop progress. We don't care about it after the drag and drop is started.) Here's the
code to put in before the main() function:

 int list_outbound(PtWidget_t *widget,void *data,PtCallbackInfo_t
*cbinfo)
 {
 PhPointerEvent_t *pev=PhGetData(cbinfo->event);
 // make sure we have the left (selection) button pressed
 if (pev->buttons&Ph_BUTTON_SELECT)
 {
 unsigned short *ind;
 short *num;
 // get the list of indexes (there can be only one!)
 PtGetResource(widget,Pt_ARG_SELECTION_INDEXES,&ind,&num);
 // make sure there's a selected item
 if ((*num)>0)
 {
 char **items;
 PtTransportCtrl_t *tctrl=PtCreateTransportCtrl();
 // get the list of items
 PtGetResource(widget,Pt_ARG_ITEMS,&items,&num);
 // add an inline plain text transport to the drag and drop
transport
 // control, making sure we remember that indexes start at 1 in
the list
 PtTransportType(tctrl,"text","plain",0,Ph_TRANSPORT_INLINE,
 "string",items[ind[0]-1],0,0);
 // start the drag and drop
 PtInitDnd(tctrl,widget,cbinfo->event,NULL,Pt_DND_SILENT);
 }
 }
 return Pt_CONTINUE;
 }

Now, when we compile dnd.c, run it, and click and drag on the list widget, the cursor turns into a little
circle with a slash through it. The cursor indicates where you can drag your information to, and since we
don't have anything that accepts it, it'll stay as this "not dropable" cursor no matter where we move it.

Look out for dragon droppings!

OK, now that we've been able to initiate a drag, how about accepting a drop somewhere? Hmm... Which
widget will we choose? How about the PtText widget? The PtText widget accepts plain text drag-and-
drop by default. At last we can drag and drop something. Lookin' good! Try running multiple copies of
dnd, and try dragging from one copy’s list into another copy’s text box. Pretty spiffy, eh?

© 2004, 2007, QNX Software Systems. All rights reserved.

What about just dragon?

What if we only want to drag an item inside our list? Luckily, there's some increased functionality provided
for just that purpose. Let's start by adding a Pt_CB_DND callback for the list widget as well. Add the
following line after the Pt_CB_OUTBOUND PtAddCallback function call for the list widget:

PtAddCallback(list,Pt_CB_DND,list_drop,0);

But what do we do in the list_drop() callback? Well, we do the same kind of thing that we did for the
PtText drop callback's Ph_EV_DND_ENTER code, but our Ph_EV_DND_DROP code is a little
different. We receive information as to where in the list our drag was dropped - the item, the item index
(keeping in mind that the first item is at index 1), and whether the drop was before, after, or on, the given
item.

All we really need to do, then, is figure out where to put the dropped text, making sure that if that text
already exists somewhere in our list, we delete it first. One other difference in the list drop is that the
select_flags member in the PtDndFetch_t array must have Pt_DND_SELECT_MOTION set. This will
give us a visual indication of where we're dropping inside the list widget.

Here's the code to put in after the text_drop function:

 int list_drop(PtWidget_t *widget,void *data,PtCallbackInfo_t *cbinfo)
 {
 PtListDndCallback_t *ldndcb=cbinfo->cbdata;
 PtDndCallbackInfo_t *dndcb=&ldndcb->dnd_info;
 static PtDndFetch_t wanted_dnd[] =
 {
 {"text","plain",Ph_TRANSPORT_INLINE,Pt_DND_SELECT_MOTION },
 };
 int ind=ldndcb->item_pos-1; // the index of the item we're over
 switch (cbinfo->reason_subtype)
 {
 case Ph_EV_DND_ENTER:
 PtDndSelect(widget,wanted_dnd,ARRAY_SIZE(wanted_dnd),
 NULL,NULL,cbinfo);
 break;
 case Ph_EV_DND_DROP:
 if (ldndcb->flags&Pt_LIST_ITEM_DNDSELECTED_DOWN)
 ind++;
 // if the item exists already, delete the original
 if (PtListItemExists(widget,dndcb->data))
 {
 int oldpos=PtListItemPos(widget,dndcb->data);
 PtListDeleteItemPos(widget,1,oldpos);
 if (oldpos<ind) ind--;
 }
 PtListAddItems(widget,(const char**)&dndcb->data,1,ind+1);
 PhFreeTransportType(dndcb->data,"text");
 break;
 }
 return Pt_CONTINUE;
 }

Now we can move our items inside our list or drag them into the text widget.

© 2004, 2007, QNX Software Systems. All rights reserved.

If we would like the drag to work only inside our list, and not be droppable elsewhere, we would set the
Pt_DND_LOCAL flag in the PtInitDnd() call. This is really useful when you need to drag around private
data, such as internal pointers that are meaningless to other applications within your application.

Checkered dragons

We've seen how text dragging and dropping works. How about other kinds of data? Let's try dragging
images! (Bet you were wondering why we put in those buttons and those checkerboard images, eh?) It
turns out that dragging images (and actually any kind of data) is very similar to dragging text. Let's start
with the dragging part. We'll make the left and right buttons draggable, and we'll make them drag whatever
image they hold. But first, we'll need to add a callback to each of those buttons. Add the following after the
second button is created:

 PtAddCallback(button1,Pt_CB_OUTBOUND,button_outbound,0);
 PtAddCallback(button2,Pt_CB_OUTBOUND,button_outbound,0);

In this case, what we're doing is generic enough that the two buttons can share the same callback. That
callback looks remarkably similar to the text outbound callback. Add the following just before main:

 int button_outbound(PtWidget_t *widget,void *data,PtCallbackInfo_t
*cbinfo)
 {
 PhPointerEvent_t *pev=PhGetData(cbinfo->event);
 // make sure we have the left (selection) button pressed
 if (pev->buttons&Ph_BUTTON_SELECT)
 {
 PhImage_t *image;
 PtTransportCtrl_t *tctrl=PtCreateTransportCtrl();
 PtGetResource(widget,Pt_ARG_LABEL_IMAGE,&image,0);
 // inline the button's image to the drag
 PtTransportType(tctrl,"image","an image",0,Ph_TRANSPORT_INLINE,
 "PhImage",image,0,0);
 // start the drag and drop
 PtInitDnd(tctrl,widget,cbinfo->event,NULL,Pt_DND_SILENT);
 }
 return Pt_CONTINUE;
 }

Now we're able to drag, but what about the drop? We'll let the middle button accept drops. (We could have
just as easily made any of the other two buttons accept a drop as well.) Add the following after the third
button is created:

 PtAddCallback(button3,Pt_CB_DND,button_drop,0);

Please note that we use a shallow free() instead of a deep PhFreeTransport() free. This is because a deep
free would free the actual image pixels (which we don't want), since the button still uses them. Add the
following code just before main:

 int button_drop(PtWidget_t *widget,void *data,PtCallbackInfo_t
*cbinfo)
 {
 PtDndCallbackInfo_t *dndcb=cbinfo->cbdata;
 static PtDndFetch_t wanted_dnd[] =
 {

© 2004, 2007, QNX Software Systems. All rights reserved.

 {"image",NULL,Ph_TRANSPORT_INLINE, },
};
 switch (cbinfo->reason_subtype)
 {
 case Ph_EV_DND_ENTER:
 PtDndSelect(widget,wanted_dnd,ARRAY_SIZE(wanted_dnd),
 NULL,NULL,cbinfo);
 break;
 case Ph_EV_DND_DROP:
 PtSetResource(widget,Pt_ARG_LABEL_IMAGE,dndcb->data,0);
 free(dndcb->data);
 break;
 }
 return Pt_CONTINUE;
 }

Woohoo! Works exactly like we wanted!

Mating dragons?

Let's add one complication. What if we wanted a widget to be able to accept either an image drop or a text
drop? It turns out this is easier than you'd think. First, we add an extra line to our wanted_dnd fetch array
in the button_drop function:

{"text","plain",Ph_TRANSPORT_INLINE, },

Now we're able to accept plain text drops, but how do we distinguish between the types of drops?

Again, it's easier than you'd think. The PtDndCallbackInfo_t structure has a member called fetch_index,
which indicates which element in the fetch array is being dropped. Let's replace the original
Ph_EV_DND_DROP case in the button_drop function with:

 case Ph_EV_DND_DROP:
 switch(dndcb->fetch_index)
 {
 case 0: // first index from fetch array, image
 PtSetResource(widget,Pt_ARG_LABEL_TYPE,Pt_IMAGE,0);
 PtSetResource(widget,Pt_ARG_LABEL_IMAGE,dndcb->data,0);
 free(dndcb->data);
 break;
 case 1: // second index, text
 PtSetResource(widget,Pt_ARG_LABEL_TYPE,Pt_Z_STRING,0);
 PtSetResource(widget,Pt_ARG_TEXT_STRING,
 dndcb->data,strlen(dndcb->data));
 PhFreeTransportType(dndcb->data,"text");
 break;
 }
 break;

This way, our original code is executed if we're dropping an image (making sure the widget is set to a
Pt_IMAGE type label), and setting the widget's text if we're dropping a text string (making sure the widget
is set to a Pt_Z_STRING type label)!

Congratulations. You are now an honorary dragon tamer! Build it, and they will come!

	Dragon Drop
	Aren't dragons a myth?
	Dragon bible
	What a drag!
	Look out for dragon droppings!
	What about just dragon?
	Checkered dragons
	Mating dragons?

