Dont PtLeave me Hanging!

Authored by: John Fehr
Updated by: Mikhail Nefedov

Many GUI applications are responsive: you click on a widget, the application responds immediately.

Other applications are much less responsive. The application may have to perform time-intensive
operations or communicate with remote services which may block the application for seconds at a time.
One way to make this type of application more responsive is to use multiple threads. With at least one
thread always available to handle user interaction, the other threads are performing the blocking or lengthy
operations.

But now two threads could try to access or update the same widget at the same time. If this were to happen,
the application would segment violate. This article deals with how to solve this problem.

As mentioned above, we might have a program that calls a function that does some time-intensive work. It
then modifies one of its widgets, most likely based on the outcome of the work just done.

We'll use a simple example to clarify our points, using a "for" loop as the time-intensive part, and a
PtWindow title change as the widget modification. In a real application, of course, something more useful
would be done.

(You can compile/link these examples with 'gcc -o testapp testapp.c -Iph’)

#include <stdio.h>

#include <errno.h>

#include <time.h>

#include <photon/PtWindow.h>

void *thread_func(void*);

void my widget func(PtWidget_t *w,char *text);
int main(int argc,char *argv[])

{
PtWidget t *win;
PtArg_t args[2];
PhDim_t dim={200,20};
pthread_t thread;
PtSetArg(&args[0],Pt_ARG DIM,&dim,0);
win = PtAppInit(NULL,NULL,NULL,1,args);
PtRealizeWidget(win);
pthread create(&thread,NULL,thread func,win);
PtMainLoop();
}
void my widget_func(PtWidget_t *w,char *text)
{
int eval;
volatile int z;
for (z=0;z<0x1000000;z++) z=z;
PtSetResource(w,Pt_ARG_WINDOW_TITLE, text,0);
}
void *thread_func(void *data)
{

© 2004, 2007, QNX Software Systems. All rights reserved.

PtWidget_t *win=(PtWidget t*)data;
char title[80];
while (1)
{
time_t Itime=time(NULL);
strftime(title,80,"Its %H:%M:%S", localtime(<ime));
my_widget _func(win,title);
sleep(b);

}

If you compile and run this program, you'll notice that the application dies of a segment violation
(SIGSEGV) after five seconds. Why? QNX Photon microGUI functions aren't thread safe -- our call to
PtSetResource() trips something up internally, and KABOOM!

The people at QNX Software have been kind enough to provide an answer: PtEnter() locks the Photon
library, and PtLeave() unlocks the Photon library. We can make any kind of Photon library call between
those two function calls. To make our example work, change the PtSetResource() call to:

iT ((eval=PtEnter(Pt_EVENT_PROCESS_PREVENT))>=0)

PtSetResource(w,Pt_ARG_WINDOW_TITLE, text,0);
PtLeave(eval);

}

We're simply calling PtEnter(), making sure it's not returning an error, then calling our PtSetResource()
function, and calling PtLeave(). Works like a charm.

Let's complicate things a bit. It could be anything but, for this example, let's say you need to call our
my_widget_func() function when the widget is exposed. Let's also assume that you can't, for whatever
reason, move the PtEnter/PtLeave() calls outside of your widget function.

Here's the code for our callback:

int event_handler(PtWidget_t *widget,void *data,PtCallbacklnfo_t
*cbinfo)
{
my widget func(widget,'Time to expose');
return Pt_CONTINUE;
}

and of course we need to add the handler to the widget by inserting the following line after the
PtRealizeWidget() function call:

PtAddEventHandler(win,Ph_EV_EXPOSE,event _handler ,NULL);

Now, we'd expect our window title to change temporarily to 'Time to expose' every time we dragged
another window across it. (The window widget will get an expose event every time part of it is exposed.)
But nothing happens!

This is because the Photon library is already locked by the PtMainLoop() thread. So when we try to lock it
again with PtEnter(), it fails. (PtEnter() and PtLeave() calls are not recursive.)

© 2004, 2007, QNX Software Systems. All rights reserved.

We can easily solve this problem by checking if the value returned by PtEnter() is -EDEADLK.

if ((eval=PtEnter(Pt_EVENT_PROCESS_ PREVENT))>=0 || eval==-EDEADLK)
PtSetResource(w,Pt_ARG_WINDOW_TITLE, text,0);

it (eval>=0) PtLeave(eval);
}

This works because PtEnter() is guaranteed to fail with -EDEADLK if the calling thread already owns the
lock. As aresult, it's safe for this thread to modify widgets or Photon function calls.

Also notice that since the lock was not obtained in this function, it is not released here either. In the code
snippet above, calling PtLeave() when a PtEnter() has not been called or has returned -EDEADLK, will
lead to an eventual segment violation (SIGSEGV).

Problem solved! Now everything works as we want it to. :)

Happy safe multi-threaded widget coding!

© 2004, 2007, QNX Software Systems. All rights reserved.

	Dont PtLeave me Hanging!

