
Projects, Build, and the IDE#

This article describes how to set up projects in the QNX Momentics IDE, what types of
projects to pick, and how to organize projects to perform effective builds from the IDE
and command line. This article is based on IDE 4.5.1 and some IDE 4.6 features.

What do you need to know about the IDE project model?#

The QNX Momentics IDE is based on the open-source Eclipse platform and the open-source
CDT project, which give the essential part of the functionality of projects and builds. The
IDE uses the concept of a workspace, which is a user-specific writable directory on the
local host. This directory itself should never be part of a version-control system shared
between users, nor should it be located on a shared drive (unless you're sure only one
user is using it). The IDE also uses the concept of a project, a container for source and
binaries together with some configuration files, which usually is located in your workspace,
and which can be shared between users using a version-control system.

Projects are flat; they cannot contain one another. However there is a concept of a
Working Set, which lets you filter and group projects if you have too many of them in a
workspace. There is also a special QNX Container project that lets you control and build
sets of projects at the same time.

When you pick the location of your workspace and the names of the projects, be aware that
these names can be used in the build, and make doesn't like directory and file names with
spaces and funky characters in them, even it is fine with the IDE -- the build won't work
with such paths.

If you've used Visual Studio before, you may think that a project is a virtual container
that contains arbitrary files and directories, but this isn't the case with Eclipse. You
can stretch an Eclipse project to use "Eclipse Links", but they have limited functionality.
In general, you have to have a directory in the filesystem that contains the project root
(for source and build output), and the same directory would contain the Eclipse project
metadata. If you want to separate the project metadata from the source directories, you
have to use folder links. You have an option to put a project inside or outside your
workspace. You can use your imagination about how a project directory is created: you can
check out the top level from one place, and subdirectories from another, you can use OS
soft links, or some other means to create it.

The QNX Momentics IDE supports 3 project types: Makefile projects, QNX projects, and
Managed projects.

Makefile projects#

A Makefile project would work for any project that has a Makefile (by default).
Technically it can launch anything as an external builder in any folder. The IDE starts
make ; after make exits, the IDE refreshes the workspace to show what you have created.
You can change the make command and/or run specific make targets, but the IDE has no
control over what make is doing.

Because the IDE doesn't know what it's building, it would have problems parsing source files
(which it does internally to allow Navigation, Code Completion, Syntax Highlighting, Code
Generation and Refactoring). So if you use a Makefile project, you have to tune the Indexer
(the internal parser) to point it to where to find any missing #includes and what #defines
your parser uses for conditional compilation. The process of figuring this out is called

Discovery and can be controlled using the Discovery Options. If you know what includes
and defines you're using, it's probably easier just to enter them directly (via Project-
>Properties->C/C++ General -> Path and Settings).

QNX projects#

A QNX project is special a flavor of a Makefile project with additional control over the
make. To use a QNX project, you also have to use QNX recursive makefiles. QNX recursive
makefiles follow certain conventions for creating makefiles that use specific variables
and use a specific layout (for details, see the Conventions for Recursive Makefiles and
Directories chapter of the QNX Neutrino Programmer's Guide). These conventions allow
the IDE to parse the makefile and provide UI control over makefile options and build
variants. You can typically use a single QNX project to build one binary/library for
several variants, such as x86 and PPC in debug, release, and profiling modes.

Managed projects#

A Managed project is a CDT-specific project that doesn't use makefiles, and all build
settings are controlled by the UI. The inconvenience of it is its inability to perform a
build of the project from the command line (although it is possible in simple cases with
some extra setup files, or you can use a makefile generator). Also there are restrictions
on what you can build and how, especially if you use special steps in the the build that
involve other tools.

Original project creation#

Let's consider some scenarios where you'd create a project for the first time (in comparison
to checking out a pre-made project, which we'll discuss later).

When you create a new IDE project, you have to pick from one of the following options:

1. This is new project, and you intend to create all the source in the IDE.
2. The source/structure exists already in the filesystem, and you want to "attach" an IDE

project to it.
3. The source/structure exists in a version-control system, but not as an IDE project.

New Project (#1): Pick one of the project types described above. Use the File->New... menu,
pick C or C++ Project, and then:

• For a QNX project, pick QNX C Project (or QNX C++ Project for C++). On the first page,
pick the build variants (for example, x86 Debug & Release).

• For a Makefile project, pick C Project (or C++ Project for C++). Select Makefile on
the left. Pick QNX Toolchain on the right. Click Finish.

• For Managed project, pick C Project (or C++ Project for C++). Select one of the project
types or templates on the left, other than Makefile. Pick QNX Toolchain on the right.
Click Finish.

Attaching to an existing folder(#2): Pick one of the project types described above for your
project. Open the corresponding wizard as described in #1, but don't proceed any further.
The first wizard page asks you to choose between using the default location and picking
one. Uncheck Use default location. Select the location of your existing project using the
Browse button. Follow the wizard as in #1. Alternatively, you can create the project in
the default location and later attach other directories using link folders. See Example 4,
below.

http://www.qnx.com/developers/docs/6.4.1/neutrino/prog/make_convent.html
http://www.qnx.com/developers/docs/6.4.1/neutrino/prog/make_convent.html

Checking out from source control(#3): Pick one of the project types described above for
your project. If the whole project is in one directory in the version-control system, you
can use the Check Out As... action of the SVN or CVS plugin to check it out. Use Check out
as a project configured using New Project Wizard and pick the wizard of your choice. For
a QNX project, make sure you uncheck Generate default file and Generate Makefiles (these
aren't in version 4.5; you need to revert to the base to restore makefiles after checking
out). If you want a partial checkout, see the next section.

Checking out a partial source tree#

Here's how to create a project by checking out from several folders from a version-control
system (this example uses SVN).

Let's say you have a folder in svn called big_project, and it has 100 subfolders, each of
them representing different binaries, but big_project has a Makefile and some other common
folders, such as "public_includes" that you need to compile your subfolder my_binary.

• Follow the instructions for checking out a folder as a new project (big_project) but
unselect Checkout recursively (SVN can't check out one file; it has to be the whole
folder).

• Now find the my_binary subfolder in SVN, right-click and choose Find/Check Out As...,
and then select Check out as folder into existing project. Click Next.

• Select the previously created project. Click Finish.
• If you need any other subfolders, repeat the process.
• Switch to the C/C++ Perspective.

If you checked out more than one project that shares an SVN folder as its project root,
you can't commit the .project file back to SVN, or else you'll overwrite the .project file
for those original projects with the one for your combined project. To ensure you don't
accidentally check it in, we recommend that you add it to svn's list of files to ignore,
preventing it from showing up as changed resource.

Sharing projects#

When you have created a project, you may want to "share" the settings so the next person
can just check it out as an Eclipse project. If the given project root matches with exactly
one folder in the source control system, you may commit project metadata files (.project
and .cproject). If your project is attached to version control, but you don't want them to
be committed, you have to add those files to the "ignore" list.

QNX projects share most of the options in makefiles, however some options such as the
current build variants are user-specific (i.e. not in the project metadata). You can make
them "shared" by enabling Share project properties in the Main tab of the QNX project
properties. Some metadata is stored in files other than .project and .cproject. For example,
the Check Dependencies On/Off settings are manifested as additional Makefiles (two in IDE
4.5, one in IDE 4.6).

Checking out existing Eclipse projects#

Source-control IDE integrations (CVS and SVN) can detect the presence of the Eclipse
project metadata in the repository and check out pre-made projects. You can search
recursively and check out all existing projects from the selected folder or choose a
specific project. You can also create a special file called a Team Project Set (.psf) that

contains a set of projects that you want everybody to check out. Team sets can be located
in the source control repository as well, and the IDE will recognize them and should be
able to check out all specified projects automatically.

Quick and Dirty project creation#

If you don't want to build using the IDE, but you suddenly want to use the debugger or
profiler, or find memory corruption, you can create a simple project in the IDE for these
tools to use. To do this:

• Create an empty Makefile project.
• Copy or link the source files into the project:

o To create a link, create a new directory in the project. In the new directory
dialog, select Advanced, and then pick Link to folder.

• Copy or link binaries and libraries into the project.
• Create a launch configuration for the selected tool.
• If you want source navigation, and the source files aren't in the same location where
they were compiled, you need to enable Source Path Lookup; edit the Source tab of the
launch configuration to provide a lookup.

See more details in Example 4, below.

Build properties#

QNX projects#

You can adjust the build properties for a QNX project using Project Properties or by
modifying the makefile. Be aware that if you modify the makefile manually, you can make it
unrecognizable by the IDE, and it won't be able to properly update it in future.

Example of things you can do in Project Properties:

• Add extra libraries and library paths (Extra libraries from the drop-down menu in the
Linker tab)

• Add extra includes (Extra include paths from the drop-down menu in the Compiler tab)
• Define macro variables for the whole project
• Define macros and includes for one file (Click Advanced and pick a file on the left)
• Select more than one platform to build for (Build Variants tab)
• Create another build variant (such as Profiling)
• Change a make variable (in the Make Builder tab, override the Build Command; for
example, make DEBUG=1)

• Add custom compiler and linker options
• Change the name of the output binary/library

Managed projects#

You can adjust the build properties for Managed projects using the Project Properties.

Example of things you can do in Project Properties:

• Add extra libraries and library paths (C/C++ Build->Settings->QCC Linker->Libraries)

• Change output options, such as add Debug, Optimize, or Instrumentation options (C/C++
Build->Settings->QCC Compiler->Output Control). Some options require changes in both
the compiler and linker.

• Add custom linker or compiler options
• Add another build variant (build configuration) (Manage Configuration... button in any
page of the C/C++ Build)

• To set an individual file's options, use the same properties, but on the file/folder.

Other things:

• To exclude a file from a build, select the file and select Exclude from build from the
context menu.

• To include a folder in the build, it has to be a "source folder". Otherwise, you can
click on the folder, select Properties, and then uncheck Exclude from build in the C/C+
+ Build page.

• You can choose Internal Build or External Make build with make generation. This is
controlled from C/C++ Build->Tool Chain Editor->Current Builder.

Makefile projects#

For a Makefile project, you can change the location where the build starts from, and
the make arguments (and even the command to launch make itself). You can also change
environment variables for the make invocation in the Environment subcategory of the C/C+
+ Build options. You can change the same variables automatically from the Settings tab, if
you're using QNX naming conventions for the make variables. If the variables are defined in
make itself, environment variables can't override them, unless you use make -e.

All other options you set in your makefile.

Building from the IDE#

To do a simple build for an active configuration, select one or more project, and then
select Build Project from the context menu or from the main Project menu. To clean one or
more projects, select Clean Project.

For QNX and Makefile projects, you can create and build specific make targets. Use the
context menu for that.

For Makefile and Managed projects, you can create several build configurations (for example
debug, release, x86, arm or any combinations or these), you can switch the default active
configuration and build using the Build Configurations menu. You can also set a global
preference to build one configuration or all when you do a build on a Managed project (in
IDE 4.6 or later).

A container project is a specific, complex, quasi-hierarchical project that lets you combine
a set of projects in order to quickly switch between different build configurations.
The root of a container project is always a container. A container's children are
configurations. A configuration is a set of projects of various types (including other
containers). Each member of a configuration has two important attributes specific to the
container environment: a target and a variant. These are very generic attributes; their
interpretation is completely defined by a particular configuration member. For example, for
a QNX C project, the target is a build target, such as build, clean, and the variant can be
something like x86/release, x86/debug. To build any desirable configuration, just select the
container configuration from the pull-down menu. For Managed projects, you can use Working
Sets to build them together.

Setting up automated command-line builds#

To set up automated builds in version 4.5 of the IDE, you have to use make. If you're using
a Managed project, you have to use Gnu Make Build, which generates makefiles for you. If
a project doesn't depend on anything, just run make in a root (or appropriate) directory.
If you want to build several projects, you have to create an external makefile that
references all subprojects. For details, see the IDEBuildFAQ.

In version 4.6 of the IDE, you can use the mkbuild command (it comes with the QNX Momentics
Tool Suite 6.4.1), which launches Eclipse in headless mode (that is, without the UI) and lets
you build projects in your workspace as you would from the UI. For more information, see
the IDE User Guide.

Examples#

Example 1

Suppose your local source (c++) files are in the following structure:

 -source
 -a
 +inc
 -b
 -mydir
 +src
 +out
 Makefile

You work in the mydir directory and just run make, which picks up libraries from other
parts of the filesystem and picks header files from inc (and local ones inside mydir). To
create a project, do the following:

• Select New->C++ Project (from the context menu in the Project Navigator).
• Name your project "mydir" (or any name you like).
• Uncheck Use default project location.
• Browse to pick the mydir directory from the filesystem.
• Select Makefile->Empty Project.
• Select QNX Toolchain.
• Click Finish.
• Select the new project and select Properties... from the context menu (right click).
• In the Properties dialog, select C/C++ General->Paths and Symbols.
• Select GNU C++ and add the directory /source/a/inc as your include path (the internal
parser needs this for code navigation, refactoring, syntax highlighting, etc.).

• Also if you know the default macros that make uses to build the source, add them here.
For example, if you compile as qcc -DDEBUG foo.c, add the DEBUG macro)

• Run Build Project.

Example 2 (Makefile isn't in the root)

Suppose that the directory structure is the same as in example 1, except that the Makefile
is in the out directory, and this is the build directory.

• Create the project as above.

http://community.qnx.com/sf/wiki/do/viewPage/projects.ide/wiki/IDEBuildFAQ
http://www.qnx.com/developers/docs/6.4.1/ide_en/user_guide/devel.html

• Open the Project Properties, and then click on C/C++ Build.
• As the Build directory, specify ${workspace_loc:/mydir/out}.

Example 3 (Link for output directory)

Once again, let's use the same directory structure as in example 1, except that the out
directory is outside of mydir (but the Makefile is still in there).

• Create the project as above.
• Select the project, and the select New->Folder from the context menu.
• In the New Folder dialog, click Advanced.
• Select Link the folder in the file system.
• Select the output folder outside of the project's mydir.
• Click Finish.

Example 4 (Links for everything)

This time, the source code is in directory A, the output binaries are in directory B, and
the extra header files in directory C. All of them have a common root, D (for example D/x/
y/z/A, D/x/C, D/w/C)

You want the project itself with its metadata to be somewhere else. You also want to share
it, if possible.

Procedure

• Create an C++ Empty Makefile project.
• In the project dialog, use the default project location (in your workspace). Let's call
it Project4. Click Finish.

• Now we're going to create link folders for A,B, and C.
o In the project, select New->Folder from context menu.

- Click Advanced, and then check Link the folder in the file system.
- Select Variables.... (If you don't have this button because you're using an

earlier version of the IDE, just select the path from the filesystem).
- Add a new variable called ROOT_DIR and set its value to be the path in the

filesystem pointing to directory D.
- In the dialog, click Extend... and select subdirectory A.

o You should see a path something like ROOT_DIR/x/y/z/A in the path. Click Finish.
o Repeat this procedure for the output directory, B (but you don't need to create the
ROOT_DIR variable again -- just click Extend...).

o Repeat the procedure for the extra include directory, C. This is required so that
the project settings can use a relative path; if you aren't going to share this
project, you can omit this step.

• Now you need to add an extra include folder:
o In the Properties, select C/C++ General->Paths and Symbols. Select GNU C++, and
the add directory C as the include search path using the Workspace... button (it
should be something like /Project4/C).

• Now let's say the makefile is in the folder A (source folder). We need to instruct IDE
to run make from there:

o Open the Project Properties, and then click on C/C++ Build.
o As the Build directory, specify ${workspace_loc:/Project4/A}

The Build Project and Clean Project commands should now work. You should see your binaries
in the Binary container. And your includes in the Includes container. Open a source file and
check that Include navigation works (double-click on an external include in the Outline
view; you should navigate there).

