
Locking#

The reader/writer lock on the address space protects:

• struct mm_aspace
• struct mm_mmap
• the particular struct mm_object_ref for that aspace
• possibly CPU specific stuff (e.g. the page tables)

The mutex on the memory object protects:

• OBJECT
• struct mm_object_ref list
• possibly CPU specific stuff (e.g. the portion of a page table mapped by an object)

When both have to be locked (usually), the address space must be locked before the object. This has
implications when we want to do something to all the references of an object (e.g. vmm_resize). In those cases
we'll have the object already locked, so we can't start locking the aspaces without causing deadlock scenerios.
Instead the memref_walk function sets the struct mm_map inuse field as it traverses to each one. When a struct
mm_map is freed, it gets put on a free list without disturbing any data except the next pointer. Allocations from
the list check the inuse field and skip over any that have a non-zero value.

Page Fault Handling #

In order to find the corresponding struct mm_map for a given virtual address, we need to have the mapping
structures locked. Normally, this is done by locking the address space. However, when we're in vmm_fault,
we are executing as part of the kernel and as such we can't make kernel calls. Instead the function calls
map_fault_lock to perform the locking. This function is allowed to fail. If it does, we just send a pulse and let
fault_pulse handle things at process time, where we can reliably gain exclusive access. This doesn't cost us any
extra code, since fault_pulse has to do all the validation checking again anyway - the address space mappings
might have changed in the interval between the fault and the start of the fault_pulse routine.

mlock/munlock and friends #

There are three locking states for memory regions:

unlocked
may be paged in/out

locked
may not be paged in/out, may still fault on access/reference to maintain usage/modification stats

super-locked
(happens when I/O privity is granted to a thread) no faulting allowed at all and covers the whole address
space

For non-MAP_LAZY mappings, a locked region (via mlock or mlockall) is made readable (if PROT_READ)
immediately, but may not be immediately writable (if PROT_WRITE) to track modifications. A super-locked
address space is always fully mapped immediately.

For MAP_LAZY mappings, memory is not allocated/mapped until first reference for any of the above
types. Once it's been referenced, it obeys the above rules - that means that it's a programmer error to touch a
MAP_LAZY area in a critical region (interrupts disabled or an ISR) that hasn't already been referenced.

The other mmap flags don't interact with the locking state.



The default state of memory before a locking function is performed is currently indeterminate until we can do
performance tuning. It might be that the default state will be different depending on what the underlying object
is (e.g. shared memory object vs file).


