
Specifying the credentials for a spawned process#

Reference#

The following link serves as a reference for the requested functionality. CRHB0134

Background#

A running process has 2 sets of credentials of importance during its execution, the real user and group ids (ruid
and rgid respectively) and the effective user and group ids (euid and egid respectively) . When a new (child)
process is spawned, normally both sets of credentials (real and effective) are taken from the spawning (parent)
process. The exception to this is if the executable file being spawned has either its setuid and/or setgid mode
bits set in which case the euid will be set to the uid of the executable and/or the egid will be set to the gid of the
executable. It is not possible to directly specify the ruid and rgid of a spawned process. Various "tricks" have
been employed to attempt to work around this issue but none offer a well defined and secure approach.

In order to provide the requested flexibility of being able to set the real user and group ids of a spawned
process, we have extended the functionality of posix_spawn() and specifically the posix_spawnattr_xxx()
family of functions to allow for the explicit specification of a spawned (child) process' ruid and rgid.

Design/Implementation Review Meeting#

This section is concerned with the design decisions as they relate to the customer facing API as this is
ultimately what the customer is exposed to and must interact with.

A meeting was held the week of Dec 1st, 2008 to discuss the requirements and to propose an implementation.

Attendees inlcuded:

• Alain Magloire - Manager/Customer prime
• Joe Mammone - software developer/customer prime
• Colin Burgess - software developer
• Mike Kisel - software developer

The basic requirements were discussed. It was indicated by Burgess/Kisel that it was not possible to modify the
existing spawn() interface that the customer was using as it would break backwards compatibility. The reason
for this is because the data structure which conveys the user request for a spawned process' attributes is not
transparent to the user and therefore modifying this structure is not possible in an extensible and backwards
compatible fashion. This exposed structure is also used internally within procnto, hence it is not possible to
change without compatibility issues arising.

The proposed solution is to use the newly introduced posix_spawn() family of calls as this standard POSIX
interface was designed to facilitate extensibility and such implementation specific extensions. By adding 2
new attribute manipulation functions, one to set and one to get the desired credentials, the desired functionality
could be easily added to our existing posix_spawnxxxx() family of routines.

Because the posix_spawn() interface is different than the spawn() interface currently in use by the customer,
contact with the customer was made in order to confirm that the required application changes were acceptable.
Later that week we (via Joe Mammone) received notice (via email) that the customer had agreed to our
proposed use of posix_spawn() as the change does not fundamentally alter any of the process spawning
semantics.

http://e-intranet.hbi.ad.harman.com/main/wiki/index.php/CRHB0134
http://webintra.ott.qnx.com/ContactList/details.rtp?id4=506
http://webintra.ott.qnx.com/ContactList/details.rtp?id4=629
http://webintra.ott.qnx.com/ContactList/details.rtp?id4=450
http://webintra.ott.qnx.com/ContactList/details.rtp?id4=976
http://os.ott.qnx.com/wiki/index.php/Releases:Software_Requirements_Specification(SRS)_for_6.4.1#Enhancement_to_Spawn.28.29


The design requirements were finalized in favour of the use of posix_spawn().

The next sections discuss some additional details on the design/implementation of the API as well as the
internal additions required to support the added functionality.

Design#

The ability to support the establishment of credentials for a newly created process consists of 2 main areas
of work. The first is the application API which allows the specification of the credentials. This API is
implemented entirely within our 'C' library. The second is the ability to act upon such credentials within the
kernel when the process is actually created.

'C' Library#

There is not much real design effort associated with this additional feature as the primary design is embodied in
the posix_spawnattr_xxx() family of functions, which defines an extensible interface for setting and getting an
attributes object and posix_spawn(), which accepts as one of its parameters, said attributes object from which
to establish the conditions under which a newly spawned process is to execute. Since QNX introduced support
for posix_spawn() in the previous 6.4.0 release, we are able to simply build upon the extensibility defined by
POSIX in our own implementation.

procnto/kernel#

procnto is the system process which handles user requests (messages) and specifically requests to create new
processes. "procnto" eventually makes use of a kernel service (kerext_process_create()) to effect the creation
once most of the required creation attributes have been established and validated. One of the parameters
to kerext_process_create() is a proc_create_attr_t which allows for the optional specification of various
additional attributes to apply to process creation. This type has been extended to include the credentials to be
established for the new process. "procnto" will receive the user message to create a new process (created with
the posix_spawn() call) and translate the provided attributes into parameters and an environment required for
the kerext_process_create() call. If the caller has provided a desired set of credentials for the new process,
the optional field of the proc_create_attr_t related to credentials is filled in and will be applied during
the process creation kernel call. If the caller does not provide a set of desired credentials, the credentials
portion of the proc_create_attr_t type is left empty and the default inheritance will be used during the
kerext_process_create() call.

The remainder of this document will then describe the implementation.

Implementation#

'C' Library#

One flag and two new attribute setting/getting functions have been added to the 'C' library, specifically in lib/
c/1d.

• POSIX_SPAWN_SETCRED

This flag has been defined to cause the establishment of desired credentials specified in the posix_spawnattr_t
attributes object to be acted upon. Without this flag, any uid/gid specified with posix_spawnattr_setcred()
(below) will be ignored. This flag can be set with the posix_spawnattr_setxflags() call.

• posix_spawnattr_setcred()



allows the caller to specify both a user id (uid) and group id (gid) to assign to the posix_spawnattr_t attributes
object. The caller must provide both parameters and can effectively leave one of them unchanged by passing
the results of getuid() or getgid() respectively. In order for the uid/gid to take effect, the posix_spawnattr_t
attributes object must be passed as a parameter to the posix_spawn() call, the POSIX_SPAWN_SETCRED
flag must be set and the caller must have an effective user id of 0 (ie. root). Alternatively, if the caller provides
a uid of getuid() and a gid of getgid(), the caller is not required to have root permissions since this is equivalent
to the default inheritance behaviour.

• posix_spawnattr_getcred()

allows the caller to retrieve the uid and gid of the posix_spawnattr_t attributes object set in a previous
posix_spawnattr_setcred() call

procnto/kernel#

The existing proc_create_attr_t type has been extended to include the real and effective user and group ids. The
changes to procnto/kernel have been limited to 3 main files

• public/ker/objects.h - contains the definition of the proc_create_attr_t type. This type has been extended
to include the ruid/rgid and euid/egid fields

• ker/kerext_process.c - kerext_process_create() has been modified to check for a non-NULL credentials
field in the proc_create_attr_t parameter and if so use it to establish the credentials of the newly created
process

• procmgr/procmgr_posix_spawn.c - contains the bulk of the changes and that consists primarily of one
new function, some initializations and a variable name change. The function, fill_struct_cred(), will, if the
POSIX_SPAWN_SETCRED flag is set, extract the specified credentials from the attributes object and fill
in the proc_create_attr_t in preparation for the kerext_process_create() call.

CI and Submissions#

The CI posts related to the changes can be found at http://community.qnx.com/sf/discussion/do/listPosts/
projects.core_os/discussion.osrev.topc6144
The submission for the 'C' Library changes can be found at http://websvn.ott.qnx.com/redir.cgi?
repository=product&revision=213978
The submission for the procnto/kernel changes can be found at http://websvn.ott.qnx.com/redir.cgi?
repository=product&revision=213977

http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.osrev.topc6144
http://community.qnx.com/sf/discussion/do/listPosts/projects.core_os/discussion.osrev.topc6144
http://websvn.ott.qnx.com/redir.cgi?repository=product&revision=213978
http://websvn.ott.qnx.com/redir.cgi?repository=product&revision=213978
http://websvn.ott.qnx.com/redir.cgi?repository=product&revision=213977
http://websvn.ott.qnx.com/redir.cgi?repository=product&revision=213977

