
Anatomy of a System Call (and other things)#

The micro-kernel never initiates any unsolicited activities. Every thing the kernel does happens as a result of a
hardware interrupt, a program exception, or a system call.

A hardware interrupt occurs when a device external to the CPU causes the CPU to interrupt its processing to
service the device. A program exception occurs when a program does something that requires special attention,
such as accessing memory that doesn't exist. A system call occurs when a program makes an explicit call to one
of the system calls implemented in the kernel.

On this page we will discuss how the Neutrino kernel processes these events.

All of the processing of these events is rooted in assembly code, and of course because of that it's not shared
between supported CPUs. You can find the code for a particular CPU type in ker/<CPU>/kernel.S (for
example, ker/x86/kernel.S). On some architectures a lower case 's' is used for the the extension rather than
upper case. In any case, the overall structure of the contents of the file is the same between all the architectures.

System State:#

The kernel state is maintained through a number of variables. The most important of these is the inkernel
variable. This variable contains flags (INKERNEL_NOW, INKERNEL_LOCK, INKERNEL_EXIT and
INKERNEL_SPECRET) and an interrupt nesting count. The inkernel flags have the following meanings:

INKERNEL_NOW
the kernel has been “acquired” – that is, the kernel is doing some processing.

INKERNEL_LOCK
the kernel has progressed through its processing to the point that the current activity cannot be rolled back
– it is not preemptable.

INKERNEL_EXIT
originally this flag meant that the current kernel call is complete, so if it gets preempted it isn't necessary
to restart the kernel call. It means something slightly different for exception handling. We'll come back to
what this one means later, when we talk about preemption.

INKERNEL_SPECRET
Is used to indicate special return processing when leaving the kernel - we won't talk about it in this
discussion.

The kernel states and state changes are the same on a uniprocessor (UP) architecture or on a symmetric
multiprocessor (SMP) architecture. Ensuring correct mutual exclusion on an SMP architecture is much more
difficult, of course.

The Basic System Call:#

A system call typically goes through these stages:

1. A user-mode thread makes a call to a system call stub located in libc.
2. The system call stub executes a TRAP instruction (or whatever instruction is appropriate for the particular

hardware) to cause a trap to privileged mode. This causes interrupts to be disabled.



3. The exception handler processes the trap transfers to the generic system call handling code, which stores
the thread context, acquires the kernel (i.e. sets the INKERNEL_NOW flag) and enables interrupts.

4. The system call handler jumps to the function that implements the particular system call that was invoked.
5. The system call function starts to do its thing. It does as much as it can before it actually modifies any

system state.
6. The system call function locks the kernel (i.e. sets the INKERNEL_LOCK flag).
7. The system call function does the rest of its work, including modifying the system state, and returns to the

generic system call handler.
8. The generic system call handler restores thread context, clears the inkernel flags and returns to user mode

(it disables interrupts while performing these steps).



Notice that during the processing of the system call interrupts are disabled for very small windows. The actual
work of the system call is performed with interrupts enabled. It is one of the fundamental requirements of the
Neutrino kernel that interrupt latency be minimized. How can we minimize interrupt latency if interrupts are
disabled for large parts of the system call processing? This of course begs the question: so what happens if an
interrupt occurs while a system call is being processed? The answer could be “preemption”.



Thread Preemption:#

One point to be careful of: during kernel processing (processing of a system call, or exception, or interrupt), the
kernel might change the active thread. That is, the thread that is active when the kernel is entered might not be
the same thread that is active when the kernel is exited. When the kernel is entered, the context of the currently
active thread is stored in that thread's control block. When the kernel is exited, the context of the currently
active thread is restored from it's control block. But while the kernel is active, the currently active thread might
change.

This can happen if the action of the system call, exception or interrupt causes a rescheduling event or causes the
current thread to block.

The following diagram shows the processing of a system call that causes a higher priority thread that was
blocked to become ready.



Basic Exceptions:#

There are many different types of exceptions, and some are handled in special ways that don't involve acquiring
the kernel. However, in general exception processing, it is necessary to acquire the kernel (for example, to
generate a SEGFAULT when a thread makes a bad memory access).

The possible states for exception handling are the same between system calls and general exceptions. Much
of the code base (well, much of the kernel-exit code, at least) for general exception processing is shared with
system call handling. As such, we won't describe the flow of events in detail here.

Note that in exception processing the kernel is normally locked immediately (i.e. INKERNEL_LOCK is set at
the same time INKERNEL_NOW is set). This means that exception processing is normally not preemptable. In
certain cases the exception-handling code might allow itself to be preempted, however.

This is where the INKERNEL_EXIT flag gets used... When a system call is preempted, the program counter in
the saved context must be tweaked to ensure that the system call is re-executed. When most exceptions occur
(a page fault, for example) the saved context already points to the instruction that caused the exception. When
one of these exceptions is preempted, we don't want the saved context to have it's program counter tweaked –
it's already in a state that will result in the instruction that caused the exception to be rerun. So, if the exception
processing unlocks the kernel, it can also set the INKERNEL_EXIT flag so that if it gets preempted the saved
context won't be tweaked.

All of that can be academic, though. On the SH-4 platform, for example, none of the exception handlers use
this mechanism. All of them set INKERNEL_LOCK immediately and don't relinquish the kernel lock until the
exception processing is complete.

Basic Interrupts:#

In this section, we look at normal interrupt handling. We look at the case where a user-mode thread is running
when the interrupt occurs. In later sections we look at the (much more complex!) case where an interrupt occurs
during the processing of an exception or system call.

The actual interrupt vector code is... complex. Maybe even 'ugly'. Perhaps 'evil' wouldn't be too strong of a
word... When an interrupt occurs, the code that is run is generated at the time of system initialization. It is
generated by sticking together bits and pieces that are picked up from different places. Fortunately, for the most
part, we don't need to look at the whole picture. We just need to look at the pieces involved in the kernel state.
Check out the cpu_interrupt_init() routine in ker/x86/init_cpu.c (for x86) or ker/<CPU>/interrupt.c (for other
architectures) if you want to see how interrupt vectors are generated. You might notice that the routines are
very similar between the architectures. They really should be refactored so that a lot more of the code is cpu
independent. Something for a rainy day....

For this discussion, we need to know that the first piece in an interrupt vector is the piece of code taken
from kernel.S at the intr_entry_start label. The last piece of the interrupt vector is taken from kernel.S at the
intr_done label.

The interrupt vector consists of the following steps:

1. intr_entry_start:
• determine that a user-mode thread was running
• save the thread context (i.e. registers) in the thread control block
• increments the interrupt nesting count in the inkernel variable

2. process the interrupt and invoke any interrupt handlers
3. intr_done

• decrement the interrupt nesting count



• ker_exit:
o set INKERNEL_NOW, INKERNEL_LOCK and INKERNEL_EXIT
o restore thread context and return to user mode

Pretty straightforward; I don't think we need a diagram. But note that the interrupt vector doesn't acquire the
kernel (set INKERNEL_NOW) until the end – interrupt processing isn't exactly kernel mode until the end
where any effects of the interrupt processing are taken into account.

Mixing Things Up – Concurrent Events#

This is where things really start to get complex. During the processing of a system call or an exception, an
interrupt can happen. During processing of an interrupt, another interrupt can happen. An exception can
happen at any time. When we look at how these events can be handled together and yet allow us to maintain
consistency, things get messy (particularly on exiting the kernel). We'll mix SMP issues into it at the end – and
things get worse.

Exceptions during Other Events:#

There are many different possible exceptions, and each is (typically, mostly) implemented differently.
However, there are some common properties.

An exception will typically fall into one of two categories: either the exception handler can resolve the cause
of the exception without acquiring the kernel (e.g. a TLB-miss exception, where the handler just loads a new
TLB into the MMU), or it cannot and a fault results (e.g. a division by zero exception, where the exception
handler wants to deliver a signal to the faulty thread, but there is no thread object since the fault was caused by
the kernel or an interrupt handler).

If the exception handler doesn't need to acquire the kernel, it can go ahead and resolve the condition that caused
the exception. If the exception handler can't resolve the condition, it causes a kernel crash.

Causing a kernel crash is not as much of an over-reaction as you might think. If it caused by the interrupt
handling code in the kernel, then it is indicative of a bug in that code. Similarly, authors of interrupt handlers
must be very careful – they must guarantee that an exception that will cause a fault is not possible, otherwise
they can crash the kernel.

An exception that happens while a system call or another exception is being processed might also cause a
kernel crash. If an exception that results in a fault happens while the kernel is locked, the kernel will crash.
Again, the kernel code must be written in such a way that guarantees that faults are not possible.

If an exception that causes a fault occurs during the processing of a system call while the kernel is not locked,
we set the system call error and pass through ker_exit. This has the effect of terminating the system call, but not
preempting it. Instead, the system call returns an error indication and sets errno.

Interrupts and System Call Preemption:#

We'll start by looking at what happens when an interrupt occurs during the processing of a system call. In this
case, processing of the interrupt proceeds much like it would if a user-mode thread had been running, excepting
that the current register set is saved on the kernel stack instead of on a thread control block.

Strong differences show up when the interrupt completes. The Neutrino kernel might return to processing
the system call, or it might choose to preempt the system call. If the system call had the kernel locked
(INKERNEL_LOCK was set), then the interrupt handler will simply restore the kernel context off the stack



and continue with the system call. However, if the system call did not have the kernel locked the system call
may will be preempted: it will be preempted if the sigevent being delivered by the interrupt will cause a higher
priority thread to become ready.

We need to be really careful here, because when we're talking about system call preemption, we mean
something different than normal thread preemption. However, 'preemption' is the term used in the source code
(kernel.S) so it's best if we stick with the term but be careful in our usage.

Remember that while threads might cause kernel activity, while the kernel is running it's not really fair to say
that the thread is running. While a system call is executing the current thread might be preempted (that is,
another thread might be selected to run). But if the system call itself is preempted, that's a different thing and
that's what we're going to talk about in this section.

For the remainder of this section, when I use the term 'preempted' that's what I'm talking about. But keep in
mind that in general, “preemption” could mean thread preemption or it could mean system call preemption.

A system call can only be preempted when a hardware interrupt occurs.

If the current thread was in the middle of a system call when an interrupt occurs, we need to figure out what
to do with the system call context. The Neutrino kernel uses a single kernel stack (per CPU) and the stack of
the user thread that invoked the system call is in a different address space (not readily available), so there is no
place to store the context for a partially-completed system call.

The model that Neutrino uses is to allow the system call to be canceled and restarted. When it is necessary to
preempt the execution of a system call, the processing done to date on that system call is discarded, and when
the active thread is allowed to run again the system call will be restarted.

We have to be careful if the system call has started to change things: any changes on its own stack can
be ignored since we'll discard the stack if we preempt the system call, but if the system call has started to
change the kernel data structures, a preemption might leave these data structures in an inconsistent state. So a
system call must do everything it can before it starts to change the kernel data structures, then it must invoke
lock_kernel() (which sets the INKERNEL_LOCK flag), then it must complete its work as fast as possible.
While a system call has the INKERNEL_LOCK flag set, it cannot be preempted – the system call will be
allowed to run to completion. This is a small lie - when the kernel is locked, it's no longer asynchronously
preemptable, but the kernel code can check for a preemption request manually and abort the call then as
long as it takes care to make sure the data structures are in a sane state for when the call restarts - look for
KER_PREEMPT() macros in the source for examples of this.

Note that INKERNEL_LOCK does not prevent an interrupt from being serviced. The interrupt will be serviced
and any interrupt handlers will be run, but when that is all complete the system call will pick up execution
where it left off – regardless of whether or not the interrupt processing resulted in higher priority threads being
ready, the current thread will be allowed to complete the execution of the system call.

Some system calls lock the kernel, make some changes to the system state, and then unlock the kernel again.
This is safe as long as the kernel data structures are in a consistent state when the system call unlocks the
kernel. Also, it must be safe to repeat the portion of the system call completed so far, since if the system call
gets preempted at this point it will be restarted and the portion of the work completed to date will be repeated.

The system call implementations try to minimize the time that they are locked. This means that they are more
likely to be preempted and have to do some work over again. But it also means that higher priority threads
aren't blocked from running; minimizing thread latency is another key goal of Neutrino.

So how do we restart a system call if it is preempted? That's easy. The thread's context was saved (in the thread
control block) when the thread started the system call. It's full register state is there. The only issue is that the
program counter points to the instruction after the TRAP instruction. So, if we need to preempt a system call,



we tweak the saved context so that the saved program counter points to the TRAP instruction. When the thread
runs again, it will pick up by starting the TRAP instruction again.

The following diagrams show two cases: an interrupt causing a system call to be preempted in the first diagram,
and an interrupt occuring while a system call is locked in the second diagram.



The INKERNEL_EXIT flag is used to indicate whether or not the system call has completed. If a system
call is preempted while INKERNEL_EXIT is set, the system call has completed so we don't tweak the
register context. Note that for most of normal system call processing, we never set INKERNEL_EXIT unless
INKERNEL_LOCK is also set, so the system call can't be preempted regardless. There are portions of the
special return processing (INKERNEL_SPECRET is set) where the INKERNEL_LOCK will get turned off
though.



Nested interrupts#

A nested interrupt (an interrupt that occurs during the processing of another interrupt) is handled in the same
manner as an interrupt that occurs while a system call has the kernel locked. The current register context is
stored on the kernel stack, the interrupt is processed, the previous interrupt's context is pulled of the stack and
the previous interrupt is allowed to continue.

SMP Issues:#

With multiple CPUs, all of these problems are magnified. In addition to multiple events (system calls,
exceptions, interrupts) all happening on one CPU, they can all be happening simultaneously on different CPUs.

The key issue surrounding SMP architectures and kernel processing is that only one CPU is allowed to acquire
the kernel at one time (small lie, see the SMP section for details). This means, for example, that if two threads
on different CPUs are simultaneously trying to make system calls, one will block (busy-wait) until the other
completes. Similarly, if a thread on one CPU is making a system call when a thread on another CPU causes
an exception, the exception processing will wait for the system call to complete before the exception can be
processed.

But what about interrupts? We can't block the processing of interrupts while we wait for something else to
complete. Recall that interrupt processing doesn't actually acquire the kernel until the interrupt processing
completes. Aside from requiring extra concurrency protection around updating the state variables, most of the
extra complexity in interrupt processing is in the intr_done routine.

To deal with SMP issues, we have a few differences in our state variables. The interrupt nesting counter in
inkernel keeps track of the global nesting count, across all CPU's, so it can't be used to determine if a particular
processor is handling an interrupt. Therefore a CPU specific mechanism is used for this. For example, on MIPS
a field on the cpupage is used. Also, when we are in the kernel (INKERNEL_NOW is set), there is a variable
that indicates which CPU acquired the kernel.

The SMP interrupt return code in intr_done must handle the following cases:

• Returning from an interrupt that occurred while processing a different interrupt. Regardless of what is
happening on the other processors, this case is treated the same as on a UP architecture – simply return to
processing the previous interrupt.

• Returning from an interrupt on one CPU that occurred while the same CPU was in the kernel but didn't
have the kernel locked. This is handled in the same way as a UP architecture would handle it – the system
call being processed is preempted.

• Returning from an interrupt on one CPU that occurred while the same CPU was in the kernel and had the
kernel locked. If we can't preempt the system call because it has the kernel locked we send an IPI (Inter-
Processor Interrupt) to a different CPU to do some of the interrupt cleanup. Note that if we didn't send the
IPI, we would do the cleanup when the current system call completed (as is done on a UP architecture) but
by sending the IPI and having the cleanup done on a different CPU we reduce the thread latency of any
threads waiting to handle events from the interrupt that has just completed.

• Returning from an interrupt on one CPU while a different CPU is in the kernel. Since another CPU is in
the kernel, that implies that the CPU executing the interrupt must have been outside the kernel when the
interrupt occurred. In this case, we still need to be careful about an ongoing system call – we might need
to preempt it even though it is on a different CPU. In this case, we send an IPI to the CPU that is in the
kernel, then return to user-mode without doing the normal end-of-interrupt cleanup. The IPI causes the
other CPU to take an interrupt, preempt or continue the system call as appropriate, and then do the normal
end-of-interrupt cleanup – we hand the end-of-interrupt cleanup off from the CPU that took the “real”
interrupt to the one that was running in the kernel.

http://community.qnx.com/sf/wiki/do/viewPage/projects.core_os/wiki/SymmetricMultiProcessing

