Kernel Introspection: Design M eeting 2007-04-25#

Whot#

bstecher, dbailey, adanko, cburgess

Summar y#

What we did#

more on pathnames
more on api for the generic notifier

new questions#

does the current notification scheme support cpu hog detection where the criteriais percentage cpu time
averaged over someinterval

should we permit negative levelsin thresholds (for the generality)

an efficient means of notifying proccess creation is desireable: can we deliver the new pid to theclient in
their sigevent or must they poll.

should we abandon natification thresholds entirely for cpu hog detection, given the difficulty/inefficiency
of using thresholds designed for resource levels

does /proc/alpids/naotifier and /proc/anypid/notifier mean notify me on the set of current pids, or on the set
of al pidsincluding ones added in the future

for thresholding /proc/allpids and /proc/anypid are distinct, are they distinct for bulk transfer?

does athreshold triggers when the level is > its threshold or >= its threshold. (If the answer is>=, then we
do need a signed threshold_level field in order to implement the "trigger on any change” functionality.
/sumpids/ and /eachpid/ may be clearer than /allpids/ and /anypid/

Moreon pathnames#

To the existing proc paths, like /proc/47821/ let's add /proc/47821/info, which when read returns the
tagged process and thread structures, as we would return for bulk transfer, but just for that one process.
lets use /proc/allpids/info to return tagged process and thread structures for all pids/tids in the system. i.e.
bulk transfer
lets use /notifier instead of /info (wherever /info islegal) to address the notifier device for the same
information.
o for example. notification on a single process memory would be /proc/47821/notifier/memory_usage/
o notification of athreshold applied to each process, individually, would be: /proc/anypid/notifier/
memory_usage
o notification of athreshold on the sum of memory used by all processes would be: /proc/allpids/
notifier/memory_usage.

API for generic notifier#




Thisisthe struct type seen by the user:

struct {
uninté4 threshold levdl;
sigevent users event;
uint32  threshold_flags

}

THRESHOLD_FLAG _LEVEL 0x00000001 /* on: level detection, off: edge detection. recommended: off */
THRESHOLD_FLAG _UP  0x00000002 /* rising edge detect, or trigger above level */
THRESHOLD_FLAG DOWN  0x00000004 /* falling edge detect, or trigger below level */
THRESHOLD_FLAG_ONESHOT 0x00000008 /* threshold self-deletes on being triggered */

This set of flags allows for these kinds of detections:

* trigger on the one aloc that exceeds alevel: UP & NOT LEVEL

« tigger on the one dealloc that falls below alevel: DOWN & NOT FLAG_LEVEL
* trigger on any change: FLAG_LEVEL & UP with threshold level set to O.

* trigger on every aloc/dealloc when above alevel: FLAG_LEVEL & UP

* trigger on every aloc/dealloc when below alevel: FLAG_LEVEL & DOWN

Using THRESHOLD FLAG_LEVEL can cause aflood of sigevents, sinceit will trigger every time that
resource's level changes. So THRESHOLD FLAG_ONESHOT is offered as a throttling mechanism. It makes
sure thereis only one notification for each triggering event. (The user must re-create the threshold to re-arm.)
With ONESHOT, during the time between triggering the threshold and the user recreating it, we will not be
delivering sigenvents. This may be desirable to the user as a means of throttling notifications automatically to a
level it can handle for those cases where the user isinterested only in the final value of the resource. For other
cases, using edge-detecting thresholds gives better throttling.

As an aternative throttling strategy, a user can define their sigevent to be a pulse, so repeating notifications, or
alevel sensitive threshold, will be compressed.



