
QNX® PPS
QNX Persistent Publish/Subscribe

Developer’s Guide

For QNX® Neutrino® 6.4.x

© 2009, QNX Software Systems GmbH & Co. KG.

© 2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published December 01, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About This Guide v
Typographical conventions vii

Note to Windows users viii

Technical support options viii

QNX PPS Service 11
“Push” and “pull” publishing 3

Running PPS 4

Syntax: 4

Options: 4

Objects and their Attributes 52
Object files 7

Object and directory sizes 8

Special objects 8

Object syntax 8

Objects in filesystem listings 9

Change notification 9

Attributes 10

Persistence 133
Persistent storage 15

Saving objects 15

Contents of saved files 15

Loading objects 16

Publishing 174
Creating, modifying and deleting 19

Multiple publishers 19

Subscribing 215
Blocking and non-blocking reads 23

Setting PPS to block 23

io_notify() functionality 24

December 1, 2009 Contents iii

© 2009, QNX Software Systems GmbH & Co. KG.

Getting notifications of data on a file descriptor 24

Subscription Modes 25

Full mode 25

Delta mode 25

Subscribing to multiple objects 26

Subscribe to all objects in a directory 26

Notification groups 27

Options and Qualifiers 316
Pathname open options 33

Critical option 34

Pull option 35

Object and attribute qualifiers 35

Setting qualifiers 36

No-persistence qualifier 36

Item qualifier 37

Quality qualifier 38

ppsparse() 39

Index 47

iv Contents December 1, 2009

About This Guide

December 1, 2009 About This Guide v

© 2009, QNX Software Systems GmbH & Co. KG. Typographical conventions

The QNX PPS Developer’s Guide includes:

• QNX PPS Service — an introduction to the QNX Persistent Publish/Subscribe
service, and how to run it

• Objects and their Attributes — a description of the PPS service’s objects and their
attributes

• Persistence — How PPS manages persistence

• Publishing — how to publish to PPS

• Subscribing — how to subscribe to PPS

• Options and Qualifiers — pathname open options, and object and attribute
qualifiers

• ppsparse() — a PPS API function that parses an object read from PPS

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

continued. . .

December 1, 2009 About This Guide vii

Technical support options © 2009, QNX Software Systems GmbH & Co. KG.

Reference Example

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

viii About This Guide December 1, 2009

Chapter 1

QNX PPS Service

In this chapter. . .
Running PPS 4

December 1, 2009 Chapter 1 • QNX PPS Service 1

© 2009, QNX Software Systems GmbH & Co. KG.

The QNX Persistent Publish/Subscribe (PPS) service is a small, extensible
publish/subscribe service that offers persistence across reboots. It is designed to
provide a simple and easy to use solution for both publish/subscribe and persistence in
embedded systems, answering a need for building loosely connected systems using
asynchronous publications and notifications.

With PPS, publishing is asynchronous: the subscriber need not be waiting for the
publisher. In fact, the publisher and subscriber rarely know each other; their only
connection is an object which has a meaning and purpose for both publisher and
subscriber.

PPS QDB

Flash application
 (.swf)

Flash Lite 3 player

Flash extensions

Flash

QNX Neutrino

SQLite
database

Temperature
and humidity

sensors

Utility
meters

Load
switchesMP4

mediaplayer

HVAC
controller

Lighting
controller

Manager

QDB

Power
monitor

Files

PPS

The QNX Smart Energy Reference uses PPS..

“Push” and “pull” publishing
In its default implementation, PPS functions as a push publishing system. However,
PPS supports a pull option, which enables a subscriber to pull data from a publisher,
so that publishing is on-demand.

December 1, 2009 Chapter 1 • QNX PPS Service 3

Running PPS © 2009, QNX Software Systems GmbH & Co. KG.

• While PPS can be used for inter-process communication, it should not be used to
replace QNX native messages for high speed directed communication. (PPS is, of
course, built on top of QNX native messages.)

• PPS is a resource manager and follows the priority inheritance rules common to all
resource managers: it runs at the priority of the sending threads.

• Since PPS is completely asynchronous, there is no priority inheritance between
PPS clients.

Running PPS
The PPS service can be run with the options listed below.

Syntax:
pps [options]

Options:
-b Do not run in the background. Useful for debugging.

-l Load all objects on startup. Default is to load objects on demand.

-m mount Specify the mountpath for PPS. Default is /fs/pps/

-p path Set the path for backing up the persistent storage.

-v Enable verbose mode. Increase the number of “v”s to increase
verbosity.

4 Chapter 1 • QNX PPS Service December 1, 2009

Chapter 2

Objects and their Attributes

In this chapter. . .
Object files 7
Object syntax 8
Attributes 10

December 1, 2009 Chapter 2 • Objects and their Attributes 5

© 2009, QNX Software Systems GmbH & Co. KG. Object files

The QNX PPS service uses an object-based system; that is, a system with objects
whose properties a publisher can modify. Clients that subscribe to an object receive
updates when that object changes — when the publisher has modified it.

Thus, users can:

• publish to modify objects

• subscribe to receive notifications when objects have changed

• publish and subscribe to both modify objects, and receive notifications when
objects have changed

For more information about publishing and subscribing, see the chapters Publishing
and Subscribing.

The QNX PPS design is in many ways similar to many process control systems where
the objects are control values updated by hardware or software. Subscribers can be
alarm handling code, displays, and so on.

Object files
PPS objects are implemented as files in a special PPS filesystem. By default, PPS
objects appear under /fs/pps. These objects contain attributes.

There is never more than one instance of a PPS object, so persistence is a natural
property that can be applied to PPS objects.

You can:

• Create directories and populate them with PPS objects by creating files in the
directories.

• Use the open(), then the read() and write() functions to query and change PPS
objects.

• Use standard utilities as simple debugging tools.

For example:

Display all objects in the system:

ls -lR /fs/pps/

Display the current state of an object:

cat /fs/pps/media/PlayCurrent

cat /fs/pps/flash/apps/youtube

Monitor all changes to attributes in objects in the media directory, by opening the
.all special object:

cat /fs/pps/media/.all?wait

December 1, 2009 Chapter 2 • Objects and their Attributes 7

Object syntax © 2009, QNX Software Systems GmbH & Co. KG.

For information about .all, see “Special objects” below; for information about
?wait, see the chapter Options and Qualifiers.

Change the attribute of an object:

echo "attr::value" >>/fs/pps/objectfilename

In order to avoid possible confusion or conflict in the event that applications from
different organizations are integrated to use the same PPS filesystem, we recommend
that you use your organization’s web domain name to create your directory inside the
PPS directory. Thus, QNX, whose internet web domain name is “qnx.com” should use
/fs/pps/qnx, while an organization with the domain name “example.net” should
use /fs/pps/example.

Object and directory sizes
The number and depth of PPS directories, and the number of PPS objects in a
directory is limited only by available memory.

Note, however, that PPS holds its objects in memory, and that these objects are small:
the maximum size for a PPS object is 16 kilobytes. PPS objects should not be used as
a dumping ground for large amounts of data. The size of most PPS objects should be
measured in hundreds of bytes, and not in kilobytes.

Special objects
PPS directories can include special objects that you can open to facilitate subscription
behavior. The table below lists these special objects, and indicates where to get more
information about using them:

Object Use

.all Open to receive notification of changes to any object in this directory.

.notify Open a notification file descriptor in the PPS filesystem root.

For more information about these objects, see “Subscribing to multiple objects” the
chapter Subscribing.

Object syntax
In PPS, the first line of a file names the object. This line is prefixed with an “@”
character to identify it as the object name. The lines that follow define the object’s
attributes. These lines have no special prefix.

For example, in the PPS filesystem under the directory /fs/pps/media/, the PPS
object “PlayCurrent” contains the metadata for the currently playing song in a
multimedia application. Let us assume that the metadata has the following schema:

8 Chapter 2 • Objects and their Attributes December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Object syntax

@PlayCurrent
author::[Presentation text for track author]
album::[Presentation text for album name]
title::[Presentation text for track title]
duration::[Track duration, floating point number of seconds]
time::[Track position, floating point number of seconds]

An open() call followed by a read() call on this file would return the name of the
object (the filename, with an “@” prefix), followed by the object’s attributes with their
values:

@PlayCurrent
author::Beatles
album::Abbey Road
title::Come Together
duration::3.45
time::1.24

• Object names may not contain any of the following: “@” (at sign), “?” (question
mark), “/” (forward slash), linefeed (ASCII LF), or ASCII NUL.

• Every line in the PPS object is terminated with a linefeed (“\n” in C, or
hexadecimal 0A), so you must encode this character in a manner agreed upon by
cooperating client applications. That is, any values containing ASCII LF or NUL
characters must be encoded. The encoding field can be used to assist cooperating
applications in determining what encoding is used in the value field.

Objects in filesystem listings
In listings of the PPS filesystem, PPS objects have no special identifiers. That is, they
will appear just like any other file in a listing. Thus, the PPS object “PlayCurrent”
used in the example above will appear in a listing as simply
/fs/pps/media/PlayCurrent.

Change notification
When PPS creates, deletes or truncates an object (a file or a directory), it places a
notification string into the queue of any subscriber or publisher that has open either
that object or the .all special object for the directory with the modified object.

The syntax for this notification string is a special character prefix, followed by the
object identifier “@”, then the object name, as follows:

December 1, 2009 Chapter 2 • Objects and their Attributes 9

Attributes © 2009, QNX Software Systems GmbH & Co. KG.

Symbol Example Meaning

+ +@objectname PPS created the object. To know if a created object is
a file or a directory, call stat() or fstat().

- -@objectname PPS deleted the object.

#@objectname PPS truncated the object.

* *@objectname The object has lost a critical publisher. All
non-persistent attributes have been deleted. For more
information, see the chapter Pathname Open Options.

& &@objectname A subscriber has opened the object with the pull
option. All publishers reading that object after having
opened it with O_RDWR receive an ampersand
prefixed to the file descriptor. For more information,
see the chapter Pathname Open Options.

Responding to an object deletion

A deleted object is no longer visible in the filesystem (POSIX behavior), and only
those processes with open file descriptors can continue accessing it. Therefore, typical
behavior for an application receiving notification that an object has been deleted would
be to close the file.

Attributes
PPS objects have user-defined attributes. Attributes are listed in a PPS object after the
object name.

Attribue names may be composed of any alpha-numeric character, an underscore and a
period; that is, any character from the set [A-Za-z][A-Za-z0-9_.]*. Attribute
lines in a PPS object are of the form attrname:encoding:value\n, where attrname is
the attribute name, and encoding defines the encoding type for value. The end of the
attribute name and the end of the encoding are marked by colons (“:”). Subsequent
colons are ignored.

PPS does not interpret the encoding; it simply passes the encoding through from
publisher to subscriber. Thus, publishers and subscribers are free to define their own
encodings to meet their needs. The table below describes possible encoding types:

Symbol Encoding

:: Simple text terminated by a linefeed

continued. . .

10 Chapter 2 • Objects and their Attributes December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Attributes

Symbol Encoding

:c: C language escape sequences, such as “\t” and “\n”. Note that “\n” or
“\t” in this encoding is a “\” character followed by an “n” or “t”; in a C
string this would be “\\n\\t”

:b64: Base 64 encoding.

An attribute’s value can be any sequence of characters, except:

• a null (“\0” in C, or hexadecimal 0x00)

• a linefeed character (“\n” in C, or hexadecimal 0x0A).

December 1, 2009 Chapter 2 • Objects and their Attributes 11

Chapter 3

Persistence

In this chapter. . .
Persistent storage 15
Saving objects 15
Loading objects 16

December 1, 2009 Chapter 3 • Persistence 13

© 2009, QNX Software Systems GmbH & Co. KG. Persistent storage

PPS maintains its objects in memory while it is running. It will, as required:

• save its objects to persistent storage, either on demand while it is running, or at
shutdown

• restore its objects on startup, either immediately, or on first access (deferred
loading)

PPS may be used to create objects which are rarely (or never) published or subscribed
to, but for which persistence is required.

Persistent storage
The underlying persistent storage used by PPS relies on a reliable filesystem, such as:

• disk — QNX 6 filesystem

• NAND Flash — ETFS filesystem

• Nor Flash — FFS3 filesystem

• other — customer generated filesystem

If you need to persist an object to specialized hardware, such as a small NVRAM,
which does not support a file system, you can create your own client which subscribes
to the a PPS object to be saved. On each object change, PPS will notify your client,
allowing the client to update the NVRAM in realtime.

Saving objects
On shutdown, PPS always saves any modified objects to a persistent filesystem. You
can also force PPS to save an object at any time by calling fsync() on the object.

When PPS saves to a persistent filesystem, it saves all objects to a single directory.
The default location for this directory is /var/pps. You can use the PPS -p option to
change this location.

• You can set object and attribute qualifiers to have PPS not save specific objects or
attributes. For more information, see the chapter Options and Qualifiers.

• To ensure multiple language support, all strings should use UTF-8 to encode
extended character sets.

Contents of saved files
PPS saves all objects in a directory to a single file; there will be one saved file per PPS
directory. PPS encodes the directory path in the filename. For example, if PPS is
mounted at /fs/pps, the following encodings are possible:

December 1, 2009 Chapter 3 • Persistence 15

Loading objects © 2009, QNX Software Systems GmbH & Co. KG.

PPS directory Filesystem filename

/fs/pps @

/fs/pps/media @media

/fs/pps/apps @apps

/fs/pps/apps/youtube @apps@youtube

To ensure data integrity, PPS performs CRCs on saved objects in the saved files.

Loading objects
When PPS starts up, it immediately builds the directory hierarchy from the encoded
filenames on the persistent filesystem. It defers loading the objects in the directories
until first access to one of the files. This access could be an open() call on a PPS
object, or a readdir() call on the PPS directory.

16 Chapter 3 • Persistence December 1, 2009

Chapter 4

Publishing

In this chapter. . .
Creating, modifying and deleting 19
Multiple publishers 19

December 1, 2009 Chapter 4 • Publishing 17

© 2009, QNX Software Systems GmbH & Co. KG. Creating, modifying and deleting

To publish to a PPS object, a publisher simply calls open() for the object file with
O_WRONLY to publish only, or O_RDWR to publish and subscribe. The publisher can
then call write() to modify the object’s attributes. This operation is non-blocking.

Creating, modifying and deleting
You can create, modify, and delete objects and attributes:

To create a new object:

Create a file with the name of the object. The new object will come into
existence with no attributes. You can then write attributes to the object, as
required.

To delete an object:

Delete the object file.

To create a new attribute:

Write the attribute to the object file.

To modify an attribute:

Write the new attribute value to the object file.

To delete all existing attributes:

Open the object with O_TRUNC.

To delete one attribute:

Prefix its name with a minus sign, then call write(). For example:

fprintf(ppsobj, "-url\n"); // Delete the "url" attribute
write(ppsobj-fd, ppsobj, strlen(ppsobj));

Multiple publishers
PPS supports multiple publishers that publish to the same PPS object. This capability
is required because different publishers may have access to data which applies to
different attributes for the same object.

In a multimedia system, for instance, io-media may be the source of a time::value
attribute, while the HMI may be the source of a duration::value attribute. A
publisher that changes only the time attribute will update only that attribute when it
writes to the object. It will leave the other attributes unchanged. For example:

write()
PlayCurrent::1.24

December 1, 2009 Chapter 4 • Publishing 19

Chapter 5

Subscribing

In this chapter. . .
Blocking and non-blocking reads 23
io_notify() functionality 24
Getting notifications of data on a file descriptor 24
Subscription Modes 25
Subscribing to multiple objects 26

December 1, 2009 Chapter 5 • Subscribing 21

© 2009, QNX Software Systems GmbH & Co. KG. Blocking and non-blocking reads

PPS clients can subscribe to multiple objects, and PPS objects can have multiple
subscribers. When a publisher changes an object, all clients subscribed to that object
are informed of the change.

To subscribe to an object, a client simply calls open() for the object with O_RDONLY
to subscribe only, or O_RDWR to publish and subscribe. The subscriber can then
query the object with a read() call.

A read returns the length of the data read, in bytes. If the allocated read buffer is too
small for the data being read in, the read fails.

Blocking and non-blocking reads
By default, reads to PPS objects are non-blocking; that is, PPS defaults a normal
open() to O_NONBLOCK, and reads made by the client that opened the object do not
block. This behavior is atypical for most filesystems. It is implemented so that
standard utilities will not hang waiting for a change when they make a read() call on a
file.

For example, with the default behavior, you could tar up the entire state of PPS using
the standard tar utility. Without this default behavior, however, tar would never make it
past the first file opened and read.

Setting PPS to block
Though the PPS default is to open objects for non-blocking reads, the preferred
method for querying PPS objects is to use blocking reads. With this method, a read
waits until the object or its attributes change, then returns data.

To have reads block, you need to open the object with the ?wait pathname open
option, appended as a suffix to the pathname for the object. For example:

• to open the PlayList object for the default non-blocking reads, use the
pathname:"/fs/pps/media/PlayList"

• to open the PlayList for blocking reads, use the pathname plus the option:
"/fs/pps/media/PlayList?wait"

For information about ?wait and other pathname open options, see the chapter
Options and Qualifiers.

A typical loop in a subscriber would live in its own thread. For a subscriber that used
the opened the object with the ?wait option, this loop might do the following:

/* Assume that the object was opened with the ?wait option
No error checking in this example. */

for(;;) {
read(fd, buf, sizeof(buf)); // Read waits until the object changes.
process(buf);

}

December 1, 2009 Chapter 5 • Subscribing 23

io_notify() functionality © 2009, QNX Software Systems GmbH & Co. KG.

Clearing O_NONBLOCK

If you have opened an object without the ?wait option, and want to change to
blocking reads, you can clear the O_NONBLOCK bit, so that the subscriber waits for
changes to an object or its attributes.

To clear the bit you can use the fcntl() function. For example:

flags = fcntl(fd, F_GETFL);
flags &= ˜O_NONBLOCK;
fcntl(fd, F_SETFL, flags);

Or you can use the ioctl() function:

int i=0;
ioctl(fd,FIONBIO,&i);

After clearing the O_NONBLOCK bit, you can issue a read that waits until the object
changes.

io_notify() functionality
The PPS service implements io_notify() functionality, allowing subscribers to request
notification via a PULSE, SIGNAL, SEMAPHORE, etc. On notification of a change, a
subscriber must issue a read() to the object file to get the contents of the object. For
example:

/* Process events while there are some */
while(ionotify(fd, _NOTIFY_ACTION_POLLARM, _NOTIFY_COND_INPUT,

&event) & _NOTIFY_CONT_INPUT) {
if(read(fd, buf, sizeof(buf)) > 0) // Best to read with O_NONBLOCK

process(buf);
}

/* The event will be triggered in the future to get our attention */

Getting notifications of data on a file descriptor
You can use either one of two simple mechanisms to receive notifications that data is
available on a file descriptor:

• You can issue a blocking read() by either opening the object with the ?wait syntax
on the open() call, or by clearing the O_NONBLOCK flag using the fnctl() function
after the open() call.

• You can use the QNX io_notify() mechanisms to receive a user-specified event; you
can also use the select() function, which uses io_notify() under the covers. See
“io_notify() functionality” above.

24 Chapter 5 • Subscribing December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Subscription Modes

Subscription Modes
A subscriber can open an object in full mode, in delta mode, or in full and delta modes
at the same time. The default is full mode. To open an object in delta mode, you need
to open the object with the ?delta pathname open option, appended as a suffix to the
pathname for the object.

For information about ?delta and other pathname open options, see the chapter
Options and Qualifiers.

Full mode
In full mode (the default), the subscriber always receives a single, consistent version of
the entire object as it exists at the moment when it is requested.

If a publisher changes an object several times before a subscriber asks for it, the
subscriber receives the state of the object at the time of asking only. If the object
changes again, the subscriber is notified again of the change. Thus, in full mode, the
subscriber may miss multiple changes to an object — changes to the object that occur
before the subscriber asks for it.

Delta mode
In delta mode, a subscriber receives only the changes (but all the changes) to an
object’s attributes.

On the first read, since a subscriber knows nothing about the state of an object, PPS
assumes everything has changed. Therefore, a subscriber’s first read in delta mode
returns all attributes for an object, while subsequent reads return only the changes
since that subscriber’s previous read.

Thus, in delta mode, the subscriber always receives all changes to an object.

The figure below illustrates the different information sent to subscribers who open a
PPS object in full mode and in delta mode.

Delta Delta mode

Full mode

Delta Delta Subscriber

Subscriber

PPS
object

Comparison of PPS full and delta subscription modes.

In all cases we have persistent objects with states — there is always an object. The
mode used to open an object does not change the object; it only determines the
subscriber’s view of changes to the object.

December 1, 2009 Chapter 5 • Subscribing 25

Subscribing to multiple objects © 2009, QNX Software Systems GmbH & Co. KG.

Delta mode queues

When a subscriber opens an object in delta mode, the PPS service creates a new queue
of object changes. That is, if multiple subscribers open an object in delta mode, each
subscriber has its own queue of changes to the object, and the PPS service sends each
subscriber its own copy of the changes. If no subscriber has an object open in delta
mode, the PPS service does not maintain any queues of changes to that object.

On shutdown, the PPS service saves its objects, but objects’ delta queues are lost.

Changes to multiple attributes

If a publisher changes multiple attributes with a single write() call, then PPS keeps the
deltas together and returns them in the same group on a subscriber’s read() call. In
other words, PPS deltas maintain both time and atomicity of changes. For example:

write() write()
time::1.23 time::1.24
duration::4.2 write()

duration::4.2

read() read()
@objname @objname
time::1.23 time:1.24
duration::4.2 @objname

duration::4.2

Subscribing to multiple objects
PPS supports two special objects which facilitate subscribing to multiple objects:

• .all — open to receive notification of changes to any object in this directory.

• .notify — open to receive notification of changes to any object associated with a
notification group.

Subscribe to all objects in a directory
PPS uses directories as a natural grouping mechanism to simplify and make more
efficient the task of subscribing to multiple objects. Subscribers can open multiple
objects, either by calling open() then select() on their file descriptors. More easily,
they can open the special .all object, which merges all objects in its directory.

For example, assume the following object file structure under /fs/pps:

rear/left/PlayCurrent
rear/left/Time
rear/left/PlayError

26 Chapter 5 • Subscribing December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Subscribing to multiple objects

If you open rear/left/.all you will receive a notification when any object in the
rear/left directory changes. A read in full mode will return at most one object per
read.

read()
@Time

position::18
duration::300

read()
@PlayCurrent

artist::The Beatles
genre::Pop
... the full set of attributes for the object

If you open a .all object in delta mode, however, you will receive a queue of every
attribute that changes in any object in the directory. In this case, a single read() call
may include multiple objects.

read()
@Time

position::18
@Time

position::19
@PlayCurrent

artist::The Beatles
genre::Pop

Notification groups
PPS provides a mechanism to associate a set of file descriptors with a notification
group. This mechanism allows you to read only the PPS special notification object to
receive notification of changes to any of the objects associated with that notification
group.

Creating notification groups

To create a notification group:

1 Open the .notify object in the root of the PPS file system.

2 Read the .notify object; the first read of this file returns a short string (less
than 16 characters) with the name of the group to which other file descriptors
should associate themselves.

To associate a file descriptor to a group, on an open, specify the pathname open option
?notify=group:value, where:

• group is the string returned by the first read from the .notify file

• value is any arbitrary string; a subscriber will use this string to determine which
objects bound to the notification group have data available for reading

December 1, 2009 Chapter 5 • Subscribing 27

Subscribing to multiple objects © 2009, QNX Software Systems GmbH & Co. KG.

The returned notification group string has a trailing linefeed character, which you must
remove before using the string.

For information about ?notify and other pathname open options, see the chapter
Options and Qualifiers.

Using notification groups

Once you have created a notification group and associated file descriptors to it, you
can use this group to learn about changes to any of the objects associated with it.

Whenever there is data available for reading on any of the group’s file descriptors,
reads to the notification object’s file descriptor return the string passed in the
?notify=group:value pathname option.

For example, with PPS is mounted at /fs/pps, you could write something like the
following:

char noid[16], buf[128];
int notify_fd, fd1, fd2;

notify_fd = open("/fs/pps/.notify", O_RDONLY);
read(notify_fd, &noid[0], sizeof(noid));

sprintf(buf, "/fs/pps/fish?notify=%s:water", noid);
fd1 = open(buf, O_RDONLY);
sprintf(buf, "/fs/pps/dir/birds?notify=%s:air", noid);
fd2 = open(buf, O_RDONLY);

while(read(notify_fd, &buf, sizeof(buf) > 0) {
printf("Notify %s\n", buf);

}

The data printed from the “while” loop in the example above would look something
like the following:

Notify 243:water
Notify 243:water
Notify 243:air
Notify 243:water
Notify 243:air

When reading from an object that is bound to a notification group, a subscriber should
do multiple reads for each change indicated. There may be more than one change on
an item, but there is no guarantee that every change will be indicated on the
notification group’s file descriptor.

28 Chapter 5 • Subscribing December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Subscribing to multiple objects

Notification of closed file descriptors for objects

If a file descriptor for an object which is part of a notification group is closed, the string
passed with the change notification is prefixed by a minus (“-”) sign. For example:

-243:air

December 1, 2009 Chapter 5 • Subscribing 29

Chapter 6

Options and Qualifiers

In this chapter. . .
Pathname open options 33
Object and attribute qualifiers 35
ppsparse() 39

December 1, 2009 Chapter 6 • Options and Qualifiers 31

© 2009, QNX Software Systems GmbH & Co. KG. Pathname open options

PPS supports pathname open options, and objects and attribute qualifiers. PPS uses
pathname open options to apply open options on the file descriptor used to open an
object. Object and attribute qualifiers set specific actions to take with an object or
attribute; for example, make an object non-persistent, or delete an attribute.

Pathname open options
PPS objects support an extended syntax on the pathnames used to open them. Open
options are added as suffixes to the pathname, following a question mark (“?”). That
is, the PPS service uses any data that follows a question mark in a pathname to apply
open options on the file descriptor used to access the object. Multiple options are
separated by question marks. For example:

• "/fs/pps/media/PlayList"— open the PlayList file with no options

• "/fs/pps/media/PlayList?wait"— open the PlayList file with the wait
option

• "/fs/pps/media/Playlist?wait,delta"— open PlayList file with the
wait and delta options

• "/fs/pps/media/.all?wait"— open the media directory with the wait
option

• "/fs/pps/fish?notify=345:water"— open fish and associate it with
.notify group 345

• "/fs/pps/squid?pull"— open squid with the pull option

The syntax used for specifying PPS pathname open query options will be easily
recognizable to anyone familiar with the getsubopt() library routine.

Supported pathname open options include:

critical Designate the publisher as critical to the object. See “Critical
option” below.

delta Open the object in delta mode.

See “Subscribing to multiple objects” in the chapter
Subscribing.

deltadir Return the names of all objects (files) in the directory — valid
only on the special .all object in a directory.

If any objects in the directory are created or deleted, these
changes are indicated by a “+” (created) or a “-” (deleted) sign
prefixed to their names. This behavior allows you to effectively
perform a readdir() within PPS, as well as monitor filesystem
changes without having to also monitor attribute changes.

December 1, 2009 Chapter 6 • Options and Qualifiers 33

Pathname open options © 2009, QNX Software Systems GmbH & Co. KG.

See “Subscribing to multiple objects” in the chapter
Subscribing.

f=attr+attr ... Place a filter on notifications based upon changes to the listed
attribute names only. Multiple attributes are separated by “+”
signs.

In full mode, the file descriptor will only get notifications if one
of the listed attributes changes. When this occurs the entire
object is returned.

In delta mode, only the listed attributes will be queued.
Changes to non-listed attributes are filtered out.

n Make the object non-persistent. When the system restarts, the
object will not exist. The default setting is for all objects to be
persistent and reloaded on restart. See “Object and attribute
options” below.

notify=id:value Associate the opened file descriptor with the notify group
specified by id. This id is returned on the first read from an
open() all on the “.notify” file in the root of the PPS mount
point.

Reads of the “.notify” file will return the string: id:value
whenever data is available on the file descriptor opened with
the notify= query.

See “Subscribing to multiple objects” in the chapter
Subscribing.

pull Open the object so that reads inform the publisher to update the
object. The reader blocks until a publisher updates the object.
See “Pull option” option below.

wait Open the file with the O_NONBLOCK flag clear so that read()
calls wait until the object changes or a delta appears. See the
chapter Subscribing.

Critical option
The critical option can be used as an attribute cleanup mechanism on the abnormal
termination of a publisher.

If this option is used when opening a file descriptor for a write, when the file
descriptor is closed PPS deletes all non-persistent attributes and prefixes an asterisk
(“*”) to the object name in the notification string it sends to all subscribers. PPS does
not provide a list of the deleted attributes.

34 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Object and attribute qualifiers

Duplicate critical file descriptors

You should never have more than one critical file descriptor for any one PPS object.

File descriptors can be duplicated, either explicitly by dup(), dup2() or fcntl(), etc.; or
implicitly by fork(), spawn(), etc. Duplicated descriptors in effect increment a
reference count on the underlying critical descriptor. The behavior required of critical
objects (the notification and deletion of volatile attributes) is not triggered until the
reference count for a file descriptor drops to zero, indicating that the original and all
duplicates are closed.

However, if you open a PPS object more than once in critical mode, each file
descriptor behaves as a critical descriptor: if the reference count of any one file
descriptor drops to zero, the notification and deletion behavior is triggered for the
object — even if other descriptors remain open.

Pull option
The pull option allows clients to pull data from a publisher, so that publishing is
on-demand.

In its default implementation, PPS acts as push publishing system; that is, publishers
push data to objects, and subscribers read data upon notification or at their leisure.
However, some data, such as packet counts on an interface, changes far too fast to be
efficiently published through PPS using its default push publishing.

When a subscriber that opened an object with the pull option issues a read() call, all
publishers that opened that object receive a notification to write current data to the
object. The subscriber’s read blocks until the object’s data is updated, and returns with
the new data.

To notify publishers that a subscriber wants new data for an object, PPS enqueues the
object’s name, prefixed with an ampersand (“&”), on the object’s file descriptor. For
example, if a client specifies the pull option when opening squid:
"/fs/pps/squid?pull", publishers that opened squid will receive &@squid.

This mechanism creates a pull publishing system where the subscriber retrieves data
from the publisher at whatever rate it requires — in effect, on-demand publishing.

Object and attribute qualifiers
Object and attribute qualifiers are contained in square brackets (“[qualifier]”), and
prefixed to lines containing an object or an attribute name.

You can set qualifiers to read() and write() calls by starting a line containing an object
or attribute name with an open square bracket, followed by a list of single-letter or
single-numeral qualifiers and terminated by a close square bracket.

Qualifiers supported for objects and attributes are:

n No-persistence; see “No-persistence qualifier” below.

December 1, 2009 Chapter 6 • Options and Qualifiers 35

Object and attribute qualifiers © 2009, QNX Software Systems GmbH & Co. KG.

Qualifiers supported for attributes only are:

i Item; see “Item qualifier” below.

0 to 7 Quality; see “Quality qualifier” below.

• Qualifier defaults are always “clear”.

• On a read() call you will only see a preceding qualifier list “[option letters]” for
options which have been set.

• Attribute options always precede both the special character and the object or
attribute name.

Setting qualifiers
If nothing precedes a qualifier, that qualifier is set. It the qualifier is preceded by a
minus sign (“-”), that qualifier is cleared. If a qualifier is not specified, that qualifier is
not changed. For example:

• [n]url::www.qnx.com— set the no-persist qualifier on this attribute

• [-n]url::www.qnx.com— clear the no-persist qualifier on this attribute

• url::www.qnx.com— do not change the current no-persist qualifier on this
attribute

• [4]author::Beatles— change author if the currently quality is less than or
equal to 4

• [i]items::hammer,— add hammer to the set

• [-i]items::screw driver, — remove screw driver from the set

No-persistence qualifier
The no-persistence qualifier can be used for objects and attributes. It is very useful
on attributes that may not be valid across a system restart and do not need to be saved.

The table below describes the effects of the no-persistence qualifier on PPS
objects and attributes:

36 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Object and attribute qualifiers

Syntax Action Object Attribute

n Set Make the object and its attributes
non-persistent; ignore any persistence
qualifiers set on this object’s attributes.

Make the attribute non-persistent.

-n Clear Make the object persistent; persistence of
the object’s attributes is determined by the
individual attribute’s qualifiers.

Make the attribute persistent, if the
attribute’s object is also persistent.

Setting the no-persistence qualifier on an object overrides any no-persistence

qualifiers set on the object’s attributes, and is therefore convenient if you need to make
a temporary object in which nothing persists.

For more information about persistence, see the chapter Persistence.

Item qualifier
The item qualifier can be used for attributes only. It causes PPS to treat the value
following the qualifier as a set of items. Items in a set are separated by a user-defined
separator, such as a comma.

The item separator:

• is required

• must be the last character in a value that uses the item qualifier

• can be any character not used in the items

Adding and deleting set items

You may add or delete only one set item at a time. For example, to add items to a set:

[i]items::hammer,
[i]items::screw driver,

Or, to delete an item from a set:

[-i]items::hammer,

Incorrect item syntax

The following are not permitted:

[i]items::hammer,screw driver,

Or:

[-i]items::hammer,screw driver,

December 1, 2009 Chapter 6 • Options and Qualifiers 37

Object and attribute qualifiers © 2009, QNX Software Systems GmbH & Co. KG.

Examples

In the examples below, the separator is a comma: “,”.

Example 1: Duplicate items

This example shows that PPS ignores a duplicate attempt to add the same item to a set.
The following lines written:

[i]items::hammer,
[i]items::hammer,
[i]items::screw driver,

would result in the following being read by a subscriber:

items::hammer,screw driver,

Example 2: Null items

This example shows how PPS supports a null item in a set. The following line written
to the set created in the previous example:

[i]items::,

would result in the following being read by a subscriber:

items::hammer,screw driver,,

Example 3: Delete an item

This example shows how to delete an item from a set. The following line written to the
set created and updated in the previous examples:

[-i]items::hammer,

would result in the following being read by a subscriber:

items::screw driver,,

Quality qualifier
The quality qualifier can be used for attributes only. It sets the quality of the data
associated with an attribute. It can have any value from 0 to 7. If this qualifier is not
specified, PPS assumes the default value 0 (zero).

This qualifier is useful when multiple publishers may be able to provide data for an
attribute, but with different levels of quality. It allows a publisher to update attribute
data only if the quality of its data is equal to or greater than the quality of the existing
data.

To ensure that attribute data quality remains the same or increases as different
publishers report their values asynchronously, simply have each publisher set the
quality qualifier to the appropriate level when it publishes an attribute.

38 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ppsparse()
Parse an object read from PPS

Synopsis:
#include <ppsparse.h>

extern pps_status_t ppsparse(char **ppsdata,
const char * const *objnames,
const char * const *attrnames,
pps_attrib_t *info,
int parse_flags);

Arguments:
ppsdata A pointer to a pointer to the current position in the buffer of PPS data.

The function updates this pointer as it parses the options; see the
“Description” below.

objnames A pointer to a NULL-terminated array of object names. If this value is
not NULL, ppsparse() looks up any object name it finds and provides
its index in the pps_attrib_t structure.

attrnames A pointer to a NULL-terminated array of attribute names. If this value
is not NULL, ppsparse() looks up any attribute name it finds and
provides its index in the pps_attrib_t structure.

info A pointer to the data structure pps_attrib_t, which carries
detailed about a line of PPS data.

parse_flags Reserved for future use.

Library:
libc.

Description:
The function ppsparse() parses the next line of a buffer of PPS data. This buffer must
be terminated by a null (“\0” in C, or hexadecimal 0x00).

The first time you call this function after reading PPS data, you should set ppsdata to
reference the start of the buffer with the data. As it parses each line of data, ppsparse():

• places the information parsed from the buffer in the pps_attrib_t data structure

• updates the pointer to the next PPS line in the buffer

When it successfully completes parsing a line, ppsparse() returns the type of line
parsed, or end of data; see pps_status_t below.

December 1, 2009 Chapter 6 • Options and Qualifiers 39

ppsparse() © 2009, QNX Software Systems GmbH & Co. KG.

pps_attrib_t
typedef struct {

char *obj_name;
int obj_index;
char *attr_name;
int attr_index;
char *encoding;
char *value;
int flags;
int options;
int option_mask;
int quality;
char *line;
int reserved[3];

} pps_attrib_t;

The pps_attrib_t data structure carries parsed PPS object and attribute
information. It includes the members described in the table below:

Member Type Description

obj_name char A pointer to the name of the last PPS object encountered.
ppsparse() sets this pointer only if it encounters a PPS
object name. You should initialize this pointer before
calling ppsparse().

obj_index int The index for obj_name in the objnames array. It is set to
-1 if the index is not found or objnames is NULL. You
should initialize this value before calling ppsparse().

attr_name char A pointer to the name of the attribute from the line PPS
data that ppsparse() just parsed. It is set to NULL if no
attribute name was found.

attr_index int The index for attrj_name in the attrnames array. It is set to
-1 if the index is not found or attrnames is NULL.

encoding char A pointer to a string that indicates the encoding used for the
PPS attribute. See “Attributes” in the chapter PPS Objects
and Attributes.
This value is only relevant if the ppsparse() return value is
PPS_ATTRIBUTE. See pps_status_t below.

value char A pointer to the value of a PPS attribute.
This value is only relevant if the ppsparse() return value is
PPS_ATTRIBUTE. See pps_status_t below.

flags int Flags indicating that parsing has found a PPS special
character prefixed to a line, or that the line is incomplete.
See pps_attrib_flags_t below.

continued. . .

40 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ppsparse()

Member Type Description

options int Indicates which non-negated options are prefixed in square
brackets to a line. See “Object and attribute options” in the
chapter Options.

option_mask int A mask of the options (both negated and non-negated)
prefixed to a line. See pps_options_t below.

quality int The quality of the attribute. See “Quality option” in the
chapter Options.

line char Pointer to the beginning of the line parsed by ppsparse(),
for use in case of a parsing error.

reserved[3] int For internal use.

pps_attrib_flags_t

The enumerated values PPS_* defined by pps_attrib_flags_t define the possible
states for PPS objects and attributes. These states include:

• PPS_INCOMPLETE — the object or attribute line is incomplete

• PPS_DELETED — the object or attribute has been deleted

• PPS_CREATED — the object has been created

• PPS_TRUNCATED — the object or attribute has been truncated

• PPS_PURGED — a critical publisher has closed its connection and all
non-persistent attributes have been deleted; see “Critical option” in the chapter
Options.

See also “Change notification” in the chapter PPS Objects.

pps_options_t

The enumerated values PPS_NOPERSIST defined by pps_options_t define values
for PPS options:

• PPS_NOPERSIST — no-persistence option

• PPS_ITEM — item option

pps_status_t

The enumerated values PPS_* defined by pps_status_t define the possible
ppsparse() return values. These values include:

• PPS_ERROR — the line of PPS data is invalid

• PPS_END — end of data, or incomplete line

• PPS_OBJECT — data for the given object follows

December 1, 2009 Chapter 6 • Options and Qualifiers 41

ppsparse() © 2009, QNX Software Systems GmbH & Co. KG.

• PPS_OBJECT_CREATED — an object has been created

• PPS_OBJECT_DELETED — an object has been deleted

• PPS_OBJECT_TRUNCATED — an object has been truncated (all attributes were
removed)

• PPS_ATTRIBUTE — and attribute has been updated

• PPS_ATTRIBUTE_DELETED — an attribute has been deleted

Returns:
The ppsparse() function returns:

≥0 Success.

-1 An error occured (errno is set).

Examples:
The following test application shows how ppsparse() can be used:

#ifdef PPSPARSE_TEST
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

// Test data to use if a file name is not provided as a command line argument.
// This data may be read-only in code space, so we copy it.
char *testdata =

"@book\n"
"title::Money money1\n"
"author:c:Money money2\n"
"[n]title::Nopersist option\n"
"[-n]title::Negated option\n"
"[-xnp]time:c:Unknown options\n"
"badattr:Improperly formatted\n"
"[n]@song\n"
"title::Money money4\n"
"Just some garbage\n"
"[n]+newAttr:abc:New attribute\n" // New attribute (not currently used by pps)
"+newAttr\n" // New attribute, missing encoding etc
"-deleteAttr::\n" // Deleted attribute with encoding etc
"-deleteAttr\n" // Deleted attribute without encoding etc
"-@unidentified\n" // Deleted object
"#@unidentified\n" // Truncated object
"[i]flags::flg1,\n" // Item flag
"[-i]flags::flg1,\n" // Negated item flag
"[7n]quality::qualityAttribute\n" // Attribute with quality setting

42 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ppsparse()

"Incomplete line"
;

int
main(int argc, char *argv[])
{

enum {
ATTR_AUTHOR,
ATTR_TITLE,
ATTR_TIME,
LAST_ATTR

};
static const char *const attrs[] ={

[ATTR_AUTHOR] = "author",
[ATTR_TITLE] = "title",
[ATTR_TIME] = "time",
[LAST_ATTR] = NULL

};
enum {

OBJECT_BOOK,
OBJECT_FILM,
OBJECT_SONG,
LAST_OBJECT

};
static const char *const objs[] = {

[OBJECT_BOOK] = "@book",
[OBJECT_FILM] = "@film",
[OBJECT_SONG] = "@song",
[LAST_OBJECT] = NULL

};

char buffer[1024];
char *ppsdata = buffer;
int fd = -1;
pps_attrib_t info;
pps_status_t rc;
int lineno = 0;

if (argc > 1) {
fd = open(argv[1], O_RDONLY);
if (fd < 0) {

perror(argv[1]);
exit(1);

}
}
else {

strcpy(buffer, testdata);
}
memset(&info, 0, sizeof(info));

while (ppsdata != NULL) {
if (fd >= 0) {

December 1, 2009 Chapter 6 • Options and Qualifiers 43

ppsparse() © 2009, QNX Software Systems GmbH & Co. KG.

int n = read(fd, ppsdata, sizeof(buffer) - (ppsdata - buffer) - 1);
if (n <= 0) {

exit(0);
}
ppsdata[n] = ’\0’;
ppsdata = buffer;

}
while ((rc = ppsparse(&ppsdata, objs, attrs, &info, 0))) {

printf("%d ---------------------------\n%s ",++lineno,
rc == PPS_ERROR ? "PPS_ERROR" :
rc == PPS_END ? "PPS_END" :
rc == PPS_OBJECT ? "PPS_OBJECT" :
rc == PPS_OBJECT_CREATED ? "PPS_OBJECT_CREATED" :
rc == PPS_OBJECT_DELETED ? "PPS_OBJECT_DELETED" :
rc == PPS_OBJECT_TRUNCATED ? "PPS_OBJECT_TRUNCATED" :
rc == PPS_ATTRIBUTE ? "PPS_ATTRIBUTE" :
rc == PPS_ATTRIBUTE_DELETED ? "PPS_ATTRIBUTE_DELETED" : "?");

if (info.flags) {
printf("flags:%s%s%s%s%s ",

info.flags & PPS_INCOMPLETE ? "inc" : "",
info.flags & PPS_CREATED ? "+" : "",
info.flags & PPS_DELETED ? "-" : "",
info.flags & PPS_TRUNCATED ? "#" : "",
info.flags & PPS_PURGED ? "*" : "");

}
if (info.options || info.option_mask) {

printf("options:%s%s mask:%s%s ",
info.options & PPS_NOPERSIST ? "n" : "",
info.options & PPS_ITEM ? "i" : "",
info.option_mask & PPS_NOPERSIST ? "n" : "",
info.option_mask & PPS_ITEM ? "i" : "");

}
printf("object:%s (%d) ",info.obj_name ? info.obj_name : "NULL",

info.obj_index);
if (rc == PPS_ATTRIBUTE || rc == PPS_OBJECT_DELETED) {

printf("attr:%s (%d) ",
info.attr_name ? info.attr_name : "NULL", info.attr_index);

if (rc == PPS_ATTRIBUTE) {
printf("quality:%d encoding:%s value:%s",info.quality,

info.encoding, info.value);
}

}
printf("\n");

// now put everything back so we can print out the line.
if (info.encoding)

info.encoding[-1] = ’:’;
if (info.value)

info.value[-1] = ’:’;
printf("%s\n",info.line);

}
if (fd >= 0) {

44 Chapter 6 • Options and Qualifiers December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. ppsparse()

// Note: When reading directly from PPS, you don’t need to deal
// with the PPS_INCOMPLETE flag. It is needed only to allow
// parsing of PPS data where the data is not provided in complete
// lines. In this case, the partial line is moved to the beginning
// of the buffer, more data is read and the parsing is attempted again.
if (info.flags & PPS_INCOMPLETE) {

memmove(buffer, info.line, ppsdata - info.line);
ppsdata = buffer + (ppsdata - info.line);

}
else {

ppsdata = buffer;
}

}
else {

ppsdata = NULL;
}

}

return 0;
}

#endif

Classification:
QNX

Safety

Interrupt handler Yes

Signal handler Yes

Thread Yes

Caveats:
During parsing, separators (“:” and “\n”) in the input string may be changed to null
characters.

See also:
The rest of the QNX PPS Developer’s Guide.

December 1, 2009 Chapter 6 • Options and Qualifiers 45

Index

!

.all 8, 9

.notify 8
file 24

A

adding
items 37

asynchronous
publishing 3

attribute 10
deleting 19
name prefixes 9
names 10
options

PPS 35
PPS object

adding new 19
changing 19

rules 10
special characters prefixed to names 9

B

binary data
encoding 8

C

characters
special prefixed to attribute names 9

conventions
typographical vii

creating
objects 9

critical
file descriptors 35
option 34

D

deleting
attributes 19
items 37
objects 9

delta mode 25
depth

directory 8
directory

depth 8

E

encoding 8, 15

F

file descriptor

December 1, 2009 Index 47

Index © 2009, QNX Software Systems GmbH & Co. KG.

critical 35
getting notification of data 24
notification of closing 29
setting to not block on PPS object read 23

files
object 7
persistent 15
PPS 7
special 8

filesystem
PPS 7

full mode 25

G

groups
notification 27

creating 27
using 28

I

i qualifier See item
io_notify()

functionality in PPS 24
item

qualifier 37
set 37

adding 37
deleting 37

L

linefeed 8

M

mode
delta 25
full 25

opening
subscriber 25

subscriber
opening 25

N

n qualifier
attribute 36
object 36

names
attribute 10
object 8

no-persistence
qualifier 36

notification
attribute change 9
groups 27

creating 27
using 28

object change 9
of closed file descriptor 29
of data on a file descriptor 24

O

O_NOBLOCK 23
object

creation
notification 9

critical
option 34

deletion
notification 9

files 7
loading

PPS 16
lost critical publisher

notification 9
maximum size 8
modes

opening 25
names 8

48 Index December 1, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

option
critical 34
pull 35

options
PPS 35

PPS 7
loading 16
saved 15

pull
option 35

size 8
special 8
state

changes 23
subscribing to 23
subscribing to all in a directory 26
subscribing to multiple 26
syntax 8
temporary 36
truncated

notification 9
open

modes 25
query

options 33
option

critical 34
pull 9, 35

options
open

pathname 33
PPS 4

attributes 35
non-persistent 33
objects 35

P

parse
object

PPS 39
pathname

open
options 33

pathname delimiter in QNX documentation viii

persistence
no-persistence qualifier 36
PPS 15

object 15
persistent

file content 15
Persistent Publish/Subscribe See PPS
PPS 3

files 7
filesystem 7
io_notify() functionality 24
loading

objects 16
notification

object creation 9
object deletion 9
object truncated 9

object 7
changing attribute 19
loading 16
new attribute 19
persistence 15
restoring 16
saved 15

options 4
overview 8
parse

objects 39
persistence 15
publishing 19
restoring

objects 16
running 4
subscriber

blocking and non-blocking reads 23
subscribing 23

PPS_*
pps_attrib_flags_t 41
pps_status_t 41

pps_attrib_flags_t 41
PPS_* 41

pps_attrib_t 40
pps_status_t 41

PPS_* 41
ppsparse() 39
priority inheritance 3

December 1, 2009 Index 49

Index © 2009, QNX Software Systems GmbH & Co. KG.

Publish/Subscribe
Persistent 3

publisher
connection to subscriber 3
lost critical for object 9
multiple 19

publishing 19
asynchronous 3

pull
option 9, 35

Q

q qualifier See quality
qualifier

item 37
no-persistence 36
quality 38

quality
qualifier 38

R

read
PPS subscriber

blocking and non-blocking 23
rules

attribute 10

S

separator
item 37

set
item

adding 37
deleting 37

items 37
size

maximum for object 8
state

changes
object 23

subscriber
connection to publisher 3
object

opening modes 25
subscribing

to a PPS object 23
to all objects in a directory 26
to multiple objects in a directory 26

syntax
object 8

T

temporary
object 36

truncating
object 9

typographical conventions vii

U

UTF-8 15

50 Index December 1, 2009

