Smart Energy Panel API

This document describes the API’s between the Flash HMI application and the backend interfaces to the energy management simulation running on QNX Neutrino.

[image: image3.png]Flash Extensions

Flash
________ QNX Neutrino Remote Application

The Flash application interfaces to the native applications and drivers via PPS (Persistence-Publish-Subscribe) and QDB (QNX Database). The PPS objects define current / real-time data and also provide control interfaces on these objects, while the QDB provides historical data to be used for trending.

1.1 PPS Interfaces
The PPS objects all live under the directory “/fs/pps/power_monitor”, i.e.:

ls -R /fs/pps/

/fs/pps/:

power_monitor/ insteon/ hvac/
doorBell_back doorBell_front mediaplayer/
1.1.1 Power Monitor
/fs/pps/power_monitor:

constants poolpump_schedule

hvac_schedule utility

info waterheater_schedule
1.1.2 Door Bell Events
/fs/pps/doorBell_front

/fs/pps/doorBell_back

1.1.3 HVAC Controller
/fs/pps/hvac:

hmi-ctrl zone0_ctrl zone1_ctrl
zone2_ctrl zone3_ctrl zone0_state
zone1_state zone2_state zone3_state
1.1.4 Insteon Lighting
/fs/pps/insteon:

demoDimmer1 demoLight1

1.1.5 MP4 Mediaplayer
/fs/pps/mediaplayer:

ctrl status

1.2 PPS Interfaces – Power Monitor

1.2.1 PPS - Power Monitor - Constants

The Constants PPS object provides conversion values used by the power_scheduler for various calculations. It is recommended that the Flash application read in these constants to be used for any conversions of data. If the constants used by the power_scheduler are modified to make the data more accurate or realistic, the Flash application will be consistent without having to change any source code.
cat /fs/pps/power_monitor/constants

@constants

KGCO2_PER_KWH::2.70

// Average amount of CO2 released by a
TREE_CO2_KG_DAY::0.0620

TREE_CO2_KG_HOUR::0.0026

TREE_CO2_KG_YEAR::22.70

TREE_CO2_LB_YEAR::50.00

TREE_PER_ACRE::400.00

KGCO2_PER_KWH - Average amount of CO2 released by a coal burning power plant (in KG)

TREE_CO2_KG_DAY – Average amount of CO2 a tree can absorb in one day

TREE_CO2_KG_HOUR – Average amount of CO2 (in kg) a tree can absorb in one hour

TREE_CO2_KG_YEAR – Average amount of CO2 (in kg) a tree can absorb in one year

TREE_CO2_LB_YEAR – Average amount of CO2 (in lb) a tree can absorb in one year

TREE_PER_ACRE – Average number of trees per acre

1.2.2 PPS - Power Monitor – Utility
The Utility PPS object provides information sent to the system from the power utility. A separate demo control application running on a laptop can be used to change these values in real-time to simulate changes from the power utility.
cat /fs/pps/power_monitor/utility

@utility

grid_state::low

kwh_price::0.08

user_message::Potential Critical Peak Level - Aug 24, 2011

simulation_speed::60

grid_state – Current load on the energy grid – “low”, “medium”, “high”, or “critical”. Energy prices will change based on the load on the energy grid. “critical” grid state means there is the potential for brown outs or black outs. User’s should aim to use power only during “low” and “medium” grid states.
kwh_price – The prices in $ of a kwh of electricity used (kwh is the power used in kw over an hour time period. A 100 Watt (0.1 kw) light bulb uses 0.1kwh of electricity for each hour it is on.
user_message – This is a string message that can be sent by the utility to end users – i.e. “Alert: Expecting high grid load tomorrow due to heat wave”.
simulation_speed – If the simulation_speed = 0, the power_scheduler application runs in real-time. If the simulation_speed = X (where 1 <= X >= 60), X represents the number of minutes the simulation will advance for each second. i.e. if simulation_speed = 60, the simulation will advance 60 minutes (1 hour). This simulation mode is useful to generate historical energy data in the database, or to see the effects of the various schedules faster.
NOTE: For testing purposes, Utility PPS object attributes can be changed from the command line:

echo "kwh_price::0.12" >> /fs/pps/power_monitor/utility

echo "user_message::This is a test" >> /fs/pps/power_monitor/utility

1.2.3 PPS - Power Monitor – Info
The Info PPS object provides the current power usage and costs based on whichever devices are currently using electricity in the home.

cat /fs/pps/power_monitor/info

@info

date::February 2,1975

time::monday, 14:0

cost_estimate_day::4.98

cost_estimate_month::4.98

hourly_acre::14.80

hourly_carbon::15.39

hourly_cost::0.46

hourly_tree::5919.23

kw_device_ac::2.40

kw_device_pool::3.00

kw_device_water::0.00

kw_total::5.70

kw_zone_basement::0.10

kw_zone_main::0.10

kw_zone_upstairs::0.10

date – current date of the system (Note: may change quickly in simulation mode)
time – current time of the system (Note: may change quickly in simulation mode)
kwh_estimate_day – Estimated kwh usage for today

kwh_estimate_month – Estimated kwh usage for this month

cost_estimate_day – Estimated cost for today
cost_estimate_month – Estimated cost for this month
kw_device_ac – Current KW being consumed by the AC system

kw_device_pool – Current KW being consumed by the pool pump

kw_device_water – Current KW being consumed by the electric water heater

kw_zone_basement – Current KW being consumed in the entire basement

kw_zone_main – Current KW being consumed on the main floor

kw_zone_upstairs – Current KW being consumed on the upstairs floor

kw_total – Total KW being consumed for the entire house (sum of kw_xxx)

hourly_cost – Estimated hourly cost if current energy consumption last for the current hour

hourly_carbon – Estimated hourly release of KGCO2 if the current energy consumption lasts for the current hour

hourly_tree – Estimated number of trees that would be required to offset the current KGC02 released based on current consumption

hourly_acre – Estimated number of acres of trees that would be required to offset the current KGC02 released based on current consumption

1.2.4 PPS - Power Monitor – Schedules
There are Schedule PPS interfaces for the HVAC system, Pool Pump, Water Heater, and Lights.

state – current state of the device (i.e. if the device is currently running based on the schedule and the current time, or if the device is in manual override).

-> If the device is running according to a schedule, set this value to 0.

-> If, on the other hand, the device is in manual-override, write a non-zero value to this object

- E.g. For the HVAC, if the user adjusts the temperature for a particular zone, write 1 to this object, and also write the new target zone & set-temp to /fs/pps/hvac/hmi-ctrl object (refer to section 1.4.3 for details).

-> There should be a button available to the user to cancel a manual override and resume scheduled services. This button should write 0 to this object. This will cause the Power Monitor to resume control of the HVAC (which will take care of writing to /fs/pps/hvac/hmi-ctrl).

day_of_week – 24 comma separated values representing each hour of the day. The values are the desired temperature for the HVAC system, or 0 / 1 to indicate if the system should be On / Off.

cat /fs/pps/power_monitor/hvac_schedule

@hvac_schedule

monday::21,21

tuesday::21,21

wednesday::21,21

thursday::21,21

friday::21,21

saturday::21,21

sunday::21,21

cat /fs/pps/power_monitor/poolpump_schedule

@poolpump_schedule

state::1

monday::1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

tuesday::1,1

wednesday::1,1

thursday::1,1

friday::1,1

saturday::1,1

sunday::1,1

cat /fs/pps/power_monitor/waterheater_schedule

@waterheater_schedule

state::1

monday::1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

tuesday::1,1

wednesday::1,1

thursday::1,1

friday::1,1

saturday::1,1

sunday::1,1

cat /fs/pps/power_monitor/lights/l1/light_schedule

TBD

Exceptions - TBD

1.3 PPS Interfaces – Door Bell Events
There are 2 PPS objects: /fs/pps/doorBell_front and /fs/pps/doorBell_back, which will be used to communicate when a ‘door bell’ event happens (either at the “Front Door” or “Backyard”, respectively). These events will be triggered by a control Flash application developed by QNX, which will publish some dummy data whenever the user activates a door bell control. The Flash HMI can subscribe to these objects to be notified when the user rings the door bell, e.g. to activate a camera. No relevant data can be extracted from the objects – just the event itself is relevant.

1.4 PPS Interfaces – HVAC Controller

The HVAC controller PPS directory, /fs/pps/hvac, contains objects that can be used to monitor the environmental state of the house (temperature, humidity, light), as well as control the state of the HVAC system (set-temperature, target zone).

For this demo, only the following 5 objects will be used: hmi-ctrl, zone0_state, zone1_state, zone2_state, zone3_state (ie, zone*_ctrl will not be used by the Flash HMI).
1.4.1 HVAC Zones
Four zones are defined for the demo, and are assumed to have the following enumeration with respect to the planned Flash HMI layout:

· zone0: “Basement”

· zone1: “Main Floor”

· zone2: “Bedrooms”

· zone3: “Sun Room”
1.4.2 Reading Zone State

The pps objects /fs/pps/hvac/zone*_state will provide READ-ONLY current state information for each of the zones defined above, respectively. The information will be updated by a set of QNX resource managers (servers), and will either be simulated, or read from a “zigbee” sensor device.

For example, data provided by the Upstairs-zone object, zone2_state, would return data in the following form:

cat /fs/pps/hvac/zone2_state
@zone2_state

ID::2

currentHumidity::50

currentLight::80

currentMotorPower::0

currentMotorRPM::0

currentTemp::25

hvacState::0

label::Bedrooms

setTemp::21

@zone2_state

currentHumidity::50

currentLight::80

currentMotorPower::25

currentMotorRPM::2500

currentTemp::22
hvacState::0

zone::2
ID – A unique identifier for the zone.

currentHumidity – current relative humidity level (units: percent) reported by the sensor server (may be simulated or may be from a real sensor). Values can range from 0 to 100%.

currentLight – current illuminance level (units: lux – see http://en.wikipedia.org/wiki/Illuminance - correlates to human brightness perception) reported by the sensor server (may be simulated or may be from a real sensor). Values can range from 10 to 1000 lux.

currentMotorPower – current (simulated) hvac motor power setting (units: percent) reported by the hvac motor server. Values can range from 0 to 100%.

currentMotorRPM – current (simulated) hvac motor speed (units: RPM) reported by the hvac motor server. Values can range from 0 to 10000.

currentTemp – current temperature (units: degrees Celcius) reported by the sensor server (may be simulated or may be from a real sensor). Values can range from 0 to 100°C (although typical values are more in the range of 10-30°C).

hvacState – current state of the hvac system. This value can be either 0 (system is currently idle) or 1 (system is actively heating or cooling the house).

Label - A human readable label for a Zone.
setTemp – The ‘target temperature’ for the zone (ie, the temperature this zone is being driven to. NOTE: This is a read-only copy of this value. To set the target temperature for a given zone, refer to section 1.4.3.
1.4.3 HVAC Control Interface for Flash HMI

The PPS object /fs/pps/hvac/hmi-ctrl provides a means for the Flash HMI to set the current target zone, and the set-temperature for that zone. This PPS object will then take care of adjusting the target zone and all other simulated zones appropriately for this action, given an assumption about the constant relative temperatures between all zones. The assumption for this demo is as follows:

· If ‘Main Floor’ temperature = x

· ‘Basement’ temperature is always driven to x-2

· ‘Bedrooms’ temperature is always driven to x+1

· ‘Sun Room’ temperature is always driven to x+2

Note that from the Flash HMI perspective, only one zone is the target zone, and only that zone is being actively targeted. The other zones are also set ‘under the hood’, to simulate the fact that there is only one heating unit in the house, and all zones are affected.

The interface is as follows:

cat /fs/pps/hvac/hmi-ctrl
@hmi-ctrl
targetZone::1

setTemp::20
targetZone – The target zone for which the HVAC temperature setting is actively driving towards. This value corresponds directly to the enumerated zone values in section 1.3.1, and to the ‘ID’ attribute in zone*_state PPS object.

setTemp – The temperature (°C) to which the zone is being driven by the HVAC system.
1.5 PPS Interfaces – Insteon Lighting
The directory /fs/pps/insteon/ contains all PPS objects used for lighting control.

For this demo, there will be 2 specific PPS objects that will connect to 2 insteon devices (the rest will be ‘dummy’ PPS objects:

/fs/pps/insteon/demoDimmer1 – This object will control a dimmer insteon device. Values are assumed to be in decimal, and can range from 0 (device is turned off) to 255 (device is full-on).
/fs/pps/insteon/demoLight1 – This object will control an on/off switch. Values range from 0 (off) to any positive non-zero value (on).

The available attributes for a PPS object found in this directory are:

cat /fs/pps/insteon/demoDimmer1

@demoDimmer1

ID::0

Label::demoDimmer1

Level::199

Zone::1

isdimmer::1
ID – A unique identifier for this light

Label - A human readable label.
Level – For a dimmer, the value can range from (decimal) 0 to 255 (higher number -> increased light intensity). For an on/off switch, a value of 0 will turn the light off, any positive non-zero value will turn the light on.

Zone – Zone ID that this light resides in.

isDimmer – Indicates if this light is a dimmer (=1) or an on/off switch (=0).
1.6 PPS Interfaces – MP4 Mediaplayer

The directory /fs/pps/mediaplayer contains objects for controlling the mpeg-4 video player.
1.6.1 /fs/pps/mediaplayer/status
This object will contain the URL for which mpeg-4 video stream should be associated with all available cameras. The intended purpose for this, is that these values can then be used with the control object to play these videos. For example, a common arrangement may be:

cat /fs/pps/mediaplayer/status

@status

Camera1::/qnx-car/runtime/applications/SmartEnergyPanel_proto/testvid.mp4

Camera2::rtsp://10.0.0.10/mpeg4/media.amp

Camera1 – In this case, the URL points to an on-disk canned mp4 video.

Camera2 – In this case, the URL points to a network camera that is streaming mp4 video.
1.6.2 /fs/pps/mediaplayer/ctrl
This object can be used to control the mp4 video player. The following commands are defined, illustrated as command-line PPS commands (equivalent can be done from Actionscript):

· echo “Command::play rtsp://10.0.0.10/mpeg4/media.amp” >> /fs/pps/mediaplayer/ctrl

· This will play the video from the requested URL.

· echo “Command::stop” >> /fs/pps/mediaplayer/ctrl

· This will stop the video and detach any playing video from the player.

· echo “Command::adjustVideo <x>,<y>,<w>,<h>” >> /fs/pps/mediaplayer/ctrl

· NOTE: x,y,w,h must be assigned desired values for: x-coordinate, y-coordinate, width, height respectively.

· This will adjust the position of the top-left corner of the video display according to the x,y parameters, respectively; and adjusting the width & height of the video according to the w,h parameters, respectively.
2.1 SQLite Database
Every hour, the power_scheduler application takes the current PPS data and writes it to an SQL database located at /dev/qdb/power. This data can then be used to generate graphs and other trending / historical data. For simplicity, a single flat database table is used:

-- **

-- @field dataid ID of the unit of data

-- @field year Year of the data sample

-- @field month Month of the data sample

-- @field day Day of the data sample

-- @field hour Hour of the data sample

-- @field price Electricity $/kwh at time of sample

-- @field kwh_zone_main kwh used on main floor over the hour sample period

-- @field kwh_zone_upstairs kwh used on upstairs floor over the hour sample period

-- @field kwh_zone_basement kwh used on basement floor over the hour sample period

-- @field kwh_device_ac kwh used by the AC over the hour sample period

-- @field kwh_device_water kwh used by the water heater over the hour sample period

-- @field kwh_device_pool kwh used by the pool pump over the hour sample period

-- @field kwh_total Total kwh used over the hour sample period

-- @field cost Total cost (i.e. kwh * price) over the hour sample period

-- @field carbon Equivalent amount of carbon dioxide (kgCO2) released over the sample period

-- @field tree Equivalent number of trees required to offset the CO2 released

-- @field acre Equivalent number of acres of forest required to offset the CO2 released

-- **

CREATE TABLE power_usage (

 dataid INTEGER PRIMARY KEY AUTOINCREMENT,

 year INTEGER DEFAULT 0 NOT NULL,

 month INTEGER DEFAULT 0 NOT NULL,

 day INTEGER DEFAULT 0 NOT NULL,

 hour INTEGER DEFAULT 0 NOT NULL,

 price FLOAT DEFAULT 0 NOT NULL,

 kwh_zone_main FLOAT DEFAULT 0 NOT NULL,

 kwh_zone_upstairs FLOAT DEFAULT 0 NOT NULL,

 kwh_zone_basement FLOAT DEFAULT 0 NOT NULL,

 kwh_device_ac FLOAT DEFAULT 0 NOT NULL,

 kwh_device_water FLOAT DEFAULT 0 NOT NULL,

 kwh_device_pool FLOAT DEFAULT 0 NOT NULL,

 kwh_total FLOAT DEFAULT 0 NOT NULL,

 cost FLOAT DEFAULT 0 NOT NULL,

 carbon FLOAT DEFAULT 0 NOT NULL,

 tree FLOAT DEFAULT 0 NOT NULL,

 acre FLOAT DEFAULT 0 NOT NULL

);

Various SQLite queries can be performed to generate data. i.e. From the command line, you can list all data in the database:

qdbc -d power "SELECT * FROM power_usage"

Rows: 15 Cols: 17

Names: +dataid+year+month+day+hour+price+kwh_zone_main+kwh_zone_upstairs+kwh_zone_basement+kwh_device_ac+kwh_device_water+kwh_device_pool+kwh_to

tal+cost+carbon+tree+acre+

00000: |1|1900|0|0|0|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|0.000000|

00001: |2|1975|2|2|1|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00002: |3|1975|2|2|2|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00003: |4|1975|2|2|3|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00004: |5|1975|2|2|4|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00005: |6|1975|2|2|5|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00006: |7|1975|2|2|6|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00007: |8|1975|2|2|7|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00008: |9|1975|2|2|8|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00009: |10|1975|2|2|9|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00010: |11|1975|2|2|10|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00011: |12|1975|2|2|11|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00012: |13|1975|2|2|12|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

00013: |14|1975|2|2|13|0.080000|0.100000|0.100000|0.100000|2.400000|0.000000|3.000000|5.700000|0.460000|15.390000|5919.230000|14.800000|

00014: |15|1975|2|2|14|0.080000|0.100000|0.100000|0.100000|2.400000|0.500000|0.000000|3.200000|0.260000|8.640000|3323.080000|8.310000|

Calculate the total cost for the month of Feb, 2009:
qdbc -d power "SELECT SUM(cost) FROM power_usage WHERE year=2009 AND month = 2;"

Rows: 1 Cols: 1

Names: +sum(cost)+

00000: |5.040000|

3.1 Remote Access

The Flash application should be written to assume that any and all PPS objects may be changed. The Flash application is basically a slave to the master power_scheduler application. This allows multiple instances of the Flash application to run and adjust the same system (i.e. multiple panels in the home).

[image: image2]

Appendix
Start io-fs:
io-fs-media -dtmp

Start QDB:

qdb -R set -v -c /home/sheridan/svn/teknision-demos/src/SmartEnergyPanel/src/powermonitor/sql/qdb.cfg -otempstore=/fs/tmpfs

Flash

QNX Neutrino

Utility /

Meter

Load

Switches

PPS

Insteon

Lighting

HVAC

Controller

PPS

SQLite

Database

PPS

QDB

Power

Monitor

QDB

PPS

Flash Lite 3 Player

Flash App (.swf)

Flash Extensions

Figure � SEQ Figure * ARABIC �1� - Demo Software Architecture

MP4 Mediaplayer

PPS

PPS

PPS

[image: image1]