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Preface

About This Guide

This guide is intended to serve as a stand-alone reference for application and system 
programmers of the PowerPC® 405D5 processor. It combines information from the 
following documents:

• PowerPC 405 Embedded Processor Core User’s Manual published by IBM Corporation 
(IBM order number SA14-2339-01).

• The IBM PowerPC Embedded Environment Architectural Specifications for IBM PowerPC 
Embedded Controllers, published by IBM Corporation.

• PowerPC Microprocessor Family: The Programming Environments published by IBM 
Corporation (IBM order number G522-0290-01).

• IBM PowerPC Embedded Processors Application Note: PowerPC 400 Series Caches: 
Programming and Coherency Issues.

• IBM PowerPC Embedded Processors Application Note: PowerPC 40x Watch Dog Timer.
• IBM PowerPC Embedded Processors Application Note: Programming Model Differences 

of the IBM PowerPC 400 Family and 600/700 Family Processors.

Document Organization
• Chapter 1, Introduction to the PPC405, provides a general understanding of the 

PPC405 as an implementation of the PowerPC embedded-environment architecture. 
This chapter also contains an overview of the features supported by the PPC405.

• Chapter 2, Operational Concepts, introduces the processor operating modes, 
execution model, synchronization, operand conventions, and instruction conventions.

• Chapter 3, User Programming Model, describes the registers and instructions 
available to application software.

• Chapter 4, PPC405 Privileged-Mode Programming Model, introduces the registers 
and instructions available to system software.

• Chapter 5, Memory-System Management, describes the operation of the memory 
system, including caches. Real-mode storage control is also described in this chapter.

• Chapter 6, Virtual-Memory Management, describes virtual-to-physical address 
translation as supported by the PPC405. Virtual-mode storage control is also 
described in this chapter.

• Chapter 7, Exceptions and Interrupts, provides details of all exceptions recognized by 
the PPC405 and how software can use the interrupt mechanism to handle exceptions.

• Chapter 8, Timer Resources, describes the timer registers and timer-interrupt controls 
available in the PPC405.

• Chapter 9, Debugging, describes the debug resources available to software and 
hardware debuggers.
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• Chapter 10, Reset and Initialization, describes the state of the PPC405 following reset 
and the requirements for initializing the processor.

• Chapter 11, Instruction Set, provides a detailed description of each instruction 
supported by the PPC405.

• Appendix A, Register Summary, is a reference of all registers supported by the 
PPC405.

• Appendix B, Instruction Summary, lists all instructions sorted by mnemonic, opcode, 
function, and form. Each entry for an instruction shows its complete encoding. 
General instruction-set information is also provided.

• Appendix C, Simplified Mnemonics, lists the simplified mnemonics recognized by 
many PowerPC assemblers. These mnemonics provide a shorthand means of 
specifying frequently-used instruction encodings and can greatly improve assembler 
code readability.

• Appendix D, Programming Considerations, provides information on improving 
performance of software written for the PPC405.

• Appendix E, PowerPC 6xx/7xx Compatibility, describes the programming model 
differences between the PPC405 and PowerPC 6xx and 7xx series processors.

• Appendix F, PowerPC Book-E Compatibility, describes the programming model 
differences between the PPC405 and PowerPC Book-E processors.

Document Conventions

General Conventions
Table 1 lists the general notational conventions used throughout this document.

Table P-1: General Notational Conventions

Convention Definition

mnemonic Instruction mnemonics are shown in lower-case bold.

. (period) Update. When used as a character in an instruction 
mnemonic, a period (.) means that the instruction 
updates the condition-register field.

# (hash sign) In instruction listings, a hash sign (#) indicates the start 
of a comment.

variable Variable items are shown in italic.

<optional> Optional items are shown in angle brackets.

ActiveLow An overbar indicates an active-low signal.

n A decimal number.

0xn A hexadecimal number.

0bn A binary number.

(rn) The contents of GPR rn.

(rA|0) The contents of the register rA, or 0 if the rA instruction 
field is 0.

http://www.xilinx.com
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Instruction Fields
Table 2 lists the instruction fields used in the various instruction formats. They are found in 
the instruction encodings and pseudocode, and are referred to throughout this document 
when describing instructions. The table includes the bit locations for the field within the 
instruction encoding.

cr_bit Used in simplified mnemonics to specify a CR-bit 
position (0 to 31) used as an operand.

cr_field Used in simplified mnemonics to specify a CR field 
(0 to 7) used as an operand.

OBJECTb A single bit in any object (a register, an instruction, an 
address, or a field) is shown as a subscripted number or 
name.

OBJECTb:b A range of bits in any object (a register, an instruction, 
an address, or a field).

OBJECTb,b, . . . A list of bits in any object (a register, an instruction, an 
address, or a field).

REGISTER[FIELD] Fields within any register are shown in square brackets.

REGISTER[FIELD, FIELD . . .] A list of fields in any register.

REGISTER[FIELD:FIELD] A range of fields in any register.

Table P-1: General Notational Conventions (Continued)

Convention Definition

Table P-2: Instruction Field Definitions

Field Location Description

AA 30 Absolute-address bit (branch instructions).

0—The immediate field represents an address relative to the 
current instruction address (CIA). The effective address (EA) of 
the branch is either the sum of the LI field sign-extended to 32 
bits and the branch instruction address, or the sum of the BD 
field sign-extended to 32 bits and the branch instruction address.

1—The immediate field represents an absolute address. The EA of 
the branch is either the LI field or the BD field, sign-extended to 
32 bits.

BD 16:29 An immediate field specifying a 14-bit signed two’s-complement 
branch displacement. This field is concatenated on the right with 
0b00 and sign-extended to 32 bits.

BI 11:15 Specifies a bit in the CR used as a source for the condition of a 
conditional-branch instruction.

BO 6:10 Specifies options for conditional-branch instructions. See 
Conditional Branch Control, page 68

crbA 11:15 Specifies a bit in the CR used as a source of a CR-logical instruction.

crbB 16:20 Specifies a bit in the CR used as a source of a CR-logical instruction.
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crbD 6:10 Specifies a bit in the CR used as a destination of a CR-Logical 
instruction.

crfD 6:8 Specifies a field in the CR used as a target in a compare or mcrf 
instruction.

crfS 11:13 Specifies a field in the CR used as a source in a mcrf instruction.

CRM 12:19 The field mask used to identify CR fields to be updated by the 
mtcrf instruction.

d 16:31 Specifies a 16-bit signed two’s-complement integer displacement 
for load/store instructions.

DCRF 11:20 A split field used to specify a device control register (DCR). The 
field is used to form the DCR number (DCRN).

E 16 A single-bit immediate field in the wrteei instruction specifying the 
value to be written to the MSR[EE] bit.

LI 6:29 An immediate field specifying a 24-bit signed two’s-complement 
branch displacement. This field is concatenated on the right with 
0b00 and sign-extended to 32 bits.

LK 31 Link bit.

0—Do not update the link register (LR).

1—Update the LR with the address of the next instruction.

MB 21:25 Mask begin. Used in rotate-and-mask instructions to specify the 
beginning bit of a mask.

ME 26:30 Mask end. Used in rotate-and-mask instructions to specify the 
ending bit of a mask.

NB 16:20 Specifies the number of bytes to move in an immediate-string load 
or immediate-string store.

OE 21 Enables setting the OV and SO fields in the fixed-point exception 
register (XER) for extended arithmetic.

OPCD 0:5 Primary opcode. Primary opcodes, in decimal, appear in the 
instruction format diagrams presented with individual 
instructions. The OPCD field name does not appear in instruction 
descriptions.

rA 11:15 Specifies a GPR source operand and/or destination operand.

rB 16:20 Specifies a GPR source operand.

Rc 31 Record bit.

0—Instruction does not update the CR.

1—Instruction updates the CR to reflect the result of an 
operation.

See Condition Register (CR), page 61 for a further discussion of 
how the CR bits are set.

Table P-2: Instruction Field Definitions (Continued)

Field Location Description

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 15
UG011 (v1.2) January 19, 2007

Preface: About This Guide
R

Pseudocode Conventions
Table 3 lists additional conventions used primarily in the pseudocode describing the 
operation of each instruction. 

rD 6:10 Specifies a GPR destination operand.

rS 6:10 Specifies a GPR source operand.

SH 16:20 Specifies a shift amount.

SIMM 16:31 An immediate field used to specify a 16-bit signed-integer value.

SPRF 11:20 A split field used to specify a special purpose register (SPR). The 
field is used to form the SPR number (SPRN).

TBRF 11:20 A split field used to specify a time-base register (TBR). The field is 
used to form the TBR number (TBRN).

TO 6:10 Specifies the trap conditions, as defined in the tw and twi 
instruction descriptions.

UIMM 16:31 An immediate field used to specify a 16-bit unsigned-integer value.

XO 21:30 Extended opcode for instructions without an OE field. Extended 
opcodes, in decimal, appear in the instruction format diagrams 
presented with individual instructions. The XO field name does 
not appear in instruction descriptions.

XO 22:30 Extended opcode for instructions with an OE field. Extended 
opcodes, in decimal, appear in the instruction format diagrams 
presented with individual instructions. The XO field name does 
not appear in instruction descriptions.

Table P-2: Instruction Field Definitions (Continued)

Field Location Description

Table P-3: Pseudocode Conventions

Convention Definition

← Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division. For example, (33 % 32) = 1.

|| Concatenation
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=, ≠ Equal, not-equal relations

<, > Signed comparison relations

,  Unsigned comparison relations

c0:3 A four-bit object used to store condition results in compare 
instructions.

nb The bit or bit value b is replicated n times.

x Bit positions that are don’t-cares.

CEIL(n) Least integer ≥ n.

CIA Current instruction address. The 32-bit address of the instruction 
being described by a sequence of pseudocode. This address is 
used to set the next instruction address (NIA). Does not 
correspond to any architected register.

DCR(DCRN) A specific device control register, as indicated by DCRN.

DCRN The device control register number formed using the split DCRF 
field in a mfdcr or mtdcr instruction.

do Do loop. “to” and “by” clauses specify incrementing an iteration 
variable. “while” and “until” clauses specify terminating 
conditions. Indenting indicates the scope of a loop.

EA Effective address. The 32-bit address that specifies a location in 
main storage. Derived by applying indexing or indirect 
addressing rules to the specified operand. 

EXTS(n) The result of extending n on the left with sign bits.

if...then...else... Conditional execution: if condition then a else b, where a and b 
represent one or more pseudocode statements. Indenting 
indicates the ranges of a and b. If b is null, the else does not 
appear.

instruction(EA) An instruction operating on a data-cache block or instruction-
cache block associated with an EA.

leave Leave innermost do-loop or the do-loop specified by the leave 
statement.

MASK(MB,ME) Mask having 1’s in positions MB through ME (wrapping if 
MB > ME) and 0’s elsewhere.

MS(addr, n) The number of bytes represented by n at the location in main 
storage represented by addr.

NIA Next instruction address. The 32-bit address of the next 
instruction to be executed. In pseudocode, a successful branch is 
indicated by assigning a value to NIA. For instructions that do 
not branch, the NIA is CIA +4.

Table P-3: Pseudocode Conventions (Continued)

Convention Definition

<
u
>
u
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Operator Precedence
Table 4 lists the pseudocode operators and their associativity in descending order of 
precedence
:

Registers
Table 5 lists the PPC405 registers and their descriptive names. 

RESERVE Reserve bit. Indicates whether a process has reserved a block of 
storage.

ROTL((RS),n) Rotate left. The contents of RS are shifted left the number of bits 
specified by n.

SPR(SPRN) A specific special-purpose register, as indicated by SPRN.

SPRN The special-purpose register number formed using the split 
SPRF field in a mfspr or mtspr instruction

TBR(TBRN) A specific time-base register, as indicated by TBRN.

TBRN The time-base register number formed using the split TBRF field 
in a mftb instruction.

Table P-3: Pseudocode Conventions (Continued)

Convention Definition

Table P-4: Operator Precedence

Operators Associativity

REGISTERb, REGISTER[FIELD], function evaluation Left to right

nb Right to left

¬, – (unary minus) Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, >, , Left to right

∧, ⊕ Left to right

∨ Left to right

← None

<
u
>
u

Table P-5: PPC405 Registers

Register Descriptive Name

CCR0 Core-configuration register 0

CCR1 Core-configuration register 1

CR Condition register

http://www.xilinx.com


18 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Registers
R

CTR Count register

DACn Data-address compare n

DBCRn Debug-control register n

DBSR Debug-status register

DCCR Data-cache cacheability register

DCWR Data-cache write-through register

DEAR Data-error address register

DVCn Data-value compare n

ESR Exception-syndrome register

EVPR Exception-vector prefix register

GPR General-purpose register. Specific GPRs are identified using the 
notational convention rn (see below)

IACn Instruction-address compare n

ICCR Instruction-cache cacheability register

ICDBDR Instruction-cache debug-data register

LR Link register

MSR Machine-state register

PID Process ID 

PIT Programmable-interval timer

PVR Processor-version register

rn Specifies GPR n (r15, for example)

SGR Storage-guarded register

SLER Storage little-endian register

SPRGn SPR general-purpose register n

SRRn Save/restore register n

SU0R Storage user-defined 0 register

TBL Time-base lower 

TBU Time-base upper

TCR Timer-control register

TSR Timer-status register

Table P-5: PPC405 Registers (Continued)

Register Descriptive Name
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USPRGn User SPR general-purpose register n

XER Fixed-point exception register

ZPR Zone-protection register

Table P-5: PPC405 Registers (Continued)

Register Descriptive Name

atomic access A memory access that attempts to read from and write to the 
same address uninterrupted by other accesses to that address. 
The term refers to the fact that such transactions are indivisible.

big endian A memory byte ordering where the address of an item 
corresponds to the most-significant byte.

Book-E An version of the PowerPC architecture designed specifically 
for embedded applications.

cache block Synonym for cacheline.

cacheline A portion of a cache array that contains a copy of contiguous 
system-memory addresses. Cachelines are 32-bytes long and 
aligned on a 32-byte address.

clear To write a bit value of 0.

cache set Synonym for congruence class.

congruence class A collection of cachelines with the same index.

dirty An indication that cache information is more recent than the 
copy in memory.

doubleword Eight bytes, or 64 bits.

effective address The untranslated memory address as seen by a program.

exception An abnormal event or condition that requires the processor’s 
attention. They can be caused by instruction execution or an 
external device. The processor records the occurrence of an 
exception and they often cause an interrupt to occur.

fill buffer A buffer that receives and sends data and instructions between 
the processor and PLB. It is used when cache misses occur and 
when access to non-cacheable memory occurs.

flush A cache or TLB operation that involves writing back a modified 
entry to memory, followed by an invalidation of the entry.

GB Gigabyte, or one-billion bytes.

halfword Two bytes, or 16 bits.

hit For cache arrays and TLB arrays, an indication that requested 
information exists in the accessed array.
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interrupt The process of stopping the currently executing program so that 
an exception can be handled.

invalidate A cache or TLB operation that causes an entry to be marked as 
invalid. An invalid entry can be subsequently replaced.

KB Kilobyte, or one-thousand bytes.

line buffer A buffer located in the cache array that can temporarily hold the 
contents of an entire cacheline. It is loaded with the contents of 
a cacheline when a cache hit occurs.

little endian A memory byte ordering where the address of an item 
corresponds to the least-significant byte.

logical address Synonym for effective address.

MB Megabyte, or one-million bytes.

memory Collectively, cache memory and system memory.

miss For cache arrays and TLB arrays, an indication that requested 
information does not exist in the accessed array.

OEA The PowerPC operating-environment architecture, which 
defines the memory-management model, supervisor-level 
registers and instructions, synchronization requirements, the 
exception model, and the time-base resources as seen by 
supervisor programs.

on chip In system-on-chip implementations, this indicates on the same 
chip as the processor core, but external to the processor core.

pending As applied to interrupts, this indicates that an exception 
occurred, but the interrupt is disabled. The interrupt occurs 
when it is later enabled.

physical address The address used to access physically-implemented memory. 
This address can be translated from the effective address. When 
address translation is not used, this address is equal to the 
effective address.

PLB Processor local bus.

privileged mode The operating mode typically used by system software. 
Privileged operations are allowed and software can access all 
registers and memory.

process A program (or portion of a program) and any data required for 
the program to run.

problem state Synonym for user mode.

real address Synonym for physical address.

scalar Individual data objects and instructions. Scalars are of arbitrary 
size.

set To write a bit value of 1.
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Additional Reading
In addition to the source documents listed on page 11, the following documents contain 
additional information of potential interest to readers of this manual:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, IBM 
5/1994. Published by Morgan Kaufmann Publishers, Inc. San Francisco (ASIN: 
1558603166).

• Book E: Enhanced PowerPC Architecture, IBM 3/2000.
• The PowerPC Compiler Writer’s Guide, IBM 1/1996. Published by Warthman Associates, 

Palo Alto, CA (ISBN 0-9649654-0-2).
• Optimizing PowerPC Code : Programming the PowerPC Chip in Assembly Language, by 

Gary Kacmarcik (ASIN: 0201408392)
• PowerPC Programming Pocket Book, by Steve Heath (ISBN 0750621117).
• Computer Architecture: A Quantitative Approach, by John L. Hennessy and David A. 

Patterson.

sticky A bit that can be set by software, but cleared only by the 
processor. Alternatively, a bit that can be cleared by software, 
but set only by the processor.

string A sequence of consecutive bytes.

supervisor state Synonym for privileged mode.

system memory Physical memory installed in a computer system external to the 
processor core, such RAM, ROM, and flash.

tag As applied to caches, a set of address bits used to uniquely 
identify a specific cacheline within a congruence class. As 
applied to TLBs, a set of address bits used to uniquely identify 
a specific entry within the TLB.

UISA The PowerPC user instruction-set architecture, which defines 
the base user-level instruction set, registers, data types, the 
memory model, the programming model, and the exception 
model as seen by user programs.

user mode The operating mode typically used by application software. 
Privileged operations are not allowed in user mode, and 
software can access a restricted set of registers and memory.

VEA The PowerPC virtual-environment architecture, which defines 
a multi-access memory model, the cache model, cache-control 
instructions, and the time-base resources as seen by user 
programs.

virtual address An intermediate address used to translate an effective address 
into a physical address. It consists of a process ID and the 
effective address. It is only used when address translation is 
enabled.

word Four bytes, or 32 bits.
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Chapter 1

Introduction to the PPC405

The PPC405 is a 32-bit implementation of the PowerPC® embedded-environment architecture 
that is derived from the PowerPC architecture. Specifically, the PPC405 is an embedded 
PowerPC 405D5 processor core.

The PowerPC architecture provides a software model that ensures compatibility between 
implementations of the PowerPC family of microprocessors. The PowerPC architecture 
defines parameters that guarantee compatible processor implementations at the 
application-program level, allowing broad flexibility in the development of derivative 
PowerPC implementations that meet specific market requirements.

This chapter provides an overview of the PowerPC architecture and an introduction to the 
features of the PPC405 core.

PowerPC Architecture Overview
The PowerPC architecture is a 64-bit architecture with a 32-bit subset. The material in this 
document only covers aspects of the 32-bit architecture implemented by the PPC405.

In general, the PowerPC architecture defines the following:

• Instruction set
• Programming model
• Memory model
• Exception model
• Memory-management model
• Time-keeping model

Instruction Set
The instruction set specifies the types of instructions (such as load/store, integer arithmetic, 
and branch instructions), the specific instructions, and the encoding used for the 
instructions. The instruction set definition also specifies the addressing modes used for 
accessing memory.

Programming Model
The programming model defines the register set and the memory conventions, including 
details regarding the bit and byte ordering, and the conventions for how data are stored.

Memory Model
The memory model defines the address-space size and how it is subdivided into pages. It 
also defines attributes for specifying memory-region cacheability, byte ordering (big-
endian or little-endian), coherency, and protection.
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Exception Model
The exception model defines the set of exceptions and the conditions that can cause those 
exceptions. The model specifies exception characteristics, such as whether they are precise 
or imprecise, synchronous or asynchronous, and maskable or non-maskable. The model 
defines the exception vectors and a set of registers used when interrupts occur as a result of 
an exception. The model also provides memory space for implementation-specific 
exceptions.

Memory-Management Model
The memory-management model defines how memory is partitioned, configured, and 
protected. The model also specifies how memory translation is performed, defines special 
memory-control instructions, and specifies other memory-management characteristics.

Time-Keeping Model
The time-keeping model defines resources that permit the time of day to be determined and 
the resources and mechanisms required for supporting timer-related exceptions.

PowerPC Architecture Levels
These above aspects of the PowerPC architecture are defined at three levels. This layering 
provides flexibility by allowing degrees of software compatibility across a wide range of 
implementations. For example, an implementation such as an embedded controller can 
support the user instruction set, but not the memory management, exception, and cache 
models where it might be impractical to do so. 

The three levels of the PowerPC architecture are defined in Table 1-1.

The PowerPC architecture requires that all PowerPC implementations adhere to the UISA, 
offering compatibility among all PowerPC application programs. However, different 
versions of the VEA and OEA are permitted.

Table 1-1: Three Levels of PowerPC Architecture

User Instruction-Set Architecture 
(UISA)

Virtual Environment Architecture 
(VEA)

Operating Environment 
Architecture (OEA)

• Defines the architecture level to 
which user-level (sometimes 
referred to as problem state) 
software should conform

• Defines the base user-level 
instruction set, user-level 
registers, data types, floating-
point memory conventions, 
exception model as seen by user 
programs, memory model, and 
the programming model

• Defines additional user-level 
functionality that falls outside 
typical user-level software 
requirements

• Describes the memory model for 
an environment in which 
multiple devices can access 
memory

• Defines aspects of the cache 
model and cache-control 
instructions

• Defines the time-base resources 
from a user-level perspective

• Defines supervisor-level 
resources typically required by 
an operating system

• Defines the memory-
management model, supervisor-
level registers, synchronization 
requirements, and the exception 
model

• Defines the time-base resources 
from a supervisor-level 
perspective

Note: All PowerPC implementations 
adhere to the UISA.

Note: Implementations that conform 
to the VEA level are guaranteed to 
conform to the UISA level.

Note: Implementations that conform 
to the OEA level are guaranteed to 
conform to the UISA and VEA levels.
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Embedded applications written for the PPC405 are compatible with other PowerPC 
implementations. Privileged software generally is not compatible. The migration of 
privileged software from the PowerPC architecture to the PPC405 is in many cases 
straightforward because of the simplifications made by the PowerPC embedded-
environment architecture. Software developers who are concerned with cross-
compatibility of privileged software between the PPC405 and other PowerPC 
implementations should refer to Appendix E, PowerPC 6xx/7xx Compatibility.

Latitude Within the PowerPC Architecture Levels
Although the PowerPC architecture defines parameters necessary to ensure compatibility 
among PowerPC processors, it also allows a wide range of options for individual 
implementations. These are:

• Some resources are optional, such as certain registers, bits within registers, 
instructions, and exceptions.

• Implementations can define additional privileged special-purpose registers (SPRs), 
exceptions, and instructions to meet special system requirements, such as power 
management in processors designed for very low-power operation.

• Implementations can define many operating parameters. For example, the PowerPC 
architecture can define the possible condition causing an alignment exception. A 
particular implementation can choose to solve the alignment problem without 
causing an exception.

• Processors can implement any architectural resource or instruction with assistance 
from software (that is, they can trap and emulate) as long as the results (aside from 
performance) are identical to those specified by the architecture. In this case, a 
complete implementation requires both hardware and software.

• Some parameters are defined at one level of the architecture and defined more 
specifically at another. For example, the UISA defines conditions that can cause an 
alignment exception and the OEA specifies the exception itself.

Features Not Defined by the PowerPC Architecture
Because flexibility is an important feature of the PowerPC architecture, many aspects of 
processor design (typically relating to the hardware implementation) are not defined, 
including the following:

System-Bus Interface

Although many implementations can share similar interfaces, the PowerPC architecture 
does not define individual signals or the bus protocol. For example, the OEA allows each 
implementation to specify the signal or signals that trigger a machine-check exception.

Cache Design

The PowerPC architecture does not define the size, structure, replacement algorithm, or 
mechanism used for maintaining cache coherency. The PowerPC architecture supports, 
but does not require, the use of separate instruction and data caches.

Execution Units

The PowerPC architecture is a RISC architecture, and as such has been designed to 
facilitate the design of processors that use pipelining and parallel execution units to 
maximize instruction throughput. However, the PowerPC architecture does not define the 
internal hardware details of an implementation. For example, one processor might 
implement two units dedicated to executing integer-arithmetic instructions and another 
might implement a single unit for executing all integer instructions.
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Other Internal Microarchitecture Issues

The PowerPC architecture does not specify the execution unit responsible for executing a 
particular instruction. The architecture does not define details regarding the instruction-
fetch mechanism, how instructions are decoded and dispatched, and how results are 
written to registers. Dispatch and write-back can occur in-order or out-of-order. Although 
the architecture specifies certain registers, such as the GPRs and FPRs, implementations 
can use register renaming or other schemes to reduce the impact of data dependencies and 
register contention.

Implementation-Specific Registers

Each implementation can have its own unique set of implementation registers that are not 
defined by the architecture.

PowerPC Embedded-Environment Architecture
The PowerPC embedded-environment architecture is optimized for embedded controllers. 
This architecture is a forerunner to the PowerPC Book-E architecture. The PowerPC 
embedded-environment architecture provides an alternative definition for certain features 
specified by the PowerPC VEA and OIA. Implementations that adhere to the PowerPC 
embedded-environment architecture also adhere to the PowerPC UISA. PowerPC 
embedded-environment processors are 32-bit only implementations and thus do not 
include the special 64-bit extensions to the PowerPC UISA. Also, floating-point support 
can be provided either in hardware or software by PowerPC embedded-environment 
processors.

Figure 1-1 shows the relationship between the PowerPC embedded-environment 
architecture, the PowerPC architecture, and the PowerPC Book-E architecture.

Figure 1-1: Relationship of PowerPC Architectures
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The PowerPC embedded-environment architecture features:

• Memory management optimized for embedded software environments.
• Cache-management instructions for optimizing performance and memory control in 

complex applications that are graphically and numerically intensive.
• Storage attributes for controlling memory-system behavior.
• Special-purpose registers for controlling the use of debug resources, timer resources, 

interrupts, real-mode storage attributes, memory-management facilities, and other 
architected processor resources.

• A device-control-register address space for managing on-chip peripherals such as 
memory controllers.

• A dual-level interrupt structure and interrupt-control instructions.
• Multiple timer resources.
• Debug resources that enable hardware-debug and software-debug functions such as 

instruction breakpoints, data breakpoints, and program single-stepping.

Virtual Environment
The virtual environment defines architectural features that enable application programs to 
create or modify code, to manage storage coherency, and to optimize memory-access 
performance. It defines the cache and memory models, the timekeeping resources from a 
user perspective, and resources that are accessible in user mode but are primarily used by 
system-library routines. The following summarizes the virtual-environment features of the 
PowerPC embedded-environment architecture:

• Storage model:
- Storage-control instructions as defined in the PowerPC virtual-environment 

architecture. These instructions are used to manage instruction caches and data 
caches, and for synchronizing and ordering instruction execution.

- Storage attributes for controlling memory-system behavior. These are: write-
through, cacheability, memory coherence (optional), guarded, and endian.

- Operand-placement requirements and their effect on performance.
• The time-base function as defined by the PowerPC virtual-environment architecture, 

for user-mode read access to the 64-bit time base.
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Operating Environment
The operating environment describes features of the architecture that enable operating 
systems to allocate and manage storage, to handle errors encountered by application 
programs, to support I/O devices, and to provide operating-system services. It specifies 
the resources and mechanisms that require privileged access, including the memory-
protection and address-translation mechanisms, the exception-handling model, and 
privileged timer resources. Table 1-2 summarizes the operating-environment features of 
the PowerPC embedded-environment architecture.

Table 1-2: Operating-Environment Features of the PowerPC Embedded-Environment Architecture

Operating 
Environment

Features

Register model • Privileged special-purpose registers (SPRs) and instructions for accessing those 
registers

• Device control registers (DCRs) and instructions for accessing those registers

Storage model • Privileged cache-management instructions
• Storage-attribute controls
• Address translation and memory protection
• Privileged TLB-management instructions

Exception model • Dual-level interrupt structure supporting various exception types
• Specification of interrupt priorities and masking
• Privileged SPRs for controlling and handling exceptions
• Interrupt-control instructions
• Specification of how partially executed instructions are handled when an interrupt 

occurs

Debug model • Privileged SPRs for controlling debug modes and debug events
• Specification for seven types of debug events
• Specification for allowing a debug event to cause a reset
• The ability of the debug mechanism to freeze the timer resources

Time-keeping model • 64-bit time base
• 32-bit decrementer (the programmable-interval timer)
• Three timer-event interrupts:

- Programmable-interval timer (PIT)
- Fixed-interval timer (FIT)
- Watchdog timer (WDT)

• Privileged SPRs for controlling the timer resources
• The ability to freeze the timer resources using the debug mechanism

Synchronization 
requirements

• Requirements for special registers and the TLB
• Requirements for instruction fetch and for data access
• Specifications for context synchronization and execution synchronization

Reset and initialization 
requirements

• Specification for two internal mechanisms that can cause a reset:
- Debug-control register (DBCR) 
- Timer-control register (TCR)

• Contents of processor resources after a reset
• The software-initialization requirements, including an initialization code example
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PowerPC Book-E Architecture
The PowerPC Book-E architecture extends the capabilities introduced in the PowerPC 
embedded-environment architecture. Although not a PowerPC Book-E implementation, 
many of the features available in the 32-bit subset of the PowerPC Book-E architecture are 
available in the PPC405. The PowerPC Book-E architecture and the PowerPC embedded-
environment architecture differ in the following general ways:

• 64-bit addressing and 64-bit operands are available. Unlike 64-bit mode in the 
PowerPC UISA, 64-bit support in PowerPC Book-E architecture is non-modal and 
instead defines new 64-bit instructions and flags.

• Real mode is eliminated, and the memory-management unit is active at all times. The 
elimination of real mode results in the elimination of real-mode storage-attribute 
registers.

• Memory synchronization requirements are changed in the architecture and a 
memory-barrier instruction is introduced.

• A small number of new instructions are added to the architecture and several 
instructions are removed.

• Several SPR addresses and names are changed in the architecture, as are the 
assignment and meanings of some bits within certain SPRs.

Embedded applications written for the PPC405 are compatible with PowerPC Book-E 
implementations. Privileged software is, in general, not compatible, but the differences are 
relatively minor. Software developers who are concerned with cross-compatibility of 
privileged software between the PPC405 and PowerPC Book-E implementations should 
refer to Appendix F, PowerPC Book-E Compatibility.

PPC405 Features
The PPC405 processor core is an implementation of the PowerPC embedded-environment 
architecture. The processor provides fixed-point embedded applications with high 
performance at low power consumption. It is compatible with the PowerPC UISA. Much 
of the PPC405 VEA and OEA support is also available in implementations of the PowerPC 
Book-E architecture. Key features of the PPC405 include:

• A fixed-point execution unit fully compliant with the PowerPC UISA:
- 32-bit architecture, containing thirty-two 32-bit general purpose registers (GPRs).

• PowerPC embedded-environment architecture extensions providing additional 
support for embedded-systems applications:
- True little-endian operation
- Flexible memory management
- Multiply-accumulate instructions for computationally intensive applications
- Enhanced debug capabilities
- 64-bit time base
- 3 timers: programmable interval timer (PIT), fixed interval timer (FIT), and 

watchdog timer (All are synchronous with the time base)
• Performance-enhancing features, including:

- Static branch prediction
- Five-stage pipeline with single-cycle execution of most instructions, including 

loads and stores
- Multiply-accumulate instructions
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- Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle 
divide)

- Enhanced string and multiple-word handling
- Support for unaligned loads and unaligned stores to cache arrays, main memory, 

and on-chip memory (OCM)
- Minimized interrupt latency

• Integrated instruction-cache:
- 16 KB, 2-way set associative
- Eight words (32 bytes) per cacheline
- Fetch line buffer
- Instruction-fetch hits are supplied from the fetch line buffer
- Programmable prefetch of next-sequential line into the fetch line buffer
- Programmable prefetch of non-cacheable instructions: full line (eight words) or 

half line (four words)
- Non-blocking during fetch line fills

• Integrated data-cache:
- 16 KB, 2-way set associative
- Eight words (32 bytes) per cacheline
- Read and write line buffers
- Load and store hits are supplied from/to the line buffers
- Write-back and write-through support
- Programmable load and store cacheline allocation
- Operand forwarding during cacheline fills
- Non-blocking during cacheline fills and flushes

• Support for on-chip memory (OCM) that can provide memory-access performance 
identical to a cache hit

• Flexible memory management:
- Translation of the 4 GB logical-address space into the physical-address space
- Independent control over instruction translation and protection, and data 

translation and protection
- Page-level access control using the translation mechanism
- Software control over the page-replacement strategy
- Write-through, cacheability, user-defined 0, guarded, and endian (WIU0GE) 

storage-attribute control for each virtual-memory region
- WIU0GE storage-attribute control for thirty-two 128 MB regions in real mode
- Additional protection control using zones

• Enhanced debug support with logical operators:
- Four instruction-address compares
- Two data-address compares
- Two data-value compares
- JTAG instruction for writing into the instruction cache
- Forward and backward instruction tracing

• Advanced power management support
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Privilege Modes
Software running on the PPC405 can do so in one of two privilege modes: privileged and 
user. The privilege modes supported by the PPC405 are described in Processor Operating 
Modes, page 43.

Privileged Mode
Privileged mode allows programs to access all registers and execute all instructions 
supported by the processor. Normally, the operating system and low-level device drivers 
operate in this mode.

User Mode
User mode restricts access to some registers and instructions. Normally, application 
programs operate in this mode.

Address Translation Modes
The PPC405 also supports two modes of address translation: real and virtual. Refer to 
Chapter 6, Virtual-Memory Management, for more information on address translation.

Real Mode
In real mode, programs address physical memory directly.

Virtual Mode
In virtual mode, programs address virtual memory and virtual-memory addresses are 
translated by the processor into physical-memory addresses. This allows programs to 
access much larger address spaces than might be implemented in the system.

Addressing Modes
Whether the PPC405 is running in real mode or virtual mode, data addressing is supported 
by the load and store instructions using one of the following addressing modes:

• Register-indirect with immediate index—A base address is stored in a register, and a 
displacement from the base address is specified as an immediate value in the 
instruction.

• Register-indirect with index—A base address is stored in a register, and a 
displacement from the base address is stored in a second register.

• Register indirect—The data address is stored in a register.

Instructions that use the two indexed forms of addressing also allow for automatic updates 
to the base-address register. With these instruction forms, the new data address is 
calculated, used in the load or store data access, and stored in the base-address register.

The data-addressing modes are described in Operand-Address Calculation, page 79.

With sequential-instruction execution, the next-instruction address is calculated by adding 
four bytes to the current-instruction address. In the case of branch instructions, however, 
the next-instruction address is determined using one of four branch-addressing modes:

• Branch to relative—The next-instruction address is at a location relative to the current-
instruction address.

• Branch to absolute—The next-instruction address is at an absolute location in 
memory.

• Branch to link register—The next-instruction address is stored in the link register.
• Branch to count register—The next-instruction address is stored in the count register.
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The branch-addressing modes are described in Branch-Target Address Calculation, 
page 73.

Data Types
PPC405 instructions support byte, halfword, and word operands. Multiple-word operands 
are supported by the load/store multiple instructions and byte strings are supported by 
the load/store string instructions. Integer data are either signed or unsigned, and signed 
data is represented using two’s-complement format.

The address of a multi-byte operand is determined using the lowest memory address 
occupied by that operand. For example, if the four bytes in a word operand occupy 
addresses 4, 5, 6, and 7, the word address is 4. The PPC405 supports both big-endian (an 
operand’s most-significant byte is at the lowest memory address) and little-endian (an 
operand’s least-significant byte is at the lowest memory address) addressing.

See Operand Conventions, page 47, for more information on the supported data types and 
byte ordering.

Register Set Summary
Figure 1-2, page 33 shows the registers contained in the PPC405. Descriptions of the 
registers are in the following sections.
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General-Purpose Registers
The processor contains thirty-two 32-bit general-purpose registers (GPRs), identified as r0 
through r31. The contents of the GPRs are read from memory using load instructions and 
written to memory using store instructions. Computational instructions often read 
operands from the GPRs and write their results in GPRs. Other instructions move data 
between the GPRs and other registers. GPRs can be accessed by all software. See General-
Purpose Registers (GPRs), page 60, for more information.

Figure 1-2: PPC405 Registers
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Special-Purpose Registers
The processor contains a number of 32-bit special-purpose registers (SPRs). SPRs provide 
access to additional processor resources, such as the count register, the link register, debug 
resources, timers, interrupt registers, and others. Most SPRs are accessed only by 
privileged software, but a few, such as the count register and link register, are accessed by 
all software. See User Registers, page 59, and Privileged Registers, page 129 for more 
information.

Machine-State Register
The 32-bit machine-state register (MSR) contains fields that control the operating state of the 
processor. This register can be accessed only by privileged software. See Machine-State 
Register, page 132, for more information.

Condition Register
The 32-bit condition register (CR) contains eight 4-bit fields, CR0–CR7. The values in the CR 
fields can be used to control conditional branching. Arithmetic instructions can set CR0 
and compare instructions can set any CR field. Additional instructions are provided to 
perform logical operations and tests on CR fields and bits within the fields. The CR can be 
accessed by all software. See Condition Register (CR), page 61, for more information.

Device Control Registers
The 32-bit device control registers (not shown) are used to configure, control, and report 
status for various external devices that are not part of the PPC405 processor. Although the 
DCRs are not part of the PPC405 implementation, they are accessed using the mtdcr and 
mfdcr instructions. The DCRs can be accessed only by privileged software. See UG018, 
PowerPC® 405 Processor Block Manual for more information on implementing DCRs.

PPC405 Organization
As shown in Figure 1-3, the PPC405 processor contains the following elements:

• A 5-stage pipeline consisting of fetch, decode, execute, write-back, and load write-
back stages

• A virtual-memory-management unit that supports multiple page sizes and a variety 
of storage-protection attributes and access-control options

• Separate instruction-cache and data-cache units
• Debug support, including a JTAG interface
• Three programmable timers

The following sections provide an overview of each element.
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Central-Processing Unit
The PPC405 central-processing unit (CPU) implements a 5-stage instruction pipeline 
consisting of fetch, decode, execute, write-back, and load write-back stages. 

The fetch and decode logic sends a steady flow of instructions to the execute unit. All 
instructions are decoded before they are forwarded to the execute unit. Instructions are 
queued in the fetch queue if execution stalls. The fetch queue consists of three elements: 
two prefetch buffers and a decode buffer. If the prefetch buffers are empty instructions 
flow directly to the decode buffer.

Up to two branches are processed simultaneously by the fetch and decode logic. If a branch 
cannot be resolved prior to execution, the fetch and decode logic predicts how that branch 
is resolved, causing the processor to speculatively fetch instructions from the predicted 
path. Branches with negative-address displacements are predicted as taken, as are 
branches that do not test the condition register or count register. The default prediction can 
be overridden by software at assembly or compile time. This capability is described further 
in Branch Prediction, page 71.

The PPC405 has a single-issue execute unit containing the general-purpose register (GPR) 
file, arithmetic-logic unit (ALU), and the multiply-accumulate unit (MAC). The GPRs 
consist of thirty-two 32-bit registers that are accessed by the execute unit using three read 
ports and two write ports. During the decode stage, data is read out of the GPRs for use by 
the execute unit. During the write-back stage, results are written to the GPR. The use of five 

Figure 1-3: PPC405 Organization
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read/write ports on the GPRs allows the processor to execute load/store operations in 
parallel with ALU and MAC operations.

The execute unit supports all 32-bit PowerPC UISA integer instructions in hardware, and is 
compliant with the PowerPC embedded-environment architecture specification. Floating-
point operations are not supported.

The MAC unit supports implementation-specific multiply-accumulate instructions and 
multiply-halfword instructions. MAC instructions operate on either signed or unsigned 
16-bit operands, and they store their results in a 32-bit GPR. These instructions can 
produce results using either modulo arithmetic or saturating arithmetic. All MAC 
instructions have a single cycle throughput. See Multiply-Accumulate Instruction-Set 
Extensions, page 106 for more information.

Exception Handling Logic
Exceptions are divided into two classes: critical and noncritical. The PPC405 CPU services 
exceptions caused by error conditions, the internal timers, debug events, and the external 
interrupt controller (EIC) interface. Across the two classes, a total of 19 possible exceptions 
are supported, including the two provided by the EIC interface. 

Each exception class has its own pair of save/restore registers. SRR0 and SRR1 are used for 
noncritical interrupts, and SRR2 and SRR3 are used for critical interrupts. The exception-
return address and the machine state are written to these registers when an exception 
occurs, and they are automatically restored when an interrupt handler exits using the 
return-from-interrupt (rfi) or return-from critical-interrupt (rfci) instruction. Use of 
separate save/restore registers allows the PPC405 to handle critical interrupts 
independently of noncritical interrupts.

See Chapter 7, Exceptions and Interrupts, for information on exception handling in the 
PPC405.

Memory Management Unit
The PPC405 supports 4 GB of flat (non-segmented) address space. The memory-
management unit (MMU) provides address translation, protection functions, and storage-
attribute control for this address space. The MMU supports demand-paged virtual 
memory using multiple page sizes of 1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB and 
16 MB. Multiple page sizes can improve memory efficiency and minimize the number of 
TLB misses. When supported by system software, the MMU provides the following 
functions:

• Translation of the 4 GB logical-address space into a physical-address space.
• Independent enabling of instruction translation and protection from that of data 

translation and protection.
• Page-level access control using the translation mechanism.
• Software control over the page-replacement strategy.
• Additional protection control using zones.
• Storage attributes for cache policy and speculative memory-access control.

The translation look-aside buffer (TLB) is used to control memory translation and 
protection. Each one of its 64 entries specifies a page translation. It is fully associative, and 
can simultaneously hold translations for any combination of page sizes. To prevent TLB 
contention between data and instruction accesses, a 4-entry instruction and an 8-entry data 
shadow-TLB are maintained by the processor transparently to software.

Software manages the initialization and replacement of TLB entries. The PPC405 includes 
instructions for managing TLB entries by software running in privileged mode. This 
capability gives significant control to system software over the implementation of a page 
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replacement strategy. For example, software can reduce the potential for TLB thrashing or 
delays associated with TLB-entry replacement by reserving a subset of TLB entries for 
globally accessible pages or critical pages.

Storage attributes are provided to control access of memory regions. When memory 
translation is enabled, storage attributes are maintained on a page basis and read from the 
TLB when a memory access occurs. When memory translation is disabled, storage 
attributes are maintained in storage-attribute control registers. A zone-protection register 
(ZPR) is provided to allow system software to override the TLB access controls without 
requiring the manipulation of individual TLB entries. For example, the ZPR can provide a 
simple method for denying read access to certain application programs.

Chapter 6, Virtual-Memory Management, describes these memory-management 
resources in detail.

Instruction and Data Caches
The PPC405 accesses memory through the instruction-cache unit (ICU) and data-cache 
unit (DCU). Each cache unit includes a PLB-master interface, cache arrays, and a cache 
controller. Hits into the instruction cache and data cache appear to the CPU as single-cycle 
memory accesses. Cache misses are handled as requests over the PLB bus to another PLB 
device, such as an external-memory controller.

The PPC405 implements separate instruction-cache and data-cache arrays. Each is 16 KB in 
size, is two-way set-associative, and operates using 8-word (32 byte) cachelines. The caches 
are non-blocking, allowing the PPC405 to overlap instruction execution with reads over 
the PLB (when cache misses occur).

The cache controllers replace cachelines according to a least-recently used (LRU) 
replacement policy. When a cacheline fill occurs, the most-recently accessed line in the 
cache set is retained and the other line is replaced. The cache controller updates the LRU 
during a cacheline fill.

The ICU supplies up to two instructions every cycle to the fetch and decode unit. The ICU 
can also forward instructions to the fetch and decode unit during a cacheline fill, 
minimizing execution stalls caused by instruction-cache misses. When the ICU is accessed, 
four instructions are read from the appropriate cacheline and placed temporarily in a line 
buffer. Subsequent ICU accesses check this line buffer for the requested instruction prior to 
accessing the cache array. This allows the ICU cache array to be accessed as little as once 
every four instructions, significantly reducing ICU power consumption.

The DCU can independently process load/store operations and cache-control instructions. 
The DCU can also dynamically reprioritize PLB requests to reduce the length of an 
execution stall. For example, if the DCU is busy with a low-priority request and a 
subsequent storage operation requested by the CPU is stalled, the DCU automatically 
increases the priority of the current (low-priority) request. The current request is thus 
finished sooner, allowing the DCU to process the stalled request sooner. The DCU can 
forward data to the execute unit during a cacheline fill, further minimizing execution stalls 
caused by data-cache misses.

Additional features allow programmers to tailor data-cache performance to a specific 
application. The DCU can function in write-back or write-through mode, as determined by 
the storage-control attributes. Loads and stores that do not allocate cachelines can also be 
specified. Inhibiting certain cacheline fills can reduce potential pipeline stalls and 
unwanted external-bus traffic.

See Chapter 5, Memory-System Management, for details on the operation and control of 
the PPC405 caches.
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Timer Resources
The PPC405 contains a 64-bit time base and three timers. The time base is incremented 
synchronously using the CPU clock or an external clock source. The three timers are 
incremented synchronously with the time base. (See Chapter 8, Timer Resources, for more 
information on these features.) The three timers supported by the PPC405 are:

• Programmable Interval Timer
• Fixed Interval Timer
• Watchdog Timer

Programmable Interval Timer

The programmable interval timer (PIT) is a 32-bit register that is decremented at the time-base 
increment frequency. The PIT register is loaded with a delay value. When the PIT count 
reaches 0, a PIT interrupt occurs. Optionally, the PIT can be programmed to automatically 
reload the last delay value and begin decrementing again.

Fixed Interval Timer

The fixed interval timer (FIT) causes an interrupt when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a FIT interrupt.

Watchdog Timer

The watchdog timer causes a hardware reset when a selected bit in the time-base register 
changes from 0 to 1. Programmers can select one of four predefined bits in the time-base 
for triggering a reset, and the type of reset can be defined by the programmer.

Note: The time-base register alone does not cause interrupts to occur.

Debug
The PPC405 debug resources include special debug modes that support the various types 
of debugging used during hardware and software development. These are:

• Internal-debug mode for use by ROM monitors and software debuggers
• External-debug mode for use by JTAG debuggers
• Debug-wait mode, which allows the servicing of interrupts while the processor appears 

to be stopped
• Real-time trace mode, which supports event triggering for real-time tracing

Debug events are supported that allow developers to manage the debug process. Debug 
modes and debug events are controlled using debug registers in the processor. The debug 
registers are accessed either through software running on the processor or through the 
JTAG port. The JTAG port can also be used for board tests.

The debug modes, events, controls, and interfaces provide a powerful combination of 
debug resources for hardware and software development tools. Chapter 9, Debugging, 
describes these resources in detail.

PPC405 Interfaces
The PPC405 provides a set of interfaces that supports the attachment of cores and user 
logic. The software resources used to manage the PPC405 interfaces are described in the 
Core-Configuration Register 0, page 164. For information on the hardware operation, use, 
and electrical characteristics of these interfaces, refer to UG018, PowerPC® 405 Processor 
Block Manual. The following interfaces are provided:

• Processor local bus interface
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• Device control register interface
• Clock and power management interface
• JTAG port interface
• On-chip interrupt controller interface
• On-chip memory controller interface

Processor Local Bus

The processor local bus (PLB) interface provides a 32-bit address and three 64-bit data buses 
attached to the instruction-cache and data-cache units. Two of the 64-bit buses are attached 
to the data-cache unit, one supporting read operations and the other supporting write 
operations. The third 64-bit bus is attached to the instruction-cache unit to support 
instruction fetching.

Device Control Register

The device control register (DCR) bus interface supports the attachment of on-chip registers 
for device control. Software can access these registers using the mfdcr and mtdcr 
instructions.

Clock and Power Management

The clock and power-management interface supports several methods of clock distribution 
and power management.

JTAG Port

The JTAG port interface supports the attachment of external debug tools. Using the JTAG 
test-access port, a debug tool can single-step the processor and examine internal-processor 
state to facilitate software debugging. This capability complies with the IEEE 1149.1 
specification for vendor-specific extensions, and is therefore compatible with standard 
JTAG hardware for boundary-scan system testing.

On-Chip Interrupt Controller

The on-chip interrupt controller interface is an external interrupt controller that combines 
asynchronous interrupt inputs from on-chip and off-chip sources and presents them to the 
core using a pair of interrupt signals (critical and noncritical). Asynchronous interrupt 
sources can include external signals, the JTAG and debug units, and any other on-chip 
peripherals.

On-Chip Memory Controller

An on-chip memory (OCM) interface supports the attachment of additional memory to the 
instruction and data caches that can be accessed at performance levels matching the cache 
arrays.
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Chapter 2

Operational Concepts

This chapter describes the operational concepts governing the PPC405 programming 
model. These concepts include the execution and memory-access models, processor 
operating modes, memory organization and management, and instruction conventions.

Execution Model
From a software viewpoint, PowerPC® processors implement a sequential-execution model. 
That is, the processors appear to execute instructions in program order. Internally and 
invisible to software, PowerPC processors can execute instructions out-of-order and can 
speculatively execute instructions. The processor is responsible for maintaining an in-
order execution state visible to software. The execution of an instruction sequence can be 
interrupted by an exception caused by one of the executing instructions or by an 
asynchronous event. The PPC405 does not support out-of-order instruction execution. 
However, the processor does support speculative instruction execution, typically by 
predicting the outcome of branch instructions.

As described in Ordering Memory Accesses, page 151, the PowerPC architecture specifies 
a weakly consistent memory model for shared-memory multiprocessor systems. The 
weakly consistent memory model allows system bus operations to be reordered 
dynamically. The goal of reordering bus operations is to reduce the effect of memory 
latency and improving overall performance. In single-processor systems, loads and stores 
can be reordered dynamically to allow efficient utilization of the processor bus. Loads can 
be performed speculatively to enhance the speculative-execution capabilities. This model 
provides an opportunity for significantly improved performance over a model that has 
stronger memory-consistency rules, but places the responsibility for access ordering on the 
programmer. 

When a program requires strict instruction-execution ordering or memory-access ordering 
for proper execution, the programmer must insert the appropriate ordering or 
synchronization instructions into the program. These instructions are described in 
Synchronizing Instructions, page 125. The concept of synchronization is described in the 
Synchronization Operations section that follows.

The PPC405 supports many aspects of the weakly consistent model but not all of them. 
Specifically, the PPC405 does not provide hardware support for multiprocessor memory 
coherency and does not support speculative loads. If the order of memory accesses is 
important to the correct operation of a program, care must be taken in porting such a 
program from the PPC405 to a processor that supports multiprocessor memory coherency 
and speculative loads.
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Synchronization Operations
Various forms of synchronizing operations can be used by programs executing on the 
PPC405 processor to control the behavior of instruction execution and memory accesses. 
Synchronizing operations fall into the following three categories:

• Context synchronization
• Execution synchronization
• Storage synchronization

Each synchronization category is described in the following sections. Instructions 
provided by the PowerPC architecture for synchronization purposes are described on 
page 125.

Context Synchronization
The state of the execution environment (privilege level, translation mode, and memory 
protection) defines a program’s context. An instruction or event is context synchronizing if 
the operation satisfies all of the following conditions:

• Instruction dispatch is halted when the operation is recognized by the processor. This 
means the instruction-fetch mechanism stops issuing (sending) instructions to the 
execution units.

• The operation is not initiated (for instructions, this means dispatched) until all prior 
instructions complete execution to a point where they report any exceptions they 
cause to occur. In the case of an instruction-synchronize (isync) instruction, the isync 
does not complete execution until all prior instructions complete execution to a point 
where they report any exceptions they cause to occur.

• All instructions that precede the operation complete execution in the context they 
were initiated. This includes privilege level, translation mode, and memory 
protection.

• All instructions following the operation complete execution in the new context 
established by the operation.

• If the operation is an exception, or directly causes an exception to occur (for example, 
the sc instruction causes a system-call exception), the operation is not initiated until 
all higher-priority exceptions are recognized by the exception mechanism.

The system-call instruction (sc), return-from-interrupt instructions (rfi and rfci), and most 
exceptions are examples of context-synchronizing operations.

Context-synchronizing operations do not guarantee that subsequent memory accesses are 
performed using the memory context established by previous instructions. When 
memory-access ordering must be enforced, storage-synchronizing instructions are 
required.

Execution Synchronization
An instruction is execution synchronizing if it satisfies the conditions of the first two items 
(as described above) for context synchronization:

• Instruction dispatch is halted when the operation is recognized by the processor. This 
means the instruction-fetch mechanism stops issuing (sending) instructions to the 
execution units.

• The operation is not initiated until all instructions in execution complete to a point 
where they report any exceptions they cause to occur. In the case of a synchronize 
(sync) instruction, the sync does not complete execution until all prior instructions 
complete execution to a point where they report any exceptions they cause to occur.
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The sync and move-to machine-state register (mtmsr) instructions are examples of execution-
synchronizing instructions.

All context-synchronizing instructions are execution synchronizing. However, unlike a 
context-synchronizing operation, there is no guarantee that subsequent instructions 
execute in the context established by an execution-synchronizing instruction. The new 
context becomes effective sometime after the execution-synchronizing instruction 
completes and before or during a subsequent context-synchronizing operation.

Storage Synchronization
The PowerPC architecture specifies a weakly consistent memory model for shared-
memory multiprocessor systems. With this model, the order that the processor performs 
memory accesses, the order that those accesses complete in memory, and the order that 
those accesses are viewed as occurring by another processor can all differ. The PowerPC 
architecture supports storage-synchronizing operations that provide a capability for 
enforcing memory-access ordering, allowing programs to share memory. Support is also 
provided to allow programs executing on a processor to share memory with some other 
mechanism that can access memory, such as an I/O device.

Device control registers (DCRs) are treated as memory-mapped registers from a 
synchronization standpoint. Storage-synchronization operations must be used to enforce 
synchronization of DCR reads and writes.

Processor Operating Modes
The PowerPC architecture defines two levels of privilege, each with an associated 
processor operating mode:

• Privileged mode
• User mode

The processor operating mode is controlled by the privilege-level field in the machine-state 
register (MSR[PR]). When MSR[PR] = 0, the processor operates in privileged mode. When 
MSR[PR] = 1, the processor operates in user mode. MSR[PR] = 0 following reset, placing 
the processor in privileged mode. See Machine-State Register, page 132 for more 
information on this register.

Attempting to execute a privileged instruction when in user mode causes a privileged-
instruction program exception (see Program Interrupt (0x0700), page 223).

Throughout this book, the terms privileged and system are used interchangeably to refer to 
software that operates under the privileged-programming model. Likewise, the terms user 
and application are used to refer to software that operates under the user-programming 
model. Registers and instructions are defined as either privileged or user, indicating which 
of the two programming models they belong to. User registers and user instructions 
belong to both the user-programming and privileged-programming models.

Privileged Mode
Privileged mode allows programs to access all registers and execute all instructions 
supported by the processor. The privileged-programming model comprises the entire register 
set and instruction set supported by the PPC405. Operating systems are typically the only 
software that runs in privileged mode. 

The registers available only in privileged mode are shown in Figure 4-1, page 131. Refer to 
the corresponding section describing each register for more information. The instructions 
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available only in privileged mode are shown in Table 4-4, page 136. The operation of each 
instruction is described in Chapter 11, Instruction Set.

Privileged mode is sometimes referred to as supervisor state.

User Mode
User mode restricts access to some registers and instructions. The user-programming model 
comprises the register set and instruction set supported by the processor running in user 
mode, and is a subset of the privileged-programming model. Operating systems typically 
confine the execution of application programs to user mode, thereby protecting system 
resources and other software from the effects of errant applications.

The registers available in user mode are shown in Figure 3-1, page 60. Refer to the 
corresponding section in Chapter 3 for a description of each register. All instructions are 
available in user mode except as shown in Table 4-4, page 136.

User mode is sometimes referred to as problem state. 

Memory Organization
PowerPC programs reference memory using an effective address computed by the 
processor when executing a load, store, branch, or cache-control instruction, and when 
fetching the next-sequential instruction. Depending on the address-relocation mode, this 
effective address is either used to directly access physical memory or is treated as a virtual 
address that is translated into physical memory.

Effective-Address Calculation
Programs reference memory using an effective address (also called a logical address). An 
effective address (EA) is the 32-bit unsigned sum computed by the processor when 
accessing memory, executing a branch instruction, or fetching the next-sequential 
instruction. An EA is often referred to as the next-instruction address (NIA) when it is used 
to fetch an instruction (sequentially or as the result of a branch). The input values and 
method used by the processor to calculate an EA depend on the instruction that is 
executed.

When accessing data in memory, effective addresses are calculated in one of the following 
ways:

• EA = (rA|0)—this is referred to as register-indirect addressing.
• EA = (rA|0) + offset—this is referred to as register-indirect with immediate-index 

addressing.
• EA = (rA|0) + (rB)—this is referred to as register-indirect with index addressing.

Note: In the above, the notation (rA|0) specifies the following:
If the rA instruction field is 0, the base address is 0.
If the rA instruction field is not 0, the contents of register rA are used as the base address.

When instructions execute sequentially, the next-instruction effective address is the 
current-instruction address (CIA) + 4. This is because all instructions are four bytes long. 
When branching to a new address, the next-instruction effective address is calculated in 
one of the following ways:

• NIA = CIA + displacement—this is referred to as branch-to-relative addressing.
• NIA = displacement—this is referred to as branch-to-absolute addressing.
• NIA = (LR)—this is referred to as branch to link-register addressing.
• NIA = (CTR)—this is referred to as branch to count-register addressing.
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When the NIA is calculated for a branch instruction, the two low-order bits (30:31) are 
always cleared to 0, forcing word-alignment of the address. This is true even when the 
address is contained in the LR or CR, and the register contents are not word-aligned. 

All effective-address computations are performed by the processor using unsigned binary 
arithmetic. Carries from bit 0 are ignored and the effective address wraps from the 
maximum address (232-1) to address 0 when the calculation overflows.

Physical Memory
Physical memory represents the address space of memory installed in a computer system, 
including memory-mapped I/O devices. Generally, the amount of physical memory 
actually available in a system is smaller than that supported by the processor. When 
address translation is supported by the operating system—as it is in virtual-memory 
systems—the very-large virtual-address space is translated into the smaller physical-
address space using the memory-management resources supported by the processor.

The PPC405 supports up to four gigabytes of physical memory using a 32-bit physical 
address. A hierarchical-memory system involving external (system) memory and the 
caches internal to the processor are employed to support that address space. The PPC405 
supports separate level-1 (L1) caches for instructions and data. The operation and control 
of these caches is described in Chapter 5, Memory-System Management.

Virtual Memory
Virtual memory is a relocatable address space that is generally larger than the physical-
memory space installed in a computer system. Operating systems relocate (map) 
applications and data in virtual memory so it appears that more memory is available than 
actually exists. Virtual memory software moves unused instructions and data between 
physical memory and external storage devices (such as a hard drive) when insufficient 
physical memory is available. The PPC405 supports a 40-bit virtual address that allows 
privileged software to manage a one-terabyte virtual-memory space.

Memory Management
Memory management describes the collection of mechanisms used to translate the addresses 
generated by programs into physical-memory addresses. Memory management also 
consists of the mechanisms used to characterize memory-region behavior, also referred to 
as storage control. Memory management is performed by privileged-mode software and is 
completely transparent to user-mode programs running in virtual mode.

The PPC405 is a PowerPC embedded-environment implementation. The memory-
management resources defined by the PowerPC embedded-environment architecture (and 
its successor, the PowerPC Book-E architecture) differ significantly from the resources 
defined by the PowerPC architecture. The resources defined by the PowerPC embedded 
environment architecture are well-suited for the special requirements of embedded-system 
applications. The resources defined by the PowerPC architecture better meet the 
requirements of desktop and commercial-workstation systems. 

Generally, the differences between the two memory-management mechanisms are as 
follows:

• The PPC405 supports software page translation and provides special instructions for 
managing the page tables and the translation look-aside buffer (TLB) internal to the 
processor. The page-translation table format, organization, and search algorithms are 
software-dependent and transparent to the PPC405 processor. The PowerPC 
architecture, on the other hand, defines the page-translation table organization, 
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format, and search algorithms. It does not define support for the special page table 
and TLB instructions but instead assumes the processor hardware is responsible for 
searching page tables and updating the TLB.

• The PPC405 supports variable-sized pages. The PowerPC architecture defines fixed-size 
pages of 4 KB.

• The PPC405 does not support the segment-translation mechanism defined by the 
PowerPC architecture.

• The PPC405 does not support the block-address-translation (BAT) mechanism defined 
by the PowerPC architecture.

• Additional storage-control attributes not defined by the PowerPC architecture are 
supported by the PPC405. The methods for using these attributes to characterize 
memory regions also differ.

At a high level, Figure 2-1 shows the differences between 32-bit memory management in 
the PowerPC embedded-environment architecture (and PowerPC Book-E architecture) 
and in the PowerPC architecture. See Chapter 6, Virtual-Memory Management for more 
information on the resources supported by the PPC405. Additional information on the 
differences with the PowerPC architecture is described in Appendix E, PowerPC 6xx/7xx 
Compatibility. PowerPC Book-E architecture extends the resources first defined by the 
PowerPC embedded-environment architecture. A description of those extensions is in 
Appendix F, PowerPC Book-E Compatibility.

Addressing Modes
Programs can use 32-bit effective addresses to reference the 4 GB physical-address space 
using one of two addressing modes:

• Real mode
• Virtual mode

Figure 2-1: PowerPC 32-Bit Memory Management
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Real mode and virtual mode are enabled and disabled independently for instruction 
fetches and data accesses. The instruction-fetch address mode is controlled using the 
instruction-relocate (IR) field in the machine-state register (MSR). When MSR[IR] = 0, 
instruction fetches are performed in real mode. When MSR[IR] = 1, instruction fetches are 
performed in virtual mode. Similarly, the data-access address mode is controlled using the 
data-relocate (DR) field in the MSR. When MSR[DR] = 0, data accesses are performed in 
real mode. Setting MSR[DR] = 1 enables virtual mode for data accesses. See Virtual Mode, 
page 180 for more information on these fields.

Real Mode
In real mode, an effective address is used directly as the physical address into the 4 GB 
address space. Here, the logical-address space is mapped directly onto the physical-
address space.

Virtual Mode
In virtual mode, address translation is enabled. Effective addresses are translated into 
physical addresses using the memory-management unit, as shown in Figure 2-1, page 46. 
In this mode, pages within the logical-address space are mapped onto pages in the 
physical-address space. An overview of memory management is provided in the following 
section.

Operand Conventions
Bit positions within registers and memory operands (bytes, halfwords, and words) are 
numbered consecutively from left to right, starting with zero. The most-significant bit is 
always numbered 0. The number assigned to the least-significant bit depends on the size of 
the register or memory operand, as follows:

• Byte—the least-significant bit is numbered 7.
• Halfword—the least-significant bit is numbered 15.
• Word—the least-significant bit is numbered 31.

A bit set to 1 has a numerical value associated with its position (b) relative to the least-
significant bit (lsb). This value is equal to 2 (lsb-b). For example, if bit 5 is set to 1 in a byte, 
halfword, or word memory operand, its value is determined as follows:

• Byte—the value is 2(7-5), or 4.
• Halfword—the value is 2(15-5), or 1024.
• Word—the value is 2(31-5), or 67108864.

Bytes in memory are addressed consecutively starting with zero. The PPC405 supports 
both big-endian and little-endian byte ordering, with big-endian being the default byte 
ordering. Bit ordering within bytes and registers is always big endian.

The operand length is implicit for each instruction. Memory operands can be bytes (eight 
bits), halfwords (two bytes), words (four bytes), or strings (one to 128 bytes). For the 
load/store multiple instructions, memory operands are a sequence of words. The address 
of any memory operand is the address of its first byte (that is, of its lowest-numbered byte). 
Figure 2-2 shows how word, halfword, and byte operands appear in memory (using big-
endian ordering) and in a register. The memory operand appears on the left in this diagram 
and the equivalent register representation appears on the right.

The following sections describe the concepts of byte ordering and data alignment, and 
their significance to the PowerPC PPC405.
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Figure 2-2: Operand Data Types
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Byte Ordering
The order that addresses are assigned to individual bytes within a scalar (a single data 
object or instruction) is referred to as endianness. Halfwords, words, and doublewords all 
consist of more than one byte, so it is important to understand the relationship between the 
bytes in a scalar and the addresses of those bytes. For example, when the processor loads a 
register with a value from memory, it needs to know which byte in memory holds the high-
order byte, which byte holds the next-highest-order byte, and so on.

Computer systems generally use one of the following two byte orders to address data:

• Big-endian ordering assigns the lowest-byte address to the highest-order (“left-most”) 
byte in the scalar. The next sequential-byte address is assigned to the next-highest 
byte, and so on. The term “big endian” is used because the “big end” of the scalar 
(when considered as a binary number) comes first in memory.

• Little-endian ordering assigns the lowest-byte address to the lowest-order (“right-
most”) byte in the scalar. The next sequential-byte address is assigned to the next-
lowest byte, and so on. The term “little endian” is used because the “little end” of the 
scalar (when considered as a binary number) comes first in memory.

The following sections further describe the differences between big-endian and little-
endian byte ordering. The default byte ordering assumed by the PPC405 is big-endian. 
However, the PPC405 also fully supports little-endian peripherals and memory.

Structure-Mapping Examples
The following C language structure, s, contains an assortment of scalars and a character 
string. The comments show the values assumed in each structure element. These values 
show how the bytes comprising each structure element are mapped into memory.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

C structure-mapping rules permit the use of padding (skipped bytes) to align scalars on 
desirable boundaries. The structure-mapping examples show how each scalar aligns on its 
natural boundary (the alignment boundary is equal to the scalar size). This alignment 
introduces padding of four bytes between a and b, one byte between d and e, and two bytes 
between e and f. The same amount of padding is present in both big-endian and little-
endian mappings.
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Big-Endian Mapping

The big-endian mapping of structure s follows. The contents of each byte, as defined in 
structure s, is shown as a (hexadecimal) number or character (for the string elements). Data 
addresses (in hexadecimal) are shown below the corresponding data value.

Little-Endian Mapping

The little-endian mapping of structure s follows.

Little-Endian Byte Ordering Support
Except as noted, this book describes the processor from the perspective of big-endian 
operations. However, the PPC405 processor also fully supports little-endian operations. 
This support is provided by the endian (E) storage attribute described in the following 
sections. The endian-storage attribute is defined by both the PowerPC embedded-
environment architecture and PowerPC Book-E architecture.

Little-endian mode, defined by the PowerPC architecture, is not implemented by the PPC405. 
Little-endian mode does not support true little-endian memory accesses. This is because 
little-endian mode modifies memory addresses rather than reordering bytes as they are 
accessed. Memory-address modification restricts how the processor can access misaligned 
data and I/O. The PPC405 little-endian support does not have these restrictions.

11 12 13 14

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
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Endian (E) Storage Attribute
The endian (E) storage attribute allows the PPC405 to support direct connection of little-
endian peripherals and memory containing little-endian instructions and data. An E 
storage attribute is associated with every memory reference—instruction fetch, data load, 
and data store. The E attribute specifies whether the memory region being accessed should 
be interpreted as big endian (E = 0) or little endian (E = 1).

If virtual mode is enabled (MSR[IR] = 1 or MSR[DR] = 1), the E field in the corresponding 
TLB entry defines the endianness of a memory region. When virtual mode is disabled 
(MSR[IR] = 0 and MSR[DR] = 0), the SLER defines the endianness of a memory region. See 
Chapter 6, Virtual-Memory Management for more information on virtual memory, and 
Storage Little-Endian Register (SLER), page 159 for more information on the SLER.

When a memory region is defined as little endian, the processor accesses those bytes as if 
they are arranged in true little-endian order. Unlike the little-endian mode defined by the 
PowerPC architecture, no address modification is performed when accessing memory 
regions designated as little endian. Instead, the PPC405 reorders the bytes as they are 
transferred between the processor and memory. 

On-the-fly reversal of bytes in little-endian memory regions is handled in one of two ways, 
depending on whether the memory access is an instruction fetch or a data access (load or 
store). The following sections describe byte reordering for both types of memory accesses.

Little-Endian Instruction Fetching

Instructions are word (four-byte) data types that are always aligned on word boundaries in 
memory. Instructions stored in a big-endian memory region are arranged with the most-
significant byte (MSB) of the instruction word at the lowest byte address.

Consider the big-endian mapping of instruction p at address 0x00, where, for example, p is 
an add r7,r7,r4 instruction (instruction opcode bytes are shown in hexadecimal on top, 
with the corresponding byte address shown below):

In the little-endian mapping, instruction p is arranged with the least-significant byte (LSB) 
of the instruction word at the lowest byte address:

The instruction decoder on the PPC405 assumes the instructions it receives are in big-
endian order. When an instruction is fetched from memory, the instruction must be placed 
in the instruction queue in big-endian order so that the instruction is properly decoded. 
When instructions are fetched from little-endian memory regions, the four bytes of an 
instruction word are reversed by the processor before the instruction is decoded. This byte 
reversal occurs between memory and the instruction-cache unit (ICU) and is transparent to 
software. The ICU always stores instructions in big-endian order regardless of whether the 
instruction-memory region is defined as big endian or little endian. This means the bytes 

MSB LSB

7C E7 22 14

0x00 0x01 0x02 0x03

LSB MSB

14 22 E7 7C

0x00 0x01 0x02 0x03
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are already in the proper order when an instruction is transferred from the ICU to the 
instruction decoder.

If the endian-storage attribute is changed, the affected memory region must be reloaded 
with program and data structures using the new endian ordering. If the endian ordering of 
instruction memory changes, the ICU must be made coherent with the updates. This is 
accomplished by invalidating the ICU and updating the instruction memory with 
instructions using the new endian ordering. Subsequent fetches from the updated memory 
region are interpreted correctly before they are cached and decoded. See Instruction-
Cache Control Instructions, page 160 for information on instruction-cache invalidation.

Little-Endian Data Accesses

Unlike instruction fetches, data accesses from little-endian memory regions are not byte-
reversed between memory and the data-cache unit (DCU). The data-byte ordering stored 
in memory depends on the data size (byte, halfword, or word). The data size is not known 
until the data item is moved between memory and a general-purpose register. In the 
PPC405, byte reversal of load and store accesses is performed between the DCU and the 
GPRs.

When accessing data in a little-endian memory region, the processor automatically does 
the following regardless of data alignment:

• For byte loads/stores, no reordering occurs
• For halfword loads/stores, bytes are reversed within the halfword
• For word loads/stores, bytes are reversed within the word

The big-endian and little-endian mappings of the structure s, shown in Structure-
Mapping Examples, page 49, demonstrate how the size of a data item determines its byte 
ordering. For example:

• The word a has its four bytes reversed within the word spanning addresses 0x00–0x03
• The halfword e has its two bytes reversed within the halfword spanning addresses 

0x1C–0x1D
• The array of bytes d (where each data item is a byte) is not reversed when the big-

endian and little-endian mappings are compared (For example, the character 'A' is 
located at address 14 in both the big-endian and little-endian mappings)

In little-endian memory regions, data alignment is treated as it is in big-endian memory 
regions. Unlike little-endian mode in the PowerPC architecture, no special alignment 
exceptions occur when accessing data in little-endian memory regions versus big-endian 
regions.

Load and Store Byte-Reverse Instructions

When accessing big-endian memory regions, load/store instructions move the more-
significant register bytes to and from the lower-numbered memory addresses and the less-
significant register bytes are moved to and from the higher-numbered memory addresses. 
The load/store with byte-reverse instructions, as described in Load and Store with Byte-
Reverse Instructions, page 86, do the opposite. The more-significant register bytes are 
moved to and from the higher-numbered memory addresses, and the less-significant 
register bytes are moved to and from the lower-numbered memory addresses.

Even though the load/store with byte-reverse instructions can be used to access little-
endian memory, the E storage attribute provides two advantages over using those 
instructions:

• The load/store with byte-reverse instructions do not solve the problem of fetching 
instructions from a little-endian memory region. Only the E storage attribute 
mechanism supports little-endian instruction fetching.
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• Typical compilers cannot make general use of the load/store with byte-reverse 
instructions, so these instructions are normally used only in device drivers written in 
hand-coded assembler. However, compilers can take full advantage of the E storage-
attribute mechanism, allowing application programmers working in a high-level 
language, such as C, to compile programs and data structures using little-endian 
ordering.

Operand Alignment
The operand of a memory-access instruction has a natural alignment boundary equal to 
the operand length. In other words, the natural address of an operand is an integral 
multiple of the operand length. A memory operand is said to be aligned if it is aligned on 
its natural boundary, otherwise it is misaligned.

All instructions are words and are always aligned on word boundaries.

Table 2-1 shows the value required by the least-significant four address bits (bits 28:31) of 
each data type for it to be aligned in memory. A value of x in a given bit position indicates 
the address bit can have a value of 0 or 1.

The concept of alignment can be generally applied to any data in memory. For example, a 
12-byte data item is said to be word aligned if its address is a multiple of four.

Some instructions require aligned memory operands. Also, alignment can affect 
performance. For single-register memory access instructions, the best performance is 
obtained when memory operands are aligned.

Alignment and Endian Storage Control
The endian storage-control attribute (E) does not affect how the processor handles operand 
alignment. Data alignment is handled identically for accesses to big-endian and little-
endian memory regions. No special alignment exceptions occur when accessing data in 
little-endian memory regions. However, alignment exceptions that apply to big-endian 
memory accesses also apply to little-endian memory accesses.

Performance Effects of Operand Alignment
The performance of accesses varies depending on the following parameters:

• Operand size
• Operand alignment
• Boundary crossing:

- None
- Cache block
- Page

Table 2-1: Memory Operand Alignment Requirements

Data Type Size
Aligned Address

Bits 28:31

Byte 8 Bits xxxx

Halfword 2 Bytes xxx0

Word 4 Bytes xx00

Doubleword 8 Bytes x000

http://www.xilinx.com


54 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Operand Conventions
R

To obtain the best performance across the widest range of PowerPC embedded-
environment implementations and PowerPC Book-E processor implementations, 
programmers should assume the alignment performance effects described in Figure 2-2. 
This table applies to both big-endian and little-endian accesses. Figure 2-2 also applies to 
PowerPC processors running in the default big-endian mode. However, those same 
processors suffer further performance degradation when running in PowerPC little-
endian mode.

Alignment Exceptions
Misalignment occurs when addresses are not evenly divided by the data-object size. The 
PPC405 automatically handles misalignments within word boundaries and across word 
boundaries, generally at a cost in performance. Some instructions cause an alignment 
exception if their operand is not properly aligned, as shown in Table 2-3.

Cache-control instructions ignore the four least-significant bits of the EA. No alignment 
restrictions are placed on an EA when executing a cache-control instruction. However, 
certain storage-control attributes can cause an alignment exception to occur when a cache-
control instruction is executed. If data-address translation is disabled (MSR[DR]=0) and a 
dcbz instruction references a non-cacheable memory region, or the memory region uses a 
write-through caching policy, an alignment exception occurs. The alignment exception 
allows the operating system to emulate the write-through caching policy. See Alignment 
Interrupt (0x0600), page 222 for more information.

Table 2-2: Performance Effects of Operand Alignment

Operand Boundary Crossing

Size Byte Alignment None Cache Block Page

Byte 1 Optimal Not Applicable

Halfword 2 Optimal Not Applicable

1 Good Good Poor

Word 4 Optimal Not Applicable

<4 Good Good Poor

Multiple Word 4 Good Good Good1

Byte String 1 Good Good Poor

Note: Assumes both pages have identical storage-control attributes. Performance is poor 
otherwise.

Table 2-3: Instructions Causing Alignment Exceptions

Mnemonic Condition

dcbz EA is in non-cacheable or write-through memory.

dcread, lwarx, stwcx EA is not word aligned.
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Instruction Conventions

Instruction Forms
Opcode tables and instruction listings often contain information regarding the instruction 
form. This information refers to the type of format used to encode the instruction. Grouping 
instructions by format is useful for programmers that must deal directly with machine-
level code, particularly programmers that write assemblers and disassemblers.

The formats used for the instructions of the PowerPC embedded-environment architecture 
are shown in Instructions Grouped by Form, page 513. The Instruction Set Information, 
page 518 also shows the form used by each instruction, listed alphabetically by mnemonic.

Instruction Classes
PowerPC instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

An instruction class is determined by examining the primary opcode, and the extended 
opcode if one exists. If the opcode and extended opcode combination does not specify a 
defined instruction or reserved instruction, the instruction is illegal. Although the 
definitions of these terms are consistent among PowerPC processor implementations, the 
assignment of these classifications is not. For example, an instruction specific to 64-bit 
implementations is considered defined for 64-bit implementations but illegal for 32-bit 
implementations.

In future versions of the PowerPC architecture, instruction encodings that are now illegal 
or reserved can become defined (by being added to the architecture) or reserved (by being 
assigned a special purpose in an implementation).

Boundedly Undefined

The results of executing an instruction are said to be boundedly undefined if those results 
could be achieved by executing an arbitrary sequence of instructions, starting in the 
machine state prior to executing the given instruction. Boundedly-undefined results for an 
instruction can vary between implementations and between different executions on the 
same implementation.

Defined Instruction Class
Defined instructions contain all the instructions defined by the PowerPC architecture. 
Defined instructions are guaranteed to be supported by all implementations of the 
PowerPC architecture. The only exceptions are the instructions defined only for 64-bit 
implementations, instructions defined only for 32-bit implementations, and instructions 
defined only for embedded implementations. A PowerPC processor can invoke the illegal-
instruction error handler (through the program-interrupt handler) when an 
unimplemented instruction is encountered, allowing emulation of the instruction in 
software.

A defined instruction can have preferred forms and invalid forms as described in the 
following sections.

Preferred Instruction Forms

A preferred form of a defined instruction is one in which the instruction executes in an 
efficient manner. Any form other than the preferred form can take significantly longer to 
execute. The following instructions have preferred forms:
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• Load-multiple and store-multiple instructions
• Load-string and store-string instructions
• OR-immediate instruction (preferred form of no-operation)

Invalid Instruction Forms

An invalid form of a defined instruction is one in which one or more operands are coded 
incorrectly and in a manner that can be deduced only by examining the instruction 
encoding (primary and extended opcodes). For example, coding a value of 1 in a reserved 
bit (normally cleared to 0) produces an invalid instruction form.

The following instructions have invalid forms:

• Branch-conditional instructions
• Load with update and store with update instructions
• Load multiple instructions
• Load string instructions
• Integer compare instructions

On the PPC405, attempting to execute an invalid instruction form generally yields a 
boundedly-undefined result, although in some cases a program exception (illegal-
instruction error) can occur.

Optional Instructions

The PowerPC architecture allows implementations to optionally support some defined 
instructions. The PPC405 does not implement the following instructions:

• Floating-point instructions
• External-control instructions (eciwx, ecowx)
• Invalidate TLB entry (tlbie)

Illegal Instruction Class
Illegal instructions are grouped into the following categories:

• Unused primary opcodes. The following primary opcodes are defined as illegal but 
can be defined by future extensions to the architecture:

1, 5, 6, 56, 57, 60, 61

• Unused extended opcodes. Unused extended opcodes can be derived from 
information in Instructions Sorted by Opcode, page 502. The following primary 
opcodes have unused extended opcodes:

19, 31, 59, 63

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. 
This increases the probability that an attempt to execute data or uninitialized memory 
causes an illegal-instruction error. If only the primary opcode consists of all zeros, the 
instruction is considered a reserved instruction, as described in the following section.

An attempt to execute an illegal instruction causes an illegal-instruction error (program 
exception). With the exception of an instruction consisting entirely of zeros, illegal 
instructions are available for future addition to the PowerPC architecture.

Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not 
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved 
instruction causes an illegal-instruction error (program exception). The following types of 
instructions are included in this class:
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• Instructions for the POWER architecture that have not been included in the PowerPC 
architecture.

• Implementation-specific instructions used to conform to the PowerPC architecture 
specification. For example, load data-TLB entry (tlbld) and load instruction-TLB entry 
(tlbli) instructions in the PowerPC 603™.

• The instruction with primary opcode 0, when the instruction does not consist entirely 
of binary zeros.

• Any other implementation-specific instruction not defined by the PowerPC 
architecture.

PowerPC Embedded-Environment Instructions

To support functions required in embedded-system applications, the PowerPC embedded-
environment architecture defines instructions that are not part of the PowerPC 
architecture. Table 2-4 lists the instructions specific to the PPC405 and other PowerPC 
embedded-environment family implementations. From the standpoint of the PowerPC 
architecture, these instructions are part of the reserved class and are implementation 
dependent. Programs using these instructions are not portable to implementations that do 
not support the PowerPC embedded-environment architecture.

In the table, the syntax “[o]” indicates the instruction has an overflow-enabled form that 
updates XER[OV,SO] as well as a non-overflow-enabled form. The syntax “[.]” indicates 
the instruction has a record form that updates CR[CR0] as well as a non-record form. The 
headings “defined” and “allocated”, as they are used in Table 2-4, are described in the 
following section, PowerPC Book-E Instruction Classes.

PowerPC Book-E Instruction Classes
The PowerPC Book-E architecture defines four instruction classes:

• Defined
• Allocated
• Reserved
• Preserved

Table 2-4: PowerPC Embedded-Environment Instructions

Defined (Book-E) Allocated (Book-E)

mfdcr

mtdcr

rfci

wrtee

wrteei

tlbre

tlbsx[.]

tlbwe

dccci

dcread

iccci

icread

macchw[o][.]

macchws[o][.]

macchwsu[o][.]

macchwu[o][.]

machhw[o][.]

machhws[o][.]

machhwsu[o][.]

machhwu[o][.]

maclhw[o][.]

maclhws[o][.]

maclhwsu[o][.]

maclhwu[o][.]

nmacchw[o][.]

nmacchws[o][.]

nmachhw[o][.]

nmachhws[o][.]

nmaclhw[o][.]

nmaclhws[o][.]

mulchw[.]

mulchwu[.]

mulhhw[.]

mulhhwu[.]

mullhw[.]

mullhwu[.]

http://www.xilinx.com


58 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Instruction Conventions
R

Referring to Table 2-4, the first two columns indicate which PPC405 instructions are part of 
the defined instruction class and are guaranteed support in PowerPC Book-E processor 
implementations. The last three columns indicate which PPC405 instructions are part of 
the allocated instruction class. Support of these instructions by PowerPC Book-E 
processors is implementation-dependent.

Defined Book-E Instruction Class
The defined instruction class consists of all instructions defined by the PowerPC Book E 
architecture. In general, defined instructions are guaranteed to be supported by a PowerPC 
Book E processor as specified by the architecture, either within the processor 
implementation itself or within emulation software supported by the operating system.

Allocated Book-E Instruction Class
The allocated instruction class contains the set of instructions used for implementation-
dependent and application-specific use, outside the scope of the PowerPC Book E 
architecture.

Reserved Book-E Instruction Class
The reserved instruction class consists of all instruction primary opcodes (and associated 
extended opcodes, if applicable) that do not belong to either the defined class or the 
allocated class.

Preserved Book-E Instruction Class
The preserved instruction class is provided to support backward compatibility with previous 
generations of this architecture.
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Chapter 3

User Programming Model

This chapter describes the processor resources and instructions available to all programs 
running on the PPC405, whether they are running in user mode or privileged mode. These 
resources and instructions are referred to as the user-programming model, which is a subset 
of the privileged-programming model. Applications are typically restricted to running in 
user mode. System software runs in privileged mode and has access to all register 
processor resources, and can execute all instructions supported by the PPC405. System 
software typically creates a context (execution environment) that protects itself and other 
applications from the effects of an errant application program. 

The remaining chapters in this book generally describe aspects of the privileged-
programming model and are not relevant to application programmers. There are two 
exceptions:

• Chapter 5, Memory-System Management, describes cache management features 
available to both system and application programs.

• Chapter 8, Timer Resources, describes the time base, which can be read by 
application programs.

User Registers
Figure 3-1 shows the user registers supported by the PPC405, all of which are available to 
software running in user mode and privileged mode. In the PPC405, all user registers are 
32-bits wide, except for the time base as described in Time Base, page 236. Floating-point 
registers are not supported by the PPC405.
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Special-Purpose Registers (SPRs)
Most registers in the PPC405 are special-purpose registers, or SPRs. SPRs control the 
operation of debug facilities, timers, interrupts, storage control attributes, and other 
processor resources. All SPRs can be accessed explicitly using the move to special-purpose 
register (mtspr) and move from special-purpose register (mfspr) instructions. See Special-
Purpose Register Instructions, page 125 for more information on these instructions. A few 
registers are accessed as a by-product of executing certain instructions. For example, some 
branch instructions access and update the link register.

The PPC405 SPRs in the user-programming model are shown in Figure 3-1. The SPR 
number (SPRN) for each SPR is shown above the corresponding register. See Appendix A, 
Special-Purpose Registers, page 490  for a complete list of all SPRs (user and privileged) 
supported by the PPC405.

Simplified instruction mnemonics are available for the mtspr and mfspr instructions for 
some SPRs. See Special-Purpose Registers, page 552 for more information.

General-Purpose Registers (GPRs)
The PPC405 contains thirty-two 32-bit general-purpose registers (GPRs), numbered r0 
through r31, as shown in Figure 3-2. Data from memory are read into GPRs using load 
instructions and the contents of GPRs are written to memory using store instructions. Most 
integer instructions use the GPRs for source and destination operands.

Figure 3-1: PPC405 User Registers
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Figure 3-2: General Purpose Registers (R0-R31)
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Condition Register (CR)
The condition register (CR) is a 32-bit register that reflects the result of certain instructions 
and provides a mechanism for testing and conditional branching. The bits in the CR are 
grouped into eight 4-bit fields, CR0–CR7, as shown in Figure 3-3. The bits within an 
arbitrary CRn field are shown in Figure 3-4. In this figure, the bit positions shown are 
relative positions within the field rather than absolute positions within the CR register.

In the PPC405, the CR fields are modified in the following ways:

• The mtcrf instruction can update specific fields in the CR from a GPR.
• The mcrxr instruction can update a CR field with the contents of XER[0:3].
• The mcrf instruction can copy one CR field into another CR field.
• The condition-register logical instructions can update specific bits in the CR.
• The integer-arithmetic instructions can update CR0 to reflect their result.
• The integer-compare instructions can update a specific CR field to reflect their result.

Conditional-branch instructions can test bits in the CR and use the results of such a test as 
the branch condition.

CR0 Field
The CR0 field is updated to reflect the result of an integer instruction if the Rc opcode field 
(record bit) is set to 1. The addic., andi., and andis. instructions also update CR0 to reflect 
the result they produce. For all of these instructions, CR0 is updated as follows:

• The instruction result is interpreted as a signed integer and algebraically compared to 
0. The first three bits of CR0 (CR0[0:2]) are updated to reflect the result of the algebraic 
comparison.

• The fourth bit of CR0 (CR0[3]) is copied from XER[SO].

The CR0 bits are interpreted as described in Table 3-1. If any portion of the result is 
undefined, the value written into CR0[0:2] is undefined.

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

Figure 3-3: Condition Register (CR)

0 1 2 3

LT GT EQ SO

Figure 3-4: CRn Field
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CR1 Field
In PowerPC® implementations that support floating-point operations, the CR1 field can be 
updated by the processor to reflect the result of those operations. Because the PPC405 does 
not support floating-point operations in hardware, CR1 is not updated in this manner.

CRn Fields (Compare Instructions)
Any one of the eight CRn fields (including CR0 and CR1) can be updated to reflect the 
result of a compare instruction. The CRn-field bits are interpreted as described in Table 3-2.

Table 3-1: CR0-Field Bit Settings

Bit Name Function Description

0 LT Negative

0—Result is not negative.

1—Result is negative.

This bit is set when the result is negative, otherwise it is cleared.

1 GT Positive

0—Result is not positive.

1—Result is positive.

This bit is set when the result is positive (and not zero), otherwise 
it is cleared.

2 EQ Zero

0—Result is not equal to zero.

1—Result is equal to zero.

This bit is set when the result is zero, otherwise it is cleared.

3 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

This is a copy of the final state of XER[SO] at the completion of the 
instruction.

Table 3-2: CRn-Field Bit Settings

Bit Name Function Description

0 LT Less than

0—rA is not less than.

1—rA is less than.

This bit is set when

rA < SIMM or rB (signed comparison), or

rA < UIMM or rB (unsigned comparison),

otherwise it is cleared.

1 GT Greater than

0—rA is not greater than.

1—rA is greater than.

This bit is set when

rA > SIMM or rB (signed comparison), or

rA > UIMM or rB (unsigned comparison),

otherwise it is cleared.

2 EQ Equal to

0—rA is not equal.

1—rA is equal.

This bit is set when

rA = SIMM or rB (signed comparison), or

rA = UIMM or rB (unsigned comparison),

otherwise it is cleared.

3 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

This is a copy of the final state of XER[SO] at the completion of the 
instruction.
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Fixed-Point Exception Register (XER)
The fixed-point exception register (XER) is a 32-bit register that reflects the result of 
arithmetic operations that have resulted in an overflow or carry. This register is also used 
to indicate the number of bytes to be transferred by load/store string indexed instructions. 
Figure 3-5 shows the format of the XER. The bits in the XER are defined as shown in 
Table 3-3.

The XER is an SPR with an address of 1 (0x001) and can be read and written using the 
mfspr and mtspr instructions. The mcrxr instruction can be used to move XER[0:3] into 
one of the seven CR fields.

Link Register (LR)
The link register (LR) is a 32-bit register that is used by branch instructions, generally for 
the purpose of subroutine linkage. Two types of branch instructions use the link register:

• Branch-conditional to link-register (bclrx) instructions read the branch-target address from 
the LR.

• Branch instructions with the link-register update-option enabled load the LR with the 
effective address of the instruction following the branch instruction. The link-register 

0 1 2 3 24 25 31

SO OV CA TBC

Figure 3-5: Fixed Point Exception Register (XER)

Table 3-3: Fixed Point Exception Register (XER) Bit Definitions

Bit Name Function Description

0 SO Summary overflow

0—No overflow occurred.

1—Overflow occurred.

SO is set to 1 whenever an instruction (except mtspr) sets the 
overflow bit (XER[OV]). Once set, the SO bit remains set until it is 
cleared to 0 by an mtspr instruction (specifying the XER) or an 
mcrxr instruction. SO can be cleared to 0 and OV set to 1 using an 
mtspr instruction.

1 OV Overflow

0—No overflow occurred.

1—Overflow occurred.

OV can be modified by instructions when the overflow-enable bit 
in the instruction encoding is set (OE=1). Add, subtract, and negate 
instructions set OV=1 if the carry out from the result msb is not 
equal to the carry out from the result msb + 1. Otherwise, they clear 
OV=0. Multiply and divide set OV=1 if the result cannot be 
represented in 32 bits. mtspr can be used to set OV=1, and mtspr 
and mcrxr can be used to clear OV=0.

2 CA Carry

0—Carry did not occur.

1—Carry occurred.

CA can be modified by add-carrying, subtract-from-carrying, add-
extended, and subtract-from-extended instructions. These instructions 
set CA=1 when there is a carry out from the result msb. Otherwise, 
they clear CA=0. Shift-right algebraic instructions set CA=1 if any 1 
bits are shifted out of a negative operand. Otherwise, they clear 
CA=0. mtspr can be used to set CA=1, and mtspr and mcrxr can be 
used to clear CA=0.

3:24 Reserved

25:31 TBC Transfer-byte count TBC is modified using the mtspr instruction. It specifies the 
number of bytes to be transferred by a load-string word indexed 
(lswx) or store-string word indexed (stswx) instruction.
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update-option is enabled when the branch-instruction LK opcode field (bit 31) is set 
to 1.

The format of LR is shown in Figure 3-6.

The LR is an SPR with an address of 8 (0x008) and can be read and written using the mfspr 
and mtspr instructions. It is possible for the processor to prefetch instructions along the 
target path specified by the LR provided the LR is loaded sufficiently ahead of the branch 
to link-register instruction, giving branch-prediction hardware time to calculate the branch 
address.

The two least-significant bits (LR[30:31]) can be written with any value. However, those 
bits are ignored and assumed to have a value of 0 when the LR is used as a branch-target 
address.

Some PowerPC processors implement a software-invisible link-register stack for 
performance reasons. Although the PPC405 processor does not implement such a stack, 
certain programming conventions should be followed so that software running on 
multiple PowerPC processors can benefit from this stack. See Link-Register Stack, page 72 
for more information.

Count Register (CTR)
The count register (CTR) is a 32-bit register that can be used by branch instructions in the 
following two ways:

• The CTR can hold a loop count that is decremented by a conditional-branch 
instruction with an appropriately coded BO opcode field. The value in the CTR wraps 
to 0xFFFF_FFFF if the value in the register is 0 prior to the decrement. See 
Conditional Branch Control, page 68 for information on encoding the BO opcode 
field.

• The CTR can hold the branch-target address used by branch-conditional to count-register 
(bcctrx) instructions.

The format of CTR is shown in Figure 3-7.

The CTR is an SPR with an address of 9 (0x009) and can be read and written using the 
mfspr and mtspr instructions. It is possible for the processor to prefetch instructions along 
the target path specified by the CTR provided the CTR is loaded sufficiently ahead of the 
branch to count-register instruction, giving branch-prediction hardware time to calculate 
the branch address.

The two least-significant bits (CTR[30:31]) can be written with any value. However, those 
bits are ignored and assumed to have a value of 0 when the CTR is used as a branch-target 
address.

0 31

Branch Address

Figure 3-6: Link Register (LR)

0 31

Count

Figure 3-7: Count Register (CTR)
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User-SPR General-Purpose Register
The user-SPR general-purpose register (USPRG0) is a 32-bit register that can be used by 
application software for any purpose. The value stored in this register does not have an 
effect on the operation of the PPC405 processor.

The format of USPRG0 is shown in Figure 3-8.

The USPRG0 is an SPR with an address of 256 (0x100) and can be read and written using 
the mfspr and mtspr instructions.

SPR General-Purpose Registers
The SPR general-purpose registers (SPRG0–SPRG7) are 32-bit registers that can be used by 
system software for any purpose. Four of the registers (SPRG4–SPRG7) are available from 
user mode with read-only access. Application software can read the contents of SPRG4–
SPRG7, but cannot modify them. The values stored in these registers do not affect the 
operation of the PPC405 processor.

The format of all SPRGn registers is shown in Figure 3-9.

The SPRGn registers are SPRs with the following addresses:

• SPRG4—260 (0x104).
• SPRG5—261 (0x105).
• SPRG6—262 (0x106).
• SPRG7—263 (0x107).

These registers can be read using the mfspr instruction. In privileged mode, system 
software accesses these registers using different SPR numbers (see page 133).

Time-Base Registers
The time base is a 64-bit incrementing counter implemented as two 32-bit registers. The 
time-base upper register (TBU) holds time-base bits 0:31, and the time-base lower register 
(TBL) holds time-base bits 32:63. Figure 3-10 shows the format of the time base.

0 31

General-Purpose Application-Software Data

Figure 3-8: User SPR General-Purpose Register (USPRG0)

0 31

General-Purpose System-Software Data

Figure 3-9: SPR General-Purpose Registers (SPRG4–SPRG7)

0 31

TBU (Time Base [0:31])

0 31

TBL (Time Base [32:63])

Figure 3-10: Time-Base Register
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The TBU and TBL registers are SPRs with user-mode read access and privileged-mode 
write access. Reading the time-base registers requires use of the mftb instruction with the 
following addresses:

• TBU—269 (0x10D).
• TBL—268 (0x10C).

See Time Base, page 236, for information on using the time base.
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Exception Summary
An exception is an event that can be caused by a number of sources, including:

• Error conditions arising from instruction execution.
• Internal timer resources.
• Internal debug resources.
• External peripherals.

When an exception occurs, the processor can interrupt the currently executing program so 
that system software can deal with the exception condition. The action taken by an 
interrupt includes saving the processor context and transferring control to a 
predetermined exception-handler address operating under a new context. When the 
interrupt handler completes execution, it can return to the interrupted program by 
executing a return-from-interrupt instruction.

Exceptions are handled by privileged software. The exception mechanism is described in 
Chapter 7, Exceptions and Interrupts. Following is a list of exceptions that can be caused 
by the execution of an instruction in user mode.

• Data-Storage Exception.

An attempt to access data in memory that results in a memory-protection violation 
causes the data-storage interrupt handler to be invoked.

• Instruction-Storage Exception.

An attempt to access instructions in memory that result in a memory-protection 
violation causes the instruction-storage interrupt handler to be invoked.

• Alignment Exception.

An attempt to access memory with an invalid effective-address alignment (for the 
specific instruction) causes the alignment-interrupt handler to be invoked.

• Program Exception.

Three different types of interrupt handlers can be invoked when a program exception 
occurs: illegal instruction, privileged instruction, and system trap. The conditions 
causing a program interrupt include:

- An attempt to execute an illegal instruction causes the illegal-instruction interrupt 
handler to be invoked.

- An attempt to execute an optional instruction not implemented by the PPC405 
causes the illegal-instruction interrupt handler to be invoked.

- An attempt by a user-level program to execute a supervisor-level instruction 
causes the privileged-instruction interrupt handler to be invoked.

- An attempt to execute a defined instruction with an invalid form causes either the 
illegal-instruction interrupt handler or the privileged-instruction interrupt 
handler to be invoked.

- Executing a trap instruction can cause the system-trap interrupt handler to be 
invoked.

• Floating-Point Unavailable Exception.

On processors that support floating-point instructions, executing such instructions 
when the floating-point unit is disabled (MSR[FP]=0) invokes the floating-point-
unavailable interrupt handler.

• System-Call Exception.
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The execution of an sc instruction causes the system-call interrupt handler to be 
invoked. The interrupt handler can be used to call a system-service routine.

• Data TLB-Miss Exception.

If data translation is enabled, an attempt to access data in memory when a valid TLB 
entry is not present causes the data TLB-miss interrupt handler to be invoked.

• Instruction TLB-Miss Exception.

If instruction translation is enabled, an attempt to access instructions in memory when 
a valid TLB entry is not present causes the instruction TLB-miss interrupt handler to be 
invoked.

Other exceptions can occur during user-mode program execution that are not directly 
caused by instruction execution. These are also described in Chapter 7:

• Machine-check exceptions.
• Exceptions caused by external devices.
• Exceptions caused by a timer.
• Debug exceptions.

Branch and Flow-Control Instructions
Branch instructions redirect program flow by altering the next-instruction address non-
sequentially. Branches unconditionally or conditionally alter program flow forward or 
backward using either an absolute address or an address relative to the branch-instruction 
address. Branches calculate the target address using the contents of the CTR, LR, or fields 
within the branch instruction. Optionally, a branch-return address can be automatically 
loaded into the LR by setting the LK instruction-opcode bit to 1. This option is useful for 
specifying the return address for subroutine calls and causes the address of the instruction 
following the branch to be loaded in the LR. Branches are used for all non-sequential 
program flow including jumps, loops, calls and returns.

Branch-conditional instructions redirect program flow if a tested condition is true. These 
instructions can test a bit value within the CR, the value of the CTR, or both. Condition-
register logical instructions are provided to set up the tests for branch-conditional 
instructions.

Conditional Branch Control
With branch-conditional instructions, the BO opcode field specifies the branch-control 
conditions and how the branch affects the CTR. The BO field can specify a test of the CR 
and it can specify that the CTR be decremented and tested. The BO field can also be 
initialized to reverse the default prediction performed by the processor. The bits within the 
BO field are defined as shown in Table 3-4.
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The 5-bit BI opcode field in branch-conditional instructions specifies which of the 32 bits in 
the CR are used in the branch-condition test. For example, if BI=0b01010, CR10 is used in 
the test.

In some encodings of the BO field, certain BO bits are ignored. Ignored bits can be assigned 
a meaning in future extensions of the PowerPC architecture and should be cleared to 0. 
Valid BO field encodings are shown in Table 3-5. In this table, z indicates the ignored bits 
that should be cleared to 0. The y bit (BO[4]) specifies the branch-prediction behavior for 
the instruction as described in Specifying Branch-Prediction Behavior, page 72.

Table 3-4: BO Field Bit Definitions

BO Bit Description

BO[0] CR Test Control

0—Test the CR bit specified by the BI opcode field for the value indicated by BO[1].

1—Do not test the CR.

BO[1] CR Test Value

0—Test for CR[BI]=0.

1—Test for CR[BI]=1.

BO[2] CTR Test Control

0—Decrement CTR by one, and test whether CTR satisfies the condition specified by 
BO[3].

1—Do not change or test CTR.

BO[3] CTR Test Value

0—Test for CTR ≠ 0.

1—Test for CTR=0.

BO[4] Branch Prediction Reversal

0—Apply standard branch prediction.

1—Reverse the standard branch prediction.

Table 3-5: Valid BO Opcode-Field Encoding

BO[0:4] Description

0000y Decrement the CTR. Branch if the decremented CTR ≠ 0 and CR[BI]=0.

0001y Decrement the CTR. Branch if the decremented CTR = 0 and CR[BI]=0.

001zy Branch if CR[BI]=0.

0100y Decrement the CTR. Branch if the decremented CTR ≠ 0 and CR[BI]=1.

0101y Decrement the CTR. Branch if the decremented CTR=0 and CR[BI]=1.

011zy Branch if CR[BI]=1.

1z00y Decrement the CTR. Branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR. Branch if the decremented CTR = 0.

1z1zz Branch always.
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Branch Instructions
The following sections describe the branch instructions defined by the PowerPC 
architecture. A number of simplified mnemonics are defined for the branch instructions. 
See Branch Instructions, page 543 for more information.

Branch Unconditional
Table 3-6 lists the PowerPC unconditional branch instructions. These branches specify a 
26-bit signed displacement to the branch-target address by appending the 24-bit LI 
instruction field with 0b00. The displacement value gives unconditional branches the 
ability to cover an address range of ±32 MB.

Branch Conditional
Table 3-7 lists the PowerPC branch-conditional instructions. The BO field specifies the 
condition tested by the branch, as shown in Table 3-5, page 69. The BI field specifies the CR 
bit used in the test. These branches specify a 16-bit signed displacement to the branch-
target address by appending the 14-bit BD instruction field with 0b00. The displacement 
value gives conditional branches the ability to cover an address range of ±32 KB.

Branch Conditional to Link Register
Table 3-8 lists the PowerPC branch-conditional to link-register instructions. The BO field 
specifies the condition tested by the branch, as shown in Table 3-5, page 69. The BI field 
specifies the CR bit used in the test. The branch-target address is read from the LR, with 
LR[30:31] cleared to zero to form a word-aligned address. Using the 32-bit LR as a branch 
target gives these branches the ability to cover the full 4 GB address range.

Table 3-6: Branch-Unconditional Instructions

Mnemonic Name Operation
Operand 
Syntax

b Branch Branch to relative address.. tgt_addr

ba Branch Absolute Branch to absolute address.

bl Branch and Link Branch to relative address. LR is updated with the 
address of the instruction following the branch.

bla Branch Absolute and Link Branch to absolute address. LR is updated with the 
address of the instruction following the branch.

Table 3-7: Branch-Conditional Instructions

Mnemonic Name Operation
Operand 
Syntax

bc Branch Conditional Branch-conditional to relative address.. BO,BI,tgt_addr

bca Branch Conditional Absolute Branch-conditional to absolute address.

bcl Branch Conditional and Link Branch-conditional to relative address. LR is 
updated with the address of the instruction 
following the branch.

bcla Branch Conditional Absolute and 
Link

Branch-conditional to absolute address. LR is 
updated with the address of the instruction 
following the branch.
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Branch Conditional to Count Register
Table 3-9 lists the PowerPC branch-conditional to count-register instructions. The BO field 
specifies the condition tested by the branch, as shown in Table 3-5, page 69. The BI field 
specifies the CR bit used in the test. The branch-target address is read from the CTR, with 
CTR[30:31] cleared to zero to form a word-aligned address. Using the 32-bit CTR as a 
branch target gives these branches the ability to cover the full 4 GB address range.

Branch Prediction
Conditional branches alter program flow based on the value of bits in the CR. If a condition 
is met by the CR bits, the branch instruction alters the next-instruction address non-
sequentially. Otherwise, the next-sequential instruction following the branch is executed. 
When the processor encounters a conditional branch, it scans the execution pipelines to 
determine whether an instruction in progress can affect the CR bit tested by the branch. If 
no such instruction is found, the branch can be resolved immediately by checking the bit in 
the CR and taking the action defined by the branch instruction.

However, if a CR-altering instruction is detected, the branch is considered unresolved until 
the CR-altering instruction completes execution and writes its result to the CR. Prior to that 
time, the processor can predict how the branch is resolved. First, the processor uses special 
dynamic prediction hardware to analyze instruction flow and branch history to predict 
resolution of the current branch. If branches are predicted correctly, performance 
improvements can be realized because instruction execution does not stall waiting for the 
branch to be resolved. The PowerPC architecture provides software with the ability to 
override (reverse) the dynamic prediction using a static prediction hint encoded in the 
instruction opcode. This can be useful when it is known at compile time that a branch is 
likely to behave contrary to what the processor expects. The use of static prediction is 
described in the next section, Specifying Branch-Prediction Behavior.

When a prediction is made, instructions are fetched from the predicted execution path. If 
the processor determines the prediction was incorrect after the CR-altering instruction 
completes execution, all instructions fetched as a result of the prediction are discarded by 
the processor. Instruction fetch is restarted along the correct path. If the prediction was 
correct, instruction fetch and execution proceed normally along the predicted (and now 
resolved) path.

Table 3-8: Branch-Conditional to Link-Register Instructions

Mnemonic Name Operation
Operand 
Syntax

bclr Branch Conditional to Link Register Branch-conditional to address in LR. BO,BI

bclrl Branch Conditional to Link Register 
and Link

Branch-conditional to address in LR. LR is updated 
with the address of the instruction following the 
branch.

Table 3-9: Branch-Conditional to Count-Register Instructions

Mnemonic Name Operation
Operand 
Syntax

bcctr Branch Conditional to Count Register Branch-conditional to address in CTR. BO,BI

bcctrl Branch Conditional to Count Register 
and Link

Branch-conditional to address in CTR. LR is 
updated with the address of the instruction 
following the branch.
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Branch prediction is most effective when the branch-target address is computed well in 
advance of resolving the branch. If a branch instruction contains immediate addressing 
operands, the processor can compute the branch-target address ahead of branch 
resolution. If the branch instruction uses the LR or CTR for addressing, it is important that 
the register is loaded by software sufficiently ahead of the branch instruction.

Specifying Branch-Prediction Behavior
All PowerPC processors predict a conditional branch as taken using the following rules:

• For the bcx instruction with a negative value in the displacement operand, the branch 
is predicted taken. 

• For all other branch-conditional instructions (bcx with a non-negative value in the 
displacement operand, bclrx, or bcctrx), the branch is predicted not taken.

Algorithmically, a branch is predicted taken if:

((BO[0] ∧ BO[2]) ∨ s) = 1

where s is the sign bit of the displacement operand, if the instruction has a displacement 
operand (bit 16 of the branch-conditional instruction encoding). 

When the result of the above equation is 0, the branch is predicted not-taken and the 
processor speculatively fetches instructions that sequentially follow the branch 
instruction.

Examining the above equation, BO[0] ∧ BO[2]=1 only when the conditional branch tests 
nothing, meaning the branch is always taken. In this case, the processor predicts the branch 
as taken.

If the conditional branch tests anything (BO[0] ∧ BO[2]=0), s controls the prediction. In the 
bclrx and bcctrx instructions, bit 16 (s) is reserved and always 0. In this case those 
instructions are predicted not-taken.

Only the bcx instructions can specify a displacement value. The bcx instructions are 
commonly used at the end of loops to control the number of times a loop is executed. Here, 
the branch is taken every time the loop is executed except the last time, so a branch should 
normally be predicted as taken. Because the branch target is at the beginning of the loop, 
the branch displacement is negative and s=1, so the processor predicts the branch as taken. 
Forward branches have a positive displacement and are predicted not-taken.

When the y bit (BO[4]) is cleared to 0, the default branch prediction behavior described 
above is followed by the processor. Setting the y bit to 1 reverses the above behavior. For 
branch always encoding (BO[0], BO[2]), branch prediction cannot be reversed (no y bit is 
recognized).

The sign of the displacement operand (s) is used as described above even when the target 
is an absolute address. The default value for the y bit should be 0. Compilers can set this bit 
if it they determine that the prediction corresponding to y=1 is more likely to be correct 
than the prediction corresponding to y=0. Compilers that do not statically predict branches 
should always clear the y bit.

Link-Register Stack
Some processor implementations keep a stack (history) of the LR values most recently 
used by branch-and-link instructions. Those processors use this software-invisible stack to 
predict the target address of nested-subroutine returns. Although the PPC405 processor 
does not implement such a stack, the following programming conventions should be 
followed so that software running on multiple PowerPC processors can benefit from this 
stack.

In the following examples, let A, B, and Glue represent subroutine labels:
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• When obtaining the address of the next instruction, use the following form of branch-
and-link:

bcl 20,31,$+4

• Loop counts:

Keep loop counts in the CTR, and use one of the branch-conditional instructions to 
decrement the count and to control branching (for example, branching back to the start 
of a loop if the decremented CTR value is nonzero).

• Computed “go to”, case statements, etc.:

Use the CTR to hold the branch-target address, and use the bcctr instruction with the 
link register option disabled (LK=0) to branch to the selected address.

• Direct subroutine linkage, where A calls B and B returns to A:
- A calls B—use a branch instruction that enables the LR (LK=1).
- B returns to A—use the bclr instruction with the link-register option disabled 

(LK=0). The return address is in, or can be restored to, the LR.
• Indirect subroutine linkage, where A calls Glue, Glue calls B, and B returns to A rather 

than to Glue.

Such a calling sequence is common in linkage code where the subroutine that the 
programmer wants to call, B, is in a different module than the caller, A. The binder 
inserts “glue” code to mediate the branch:

- A calls Glue—use a branch instruction that sets the LR with the link-register 
option enabled (LK=1).

- Glue calls B—write the address of B in the CTR, and use the bcctr instruction with 
the link-register option disabled (LK=0).

- B returns to A—use the bclr instruction with the link-register option disabled 
(LK=0). The return address is in, or can be restored to, the LR.

Branch-Target Address Calculation
Branch instructions compute the effective address (EA) of the next instruction using the 
following addressing modes:

• Branch to relative (conditional and unconditional).
• Branch to absolute (conditional and unconditional).
• Branch to link register (conditional only).
• Branch to count register (conditional only).

Instruction addresses are always assumed to be word aligned. PowerPC processors ignore 
the two low-order bits of the generated branch-target address.

Branch to Relative
Instructions that use branch-to-relative addressing generate the next-instruction address by 
right-extending 0b00 to the immediate-displacement operand (LI), and then sign-
extending the result. That result is added to the current-instruction address to produce the 
next-instruction address. Branches using this addressing mode must have the absolute-
addressing option disabled by clearing the AA instruction field (bit 30) to 0. The link-
register update option is enabled by setting the LK instruction field (bit 31) to 1. This 
option causes the effective address of the instruction following the branch instruction to be 
loaded into the LR.

Figure 3-11 shows how the branch-target address is generated when using the branch-to-
relative addressing mode.
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Branch-Conditional to Relative
If the branch conditions are met, instructions that use branch-conditional to relative 
addressing generate the next-instruction address by appending 0b00 to the immediate-
displacement operand (BD) and sign-extending the result. That result is added to the 
current-instruction address to produce the next-instruction address. Branches using this 
addressing mode must have the absolute-addressing option disabled by clearing the AA 
instruction field (bit 30) to 0. The link-register update option is enabled by setting the LK 
instruction field (bit 31) to 1. This option causes the effective address of the instruction 
following the branch instruction to be loaded into the LR.

Figure 3-12 shows how the branch-target address is generated when using the branch-
conditional to relative addressing mode.

Figure 3-11: Branch-to-Relative Addressing
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Figure 3-12: Branch-Conditional to Relative Addressing
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Branch to Absolute
Instructions that use branch-to-absolute addressing generate the next-instruction address by 
appending 0b00 to the immediate-displacement operand (LI) and sign-extending the 
result. Branches using this addressing mode must have the absolute-addressing option 
enabled by setting the AA instruction field (bit 30) to 1. The link-register update option is 
enabled by setting the LK instruction field (bit 31) to 1. This option causes the effective 
address of the instruction following the branch instruction to be loaded into the LR.

Figure 3-13 shows how the branch-target address is generated when using the branch-to-
absolute addressing mode.

Branch-Conditional to Absolute
If the branch conditions are met, instructions that use branch-conditional to absolute 
addressing generate the next-instruction address by appending 0b00 to the immediate-
displacement operand (BD) and sign-extending the result. Branches using this addressing 
mode must have the absolute-addressing option enabled by setting the AA instruction 
field (bit 30) to 1. The link-register update option is enabled by setting the LK instruction 
field (bit 31) to 1. This option causes the effective address of the instruction following the 
branch instruction to be loaded into the LR.

Figure 3-14 shows how the branch-target address is generated when using the branch-
conditional to absolute-addressing mode.

Figure 3-13: Branch-to-Absolute Addressing
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Figure 3-14: Branch-Conditional to Absolute Addressing
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Branch-Conditional to Link Register
If the branch conditions are met, the branch-conditional to link-register instruction generates 
the next-instruction address by reading the contents of the LR and clearing the two low-
order bits to zero. The link-register update option is enabled by setting the LK instruction 
field (bit 31) to 1. This option causes the effective address of the instruction following the 
branch instruction to be loaded into the LR.

Figure 3-15 shows how the branch-target address is generated when using the branch-
conditional to link-register addressing mode.

Branch-Conditional to Count Register
If the branch conditions are met, the branch-conditional to count-register instruction 
generates the next-instruction address by reading the contents of the CTR and clearing the 
two low-order bits to zero. The link-register update option is enabled by setting the LK 
instruction field (bit 31) to 1. This option causes the effective address of the instruction 
following the branch instruction to be loaded into the LR.

Figure 3-16 shows how the branch-target address is generated when using the branch-
conditional to count-register addressing mode.

Figure 3-15: Branch-Conditional to Link-Register Addressing
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Figure 3-16: Branch-Conditional to Count-Register Addressing
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Condition-Register Logical Instructions
Table 3-10 lists the PowerPC condition-register logical instructions. The condition-register 
logical instructions perform logical operations on any two bits within the CR and store the 
result of the operation in any CR bit. The move condition-register field instruction is used to 
move any CR field (each field comprising four bits) to any other CR-field location. All of 
these instructions are considered flow-control instructions because they are generally used 
to set up conditions for testing by the branch-conditional instructions and to reduce the 
number of branches in a code sequence. Simplified mnemonics are defined for the 
condition-register logical instructions. See CR-Logical Instructions, page 551 for more 
information.

In Table 3-10, the instruction-operand fields crbA, crbB, and crbD all specify a single bit 
within the CR. The instruction-operand fields crfD and crfS specify a 4-bit field within the 
CR.

System Call
Table 3-11 lists the PowerPC system-call instruction. The sc instruction is a user-level 
instruction that can be used by a user-mode program to transfer control to a privileged-
mode program (typically a system-service routine). Executing the sc instruction causes a 
system-call exception to occur. See System-Call Interrupt (0x0C00), page 226 for more 
information on the operation of this instruction.

Table 3-10: Condition-Register Logical Instructions

Mnemonic Name Operation
Operand 
Syntax

crand Condition Register AND CR-bit crbA is ANDed with CR-bit crbB and the 
result is stored in CR-bit crbD.

crbD,crbA,crbB

crandc Condition Register AND with 
Complement

CR-bit crbA is ANDed with the complement of CR-
bit crbB and the result is stored in CR-bit crbD.

creqv Condition Register Equivalent CR-bit crbA is XORed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

crnand Condition Register NAND CR-bit crbA is ANDed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

crnor Condition Register NOR CR-bit crbA is ORed with CR-bit crbB and the 
complemented result is stored in CR-bit crbD.

cror Condition Register OR CR-bit crbA is ORed with CR-bit crbB and the 
result is stored in CR-bit crbD.

crorc Condition Register OR with 
Complement

CR-bit crbA is ORed with the complement of CR-
bit crbB and the result is stored in CR-bit crbD.

crxor Condition Register XOR CR-bit crbA is XORed with CR-bit crbB and the 
result is stored in CR-bit crbD.

mcrf Move Condition Register Field CR-field crfS is copied into CR-field crfD. No other 
CR fields are modified.

crfD,crfS
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System Trap
Table 3-12 lists the PowerPC system-trap instructions. System-trap instructions are 
normally used by software-debug applications to set breakpoints. These instructions test 
for a specified set of conditions and cause a program exception to occur if any of the 
conditions are met. If the tested conditions are not met, instruction execution continues 
normally with the instruction following the system-trap instruction (a program exception 
does not occur). The system-trap handler can be called from the program-interrupt handler 
when it is determined that a system-trap instruction caused the exception. See Program 
Interrupt (0x0700), page 223 for more information on program exceptions caused by the 
system-trap instructions.

Trap instructions can also be used to cause a debug exception. See Trap-Instruction Debug 
Event, page 258 for more information.

Simplified mnemonics are defined for the system-trap instructions. See Trap Instructions, 
page 554 for more information.

The TO operand field in the system-trap instructions specifies the test conditions 
performed on the remaining two operands. Multiple test conditions can be set 
simultaneously, expanding the number of possible conditions that can cause the trap 
(program exception). If all bits in the TO operand field are set, the trap always occurs 
because one of the trap conditions is always met. The bits within the TO field are defined 
as shown in Table 3-13.

Table 3-11: System-Call Instruction

Mnemonic Name Operation
Operand 
Syntax

sc System Call Causes a system-call exception to occur. —

Table 3-12: System-Trap Instructions

Mnemonic Name Operation
Operand 
Syntax

tw Trap Word The contents of rA are compared with rB. A 
program exception occurs if the comparison meets 
any test condition enabled by the TO operand.

TO,rA,rB

twi Trap Word Immediate The contents of rA are compared with the sign-
extended SIMM operand. A program exception 
occurs if the comparison meets any test condition 
enabled by the TO operand.

TO,rA,SIMM
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Integer Load and Store Instructions
The integer load and store instructions move data between the general-purpose registers 
and memory. Several types of loads and stores are supported by the PowerPC instruction 
set:

• Load and zero
• Load algebraic
• Store
• Load with byte reverse and store with byte reverse
• Load multiple and store multiple
• Load string and store string
• Memory synchronization instructions

Memory accesses performed by the load and store instructions can occur out of order. 
Synchronizing instructions are provided to enforce strict memory-access ordering. See 
Synchronizing Instructions, page 125 for more information.

In general, the PowerPC architecture defines a sequential-execution model. When a store 
instruction modifies an instruction-memory location, software synchronization is required 
to ensure subsequent instruction fetches from that location obtain the modified version of 
the instruction. See Self-Modifying Code, page 174 for more information.

Operand-Address Calculation
Integer load and store instructions generate effective addresses using one of three 
addressing modes: register-indirect with immediate index, register-indirect with index, or 
register indirect. These addressing modes are described in the following sections. For some 
instructions, update forms that load the calculated effective address into rA are also 
provided.

Table 3-13: TO Field Bit Definitions

TO Bit Description

TO[0] Less-than arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically less-than second operand.

TO[1] Greater-than arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically greater-than second operand.

TO[2] Equal-to arithmetic comparison.

0—Ignore trap condition.

1—Trap if first operand is arithmetically equal-to second operand.

TO[3] Less-than unsigned comparison.

0—Ignore trap condition.

1—Trap if first operand is less-than second operand.

TO[4] Greater-than unsigned comparison.

0—Ignore trap condition.

1—Trap if first operand is greater-than second operand.
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In the PPC405 processor, loads and stores to unaligned addresses can suffer from 
performance degradation. Refer to Performance Effects of Operand Alignment, page 53 
for more information.

Register-Indirect with Immediate Index
Load and store instructions using this addressing mode contain a signed, 16-bit immediate 
index (d operand) and a general-purpose register operand, rA. The index is sign-extended 
to 32 bits and added to the contents of rA to generate the effective address. If the rA 
instruction field is 0 (specifying r0), a value of zero—rather than the contents of r0—is 
added to the sign-extended immediate index. The option to specify rA or 0 is shown in the 
instruction description as (rA|0).

Figure 3-17 shows how an effective address is generated when using register-indirect with 
immediate-index addressing.

Register-Indirect with Index
Load and store instructions using this addressing mode contain two general-purpose 
register operands, rA and rB. The contents of these two registers are added to generate the 
effective address. If the rA instruction field is 0 (specifying r0), a value of zero—rather than 
the contents of r0—is added to rB. The option to specify rA or 0 is shown in the instruction 
description as (rA|0).

Figure 3-18 shows how an effective address is generated when using register-indirect with 
index addressing.

Figure 3-17: Register-Indirect with Immediate-Index Addressing
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Register Indirect
Only load-string and store-string instructions can use this addressing mode. This mode 
uses only the contents of the general-purpose register specified by the rA operand as the 
effective address. Rather than using the contents of r0, a zero in the rA operand causes an 
effective address of zero to be generated. The option to specify rA or 0 is shown in the 
instruction descriptions as (rA|0). 

Figure 3-19 shows how an effective address is generated when using register-indirect 
addressing.

Figure 3-18: Register-Indirect with Index Addressing
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Figure 3-19: Register-Indirect Addressing
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Load Instructions
Integer-load instructions read an operand from memory and store it in a GPR destination 
register, rD. Each type of load is characterized by what they do with unused high-order 
bits in rD when the operand size is less than a word (32 bits). Load-and-zero instructions 
clear the unused high-order bits in rD to zero. Load-algebraic instructions fill the unused 
high-order bits in rD with a copy of the most-significant bit in the operand.

Load-with-update instructions are provided, but the following two rules apply:

• rA must not be equal to 0. If rA = 0, the instruction form is invalid.
• rA must not be equal to rD. If rA = rD, the instruction form is invalid.

In the PPC405, the above invalid instruction forms produce a boundedly-undefined result. 
In other PowerPC implementations, those forms can cause a program exception.

Load Byte and Zero 
Table 3-14 lists the PowerPC load byte and zero instructions. These instructions load a byte 
from memory into the lower-eight bits of rD and clear the upper-24 bits of rD to 0.

Load Halfword and Zero
Table 3-15 lists the PowerPC load halfword and zero instructions. These instructions load a 
halfword from memory into the lower-16 bits of rD and clear the upper-16 bits of rD to 0.

Table 3-14: Load Byte and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lbz Load Byte and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lbzu Load Byte and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lbzx Load Byte and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lbzux Load Byte and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Load Word and Zero
Table 3-16 lists the PowerPC load word and zero instructions. These instructions load a word 
from memory into rD.

Load Halfword Algebraic
Table 3-17 lists the PowerPC load halfword algebraic instructions. These instructions load a 
halfword from memory into the lower-16 bits of rD. The upper-16 bits of rD are filled with 
a copy of the most-significant bit (bit 16) of the operand.

Table 3-15: Load Halfword and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lhz Load Halfword and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lhzu Load Halfword and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lhzx Load Halfword and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lhzux Load Halfword and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD

Table 3-16: Load-Word and Zero Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lwz Load Word and Zero Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lwzu Load Word and Zero with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lwzx Load Word and Zero Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lwzux Load Word and Zero with Update 
Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Table 3-17: Load Halfword Algebraic Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lha Load Halfword Algebraic Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

lhau Load Halfword Algebraic with 
Update

Register-indirect with immediate index 

EA = (rA) + d

rA ← EA 

rA ≠ 0, rA ≠ rD

lhax Load Halfword Algebraic Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lhaux Load Halfword Algebraic with 
Update Indexed

Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0, rA ≠ rD
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Store Instructions
Integer-store instructions read an operand from a GPR source register, rS, and write it into 
memory. Store-with-update instructions are provided, but the following two rules apply:

• rA must not be equal to 0. If rA = 0, the instruction form is invalid.
• If rS = rA, rS is written to memory first, and then the effective address is loaded into 

rS.

In the PPC405, the above invalid instruction form produces a boundedly-undefined result. 
In other PowerPC implementations, that form can cause a program exception.

Store Byte
Table 3-18 lists the PowerPC store byte instructions. These instructions store the lower-eight 
bits of rS into the specified byte location in memory.

Store Halfword 
Table 3-19 lists the PowerPC store halfword instructions. These instructions store the lower-
16 bits of rS into the specified halfword location in memory.

Table 3-18: Store Byte Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

stb Store Byte Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

stbu Store Byte with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

stbx Store Byte Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stbux Store Byte with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0
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Store Word 
Table 3-20 lists the PowerPC store word instructions. These instructions store the entire 
contents of rS into the specified word location in memory.

Load and Store with Byte-Reverse Instructions
Table 3-21 lists the PowerPC load and store with byte-reverse instructions. Figure 3-20 shows 
(using big-endian memory) how bytes are moved between memory and the GPRs for each 
of the byte-reverse instructions. When an lhbrx instruction is executed, the unloaded bytes 
in rD are cleared to 0.

When used in a system operating with the default big-endian byte order, these instructions 
have the effect of loading and storing data in little-endian order. Likewise, when used in a 

Table 3-19: Store Halfword Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

sth Store Halfword Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

sthu Store Halfword with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

sthx Store Halfword Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

sthux Store Halfword with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0

Table 3-20: Store Word Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

stw Store Word Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

stwu Store Word with Update Register-indirect with immediate index 

EA = (rA) + d

rA ← EA

rA ≠ 0

stwx Store Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stwux Store Word with Update Indexed Register-indirect with index

EA = (rA) + (rB)

rA ← EA

rA ≠ 0
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system operating with little-endian byte order, these instructions have the effect of loading 
and storing data in big-endian order. For more information about big-endian and little-
endian byte ordering, see Byte Ordering, page 49.

Table 3-21: Load and Store with Byte-Reverse Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lhbrx Load Halfword Byte-Reverse Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

lwbrx Load Word Byte-Reverse Indexed

sthbrx Store Halfword Byte-Reverse Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB

stwbrx Store Word Byte-Reverse Indexed

Figure 3-20: Load and Store with Byte-Reverse Instructions
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Load and Store Multiple Instructions
Table 3-22 lists the PowerPC load and store multiple instructions and their operation. 
Figure 3-21 shows how bytes are moved between memory and the GPRs for each of these 
instructions.

These instructions are used to move blocks of data between memory and the GPRs. When 
the load multiple word instruction (lmw) is executed, rD through r31 are loaded with n 
consecutive words from memory, where n=32-rD. For the lmw instruction, if rA is in the 
range of registers to be loaded, or if rD=0, the instruction form is invalid. When the store 
multiple word instruction (stmw) is executed, the n consecutive words in rS through r31 are 
stored into memory, where n=32-rS.

Table 3-22: Load and Store Multiple Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lmw Load Multiple Word Register-indirect with immediate index

EA = (rA|0) + d

rD,d(rA)

stmw Store Multiple Word Register-indirect with immediate index

EA = (rA|0) + d

rS,d(rA)

Figure 3-21: Load and Store Multiple Instructions
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Load and Store String Instructions
Table 3-23 lists the PowerPC load and store string instructions and their addressing modes. 
See the individual instruction listings in Chapter 11, Instruction Set for more information 
on their operation and restrictions on the instruction forms.

These instructions are used to move up to 32 consecutive bytes of data between memory 
and the GPRs without concern for alignment. The instructions can be used for short moves 
between arbitrary memory locations or for long moves between misaligned memory 
fields. Performance of these instructions is degraded if the leading and/or trailing bytes 
are not aligned on a word boundary (see Performance Effects of Operand Alignment, 
page 53 for more information).

The immediate form of the instructions take the byte count, n, from the NB instruction 
field. If NB=0, then n=32. The indexed forms take the byte count from XER[25:31]. Unlike 
the immediate forms, if XER[25:31]=0, then n=0. For the lswx instruction, the contents of 
rD are undefined if n=0.

The n bytes are loaded into and stored from registers beginning with the most-significant 
register byte. For loads, any unfilled low-order register bytes are cleared to 0. The sequence 
of registers loaded or stored wraps through r0 if necessary. Figure 3-22 shows an example 
of the string-instruction operation.

Table 3-23: Load and Store String Instructions

Mnemonic Name Addressing Mode
Operand 
Syntax

lswi Load String Word Immediate Register-indirect 

EA = (rA|0)

rD,rA,NB

lswx Load String Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rD,rA,rB

stswi Store String Word Immediate Register-indirect 

EA = (rA|0)

rS,rA,NB

stswx Store String Word Indexed Register-indirect with index

EA = (rA|0) + (rB)

rS,rA,rB
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Integer Instructions
Integer instructions operate on the contents of GPRs. They use the GPRs (and sometimes 
immediate values coded in the instruction) as source operands. Results are written into 
GPRs. These instructions do not operate on memory locations. Integer instructions treat 
the source operands as signed integers unless the instruction is explicitly identified as 
performing an unsigned operation. For example, the multiply high-word unsigned (mulhwu) 
and divide-word unsigned (divwu) instructions interpret both operands as unsigned 
integers.

The following types of integer instructions are supported by the PowerPC architecture:

• Arithmetic Instructions
• Logical Instructions
• Compare Instructions
• Rotate Instructions
• Shift Instructions

The arithmetic, shift, and rotate instructions can update and/or read bits from the XER. 
Those instructions, plus the integer-logical instructions, can also update bits in the CR. 
Unless otherwise noted, when XER and/or CR are updated, they reflect the value written 

Figure 3-22: Load and Store String Instructions
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to the destination register. XER and CR can be updated by the integer instructions in the 
following ways:

• The XER[CA] bit is updated to reflect the carry out of bit 0 in the result.
• The XER[OV] bit is set or cleared to reflect a result overflow. When XER[OV] is set, 

XER[SO] is also set to reflect a summary overflow. XER[SO] can only be cleared using 
the mtspr and mcrxr instructions. Instructions that update these bits have the 
overflow-enable (OE) bit set to 1 in the instruction encoding. This is indicated by the 
“o” suffix in the instruction mnemonic.

• Bits in CR0 (CR[0:3]) are updated to reflect a signed comparison of the result to zero. 
Instructions that update CR0 have the record (Rc) bit set to 1 in the instruction 
encoding. This is indicated by the “.” suffix in the instruction mnemonic. See CR0 
Field, page 61, for information on how these bits are updated.

Instructions that update XER[OV] or XER[CA] can delay the execution of subsequent 
instructions. See Fixed-Point Exception Register (XER), page 63 for more information on 
these register bits.

Arithmetic Instructions
The integer-arithmetic instructions support addition, subtraction, multiplication, and 
division between operands in the GPRs and in some cases between GPRs and signed-
immediate values.

Integer-Addition Instructions
Table 3-24 shows the PowerPC integer-addition instructions. The instructions in this table 
are grouped by the type of addition operation they perform. For each type of instruction 
shown, the “Operation” column indicates the addition-operation performed, and on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all). 
“SIMM” indicates an immediate value that is sign-extended prior to being used in the 
operation.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits. For example, assume a 64-bit integer i is represented by the register pair r3:r4, where 
r3 contains the most-significant 32 bits of i, and r4 contains the least-significant 32 bits. The 
64-bit integer j is similarly represented by the register pair r5:r6. The 64-bit result i+j=r 
(represented by the pair r7:r8) is produced by pairing adde with addc as follows:

addc r8,r6,r4 # Add the least-significant words and record a 
# carry.

adde r7,r5,r3 # Add the most-significant words, using 
# previous carry.

Table 3-24: Integer-Addition Instructions

Mnemonic Name Operation
Operand 
Syntax

Add Instructions rD is loaded with the sum (rA) + (rB).

add Add XER and CR0 are not updated. rD,rA,rB

add. Add and Record CR0 is updated to reflect the result.

addo Add with Overflow Enabled XER[OV,SO] are updated to reflect the result.

addo. Add with Overflow Enabled and 
Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Add-Carrying Instructions rD is loaded with the sum (rA) + (rB).

addc Add Carrying XER[CA] is updated to reflect the result. rD,rA,rB

addc. Add Carrying and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addco Add Carrying with Overflow Enabled  XER[CA,OV,SO] are updated to reflect the result.

addco. Add Carrying with Overflow Enabled 
and Record

 XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Add-Immediate Instructions rD is loaded with the sum (rA|0) + SIMM.

addi Add Immediate XER and CR0 are not updated. rD,rA,SIMM

addic Add Immediate Carrying  XER[CA] is updated to reflect the result.

addic. Add Immediate Carrying and Record  XER[CA] and CR0 are updated to reflect the re-
sult.

Add Immediate-Shifted Instructions rD is loaded with the sum (rA|0) + (SIMM || 0x0000).

addis Add Immediate Shifted XER and CR0 are not updated. rD,rA,SIMM

Add-Extended Instructions rD is loaded with the sum (rA) + (rB) + XER[CA].

adde Add Extended XER[CA] is updated to reflect the result. rD,rA,rB

adde. Add Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addeo Add Extended with Overflow 
Enabled

XER[CA,OV,SO] are updated to reflect the result.

addeo. Add Extended with Overflow 
Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Add to Minus-One-Extended Instructions rD is loaded with the sum (rA) + XER[CA] + 0xFFFF_FFFF.

addme Add to Minus One Extended XER[CA] is updated to reflect the result. rD,rA

addme. Add to Minus One Extended and 
Record

XER[CA] and CR0 are updated to reflect the re-
sult.

addmeo Add to Minus One Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

addmeo. Add to Minus One Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-24: Integer-Addition Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Integer-Subtraction Instructions
Table 3-25 shows the PowerPC integer-subtraction instructions. The instructions in this table 
are grouped by the type of subtraction operation they perform. For each type of instruction 
shown, the “Operation” column indicates the subtraction-operation performed. The 
column also shows, on an instruction-by-instruction basis, how the XER and CR registers 
are updated (if at all). The subtraction operation is expressed as addition so that the two’s-
complement operation is clear. “SIMM” indicates an immediate value that is sign-
extended prior to being used in the operation.

The integer-subtraction instructions subtract the second operand (rA) from the third 
operand (rB). Simplified mnemonics are provided with a more familiar operand ordering, 
whereby the third operand is subtracted from the second. Simplified mnemonics are also 
defined for the addi instruction to provide a subtract-immediate operation. See Subtract 
Instructions, page 554 for more information.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits. For example, assume a 64-bit integer i is represented by the register pair 
r3:r4, where r3 contains the most-significant 32 bits of i, and r4 contains the least-significant 
32 bits. The 64-bit integer j is similarly represented by the register pair r5:r6. The 64-bit 
result i−j=r (represented by the pair r7:r8) is produced by pairing subfe with subfc as 
follows:

subfc r8,r6,r4 # Subtract the least-significant words and record a 
# carry.

subfe r7,r5,r3 # Subtract the most-significant words, using 
# previous carry.

Add to Zero-Extended Instructions rD is loaded with the sum (rA) + XER[CA].

addze Add to Zero Extended XER[CA] is updated to reflect the result. rD,rA

addze. Add to Zero Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

addzeo Add to Zero Extended with Overflow 
Enabled

XER[CA,OV,SO] are updated to reflect the result.

addzeo. Add to Zero Extended with Overflow 
Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-24: Integer-Addition Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Table 3-25: Integer-Subtraction Instructions

Mnemonic Name Operation
Operand 
Syntax

Subtract-From Instructions rD is loaded with the sum ¬(rA) + (rB) + 1.

subf Subtract from XER and CR0 are not updated. rD,rA,rB

subf. Subtract from and Record CR0 is updated to reflect the result.

subfo Subtract from with Overflow Enabled XER[OV,SO] are updated to reflect the result.

subfo. Subtract from with Overflow Enabled 
and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Subtract- From Carrying Instructions rD is loaded with the sum ¬(rA) + (rB) + 1.

subfc Subtract from Carrying XER[CA] is updated to reflect the result. rD,rA,rB

subfc. Subtract from Carrying and Record XER[CA] and CR0 are updated to reflect the re-
sult.

subfco Subtract from Carrying with 
Overflow Enabled

 XER[CA,OV,SO] are updated to reflect the result.

subfco. Subtract from Carrying with 
Overflow Enabled and Record

 XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Immediate Instructions rD is loaded with the sum ¬(rA) + SIMM + 1.

subfic Subtract from Immediate Carrying  XER[CA] is updated to reflect the result. rD,rA,SIMM

Subtract-From Extended Instructions rD is loaded with the sum ¬(rA) + (rB) + XER[CA].

subfe Subtract from Extended XER[CA] is updated to reflect the result. rD,rA,rB

subfe. Subtract from Extended and Record XER[CA] and CR0 are updated to reflect the re-
sult.

subfeo Subtract from Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfeo. Subtract from Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Minus-One-Extended Instructions rD is loaded with the sum ¬(rA) + XER[CA] + 0xFFFF_FFFF.

subfme Subtract from Minus One Extended XER[CA] is updated to reflect the result. rD,rA

subfme. Subtract from Minus One Extended 
and Record

XER[CA] and CR0 are updated to reflect the re-
sult.

subfmeo Subtract from Minus One Extended 
with Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfmeo. Subtract from Minus One Extended 
with Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Subtract-From Zero-Extended Instructions rD is loaded with the sum ¬(rA) + XER[CA].

subfze Subtract from Zero Extended XER[CA] is updated to reflect the result. rD,rA

subfze. Subtract from Zero Extended and 
Record

XER[CA] and CR0 are updated to reflect the re-
sult.

subfzeo Subtract from Zero Extended with 
Overflow Enabled

XER[CA,OV,SO] are updated to reflect the result.

subfzeo. Subtract from Zero Extended with 
Overflow Enabled and Record

XER[CA,OV,SO] and CR0 are updated to reflect 
the result.

Table 3-25: Integer-Subtraction Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 95
UG011 (v1.2) January 19, 2007

Chapter 3: User Programming Model
R

Negation Instructions
Table 3-26 shows the PowerPC integer-negation instructions. Negation takes the operand 
specified by rA and writes the two’s-compliment equivalent in rD. For each instruction 
shown, the “Operation” column indicates (on an instruction-by-instruction basis) how the 
XER and CR registers are updated (if at all). 

Multiply Instructions
Table 3-27 shows the PowerPC integer-multiply instructions. Multiplication of two 32-bit 
values can result in a 64-bit result. The multiply low-word instructions are used with the 
multiply high-word instructions to calculate the full 64-bit product. For each type of 
instruction shown, the “Operation” column indicates the multiplication-operation 
performed. The column also shows, on an instruction-by-instruction basis, how the XER 
and CR registers are updated (if at all). “SIMM” indicates an immediate value that is sign-
extended prior to being used in the operation.

Table 3-26: Negation Instructions

Mnemonic Name Operation
Operand 
Syntax

Negation Instructions rD is loaded with the sum ¬(rA) + 1.

neg Negate XER and CR0 are not updated. rD,rA

neg. Negate and Record CR0 is updated to reflect the result.

nego Negate with Overflow Enabled XER[OV,SO] are updated to reflect the result.

nego. Negate with Overflow Enabled and 
Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-27: Multiply Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Low-Word Instructions rD is loaded with the low-32 bits of the product (rA) × (rB).

mullw Multiply Low Word XER and CR0 are not updated. rD,rA,rB

mullw. Multiply Low Word and Record CR0 is updated to reflect the result.

mullwo Multiply Low Word with Overflow 
Enabled

XER[OV,SO] are updated to reflect the result.

mullwo. Multiply Low Word with Overflow 
Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply Low-Word Immediate Instructions rD is loaded with the low-32 bits of the product (rA) × SIMM.

mulli Multiply Low Immediate XER and CR0 are not updated. rD,rA,SIMM

Multiply High-Word Instructions rD is loaded with the high-32 bits of the product (rA) × (rB).

mulhw Multiply High Word XER and CR0 are not updated. rD,rA,rB

mulhw. Multiply High Word and Record CR0 is updated to reflect the result.
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Divide Instructions
Table 3-28 shows the PowerPC integer-divide instructions. Only the low-32 bits of the 
quotient are returned. The remainder is not supplied as a result of executing these 
instructions. For each type of instruction shown, the “Operation” column indicates the 
divide-operation performed. The column also shows, on an instruction-by-instruction 
basis, how the XER and CR registers are updated (if at all).

Logical Instructions
The logical instructions perform bit operations on the 32-bit operands. If an immediate 
value is specified as an operand, the processor either zero-extends or left-shifts it prior to 
performing the operation, depending on the instruction. If the instruction has the record 
(Rc) bit set to 1 in the instruction encoding, CR0 (CR[0:3]) is updated to reflect the result of 
the operation. A set Rc bit is indicated by the “.” suffix in the instruction mnemonic.

The logical instructions do not update any bits in the XER register.

In the operand syntax for logical instructions, the rA operand specifies a destination register 
rather than a source register. rS is used to specify one of the source registers.

Multiply High-Word Unsigned Instructions rD is loaded with the high-32 bits of the product (rA) × (rB). The 
contents of rA and rB are interpreted as unsigned integers.

mulhwu Multiply High Word XER and CR0 are not updated. rD,rA,rB

mulhwu. Multiply High Word and Record CR0 is updated to reflect the result.

Table 3-27: Multiply Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Table 3-28: Divide Instructions

Mnemonic Name Operation
Operand 
Syntax

Divide-Word Instructions rD is loaded with the low-32 bits of the 64-bit quotient (rA) ÷ (rB).

divw Divide Word XER and CR0 are not updated. rD,rA,rB

divw. Divide Word and Record CR0 is updated to reflect the result.

divwo Divide Word with Overflow Enabled XER[OV,SO] are updated to reflect the result.

divwo. Divide Word with Overflow Enabled 
and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Divide-Word Unsigned Instructions rD is loaded with the low-32 bits of the 64-bit quotient (rA) ÷ (rB). 
The contents of rA and rB are interpreted as unsigned integers.

divwu Divide Word Unsigned XER and CR0 are not updated. rD,rA,rB

divwu. Divide Word Unsigned and Record CR0 is updated to reflect the result.

divwuo Divide Word Unsigned with Overflow 
Enabled

XER[OV,SO] are updated to reflect the result.

divwuo. Divide Word Unsigned with Overflow 
Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 97
UG011 (v1.2) January 19, 2007

Chapter 3: User Programming Model
R

AND and NAND Instructions
Table 3-29 shows the PowerPC AND and NAND instructions. For each type of instruction 
shown, the “Operation” column indicates the Boolean operation performed. The column 
also shows, on an instruction-by-instruction basis, whether the CR0 field is updated.

OR and NOR Instructions
Table 3-30 shows the PowerPC OR and NOR instructions. For each type of instruction 
shown, the “Operation” column indicates the Boolean operation performed. The column 
also shows, on an instruction-by-instruction basis, whether the CR0 field is updated.

Simplified mnemonics are provided for some common operations that use the OR and 
NOR instructions, such as move register and complement (not) register. See Other 
Simplified Mnemonics, page 556 for more information.

Table 3-29: AND and NAND Instructions

Mnemonic Name Operation
Operand 
Syntax

AND Instructions rA is loaded with the logical result (rS) AND (rB).

and AND CR0 is not updated. rA,rS,rB

and. AND and Record CR0 is updated to reflect the result.

AND-Immediate Instructions rA is loaded with the logical result (rS) AND UIMM.

andi. AND Immediate and Record CR0 is updated to reflect the result. rA,rS,UIMM

AND Immediate-Shifted Instructions rA is loaded with the logical result (rS) AND (UIMM || 0x0000)

andis. AND Immediate Shifted and Record CR0 is updated to reflect the result. rA,rS,UIMM

AND with Complement Instructions rA is loaded with the logical result (rS) AND ¬(rB).

andc AND with Complement CR0 is not updated. rA,rS,rB

andc. AND with Complement and Record CR0 is updated to reflect the result.

NAND Instructions rA is loaded with the logical result ¬((rS) AND (rB)).

nand NAND CR0 is not updated. rA,rS,rB

nand. NAND and Record CR0 is updated to reflect the result.

Table 3-30: OR and NOR Instructions

Mnemonic Name Operation
Operand 
Syntax

NOR Instructions rA is loaded with the logical result ¬((rS) OR (rB)).

nor NOR CR0 is not updated. rA,rS,rB

nor. NOR and Record CR0 is updated to reflect the result.

OR Instructions rA is loaded with the logical result (rS) OR (rB).

or OR CR0 is not updated. rA,rS,rB

or. OR and Record CR0 is updated to reflect the result.
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XOR and Equivalence Instructions
Table 3-31 shows the PowerPC XOR and equivalence (XNOR) instructions. For each type of 
instruction shown, the “Operation” column indicates the Boolean operation performed. 
The column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

Sign-Extension Instructions
Table 3-32 shows the sign-extension instructions. These instructions sign-extend the value 
in the rS register and write the result in the rA register. For each type of instruction shown, 
the “Operation” column indicates the operation performed. The column also shows, on an 
instruction-by-instruction basis, whether the CR0 field is updated.

OR-Immediate Instructions rA is loaded with the logical result (rS) OR UIMM.

ori OR Immediate CR0 is not updated. rA,rS,UIMM

OR Immediate-Shifted Instructions rA is loaded with the logical result (rS) OR (UIMM || 0x0000)

oris OR Immediate Shifted CR0 is not updated. rA,rS,UIMM

OR with Complement Instructions rA is loaded with the logical result (rS) OR ¬(rB).

orc OR with Complement CR0 is not updated. rA,rS,rB

orc. OR with Complement and Record CR0 is updated to reflect the result.

Table 3-30: OR and NOR Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Table 3-31: XOR and Equivalence Instructions

Mnemonic Name Operation
Operand 
Syntax

Equivalence Instructions rA is loaded with the logical result ¬((rS) XOR (rB)).

eqv Equivalent CR0 is not updated. rA,rS,rB

eqv. Equivalent and Record CR0 is updated to reflect the result.

XOR Instructions rA is loaded with the logical result (rS) XOR (rB).

xor XOR CR0 is not updated. rA,rS,rB

xor. XOR and Record CR0 is updated to reflect the result.

XOR-Immediate Instructions rA is loaded with the logical result (rS) XOR UIMM.

xori XOR Immediate CR0 is not updated. rA,rS,UIMM

XOR Immediate-Shifted Instructions rA is loaded with the logical result (rS) XOR (UIMM || 0x0000)

xoris XOR Immediate Shifted CR0 is not updated. rA,rS,UIMM
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Count Leading-Zeros Instructions
Table 3-33 shows the count leading-zeros instructions. These instructions count the number 
of consecutive zero bits in the rS register starting at bit 0. The count result is written to the 
rA register. For each type of instruction shown, the “Operation” column indicates the 
operation performed. The column also shows, on an instruction-by-instruction basis, 
whether the CR0 field is updated.

Compare Instructions
The integer-compare instructions support algebraic and logical comparisons between 
operands in the GPRs and between GPRs and immediate values. Immediate values are 
signed in algebraic comparisons and unsigned in logical comparisons.

All compare instructions have four operands. The first operand, crfD, specifies the field in 
the CR register that is updated with the comparison result. The left-most three bits in the 
CR field are updated to reflect a less-than, greater-than, or equal comparison. The fourth 
(least-significant) bit is updated with a copy of XER[SO]. The crfD operand can be omitted 
if the comparison results are written to CR0. See CRn Fields (Compare Instructions), 
page 62 for more information on the CR fields.

The second operand specifies the operand length. This is referred to the “L” bit in the 
compare-instruction encoding. When using the compare instructions on 32-bit PowerPC 
implementations like the PPC405, this bit must always be coded as 0. It cannot be omitted 
from the standard instruction syntax. Simplified mnemonics are provided that omit this 
operand. See Compare Instructions, page 550 for more information.

The last two operands specify the quantities to be compared (the contents of a register and 
a register or immediate value).

Table 3-32: Sign-Extension Instructions

Mnemonic Name Operation
Operand 
Syntax

Extend-Sign Byte Instructions rA[24:31] is loaded with (rS[24:31]). The remaining bits rA[0:23] are 
each loaded with a copy of (rS[24]).

extsb Extend Sign Byte CR0 is not updated. rA,rS

extsb. Extend Sign Byte and Record CR0 is updated to reflect the result.

Extend-Sign Halfword Instructions rA[16:31] is loaded with (rS[16:31]). The remaining bits rA[0:15] are 
each loaded with a copy of (rS[16]).

extsh Extend Sign Halfword CR0 is not updated. rA,rS

extsh. Extend Sign Halfword and Record CR0 is updated to reflect the result.

Table 3-33: Count Leading-Zeros Instructions

Mnemonic Name Operation
Operand 
Syntax

Count Leading-Zeros Instructions rA is loaded with a count of leading zeros in rS.

cntlzw Count Leading Zeros Word CR0 is not updated. rA,rS

cntlzw. Count Leading Zeros Word and 
Record

CR0 is updated to reflect the result. CR0[LT] is al-
ways cleared to 0.
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Algebraic-Comparison Instructions
Table 3-34 shows the PowerPC algebraic-comparison instructions. During comparison, both 
operands are treated as signed integers. If a comparison is made with a signed-immediate 
value (SIMM), that value is sign-extended by the processor prior to performing the 
comparison.

Logical-Comparison Instructions
Table 3-35 shows the PowerPC logical-comparison instructions. During comparison, both 
operands are treated as unsigned integers. If a comparison is made with an unsigned-
immediate value (UIMM), that value is zero extended by the processor prior to performing 
the comparison.

Rotate Instructions
Rotate instructions operate on 32-bit data in the GPRs, returning the result in a second 
GPR. These instructions rotate data to the left—the direction of least-significant bit to most-
significant bit. Bits rotated out of the most-significant bit (bit 0) are rotated into the least-
significant bit (bit 31). Programmers can achieve apparent right rotation using these left-
rotation instructions by specifying a rotation amount of 32-n, where n is the number of bits 
to rotate right.

If the rotate instruction has the record (Rc) bit set to 1 in the instruction encoding, CR0 
(CR[0:3]) is updated to reflect the result of the operation. A set Rc bit is indicated by the “.” 
suffix in the instruction mnemonic. Rotate instructions do not update any bits in the XER 
register.

In the operand syntax for rotate instructions, the rA operand specifies the destination 
register rather than a source register. rS is used to specify the source register.

Simplified mnemonics using the rotate instructions are provided for easy coding of 
extraction, insertion, left or right justification, and other bit-manipulation operations. See 
Rotate and Shift Instructions, page 551 for more information.

Table 3-34: Algebraic-Comparison Instructions

Mnemonic Name Operation
Operand 
Syntax

cmp Compare crfD[LT,GT,EQ] are loaded with the result of 
algebraically comparing (rA) with (rB). CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,rB

cmpi Compare Immediate crfD[LT,GT,EQ] are loaded with the result of 
algebraically comparing (rA) with SIMM. CR[SO] 
is loaded with a copy of XER[SO].

crfD,0,rA,SIMM

Table 3-35: Logical-Comparison Instructions

Mnemonic Name Operation
Operand 
Syntax

cmpl Compare Logical crfD[LT,GT,EQ] are loaded with the result of 
logically comparing (rA) with (rB). CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,rB

cmpli Compare Logical Immediate crfD[LT,GT,EQ] are loaded with the result of 
logically comparing (rA) with UIMM. CR[SO] is 
loaded with a copy of XER[SO].

crfD,0,rA,UIMM
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Mask Generation
The rotate instructions write their results into the destination register under the control of 
a mask specified in the rotate-instruction encoding. The mask is used to write or insert a 
partial result into the destination register.

Rotate masks are 32-bits long. Two instruction-opcode fields are used to specify the mask: 
MB and ME. MB is a 5-bit field specifying the starting bit position of the mask and ME is a 
5-bit field specifying the ending bit position of the mask. The mask consists of all 1’s from 
MB to ME inclusive and all 0’s elsewhere. If MB > ME, the string of 1’s wraps around from 
bit 31 to bit 0. In this case, 0’s are found from ME to MB exclusive. The generation of an all-
zero mask is not possible.

The function of the MASK(MB,ME) generator is summarized as:

if MB < ME then
mask[MB:ME] = 1’s
mask[all remaining bits] = 0’s

else
mask[MB:31] = ones
mask[0:ME] = ones
mask[all remaining bits] = 0’s

Figure 3-23 shows the generated mask for both cases.

Rotate Left then AND-with-Mask Instructions
Table 3-36 shows the PowerPC rotate left then AND-with-mask instructions. For each type of 
instruction shown, the “Operation” column indicates the rotate operation performed. The 
column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

Figure 3-23: Rotate Mask Generation

UG011_15_033101

MB < ME
0 MB ME 31

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

MB > ME
0 ME MB 31

1 1 . . . 1 0 0 . . . 0 1 1 . . . 1

Table 3-36: Rotate Left then AND-with-Mask Instructions

Mnemonic Name Operation
Operand 
Syntax

Rotate Left then AND-with-Mask Immediate 
Instructions

rA is loaded with the masked result of left-rotating (rS) the number of 
bits specified by SH. The mask is specified by operands MB and ME.

rlwinm Rotate Left Word Immediate then 
AND with Mask

CR0 is not updated. rA,rS,SH,MB,ME

rlwinm. Rotate Left Word Immediate then 
AND with Mask and Record

CR0 is updated to reflect the result.
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These instructions left rotate GPR contents and logically AND the result with the mask 
prior to writing it into the destination GPR. The destination register contains the rotated 
result in the unmasked bit positions (mask bits with 1’s), and 0’s in the masked bit 
positions (mask bits with 0’s). Rotation amounts are specified using an immediate field in 
the instruction (the SH opcode field) or using a value in a register.

Figure 3-24 shows an example of a rotate left then AND-with-mask immediate instruction. 
In this example, the rotation amount is 16 bits as specified by the SH field in the instruction. 
The mask specifies an unmasked byte in bit positions 16:23 (MB=16, ME=23) and masks all 
other bit positions. The example shows the original contents of the destination register, rA, 
and the source register, rS. rS is left-rotated 16 bits and the result is written to rA after 
ANDing with the mask. This has the effect of extracting byte 0 from rS (rS[0:7]) and placing 
it in byte 2 of rA (rA[16:23]).

Rotate Left then AND-with-Mask Instructions rA is loaded with the masked result of left-rotating (rS) the number of 
bits specified by (rB). The mask is specified by operands MB and ME.

rlwnm Rotate Left Word then AND with 
Mask

CR0 is not updated. rA,rS,rB,MB,ME

rlwnm. Rotate Left Word then AND with 
Mask and Record

CR0 is updated to reflect the result.

Table 3-36: Rotate Left then AND-with-Mask Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-24: Rotate Left then AND-with-Mask Immediate Example
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rS
0 31

0x88 0x77 0x66 0x55

Rotate
rS

Rotate by SH=16 bits

0 31

0x66 0x55 0x88 0x77

rA
0 31

0xFF 0xEE 0xDD 0xCC

rA
0 31

0x00 0x00 0x88 0x00

Mask
MB=16
ME=23

0 16 23 31

1111_1111 0000_00000000_0000_0000_0000
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Rotate Left then Mask-Insert Instructions
Table 3-36 shows the PowerPC rotate left then mask-insert instructions. For each type of 
instruction shown, the “Operation” column indicates the rotate operation performed. The 
column also shows, on an instruction-by-instruction basis, whether the CR0 field is 
updated.

These instructions left rotate GPR contents and insert the results into the destination GPR 
under control of the mask. The destination register contains the rotated result in the 
unmasked bit positions (mask bits with 1’s) and the original contents of the destination 
register in the masked bit positions (mask bits with 0’s). Rotation amounts are specified 
using an immediate field in the instruction (the SH opcode field).

Figure 3-25 shows an example of a rotate left then mask-insert immediate instruction. In 
this example, the rotation amount is 16 bits as specified by the SH field in the instruction. 
The mask specifies an unmasked byte in bit positions 16:23 (MB=16, ME=23) and masks all 
other bit positions. The example shows the original contents of the destination register, rA, 
and the source register, rS. rS is rotated 16 bits and the result is inserted into rA after 
ANDing with the mask. This has the effect of extracting byte 0 from rS (rS[0:7]) and 
inserting it into byte 2 of rA (rA[16:23]), leaving all remaining bytes in rA unmodified.

Table 3-37: Rotate Left then Mask-Insert Instructions

Mnemonic Name Operation
Operand 
Syntax

Rotate Left then Mask-Insert Immediate 
Instructions

The masked result of left-rotating (rS) the number of bits specified by 
SH is inserted into rA. The mask is specified by operands MB and ME.

rlwimi Rotate Left Word Immediate then 
Mask Insert

CR0 is not updated. rA,rS,SH,MB,ME

rlwimi. Rotate Left Word Immediate then 
Mask Insert and Record

CR0 is updated to reflect the result.
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Shift Instructions
Shift instructions operate on 32-bit data in the GPRs and return the result in a GPR. Both 
logical and algebraic shifts are provided:

• Logical left-shift instructions shift bits from the direction of least-significant bit to most-
significant bit. Bits shifted out of bit 0 are lost. The vacated bit positions on the right 
are filled with zeros.

• Logical right-shift instructions shift bits from the direction of most-significant bit to 
least-significant bit. Bits shifted out of bit 31 are lost. The vacated bit positions on the 
left are filled with zeros.

• Algebraic right-shift instructions shift bits from the direction of most-significant bit to 
least-significant bit. Bits shifted out of bit 31 are lost. The vacated bit positions on the 
left are filled with a copy of the original bit 0 (the value prior to starting the shift).

If the shift instruction has the record (Rc) bit set to 1 in the instruction encoding, CR0 
(CR[0:3]) is updated to reflect the result of the operation. A set Rc bit is indicated by the “.” 
suffix in the instruction mnemonic. Algebraic right-shift instructions update XER[CA] to 
reflect the result of the operation but the other shift instructions do not modify XER[CA]. 
XER[OV,SO] are not modified by any shift instructions.

In the operand syntax for shift instructions, the rA operand specifies the destination register 
rather than a source register. rS is used to specify the source register.

Simplified mnemonics using the rotate instructions are provided for coding of logical shift-
left immediate and logical shift-right immediate operations. See Rotate and Shift 
Instructions, page 551 for more information.

Figure 3-25: Rotate Left then Mask-Insert Immediate Example
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rS
0 31

0x88 0x77 0x66 0x55

Rotate
rS

Rotate by SH=16 bits

0 31

0x66 0x55 0x88 0x77

rA
0 31

0xFF 0xEE 0xDD 0xCC

rA
0 31

0xFF 0xEE 0x88 0xCC

Mask
MB=16
ME=23

0 16 23 31

1111_1111 0000_00000000_0000_0000_0000
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Logical-Shift Instructions
Table 3-38 shows the PowerPC logical-shift instructions. For each type of instruction shown, 
the “Operation” column indicates the shift operation performed. The column also shows, 
on an instruction-by-instruction basis, whether the CR0 field is updated. XER is not 
updated by these instructions.

Figure 3-26 shows two examples of logical-shift operations. The top example shows a left 
shift of seven bits, and the bottom example shows a right shift of seven bits. As is seen in 
these examples, bits shifted out of the register are lost and vacated bits are filled with zeros.

Table 3-38: Logical-Shift Instructions

Mnemonic Name Operation
Operand 
Syntax

Shift-Left-Logical Instructions rA is loaded with the result of logically left-shifting (rS) the number 
of bits specified by (rB).

slw Shift Left Word CR0 is not updated. rA,rS,rB

slw. Shift Left Word and Record CR0 is updated to reflect the result.

Shift-Right-Logical Instructions rA is loaded with the result of logically right-shifting (rS) the 
number of bits specified by (rB).

srw Shift Right Word CR0 is not updated. rA,rS,rB

srw. Shift Right Word and Record CR0 is updated to reflect the result.

Figure 3-26: Logical-Shift Examples
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Shift by 7 bits

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

0000_0001_0000_1110_1100_1010_1000_0110

0 31

0000_0001_0000_1110_1100_1010_1000_0110 010_0001

1000_011

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

1011_0010_1010_0001_1001_0000_1000_0000

0 31

1011_0010_1010_0001_1001_0000_1000_0000 Shift by 7 bits

Right Shift

Left Shift
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Algebraic-Shift Instructions
Table 3-39 shows the PowerPC algebraic-shift instructions. For each type of instruction 
shown, the “Operation” column indicates the shift operation performed. The column also 
shows, on an instruction-by-instruction basis, whether the CR0 field is updated. XER[CA] 
is always updated by these instructions to reflect the result.

The shift-right-algebraic instructions can be followed by an addze instruction to 
implement a divide-by-2n operation. See Multiple-Precision Shifts, page 563, for more 
information.

Figure 3-27 shows an example of an algebraic-shift operation. In this example, a shift of 
seven bits is performed. Bits shifted out of the least-significant register bit are lost and 
vacated bits on the left side are filled with a copy of the original bit 0 (prior to the shift). In 
this example, the original value of bit 0 is 0b1.

Multiply-Accumulate Instruction-Set Extensions
The PPC405 supports an integer multiply-accumulate instruction-set extension that provides 
functions usable by certain computationally intensive applications, such as those that 

Table 3-39: Algebraic-Shift Instructions

Mnemonic Name Operation
Operand 
Syntax

Shift-Right-Algebraic Immediate Instructions rA is loaded with the result of algebraically right-shifting (rS) the 
number of bits specified by SH.

srawi Shift Right Algebraic Word Immediate CR0 is not updated. XER[CA] is updated to reflect 
the result.

rA,rS,SH

srawi. Shift Right Algebraic Word Immediate 
and Record

CR0 and XER[CA] are updated to reflect the re-
sult.

Shift-Right-Algebraic Instructions rA is loaded with the result of algebraically right-shifting (rS) the 
number of bits specified by (rB).

sraw Shift Right Algebraic Word CR0 is not updated. XER[CA] is updated to reflect 
the result.

rA,rS,rB

sraw. Shift Right Algebraic Word and 
Record

CR0 and XER[CA] are updated to reflect the re-
sult.

Figure 3-27: Algebraic-Shift Example
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Shift by 7 bits

rS
0 31

1000_0111_0110_0101_0100_0011_0010_0001

rA
0 31

1111_1111_0000_1110_1100_1010_1000_0110

0 31

1111_1111_0000_1110_1100_1010_1000_0110 010_0001
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implement DSP algorithms. These instructions comply with the architectural requirements 
for auxiliary-processor units (APUs) defined by the PowerPC embedded-environment 
architecture and the PowerPC Book-E architecture. They are considered implementation-
dependent instructions and are not part of the PowerPC architecture, the PowerPC 
embedded-environment architecture, or the PowerPC Book-E architecture. Programs that 
use these instructions are not portable to all PowerPC implementations.

The multiply-accumulate instruction-set extensions include multiply-accumulate 
instructions, negative multiply-accumulate instructions, and multiply-halfword 
instructions.

Modulo and Saturating Arithmetic
The multiply-accumulate and negative multiply-accumulate instructions produce a 33-bit 
intermediate result. The method used to store this result in the 32-bit destination register 
depends on whether the instruction performs modulo arithmetic or saturating arithmetic.

With modulo-arithmetic instructions, the most-significant bit in the intermediate result is 
discarded and the low-32 bits of this result are stored in the destination register.

With saturating-arithmetic instructions, the low 32-bits of the intermediate result are 
stored in the destination register if the intermediate result does not overflow 32-bits. 
However, if the intermediate result overflows what is representable in 32-bits, the 
instruction loads the nearest representable value into the destination register. For the 
various instruction forms, these results are:

• Signed arithmetic—if the result exceeds 231−1 (> 0x7FFF_FFFF), the instruction loads 
the destination register with 231−1.

• Signed arithmetic—if the result is less than −231 (< 0x8000_0000), the instruction loads 
the destination register with −231.

• Unsigned arithmetic—if the result exceeds 232−1 (> 0xFFFF_FFFF), the instruction 
loads the destination register with 232−1.

Multiply-Accumulate Instructions

Multiply-Accumulate Cross-Halfword to Word Instructions
Table 3-40 shows the PPC405 integer multiply-accumulate cross-halfword to word instructions. 
These instructions take the lower halfword of the first source operand (rA[16:31]) and 
multiply it with the upper halfword of the second source operand (rB[0:15]), producing a 
32-bit product. The product is signed or unsigned, depending on the instruction. This 
product is added to the value in the destination register, rD, producing a 33-bit 
intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 
intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, above).

For each type of instruction shown in Table 3-40, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).
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Table 3-40: Multiply-Accumulate Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate Cross-Halfword to Word 
Modulo Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

macchw Multiply Accumulate Cross Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

macchw. Multiply Accumulate Cross Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

macchwo Multiply Accumulate Cross Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwo. Multiply Accumulate Cross Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Cross-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

macchws Multiply Accumulate Cross Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

macchws. Multiply Accumulate Cross Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

macchwso Multiply Accumulate Cross Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwso. Multiply Accumulate Cross Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Cross-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

macchwsu Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

macchwsu. Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

macchwsuo Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwsuo. Multiply Accumulate Cross Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-28 shows the operation of the integer multiply-accumulate cross-halfword to 
word instructions. 

Multiply-Accumulate High-Halfword to Word Instructions
Table 3-41 shows the PPC405 multiply-accumulate high-halfword to word instructions. These 
instructions multiply the high halfword of both source operands, rA[0:15] and rB[0:15], 
producing a 32-bit product. The product is signed or unsigned, depending on the 
instruction. This product is added to the value in the destination register, rD, producing a 
33-bit intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 

Multiply-Accumulate Cross-Halfword to Word 
Modulo Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

macchwu Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

macchwu. Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

macchwuo Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

macchwuo. Multiply Accumulate Cross Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-40: Multiply-Accumulate Cross-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-28: Multiply-Accumulate Cross-Halfword to Word Operation
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intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 107).

For each type of instruction shown in Table 3-41, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).

Table 3-41: Multiply-Accumulate High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate High-Halfword to Word 
Modulo Signed Instructions

rD is added to the signed product (rA[0:15]) × (rB[0:15]), producing 
a 33-bit result. The low-32 bits of this result are stored in rD.

machhw Multiply Accumulate High Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

machhw. Multiply Accumulate High Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

machhwo Multiply Accumulate High Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwo. Multiply Accumulate High Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate High-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[0:15]) × (rB[0:15]), producing 
a 33-bit result. If the result does not overflow, the low-32 bits of this 
result are stored in rD. Otherwise, the nearest-representable value 
is stored in rD.

machhws Multiply Accumulate High Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

machhws. Multiply Accumulate High Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

machhwso Multiply Accumulate High Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwso. Multiply Accumulate High Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-29 shows the operation of the multiply-accumulate high-halfword to word 
instructions. 

Multiply-Accumulate High-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[0:15]) × (rB[0:15]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

machhwsu Multiply Accumulate High Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

machhwsu. Multiply Accumulate High Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

machhwsuo Multiply Accumulate High Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwsuo. Multiply Accumulate High Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate High-Halfword to Word 
Modulo Unsigned Instructions

rD is added to the unsigned product (rA[0:15]) × (rB[0:15]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

machhwu Multiply Accumulate High Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

machhwu. Multiply Accumulate High Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

machhwuo Multiply Accumulate High Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

machhwuo. Multiply Accumulate High Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-41: Multiply-Accumulate High-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Multiply-Accumulate Low-Halfword to Word Instructions
Table 3-42 shows the PPC405 multiply-accumulate low-halfword to word instructions. These 
instructions multiply the low halfword of both source operands, rA[16:31] and rB[16:31], 
producing a 32-bit product. The product is signed or unsigned, depending on the 
instruction. This product is added to the value in the destination register, rD, producing a 
33-bit intermediate result. Generally, rD is loaded with the lower-32 bits of the 33-bit 
intermediate result. However, if the instruction performs saturating arithmetic and the 
intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 107).

For each type of instruction shown in Table 3-42, the “Operation” column indicates the 
multiply-accumulate operation performed. The column also shows, on an instruction-by-
instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-29: Multiply-Accumulate High-Halfword to Word Operation
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Table 3-42: Multiply-Accumulate Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply-Accumulate Low-Halfword to Word Modulo 
Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

maclhw Multiply Accumulate Low Halfword 
to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

maclhw. Multiply Accumulate Low Halfword 
to Word Modulo Signed and Record

CR0 is updated to reflect the result.

maclhwo Multiply Accumulate Low Halfword 
to Word Modulo Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwo. Multiply Accumulate Low Halfword 
to Word Modulo Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Low-Halfword to Word 
Saturate Signed Instructions

rD is added to the signed product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

maclhws Multiply Accumulate Low Halfword 
to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

maclhws. Multiply Accumulate Low Halfword 
to Word Saturate Signed and Record

CR0 is updated to reflect the result.

maclhwso Multiply Accumulate Low Halfword 
to Word Saturate Signed with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwso. Multiply Accumulate Low Halfword 
to Word Saturate Signed with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Multiply-Accumulate Low-Halfword to Word 
Saturate Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

maclhwsu Multiply Accumulate Low Halfword 
to Word Saturate Unsigned

XER and CR0 are not updated. rD,rA,rB

maclhwsu. Multiply Accumulate Low Halfword 
to Word Saturate Unsigned and 
Record

CR0 is updated to reflect the result.

maclhwsuo Multiply Accumulate Low Halfword 
to Word Saturate Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwsuo. Multiply Accumulate Low Halfword 
to Word Saturate Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-30 shows the operation of the multiply-accumulate low-halfword to word 
instructions. 

Multiply-Accumulate Low-Halfword to Word Modulo 
Unsigned Instructions

rD is added to the unsigned product (rA[16:31]) × (rB[16:31]), 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

maclhwu Multiply Accumulate Low Halfword 
to Word Modulo Unsigned

XER and CR0 are not updated. rD,rA,rB

maclhwu. Multiply Accumulate Low Halfword 
to Word Modulo Unsigned and 
Record

CR0 is updated to reflect the result.

maclhwuo Multiply Accumulate Low Halfword 
to Word Modulo Unsigned with 
Overflow Enabled

XER[OV,SO] are updated to reflect the result.

maclhwuo. Multiply Accumulate Low Halfword 
to Word Modulo Unsigned with 
Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Table 3-42: Multiply-Accumulate Low-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-30: Multiply-Accumulate Low-Halfword to Word Operation
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Negative Multiply-Accumulate Instructions

Negative Multiply-Accumulate Cross-Halfword to Word Instructions
Table 3-43 shows the PPC405 negative multiply-accumulate cross-halfword to word 
instructions. These instructions take the lower halfword of the first source operand 
(rA[16:31]) and multiply it with the upper halfword of the second source operand 
(rB[0:15]), producing a signed 32-bit product. This product is negated and added to the 
value in the destination register, rD, producing a 33-bit intermediate result (this is the same 
as subtracting the product from rD). Generally, rD is loaded with the lower-32 bits of the 
33-bit intermediate result. However, if the instruction performs saturating arithmetic and 
the intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, above).

For each type of instruction shown in Table 3-43, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Table 3-43: Negative Multiply-Accumulate Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate Cross-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[16:31]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmacchw Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmacchw. Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmacchwo Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmacchwo. Negative Multiply Accumulate Cross 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate Cross-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[16:31]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmacchws Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmacchws. Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmacchwso Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmacchwso. Negative Multiply Accumulate Cross 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-31 shows the operation of the negative multiply-accumulate cross-halfword to 
word instructions. 

Negative Multiply-Accumulate High-Halfword to Word Instructions
Table 3-44 shows the PPC405 negative multiply-accumulate high-halfword to word 
instructions. These instructions multiply the high halfword of both source operands, 
rA[0:15] and rB[0:15], producing a signed 32-bit product. This product is negated and 
added to the value in the destination register, rD, producing a 33-bit intermediate result 
(this is the same as subtracting the product from rD). Generally, rD is loaded with the 
lower-32 bits of the 33-bit intermediate result. However, if the instruction performs 
saturating arithmetic and the intermediate result overflows, rD is loaded with the nearest 
representable value (see Modulo and Saturating Arithmetic, page 107).

For each type of instruction shown in Table 3-44, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-31: Negative Multiply-Accumulate Cross-Halfword to Word Operation
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Table 3-44: Negative Multiply-Accumulate High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate High-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[0:15]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmachhw Negative Multiply Accumulate High 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmachhw. Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmachhwo Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmachhwo. Negative Multiply Accumulate High 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate High-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[0:15]) × (rB[0:15]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmachhws Negative Multiply Accumulate High 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmachhws. Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmachhwso Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmachhwso. Negative Multiply Accumulate High 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.
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Figure 3-32 shows the operation of the negative multiply-accumulate high-halfword to 
word instructions. 

Negative Multiply-Accumulate Low-Halfword to Word Instructions
Table 3-45 shows the PPC405 negative multiply-accumulate low-halfword to word instructions. 
These instructions multiply the low halfword of both source operands, rA[16:31] and 
rB[16:31], producing a signed 32-bit product. This product is negated and added to the 
value in the destination register, rD, producing a 33-bit intermediate result (this is the same 
as subtracting the product from rD). Generally, rD is loaded with the lower-32 bits of the 
33-bit intermediate result. However, if the instruction performs saturating arithmetic and 
the intermediate result overflows, rD is loaded with the nearest representable value (see 
Modulo and Saturating Arithmetic, page 107).

For each type of instruction shown in Table 3-45, the “Operation” column indicates the 
negative multiply-accumulate operation performed. The column also shows, on an 
instruction-by-instruction basis, how the XER and CR registers are updated (if at all).

Figure 3-32: Negative Multiply-Accumulate High-Halfword to Word Operation
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Table 3-45: Negative Multiply-Accumulate Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Negative Multiply-Accumulate Low-Halfword to 
Word Modulo Signed Instructions

The signed product (rA[16:31]) × (rB[16:31]) is subtracted from rD, 
producing a 33-bit result. The low-32 bits of this result are stored in 
rD.

nmaclhw Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed

XER and CR0 are not updated. rD,rA,rB

nmaclhw. Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
and Record

CR0 is updated to reflect the result.

nmaclhwo Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmaclhwo. Negative Multiply Accumulate Low 
Halfword to Word Modulo Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

Negative Multiply-Accumulate Low-Halfword to 
Word Saturate Signed Instructions

The signed product (rA[16:31]) × (rB[16:31]) is subtracted from rD, 
producing a 33-bit result. If the result does not overflow, the low-32 
bits of this result are stored in rD. Otherwise, the nearest-
representable value is stored in rD.

nmaclhws Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed

XER and CR0 are not updated. rD,rA,rB

nmaclhws. Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
and Record

CR0 is updated to reflect the result.

nmaclhwso Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
with Overflow Enabled

XER[OV,SO] are updated to reflect the result.

nmaclhwso. Negative Multiply Accumulate Low 
Halfword to Word Saturate Signed 
with Overflow Enabled and Record

XER[OV,SO] and CR0 are updated to reflect the 
result.

http://www.xilinx.com


120 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Multiply-Accumulate Instruction-Set Extensions
R

Figure 3-33 shows the operation of the negative multiply-accumulate low-halfword to 
word instructions. 

Multiply Halfword to Word Instructions

Multiply Cross-Halfword to Word Instructions
Table 3-46 shows the PPC405 multiply cross-halfword to word instructions. These instructions 
take the lower halfword of the first source operand (rA[16:31]) and multiply it with the 
upper halfword of the second source operand (rB[0:15]), producing a 32-bit product. The 
product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-46, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Figure 3-33: Negative Multiply-Accumulate Low-Halfword to Word Operation
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rD
0 31

0 32

rA
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rB
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×

rD
0 31

+

Intermediate Result

−1
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Table 3-46: Multiply Cross-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Cross-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[16:31]) × (rB[0:15]).

mulchw Multiply Cross Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mulchw. Multiply Cross Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 121
UG011 (v1.2) January 19, 2007

Chapter 3: User Programming Model
R

Figure 3-34 shows the operation of the multiply cross-halfword to word instructions. 

Multiply High-Halfword to Word Instructions
Table 3-47 shows the PPC405 multiply high-halfword to word instructions. These instructions 
multiply the high halfword of both source operands, rA[0:15] and rB[0:15], producing a 32-
bit product. The product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-47, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Multiply Cross-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[16:31]) × (rB[0:15]).

mulchwu Multiply Cross Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mulchwu. Multiply Cross Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-46: Multiply Cross-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-34: Multiply Cross-Halfword to Word Operation
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Table 3-47: Multiply High-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply High-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[0:15]) × (rB[0:15]).

mulhhw Multiply High Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mulhhw. Multiply High Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.
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Figure 3-35 shows the operation of the multiply high-halfword to word instructions. 

Multiply Low-Halfword to Word Instructions
Table 3-48 shows the PPC405 multiply low-halfword to word instructions. These instructions 
multiply the low halfword of both source operands, rA[16:31] and rB[16:31], producing a 
32-bit product. The product is signed or unsigned, depending on the instruction.

For each type of instruction shown in Table 3-48, the “Operation” column indicates the 
multiply operation performed. The column also shows, on an instruction-by-instruction 
basis, how the CR register is updated (if at all). The XER register is not updated by these 
instructions.

Multiply High-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[0:15]) × (rB[0:15]).

mulhhwu Multiply High Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mulhhwu. Multiply High Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-47: Multiply High-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-35: Multiply High-Halfword to Word Operation
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Table 3-48: Multiply Low-Halfword to Word Instructions

Mnemonic Name Operation
Operand 
Syntax

Multiply Low-Halfword to Word Signed Instructions rD is loaded with the signed product (rA[16:31]) × (rB[16:31]).

mullhw Multiply Low Halfword to Word 
Signed

CR0 is not updated. rD,rA,rB

mullhw. Multiply Low Halfword to Word 
Signed and Record

CR0 is updated to reflect the result.
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Figure 3-36 shows the operation of the multiply low-halfword to word instructions. 

Floating-Point Emulation
The PPC405 is an integer processor and does not support the execution of floating-point 
instructions in hardware. System software can provide floating-point emulation support 
using one of two methods.

The preferred method is to supply a call interface to subroutines within a floating-point 
run-time library. The individual subroutines can emulate the operation of floating-point 
instructions. This method requires the recompilation of floating-point software in order to 
add the call interface and link in the library routines.

Alternatively, system software can use the program interrupt. Attempted execution of 
floating-point instructions on the PPC405 causes a program interrupt to occur due to an 
illegal instruction. The interrupt handler must be able to decode the illegal instruction and 
call the appropriate library routines to emulate the floating-point instruction using integer 
instructions. This method is not preferred due to the overhead associated with executing 
the interrupt handler. However, this method supports software containing PowerPC 
floating-point instructions without requiring recompilation. See Program Interrupt 
(0x0700), page 223, for more information.

Multiply Low-Halfword to Word Unsigned 
Instructions

rD is loaded with the unsigned product (rA[16:31]) × (rB[16:31]).

mullhwu Multiply Low Halfword to Word 
Unsigned

CR0 is not updated. rD,rA,rB

mullhwu. Multiply Low Halfword to Word 
Unsigned and Record

CR0 is updated to reflect the result.

Table 3-48: Multiply Low-Halfword to Word Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax

Figure 3-36: Multiply Low-Halfword to Word Operation
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Processor-Control Instructions
In user mode, processor-control instructions are used to read from and write to the 
condition register (CR) and the special-purpose registers (SPRs). Instructions that access 
the time base are also considered processor-control instructions, but are discussed 
separately in Chapter 8, Timer Resources.

Condition-Register Move Instructions
The condition-register move instructions shown in Table 3-49 are used to read and write the 
condition register using a GPR as a destination or source register, and for writing a CR field 
from the XER register. Not included in this category are other instructions that access the 
CR. See Condition-Register Logical Instructions, page 77, for information on instructions 
used to manipulate bits and fields in the CR. See Conditional Branch Control, page 68, for 
information on how certain branch instructions use values in the CR as branch conditions.

mtcrf Field Mask (CRM)
The mtcrf instruction uses an 8-bit field mask (CRM) specified in the instruction encoding 
to control which CR fields are loaded from rS. As shown in Figure 3-37, each bit in CRM 
corresponds to one of the 4-bit CR fields, with the most-significant CRM bit corresponding 
to CR0 and the least-significant CRM bit corresponding to CR7. When mtcrf is executed, a 
CR field is loaded with the corresponding bits in rS only when the associated CRM mask 
bit is set to 1. If the mask bit is cleared to 0, the CR field is unchanged.

Figure 3-38 shows an example of how the CRM field is used. In this example, 
CRM = 0b01100100, causing CR1, CR2, and CR5 to be updated with the corresponding bits 
in rS. All remaining CR fields are unchanged.

Table 3-49: Condition-Register Move Instructions

Mnemonic Name Operation
Operand 
Syntax

mcrxr Move to Condition Register from XER The CR field specified by the crfD operand is 
loaded with XER[0:3]. The remaining bits in the 
CR are not modified. The contents of XER[0:3] are 
cleared to 0.

crfD

mfcr Move from Condition Register rD is loaded with the contents of CR. rD

mtcrf Move to Condition Register Fields CR is loaded with the contents of rS under the 
control of a field mask specified by the CRM op-
erand.

CRM,rS

Figure 3-37: mtcrf Field Mask (CRM) Format
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Special-Purpose Register Instructions
The special-purpose register instructions shown in Table 3-50 are used to read and write the 
special-purpose registers (SPRs) using a GPR as a destination or source register. The SPR 
number (SPRN) shown in the operand syntax column appears as a decimal value in the 
assembler listing. Within the instruction opcode, this number is encoded using a split-field 
notation. For more information, see Split-Field Notation, page 281.

Synchronizing Instructions
Table 3-51 lists the PowerPC synchronization instructions. The types of synchronization 
defined by the PowerPC architecture are described in Synchronization Operations, 
page 42.

Figure 3-38: mtcrf Example

rS

4 8 12 16 20 240 28 31

CRM 0 1 1 0 0 1 0 0
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CR1 CR2 CR3 CR4 CR5 CR6

rS[4:7] rS[8:11] rS[20:23]

CR0 CR7

CR

Unchanged

Table 3-50: Special-Purpose Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfspr Move from Special Purpose Register rD is loaded with the contents of the SPR specified 
by SPRN.

rD,SPRN

mtspr Move to Special Purpose Register The SPR specified by SPRN is loaded with the 
contents of rS.

SPRN,rS
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Implementation of eieio and sync Instructions
In the PPC405, eieio and sync are implemented identically for the following reasons:

• The PowerPC architecture only requires the eieio instruction to perform storage 
synchronization, but it does allow PowerPC processors to implement eieio as an 
execution-synchronizing instruction. The PPC405 implements eieio in such a manner.

• As defined by the PowerPC architecture, sync is used to synchronize memory 
accesses across all processors in a multiprocessor environment. Because the PPC405 
does not provide hardware support for multiprocessor memory coherency, sync does 
not guarantee memory ordering across multiple PPC405 processors. This results in 
the same storage-synchronization capability as the eieio instruction.

In implementations that provide hardware support for multiprocessor memory coherency, 
sync can take significantly longer to execute than eieio. PPC405 programmers should 
consider whether their software is expected to run on other platforms and use the sync 
instruction in favor of eieio only when necessary.

Synchronization Effects of PowerPC Instructions
Additional PowerPC instructions can cause synchronizing operations to occur. All 
instructions that result in some form of synchronization are listed in Table 3-52.

Table 3-51: Synchronizing Instructions

Mnemonic Name Operation
Operand 
Syntax

eieio Enforce In-Order Execution of I/O Provides an ordering function for loads and stores. All 
storage accesses that precede eieio complete before 
storage accesses following eieio.

—

isync Instruction Synchronize Ensures all previous instructions complete before the 
isync instruction completes. isync also prevents other 
instructions from beginning execution until the isync 
instruction completes. Prefetched instructions are 
discarded so that subsequent instructions are fetched 
and executed in the context established by instructions 
preceding the isync. Memory-access ordering is not 
guaranteed. Memory accesses caused by previous 
instructions are not necessarily ordered with respect to 
memory accesses by other devices.

sync Synchronize Ensures that all instructions preceding the sync 
instruction appear to complete before the sync 
instruction completes, and that no subsequent 
instructions are executed until after the sync 
instruction completes. Memory accesses caused by 
previous instructions are completed with respect to 
memory accesses by other devices.
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Semaphore Synchronization
Table 3-53 lists the PowerPC semaphore-synchronization instructions. These instructions are 
used to implement common semaphore operations, including test and set, compare and 
swap, exchange memory, and fetch and add. Examples of these semaphore operations are 
found in Synchronization Examples, page 559.

The lwarx and stwcx. instructions are typically used by system programs and are called by 
application programs as needed. Generally, a program uses lwarx to load a semaphore 
from memory, causing a reservation to be set (the processor maintains the reservation 
internally). The program can compute a result based on the semaphore value and 
conditionally store the result back to the same memory location using the stwcx. 
instruction. The conditional store is performed based on the existence of the reservation 
established by the preceding lwarx instruction. If the reservation exists when the store is 
executed, the store is performed and CR0[EQ] is set to 1. If the reservation does not exist 
when the store is executed, the target memory location is not modified and CR0[EQ] is 
cleared to 0.

Table 3-52: Synchronization Effects of PowerPC Instructions

Context Synchronizing Execution Synchronizing Storage Synchronizing

isync

rfci2

rfi2

sc

eieio1

isync

mtmsr2

rfci2

rfi2

sc

sync

eieio

sync

Notes: 
1. As implemented on the PPC405.
2. Privileged instruction.

Table 3-53: Semaphore Synchronization Instructions

Mnemonic Name Operation
Operand 
Syntax

lwarx Load Word and Reserve Indexed rD is loaded with the word in memory addressed 
using register-indirect with index addressing:

EA = (rA|0) + (rB)

A reservation corresponding to the address is 
maintained by the processor.

rD,rA,rB

stwcx. Store Word Conditional Indexed An effective address is computed using register-
indirect with index addressing:

EA = (rA|0) + (rB)

If a reservation exists, the contents of rS are stored 
into the memory word specified by the effective 
address, and the reservation is cleared. If a 
reservation does not exist, rS is not stored.

CR0[EQ] is set to 1 if the reservation exists, 
otherwise it is cleared to 0.

rS,rA,rB
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If the store is successful, the sequence of instructions from the semaphore load to the 
semaphore store appear to be executed atomically—no other device modified the 
semaphore location between the read and the update. Other devices can read from the 
semaphore location during the operation.

For a semaphore operation to work properly, the lwarx instruction must be paired with an 
stwcx. instruction, and both must specify identical effective addresses. The reservation 
granularity in the PPC405 is a word. For both instructions, the effective address must be 
word aligned, otherwise an alignment exception occurs. 

In the PPC405, the conditional store is always performed when a reservation exists, even if 
the store address does not match the load address that set the reservation. This operation is 
allowed by the PowerPC architecture, but is not guaranteed to be supported on all 
PowerPC implementations. It is good programming practice to always specify identical 
addresses for lwarx and stwcx. pairs.

The PPC405 can maintain only one reservation at a time. The address associated with the 
reservation can be changed by executing a subsequent lwarx instruction. The conditional 
store is performed based upon the reservation established by the last lwarx instruction 
executed. Executing an stwcx. instruction always clears a reservation held by the 
processor, whether the address matches that established by the lwarx.

Exceptions do not clear reservations, although an interrupt handler can clear a reservation.

Memory-Control Instructions
Table 3-54 lists the PowerPC memory-control instructions available to programs running in 
user mode. See Cache Instructions, page 160 for a detailed description of each instruction.

Table 3-54: Memory-Control Instructions, User Mode

Mnemonic Name

dcba Data Cache Block Allocate

dcbf Data Cache Block Flush

dcbst Data Cache Block Store

dcbt Data Cache Block Touch

dcbtst Data Cache Block Touch for Store

dcbz Data Cache Block Set to Zero

icbi Instruction Cache Block Invalidate

icbt Instruction Cache Block Touch
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Chapter 4

PPC405 Privileged-Mode Programming 
Model

This chapter presents an overview of the processor resources and instructions available to 
privileged-mode programs running on the PPC405. These resources and instructions are 
part of the privileged-programming model. From privileged mode, software can access all 
processor resources and can execute all instructions supported by the PPC405. Typically, 
only system software runs in privileged mode and applications run in user mode. 

The remaining chapters in this book present portions of the system-programming 
resources in greater detail, as follows:

• Chapter 5, Memory-System Management describes the resources available for 
managing the caches and memory protection.

• Chapter 6, Virtual-Memory Management describes the PPC405 address-translation 
capabilities.

• Chapter 7, Exceptions and Interrupts describes the exception mechanism and how 
the processor interrupts program execution so that exceptions can be handled.

• Chapter 8, Timer Resources describes the time base and timer registers.
• Chapter 9, Debugging describes the resources available in the PPC405 for debugging 

software and hardware.

Privileged Registers
Figure 4-1 shows additional registers supported by the PPC405 in privileged mode. These 
registers are accessed by software only when the processor is operating in privileged 
mode. In the PPC405, all privileged registers are 32 bits wide except for the time base, as 
described in Time Base, page 236.

The machine-state register, SPR general-purpose registers, and processor-version register 
are described in the following sections of this chapter. This chapter also describes device 
control registers which are implemented outside the PPC405 but are accessed by software 
running on the PPC405. The remaining privileged registers are described in other chapters 
as follows:

• The core-configuration registers (CCR0 and CCR1) are described in Cache Control, 
page 160.

• The processor ID register (PID) is described in Virtual Mode, page 180.
• The zone-protection register (ZPR) is described in Virtual-Mode Access Protection, 

page 191.
• The storage-attribute control registers are described in Memory-System Control, 

page 154.
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• The exception-handling registers are described in Interrupt-Handling Registers, 
page 207.

• The debug registers are described in Debug Registers, page 249.
• The timer registers, including the time base, are described in Timer Resources, 

page 235.
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Figure 4-1: PPC405 Privileged Registers
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Special-Purpose Registers
All privileged PPC405 registers except for the machine-state register are special-purpose 
registers, or SPRs. See Appendix A, Special-Purpose Registers, page 490  for a complete list 
of all SPRs (user and privileged) supported by the PPC405.

SPRs are read and written using the move from special-purpose register (mfspr) and move to 
special-purpose register (mtspr) instructions. See Special-Purpose Register Instructions, 
page 137, for more information on these instructions. Simplified instruction mnemonics 
are available for the mtspr and mfspr instructions when accessing certain SPRs. See 
Special-Purpose Registers, page 552, for more information.

Machine-State Register
The machine-state register (MSR) is a 32-bit register that defines the processor state. 
Figure 4-2 shows the format of the MSR. The bits in the MSR are defined as shown in 
Table 4-1. All system software can read and write the MSR using the move from machine-
state register (mfmsr) and move to machine-state register (mtmsr) instructions. The external-
interrupt enable (MSR[EE]) bit can also be updated using the write external enable 
instructions (wrtee and wrteei). See Machine-State Register Instructions, page 137, for 
more information on these instructions.

The MSR is also modified during execution of the system-call instruction (sc), return-from-
interrupt instructions (rfi and rfci), and by the exception mechanism during a control 
transfer to an interrupt handler.

0 6 12 13 14 16 17 18 19 20 21 22 23 26 27 31

AP APE WE CE EE PR FP ME FE0 DWE DE FE1 IR DR

Figure 4-2: Machine-State Register (MSR)

Table 4-1: Machine-State Register (MSR) Bit Definitions

Bit Name Function Description

0:5 Reserved

6 AP Auxiliary Processor Available

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

7:11 Reserved

12 APE APU Exception Enable

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

13 WE Wait State Enable

0—Disabled.

1—Enabled.

When in the wait state, the processor stops fetching and executing 
instructions, and no longer performs memory accesses. The 
processor remains in the wait state until an interrupt or a reset 
occurs, or an external debug tool clears WE. See Processor Wait 
State, page 138, for more information.

14 CE Critical Interrupt Enable

0—Disabled.

1—Enabled.

Controls the critical-input interrupt and the watchdog-timer 
interrupt. See Interrupt Reference, page 214, for more information 
on these interrupts.

15 Reserved

16 EE External Interrupt Enable

0—Disabled.

1—Enabled.

Controls the external interrupts, the programmable-interval timer 
interrupt, and the fixed-interval timer interrupt. See Interrupt 
Reference, page 214, for more information on each interrupt.
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The initial state of the MSR following a processor reset is described in Machine-State 
Register, page 274. 

SPR General-Purpose Registers
The SPR general-purpose registers (SPRG0–SPRG7) are 32-bit registers that can be used for 
any purpose by system software running in privileged mode. The values stored in these 
registers do not affect the operation of the PPC405 processor. 

Four of the registers (SPRG4–SPRG7) are available from user mode with read-only access. 
Application software can read the contents of SPRG4–SPRG7, but cannot modify them.

The format of all SPRGn registers is shown in Figure 4-3.

17 PR Privilege Level

0—Privileged mode.

1—User mode.

Controls the privilege level of the processor. See Processor 
Operating Modes, page 43, for more information.

18 FP Floating-Point Available

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

19 ME Machine-Check Enable.

0—Disabled.

1—Enabled.

Controls the machine-check interrupt. See Machine-Check 
Interrupt (0x0200), page 216, for more information.

20 FE0 Floating-Point Exception-Mode 0

(Unsupported)

This bit is unsupported and ignored by the PPC405. Software 
should clear this bit to 0.

21 DWE Debug Wait Enable

0—Disabled.

1—Enabled.

Controls the debug wait mode. See Debug-Wait Mode, page 249, 
for more information.

22 DE Debug Interrupt Enable

0—Disabled.

1—Enabled.

Controls the debug interrupt. See Debug Interrupt (0x2000), 
page 233, for more information.

23 FE1 Floating-Point Exception-Mode 1

(Unsupported)

This bit is unsupported and ignored by the PPC405D5. Software 
should clear this bit to 0.

24:25 Reserved

26 IR Instruction Relocate

0—Instruction-address transla-
tion is disabled.

1—Instruction-address transla-
tion is enabled.

Controls instruction-address translation. See Chapter 6, Virtual-
Memory Management, for more information. When address 
translation is disabled, the processor is running in real mode. See 
Real Mode, page 180, for an introduction.

27 DR Data Relocate

0—Data-address translation is 
disabled.

1—Data-address translation is 
enabled.

Controls data-address translation. See Chapter 6, Virtual-Memory 
Management, for more information. When address translation is 
disabled, the processor is running in real mode. See Real Mode, 
page 180, for an introduction.

28:31 Reserved

Table 4-1: Machine-State Register (MSR) Bit Definitions (Continued)

Bit Name Function Description
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The SPRGn registers are privileged SPRs with the following addresses:

• SPRG0—272 (0x110)
• SPRG1—273 (0x111)
• SPRG2—274 (0x112)
• SPRG3—275 (0x113)
• SPRG4—276 (0x114)
• SPRG5—277 (0x115)
• SPRG6—278 (0x116)
• SPRG7—279 (0x117)

These registers are read and written using the mfspr and mtspr instructions. User-mode 
software that reads SPRG4–SPRG7 accesses them using different SPR numbers (see 
page 65).

Processor-Version Register
The processor-version register (PVR) is a 32-bit read-only register that uniquely identifies 
the processor. Figure 4-4 shows the format of the PVR. The bit definitions are shown in 
Table 4-2. Table 4-3 shows the current PVR values.
 

0 31

General-Purpose System-Software Data

Figure 4-3: SPR General-Purpose Registers (SPRG0–SPRG7)

0 7 8 11 12 15 16 21 22 25 26 27 28 31

OWN HIGH PCF CAS PCL AID LOW

Figure 4-4: Processor-Version Register (PVR)

Table 4-2: Processor-Version Register (PVR) Bit Definitions

Bit Name Function/Value Description

0:7 OWN Owner Identifier

8b 0010_0000 (0x20)

Identifies Xilinx as the owner of the 
processor core.

8:11 HIGH User Defined
for Virtex-4 devices

Reserved: 4b 0000 (0x0)
for Virtex-II Pro devices

Reserved in Virtex-II Pro devices, and 
user-defined in Virtex-4 devices.

12:15 PCF Processor Core Family

4b 0001 (0x1)

Identifies the processor as belonging to 
the 405 processor-core family.

16:21 CAS Cache Array Sizes

6b 0000_10 (0x02)

Identifying the processor as containing 
16 KB instruction and 16 KB data caches.
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The PVR is a privileged read-only SPR with an address of 287 (0x11F). It is read using the 
mfspr instruction. Write access is not supported.

Device Control Registers
Device control registers (DCRs) are 32-bit registers implemented in FPGA logic gates. They 
are not contained within the processor core. The PowerPC embedded-environment 
architecture and PowerPC Book-E architecture define the existence of a DCR-address 
space and the instructions that access the DCRs, but they do not define what the DCRs do 
or how they are to be used. System developers can define DCRs for use in controlling the 
operations of on-chip buses, peripherals, and some processor behavior. The processor 
reads and writes the DCRs over the DCR-bus interface using the mfdcr and mtdcr 
instructions.

See UG018, PowerPC® 405 Processor Block Manual for more information on 
implementing and using DCRs.

22:25 PCL Processor Core Revision Level Identifies the processor-core revision 
level. This value is incremented when a 
revision is made to the processor core. 
Differs according to the Xilinx 
Virtex-II Pro or Virtex-4 device type.

26:27 AID ASIC Identifier

2b 10 (0x2)
for Virtex-II Pro devices

2b 11 (0x3) 
for Virtex-4 devices

28:31 LOW User Defined
for Virtex-4 devices

Reserved: 4b 0000 (0x0)
for Virtex-II Pro devices

Reserved in Virtex-II Pro devices, and 
user-defined in Virtex-4 devices.

Table 4-3: Current PVR Values

Device Value

Virtex-II Pro Devices 0x20010820, 0x20010860, 0x200108A0

Virtex-4 Devices 0x20011430, 0x20011470

Table 4-2: Processor-Version Register (PVR) Bit Definitions (Continued)

Bit Name Function/Value Description
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Privileged Instructions
Table 4-4 lists the privileged instructions supported by the PPC405. Attempted use of these 
instructions when running in user mode causes a program exception.

System Linkage
Application (user-mode) programs transfer control to system-service routines (privileged-
mode programs) using the system-call instruction, sc. Executing the sc instruction causes a 
system-call exception to occur. The system-call interrupt handler determines which 
system-service routine to call and whether the calling application has permission to call 
that service. If permission is granted, the system-call interrupt handler performs the actual 
procedure call to the system-service routine on behalf of the application program. This call 
is typically performed using a branch instruction that updates the link register with the 
return address.

The execution environment expected by the system-service routine requires the execution 
of prologue instructions to set up that environment. Those instructions usually create the 
block of storage that holds procedural information (the activation record), update and 
initialize pointers, and save volatile registers (registers the system-service routine uses). 
Prologue code can be inserted by the linker when creating an executable module, or it can 
be included as stub code in either the system-call interrupt handler or the system-library 
routines.

Returns from the system-service routine reverse the process described above. Control is 
transferred back to the system-call interrupt handler using a branch to link-register 
instruction. Epilog code is executed to unwind and deallocate the activation record, restore 
pointers, and restore volatile registers. The interrupt handler executes a return-from-
interrupt instruction (rfi) to return to the application.

Table 4-5 lists the PowerPC system-linkage instructions. The sc instruction can be executed 
from user mode and privileged mode. The rfi and rfci instructions are executed only from 
privileged mode.

Table 4-4: PPC405 Privileged Instructions

System Linkage Processor Control
Memory-System 

Management
Virtual-Memory 

Management

rfci

rfi

sc

mfdcr

mfmsr

mfspr(1)

mtdcr

mtmsr

mtspr(2)

wrtee

wrteei

dcbi

dccci

dcread

iccci

icread

tlbia

tlbre

tlbsx

tlbsync

tlbwe

Notes: 
1. Except for CTR, LR, SPRG4–SPRG7, and XER.
2. Except for CTR, LR, and XER.
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Processor-Control Instructions
In privileged mode, processor-control instructions are used to read from and write to the 
machine-state register and the special-purpose registers. Instructions that access the time 
base registers are also considered processor-control instructions, but are discussed 
separately in Chapter 8, Timer Resources.

Machine-State Register Instructions
The machine-state register instructions shown in Table 4-6 are used to read and write the 
machine-state register (MSR) using a GPR as a destination or source register. The mtmsr 
instruction shown in Table 4-6 is execution synchronizing. See Execution 
Synchronization, page 42, for more information.

Special-Purpose Register Instructions
The special-purpose register instructions shown in Table 4-7 are used to read and write the 
special-purpose registers (SPRs) using a GPR as a destination or source register. The SPR 
number (SPRN) shown in the operand syntax column can be specified as a decimal or 
hexadecimal value in the assembler listing. Within the instruction opcode, this number is 
encoded using a split-field notation. For more information, see Split-Field Notation, 
page 281.

Table 4-5: System-Linkage Instruction

Mnemonic Name Operation
Operand 
Syntax

rfi Return from Interrupt Return from noncritical-interrupt handler. See 
Returning from Interrupt Handlers, page 205, 
for more information.

—

rfci Return from Critical Interrupt Return from critical-interrupt handler. See 
Returning from Interrupt Handlers, page 205, 
for more information.

—

sc System Call Causes a system-call exception to occur. See 
System-Call Interrupt (0x0C00), page 226, for 
more information.

—

Table 4-6: Machine-State Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfmsr Move from Machine State Register rD is loaded with the contents of the machine-state 
register.

rD

mtmsr Move to Machine State Register The machine-state register is loaded with the 
contents of rS.

rS

wrtee Write External Enable MSR[EE] (bit 16) is loaded with the value in rS16. rS

wrteei Write External Enable Immediate MSR[EE] (bit 16) is loaded with the immediate 
value of the instruction E field.

E
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Simplified instruction mnemonics are available for the mtspr and mfspr instructions when 
accessing certain SPRs. See Special-Purpose Registers, page 552, for more information.

Device Control Register Instructions
The device control register instructions shown in Table 4-8 are used to read and write the 
device control registers (DCRs) using a GPR as a destination or source register. The DCR 
number (DCRN) shown in the operand syntax column can be specified as a decimal or 
hexadecimal value in the assembler listing. Within the instruction opcode, this number is 
encoded using a split-field notation. For more information, see Split-Field Notation, 
page 281.

Processor Wait State
Software-controlled power management is possible through the use of the processor wait 
state. Wait state is a low-power operating mode that can be used to conserve processor 
energy when the processor is not busy. Wait state is entered when software sets the wait-
state enable bit (MSR[WE]) to 1. 

When in the wait state, the processor stops fetching and executing instructions, and no 
longer performs memory accesses. The processor continues to respond to interrupts, and 
can be restarted through the use of external interrupts or timer interrupts. Wait state can 
also be exited when an external debug tool clears WE or when a reset occurs.

Table 4-7: Special-Purpose Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfspr Move from Special Purpose Register rD is loaded with the contents of the SPR specified 
by SPRN.

rD,SPRN

mtspr Move to Special Purpose Register The SPR specified by SPRN is loaded with the 
contents of rS.

SPRN,rS

Table 4-8: Device Control Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mfdcr Move from Device Control Register rD is loaded with the contents of the DCR specified 
by DCRN.

rD,DCRN

mtdcr Move to Device Control Register The DCR specified by DCRN is loaded with the 
contents of rS.

DCRN,rS
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Chapter 5

Memory-System Management

This chapter describes how software can manage the interaction between the PPC405 
processor and the memory system. Memory-system management includes cache control, 
the use of storage attributes, and memory-coherency considerations. The virtual-memory 
environment is described separately in Chapter 6, Virtual-Memory Management.

Memory-System Organization
Figure 5-1 shows the memory-system organization supported by the PPC405. The 
processor implements separate internal instruction and data caches, an architectural 
construct known as the Harvard cache model. The PPC405 does not provide hardware 
support for attachment of a level-2 (L2) or higher caches. The processor communicates 
with system memory over the processor local bus (PLB), usually through a memory 
controller. 

The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. The cache structure of other PowerPC processors 
can differ from that implemented by the PPC405. To maximize portability, software that 
operates on multiple PowerPC implementations should always assume implementation of 
a Harvard cache model.

Separate instruction and data on-chip-memory (OCM) can be attached to the PPC405 cache 
controllers using a dedicated processor interface. The performance of OCM accesses can be 
identical to that of a cache hit, depending on how much block RAM is connected to the 
processor through the OCM controllers. Refer to UG018, PowerPC® 405 Processor Block 
Manual for more information on the OCM and OCM controllers.

http://www.xilinx.com
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Memory-System Features
The PPC405 memory system supports the following features:

• Separate 64-bit instruction and 64-bit data interfaces to the processor local bus (PLB).
• Separate 64-bit instruction and 32-bit data interfaces to the on-chip memory (OCM).
• Single-cycle access to the OCM (depending on how much block RAM is connected to 

the processor), matching the access time for cache hits.
• Independent, programmable PLB-request priority for the instruction and data 

interfaces.
• Support for big-endian and little-endian memory systems.
• Support for unaligned load and store operations.
• Separate instruction and data caches (Harvard cache model) with the following 

characteristics:
- 16 KB 2-way set-associative cache arrays.
- 32-byte cachelines.
- Programmable line allocation for instruction fetches, data loads, and data stores.
- Non-blocking access for cache hits during line fills (the data cache is also non-

blocking during cache flushes).
- Critical-word bypass for cache misses.
- Programmable PLB request size for non-cacheable memory requests.
- A complete set of cache-control instructions.

• Specific features supported by the instruction-cache include:
- A virtually-indexed and physically-tagged cache array.
- Programmable address pipelining and prefetching for cache misses and non-

cacheable requests.
- Buffering of up to eight non-cacheable instructions in the fill buffer.
- Support for non-cacheable hits into the fill buffer.
- Flash invalidate—one instruction invalidates the entire cache.

• Specific features supported by the data-cache include:

Figure 5-1: PPC405 Memory-System Organization
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- A physically-indexed and physically-tagged cache array.
- Flexible control over write-back and write-through strategies for each cacheable 

memory region.
- Address pipelining for cache misses.
- Buffering of up to 32 bytes of data in the fill buffer.
- Support for non-cacheable hits into the fill buffer.
- Handling of up to two pending cacheline flushes.
- Handling of up to three pending stores before causing a pipeline stall.

Cache Organization
The PPC405 contains an instruction-cache unit and a data-cache unit. Each cache unit 
contains a 16 KB, 2-way set-associative cache array, plus control logic for managing cache 
accesses. The caches contain copies of the most frequently used instructions and data and 
can typically be accessed much faster than system memory.

Figure 5-2 shows the logical structure of the PPC405 cache arrays. Each cache array is 
organized as a collection of cachelines. There are a total of 512 cachelines in a cache array, 
divided evenly into two ways (one way contains 256 lines). Line n from way A and line n 
from way B make up a set of cachelines, also known as a congruence class. A cache array 
contains a total of 256 sets, or congruence classes.

Each cacheline contains the following pieces of information:

• A tag used to uniquely identify the line within the congruence class.
• 32 bytes of data that are a copy of a contiguous, 32-byte block of system memory, 

aligned on a 32-byte address boundary. The data can represent either instructions (in 
the instruction cache) or operands (in the data cache).

• An LRU bit that specifies which cacheline within the congruence class is least-recently 
used. Each time a cacheline is accessed, the cache controller marks the other line 
within that congruence class as least-recently used. When a new cacheline is read 
from memory during a cacheline fill, the line in the congruence class marked least-
recently used is replaced.

• A dirty bit that indicates whether the cacheline contains modified information. A 
modified cacheline contains data that is more recent than the copy in system memory. 
The instruction cache does not have a dirty bit.

The 512 total lines of 32 bytes each yields a 16 KB cache size.
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Data is selected from the data cache using fields within the data address. Likewise, an 
instruction is selected from the instruction cache using fields within the instruction 
address. The data cache is physically tagged and physically indexed. This means that the 
physical address alone is used to access the data-cache array. The instruction cache is 
physically tagged and virtually indexed. Here, the effective address is used to specify a 
congruence class (set of lines) within the cache, and the physical address is used to specify 
a specific tag. The instruction cache is accessed in this manner for performance reasons, but 
care is required to avoid cache synonyms (see Instruction-Cache Synonyms, page 145). 
Figure 5-3 shows the address fields used in accessing the two caches.

Figure 5-4 shows an example of how the physical-address fields are used to select a data 
operand from the data-cache array. The instruction cache operates in a similar manner, 
using fields from both the physical address and the effective address.

Figure 5-2: Logical Structure of the PPC405 Cache Arrays
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Referring to Figure 5-4, the line field in the data address is used to select a congruence class 
from the cache array. The congruence class contains two lines, one from each way. Each line 
contains a tag, meaning two tags are present in a congruence class. The tag field in the data 
address is compared to both tags in the congruence class. A hit occurs when the data-
address tag field is equal to one of the two tags. A miss occurs when the data-address tag 
field is not equal to either of the tags.

When a hit occurs, the cacheline with the matching tag is selected. The data in the selected 
cacheline is loaded into the 32-byte data-cacheline buffer. The byte field in the data address 
is used as an offset into the line buffer. The data located at that byte offset (byte, halfword, 
or word) is read from or written to the line buffer, depending on the operation that initiated 
the cache access. 

Access into the instruction cache operates in a near-identical fashion. The difference is in 
how the 32-byte instruction line buffer is accessed. The line buffer is accessed using the 
byte field from the instruction effective address. However, the low-order two bits (EA30:31) 
are ignored, aligning the access on a word boundary. Four bytes are always read from this 
word-aligned location in the instruction cacheline buffer. 

Instruction-Cache Operation
Figure 5-5 shows how instructions flow from the instruction-cache unit (ICU) to the 
execution pipeline.

Figure 5-4: Data-Cache Access Example
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All instruction-fetch requests are handled by the ICU. If a fetch address is cacheable, the 
ICU examines the instruction cache for a hit. When a hit occurs, the cacheline is read from 
the instruction cache and loaded into the line buffer. Individual instructions are sent from 
the line buffer to the instruction queue. From there they are either loaded into one of the 
prefetch buffers or are immediately decoded, depending on the current state of the decode 
and execution pipelines. Up to two instructions per clock cycle can be sent to the 
instruction queue from the line buffer.

When a cache miss occurs, or when an instruction address is not cacheable, the ICU sends 
the fetch-address request to system memory over the processor local bus (PLB). A cache 
miss results in a cacheline fill, which appears as an eight-word request on the PLB. The 
request size for non-cacheable instructions can be either four words (half line) or eight 
words (full line) and is programmable using the CCR0 register (see Core-Configuration 
Register 0, page 164). Full-line (cacheable and non-cacheable) and half-line fetch requests 
are always completed (never aborted), even if the instruction stream branches before the 
remaining instructions are received. As instructions are received by the ICU from the PLB, 
they are placed in the fill buffer.

The ICU requests the target instruction first, but the order instructions are returned 
depends on the design of the PLB device that handles the request (typically a memory 
controller). When the ICU receives the target instruction, it is immediately forwarded from 
the fill buffer to the instruction queue over the bypass path. The remaining instructions are 
received from the PLB and placed in the fill buffer. Subsequent instruction fetches read an 
instruction from the fill buffer if it is already present in the buffer. If a cache miss occurred, 
the instruction-cacheline is loaded with the fill-buffer contents after all instructions are 
received.

Figure 5-5: Instruction Flow from the Instruction-Cache Unit
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Instruction Cacheability Control
Control of instruction cacheability depends on the address-translation mode as follows:

• In real mode, the instruction-cache cacheability register (ICCR) specifies which 
physical-memory regions are cacheable. See Instruction-Cache Cacheability Register 
(ICCR), page 158, for more information.

• In virtual mode, the storage-attribute fields in the page-translation look-aside buffer 
entry (TLB entry) specify which virtual-memory regions are cacheable. See Storage-
Attribute Fields, page 187, for more information.

After a processor reset, the processor operates in real mode and all physical-memory 
regions are marked as non-cacheable (all ICCR bits are cleared to 0). Prior to specifying 
memory regions as cacheable, software must invalidate the instruction cache by executing 
the iccci instruction. (see Cache Instructions, page 160, for information on this 
instruction). After the cache is invalidated, the ICCR can be configured.

Core-Configuration Register 0, page 164, describes additional software controls that can 
be used to manage instruction prefetching from cacheable and non-cacheable memory.

Instruction-Cache Hint Instruction
The PowerPC embedded-environment architecture and PowerPC Book-E architecture 
define an instruction-cache block touch (icbt) instruction that can be used to improve 
instruction-cache performance. Software uses icbt to indicate that instruction-fetching is 
likely to occur from the specified address in the near future. When PLB bandwidth is 
available, the processor can prefetch the instruction-cacheline associated with the icbt 
operand address. This instruction executes as a no-operation if loading the cacheline 
results in a page-translation exception or a protection exception.

Instruction-Cache Synonyms
NOTE: The following information applies only if instruction address translation is enabled.

Proper cache operation depends on a physical address being cached by at most one 
cacheline. An instruction-cache synonym exists when a single physical address is cached by 
multiple instruction-cachelines. This can occur when software uses page translation to 
map multiple virtual addresses to the same physical address. Cache synonyms pose 
serious problems for system software when managing memory-access protection, page 
translation, and coherency. 

In the PPC405, the instruction cache is physically tagged and virtually indexed. When 
translation is enabled, the physical address is translated from the virtual address. A 
synonym can exist when common bit ranges in the virtual address and physical address 
are used to access the cache. This occurs when bits in the virtual index are involved in 
translating physical-tag bits.

To illustrate the problem, assume 4 KB page translation maps two virtual addresses, 
0x8888_8000 and 0xFFFF_F000, to the same physical address, 0x4444_4000 (see Chapter 6, 
Virtual-Memory Management for information on address translation). When a 4 KB page 
address is translated, the translation mechanism maps each effective-page number (EA0:19) 
to the same physical-page number (RA0:19). Both effective-page numbers (0x8888_8 and 
0xFFFF_F) are translated into the physical-page number 0x4444_4. The effective-page 
offset (0x000) is not translated and is used as the physical-page offset (RA20:31 = EA20:31).

The ICU uses RA0:21 as the tag and EA19:26 as the index when accessing the instruction 
cache. Overlap between tag and index exists in the bit range 19:21. However, only EA19 is 
used to both index the cache and translate part of the physical tag (EA20:21 is not used to 
translate 4 KB virtual pages). In this example, a synonym exists because the effective 

http://www.xilinx.com


146 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Memory-System Organization
R

addresses differ in EA19. The two virtual addresses select different cachelines, even though 
the address translation mechanism maps them to a single physical address.

Because the PPC405 supports variable page sizes, different high-order EA bits are used to 
translate pages. The result is that synonyms can occur to varying degrees based on page 
size:

• 1 KB pages—three bits (EA19:21) are used in indexing and tag comparison, resulting in 
as many as eight synonyms

• 4 KB pages—one bit (EA19) is used in indexing and tag comparison, resulting in two 
possible synonyms

The following two options are available for preventing cache synonyms:

• Avoid mapping multiple virtual pages into a single physical page when using 1 KB or 
4 KB pages sizes

• Use pages sizes of 16 KB or greater if multiple virtual pages must be mapped into a 
single physical page

Data-Cache Operation
Figure 5-6 shows how data flows between the data-cache unit (DCU) and the general-
purpose registers.

All data-load requests and data-store requests are handled by the DCU. If a data address is 
cacheable, the DCU examines the data cache for a hit. A hit causes the cacheline to be read 
from the data cache and loaded into the line buffer. For a load hit, the data value is read 
from the line buffer and written to a GPR. For a store hit, the data value is read from the 
GPR and written to the line buffer and the line buffer is stored back into the data cache. The 
data cache supports byte writeability to improve the performance of byte and halfword 
stores. Load hits and store hits can be completed in one clock cycle.

If a cache miss occurs or if the data address is not cacheable, the DCU sends the data-
address request to system memory over the processor local bus (PLB). Store misses to 
write-back memory and all load misses cause a cacheline fill. The size of all cacheline fill 
requests over the PLB is 32 bytes. The request size for a store to write-through memory 
(cache hit and cache miss) is one word (four bytes). The request size for a non-cacheable 
data access is programmable using the CCR0 register (see Core-Configuration Register 0, 

Figure 5-6: Data Flow to/from the Data-Cache Unit
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page 164). Cacheline fills are always completed (never aborted) even if the processor does 
not require any other bytes in the line. As data is received by the DCU from the PLB, it is 
placed in the fill buffer.

During a cacheline fill, the DCU requests the target data (load or store) first. However, the 
order data is returned depends on the design of the PLB device that handles the request 
(typically a memory controller). When the DCU receives target load data, it is forwarded 
immediately to the GPR over the bypass path. When the DCU receives target store data, it 
is immediately replaced by the GPR source value using the bypass path. The remaining 
data is received from the PLB and placed in the fill buffer. Subsequent loads and stores 
access the fill buffer if the data is present in the buffer. The data cacheline is loaded with the 
fill-buffer contents after all data are received.

If a cacheline fill replaces a dirty (modified) cacheline, the processor causes a cacheline flush 
to occur prior to loading the cacheline from the fill buffer. A cacheline flush updates system 
memory with the modified data from the cache. All 32 bytes in a cacheline are written 
sequentially to system memory over the PLB, including unmodified bytes.

Data Cacheability Control
Control of data cacheability depends on the address-translation mode:

• Real mode
• Virtual mode

Real Mode

In real mode, the data-cache cacheability register (DCCR) specifies which physical-
memory regions are cacheable. See Data-Cache Cacheability Register (DCCR), page 157, 
for more information.

After a processor reset, the processor operates in real mode and all physical-memory 
regions are marked as non-cacheable (all DCCR bits are cleared to 0). Prior to specifying 
memory regions as cacheable, software must invalidate all data-cache congruence classes 
by executing the dccci instruction once for each class (see Cache Instructions, page 160, for 
information on this instruction). After the congruence classes are invalidated, the DCCR 
can be configured.

Virtual Mode

In virtual mode, the storage-attribute fields in the page-translation look-aside buffer entry 
(TLB entry) specify which virtual-memory regions are cacheable. See Storage-Attribute 
Fields, page 187, for more information.

Data-Cache Write Policy
Cacheable data can be written to the data cache using two write policies:

• Write-back caching
• Write-through caching

Write-Back Caching

In a write-back caching policy, the data cache is updated by a write hit but system memory 
is not updated. A write miss causes the cache to allocate a new cacheline and update that 
line—system memory is not updated.

Write-back caching can improve system performance by minimizing processor local bus 
activity. Write-back cachelines are only written to memory during cacheline replacement 
or when explicitly flushed using a dcbf or dcbst instruction. Only modified cachelines are 
written.
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Write-Through Caching

In a write-through caching policy, both the data cache and system memory are updated by 
a write hit. A write miss updates only system memory—a new cacheline is not allocated.

Write-through caching can simplify the work of maintaining coherency between the data 
cache and system memory. See Software Management of Cache Coherency, page 169, for 
more information.

Control of the data-cache write policy depends on the address-translation mode:

• In real mode, the data-cache write-through register (DCWR) specifies the write policy 
for each physical-memory region. See Data-Cache Write-Through Register (DCWR), 
page 157, for more information.

• In virtual mode, the storage-attribute fields in the page-translation entry (TLB entry) 
specify the data-cache write policy for virtual-memory regions. See Storage-Attribute 
Fields, page 187, for more information.

The write policy is in effect only when a memory region is defined as cacheable. Otherwise, 
it is ignored.

Data-Cache Allocation Control
Software can control data-cacheline allocation and data PLB-request size by using the core-
configuration register 0 (CCR0):

• Load misses from cacheable memory can be prevented from allocating cachelines by 
using the load without allocate bit, CCR0[LWOA]. This can provide a performance 
advantage if memory reads are infrequent and tend to access non-contiguous 
addresses.

• Loads from non-cacheable memory (and those that do not allocate cachelines, as 
described above) can be programmed to generate eight-word PLB requests, or to 
generate only the number of data requested by the CPU. This is controlled using the 
load-word-as-line bit, CCR0[LWL]. If CCR0[LWL]=1, the DCU requests eight words. 
Using an eight-word request size provides the fastest access to sequential non-
cacheable memory. The requested data remains in the data-cache fill buffer until one 
of the following occur:
- A subsequent load replaces the contents of the fill buffer.
- A store to an address contained in the fill buffer occurs.
- A dcbi or dccci instruction is executed that affects an address in the fill buffer. 
- A sync instruction is executed.

Note that if CCR0[LWL]=1 and the target non-cacheable region is also marked as 
guarded (i.e., the G storage attribute is set to 1), the DCU will request only the data 
requested by the CPU.

• Store misses to cacheable memory can be prevented from allocating cachelines by 
using the store without allocate bit, CCR0[SWOA]. Software can use this bit to 
prevent a store miss to write-back memory from allocating a cacheline. Instead, the 
store updates system memory as if a write-through caching policy were in effect. 
Unlike write-through caching, store hits to write-back memory do not automatically 
update system memory when this bit is set.

See Core-Configuration Register 0, page 164, for more information on these control bits.
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Data-Cache Performance
In general, a data-cache hit completes in one cycle without stalling the processor. The DCU 
can perform certain cache operations in parallel to improve performance. Combinations of 
load and store operations—cacheline fills, cacheline flushes, and operations that hit in the 
cache—can occur simultaneously. However, data-cache performance ultimately depends 
on software-execution dynamics and on the design of the external-memory controller. 
These two factors can combine to adversely affect data-cache performance by introducing 
pipeline stalls.

Pipeline Stalls
A pipeline stall occurs when instruction execution must wait for data to be loaded from or 
stored to memory. If the DCU can access the data immediately, no pipeline stall occurs. If 
the DCU cannot perform the access immediately, a pipeline stall can occur and continues 
until the DCU completes the access. The following events and operations can cause the 
DCU to stall the pipeline:

• A cache miss occurs or software accesses non-cacheable memory. This causes the DCU 
to retrieve data from system memory, which can take many cycles. 

• The fill buffer contents (when full) are transferred to the data cache. During this time 
no other cache access can be performed. The process takes three cycles if the replaced 
cacheline is unmodified and four cycles if the replaced cacheline is modified.

• A load from non-cacheable memory is followed by other non-cacheable loads. The 
loads require at least four cycles to complete.

• More than two loads are pending completion in the DCU. The DCU can accept a 
second load if the first load cannot be completed immediately. If a subsequent DCU 
request of any kind is made, it is not accepted until the previous loads are completed 
by the DCU.

• A store to non-cacheable memory is followed by other non-cacheable stores. The 
stores require at least two cycles to complete.

• More than three stores are pending completion in the DCU. The DCU can accept a 
third store if the first two stores cannot be completed immediately. If a subsequent 
DCU request of any kind is made, it is not accepted until the previous stores are 
completed by the DCU.

• A data-cache control instruction (for example, dcba or dcbst) is executed. This causes 
a pipeline stall until all previous DCU operations complete execution, including loads 
and stores.

• More than two cacheline fills are pending.
• More than two cacheline flushes are pending.
• The on-chip memory (OCM) interface asserts a hold signal. The DCU can accept one 

additional load or store before causing a pipeline stall.

Data-Cache PLB Priority
The processor asserts a data-cache to PLB priority (DPP) signal when a PLB request is issued 
by the DCU. The DPP signal tells the PLB arbiter the priority that should be assigned to the 
DCU request. DPP is a two-bit signal. The high-order bit (DPP0) is controlled by the DCU. 
The low-order bit (DPP1) can be controlled by software using the DDP1 field in the CCR0 
register. See Table 5-6, page 164, for more information on using this CCR0 field.

Table 5-1 shows the conditions under which the DCU asserts and deasserts DPP0. As is 
shown in the table, loads from system memory have highest priority and always 
immediately assert DPP0.
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Data-Cache Hint Instructions
The PowerPC architecture defines data-cache instructions that can be used to improve 
memory performance by providing hints to the processor that memory locations are likely 
to be accessed in the near future. They are:

• Data-cache block touch (dcbt)—This instruction indicates that memory loads are likely 
to occur from the specified address. The processor can prefetch the cacheline 
associated with the address as a result of executing this instruction.

• Data-cache block touch for store (dcbtst)—This instruction indicates that memory stores 
are likely to occur to the specified address. The processor can prefetch the cacheline 
associated with the address as a result of executing this instruction.

Depending on how a processor implementation interacts with the memory subsystem, 
dcbt and dcbst can behave differently. On the PPC405, however, dcbt and dcbtst are 
implemented identically. These instructions execute as a no-operation if loading the 
cacheline were to result in a page-translation exception or a protection exception.

The following instructions can also be used as hint instructions when the contents of an 
address in system memory are not important:

• Data-cache block allocate (dcba)—This instruction allocates a cacheline corresponding to 
the specified address.

• Data-cache block zero (dcbz)—This instruction allocates a cacheline corresponding to 
the specified address and clears the cacheline contents to zero. It can be used to 
initialize cacheable memory locations.

dcba and dcbz do not access memory when allocating a cacheline. It is possible for these 
instructions to allocate cachelines for non-existent physical-memory addresses. A 
subsequent attempt to store the cacheline contents back to system memory can result in 
system problems or cause a machine-check exception to occur.

The dcba instruction executes as a no-operation if loading the cacheline were to result in a 
page-translation exception or a protection exception. On the other hand, dcbz causes a 
data-storage interrupt to occur if loading the cacheline results in a page-translation 
exception or a protection exception.

Table 5-1: Data-Cache to PLB Priority Examples

If the Current DCU 
Operation...

...Has the 
Following

DPP0 Value...
The Next DCU Operation...

...Updates DPP0 
as Shown

Load from system memory. Assert See first column

Store to system memory

Deassert

Any stalled DCU operation Assert

dcbf Cache hit Deassert

dcbf, dcbst Non-cacheable load Assert

dcbf, dcbst Cacheline flush Assert

dcbt Cache hit Deassert

dcbi, dccci, dcbz Deassert See first column
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Accessing Memory
Memory (collectively, system memory and cache memory) is accessed when instructions 
are fetched and when a program executes load and store instructions. Other conditions not 
specified by a program can cause memory accesses to occur, such as cacheline fills and 
cache flushes. The coherency and ordering of these memory accesses are influenced by the 
processor implementation, the memory system design, and software execution.

Memory Coherency
Coherency describes the ordering of reads from and writes to a single memory location. A 
memory system is coherent when the value read from a memory address is always the last 
value written to the address. In a system where all devices read and write from a single, 
shared system memory, memory is always coherent. In systems with memory-caching 
devices, maintaining coherency is less straightforward. For example, a processor cache can 
contain a more recent value for a memory location than system memory. The memory 
system is coherent only when a mechanism is provided to ensure a device receives the 
cached value rather than the system-memory value when read.

The PPC405 does not support memory-coherency management in hardware. Certain 
situations exist where coherency can be lost between system memory and the processor 
caches. On the PPC405, these situations require software management of memory 
coherency. See Software Management of Cache Coherency, page 169, for more 
information.

Atomic Memory Access
An access is atomic if it is always performed in its entirety with no software-visible 
fragmentation. Only the following single-register accesses are guaranteed to be atomic:

• Byte accesses.
• Halfword accesses aligned on halfword boundaries.
• Word accesses aligned on word boundaries.

No other access is guaranteed to be atomic, particularly the following:

• Load and store operations using unaligned operands.
• Accesses resulting from execution of the lmw, stmw, lswi, lswx, stswi, or stswx 

instructions.
• Accesses resulting from execution of cache-management instructions.

The lwarx/stwcx. instruction combination can be used to perform an atomic memory 
access. The lwarx instruction is a load from a word-aligned memory location that has two 
side effects:

• A reservation for a subsequent stwcx. instruction is created.
• The memory coherence mechanism is notified that a reservation exists for the 

memory location accessed by the lwarx.

The stwcx. instruction conditionally stores to a word-aligned memory location based on 
the existence of a reservation created by lwarx. See Synchronizing Instructions, page 125, 
for more information on using these instructions.

Ordering Memory Accesses
The PowerPC architecture specifies a weakly-consistent memory model for shared-
memory multiprocessor systems. The order a processor performs memory accesses, the 
order those accesses complete in memory, and the order those accesses are viewed as 
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occurring by another processor can all differ. This model provides an opportunity for 
significantly improved performance over a model applying stronger consistency rules. 
However, the responsibility for memory-access ordering is placed on the programmer. 

When a program requires strict access ordering for proper execution, the programmer 
must insert the appropriate ordering or synchronizing instructions into the program. The 
PowerPC architecture provides the ability to enforce memory-access ordering among 
multiple programs that share memory. Similar means are provided for programs that share 
memory with other hardware devices, such as I/O devices. These are:

• Enforce in-order execution of I/O instruction—The eieio instruction forces load and store 
memory-access ordering. The instruction acts as a barrier between all loads and stores 
that precede it and those that follow it. eieio can be used to ensure that a sequence of 
load and store operations to an I/O-device control register are performed in the 
desired order.

• Synchronize instruction—The sync instruction guarantees that all preceding coherent 
memory accesses initiated by a program appear to complete before the sync 
instruction completes. No subsequent instructions appear to execute until after the 
sync instruction completes. 

On processors that support hardware-enforced shared-memory coherency, the sync 
instruction also provides synchronization between devices that access memory. The 
PPC405 does not provide hardware-enforced shared-memory coherency support. On 
the PPC405, the sync instruction is implemented identically to eieio.

In systems supporting hardware-enforced shared-memory coherency, sync can take 
significantly longer to execute than eieio. Programmers should avoid using sync when 
eieio performs the required ordering. 

Preventing Inappropriate Speculative Accesses
PowerPC processors can perform speculative memory accesses, either to fetch instructions 
or to load data. A speculative access is any access not required by the sequential-execution 
model. For example, fetching instructions beyond an unresolved conditional branch is 
considered speculative. If the branch prediction is incorrect, the program (as executed) 
never requires the speculatively fetched instructions from the mispredicted path.

Sometimes speculative accesses are inappropriate. For example, an attempt to fetch 
instructions from addresses that do not contain instructions can cause a program to fail. 
Speculatively reading data from a memory-mapped I/O device can cause undesirable 
system behavior. Speculatively reading data from a peripheral status register that is 
cleared automatically after a read can cause unintentional loss of status information.

The PPC405 does not perform speculative data loads, but can speculatively fetch 
instructions. Branch prediction can cause speculative fetching of up to five cacheable 
instructions, or two non-cacheable instructions. If a bctr or blr instruction is predicted as 
taken, speculative fetching down the predicted path does not begin until all updates of the 
CTR or LR ahead of the predicted branch are complete. This prevents speculative accesses 
from unrelated addresses residing temporarily in the CTR and LR.

Using Guarded Storage
Speculative accesses can be prevented by assigning the guarded storage attribute (G) to 
memory locations (see Guarded (G), page 155). An access to a guarded memory location is 
not performed until that access is required by the sequential-execution model and is no 
longer speculative. There is a considerable performance penalty associated with accessing 
guarded memory locations, so the guarded storage attribute should be used only when 
required.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 153
UG011 (v1.2) January 19, 2007

Chapter 5: Memory-System Management
R

Guarded storage can be specified in two ways, depending on the address-translation 
mode:

• In real mode (MSR[IR]=0), the storage-guarded register (SGR) controls assignment of 
the guarded attribute to memory locations.

• In virtual mode (MSR[IR]=1), the page-translation look-aside buffer (TLB) for a 
virtual-memory page contains a G field that controls assignment of the guarded 
attribute to memory locations.

Marking a memory location as guarded does not completely prevent speculative accesses 
from that memory location. Speculative accesses from guarded storage can occur in the 
following cases:

• Load instructions—If the memory location is already cached, the location can be 
speculatively accessed.

• Instruction fetch, real mode—If the instruction address is already cached, the 
instruction can be speculatively fetched. If the instruction address is required by the 
sequential-execution model and is in the same physical page or next physical page as 
the previous instruction, it can be speculatively fetched. A real-mode physical page is 
a contiguous 1 KB block of physical memory, aligned on a 1 KB address boundary.

• Instruction fetch, virtual mode—In virtual mode, attempts to fetch instructions either 
from guarded storage or from no-execute memory locations normally cause an 
instruction-storage interrupt to occur. However, the instruction can be cached prior to 
designating the address as guarded or no-execute. If the instruction address is present 
in the cache, the instruction can be speculatively fetched, even if it is later marked as 
guarded or no-execute.

Using Unconditional Branches
Speculative accesses can be prevented without using the guarded storage attribute. This is 
done by placing unconditional branches immediately before memory regions that should 
not be speculatively accessed. When an unconditional branch is fetched by the processor, it 
recognizes it as a break in program flow and knows that the sequential instructions 
following the branch are not executed. The processor does not speculatively fetch those 
instructions and instead fetches from the branch target. Placing unconditional branches at 
the end of physical memory and at addresses bordering I/O devices prevents speculative 
accesses from occurring outside the appropriate regions.

The system-call and interrupt-return instructions (sc, rfi, and rfci) are not recognized by 
the processor as breaks in program flow and speculative fetches can occur past those 
instructions. This can cause problems when one of the speculatively fetched instructions is 
a bctr or blr. For example:

handler: first instruction
more instructions
rfi
subroutine: bctr

The processor can speculatively fetch the bctr target, which is the first instruction of a 
subroutine unrelated to the interrupt handler. Here, the CTR might contain an invalid 
address. To prevent prefetching the bctr, software can insert an unconditional branch 
between the rfi and bctr. The branch can specify itself as the target to guarantee that only 
a valid instruction address is speculatively fetched.

Another example is one where a system-service routine is called to initialize the CTR with 
a branch-target address, as follows:

some instructions
sc
bctr
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An unconditional branch cannot be inserted after the sc because the system-service routine 
returns to the instruction following sc when complete. Instead, software can use an mtctr 
instruction to initialize the CTR with a non-sensitive address prior to calling the service 
routine. Speculative fetches down the bctr path occur from the non-sensitive address. The 
mtctr also prevents speculative fetching until the processor updates CTR.

The system-trap instructions (tw and twi) do not require the special handling described 
above. These instructions are typically used by a debugger that sets breakpoints by 
replacing instructions with trap instructions. For example, in the sequence:

mtlr
blr

Replacing the mtlr above with tw or twi leaves the LR uninitialized. It would be 
inappropriate to prefetch from the blr target in this situation. The processor is designed to 
prevent speculative prefetching when executing the system-trap instructions.

Memory-System Control
Software manages memory-system operation using a combination of synchronization 
instructions (described in the previous section) and storage attributes. These resources 
provide program control over memory coherency, memory-access ordering, and 
speculative memory accesses

Storage Attributes
Storage attributes are used by system software to control how the processor accesses 
memory. These attributes are used to control cacheability, endianness (byte-ordering), and 
speculative accesses. PPC405 software can control five different storage attributes. Three 
attributes—write through (W), caching inhibited (I), and guarded (G)—are defined by the 
PowerPC architecture. Two attributes—user-defined (U0) and endian (E)—are defined by 
the PowerPC embedded environment architecture (the PowerPC Book-E architecture also 
supports these attributes).

The PowerPC architecture defines a memory-coherency attribute (M), but this attribute has 
no effect when used in PPC405 systems.

Management of storage attributes depends on whether address translation is used to 
access memory. In virtual mode, the page translation (TLB) entry for a virtual-memory 
region defines the storage attributes (see Storage-Attribute Fields, page 187). In real mode, 
the storage-attribute control registers are used to define the storage attributes (see Storage-
Attribute Control Registers, page 156).

The following sections describe the function of each attribute.

Write Through (W)
The write-through storage attribute controls the caching policy of a memory region.

When the W attribute is cleared to 0, the memory region has a write-back caching policy. 
Writes that hit the cache update the cacheline but they do not update system memory. 
Writes that miss the cache allocate a new cacheline and update that line, but they do not 
update system memory.

When the W attribute is set to 1, the memory region has a write-through caching policy. 
Writes that hit the cache update both the cacheline and system memory. Writes that miss 
the cache update system memory and do not allocate a new cacheline.
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Caching Inhibited (I)
The caching-inhibited storage attribute controls the cacheability of a memory region. The 
value of this attribute and its effect on memory depends on whether the memory access is 
performed in virtual mode or real mode.

In virtual mode, a memory region is cacheable when the I attribute is cleared to 0. When 
the I attribute is set to 1, the memory region is not cacheable. Non-cacheable memory 
accesses bypass the cache and access system memory. It is considered a programming error 
when a memory-access target is resident in the cache and the I attribute is set to 1. The 
result of such an access are undefined.

The interpretation of this attribute is reversed in real-mode, which uses the data-cache 
cacheability register (DCCR) and the instruction-cache cacheability register (ICCR). Here, 
setting I to 1 enables cacheability and clearing I to 0 disables cacheability. See Storage-
Attribute Control Registers, page 156, for more information.

Memory Coherency (M)
The memory-coherency storage attribute controls memory coherency in multiprocessor 
environments. Because the PPC405x3 core does not provide hardware support for 
multiprocessor memory coherency, setting or clearing the M storage attribute has no effect. 
See Software Management of Cache Coherency, page 169, for more information on 
memory coherency.

Guarded (G)
The guarded storage attribute controls speculative accesses into a memory region.

When the G attribute is cleared to 0, speculative accesses from the memory region can 
occur.

When the G attribute is set to 1, speculative memory accesses (instruction prefetches and 
data loads) are not permitted. The G storage attribute is typically used to protect memory-
mapped I/O from improper access. An instruction fetch from a guarded region does not 
occur until all previous instructions have completed execution, guaranteeing that the 
access is not speculative. Prefetching is disabled for a guarded region. Performance is 
degraded significantly when executing out of guarded regions, and software should avoid 
unnecessarily marking instruction regions as guarded.

See Preventing Inappropriate Speculative Accesses, page 152 for more information on 
guarded storage.

User Defined (U0)
The user-defined storage attribute controls implementation-dependent (processor and/or 
system) behavior of an access into a memory region. For example, some embedded-system 
implementations use the U0 attribute to identify memory regions containing compressed 
instructions. In those implementations, memory regions with U0=1 contain compressed 
instructions, and memory regions with U0=0 contain uncompressed instructions.

If desired, system software can cause an exception to occur when a data store is performed 
to U0 memory locations. This exception condition can be enabled using the U0-exception 
enable bit (U0XE) in the CCR0 register (see Core-Configuration Register 0, page 164). 
When CCR0[U0XE]=1, a store to memory locations with U0=1 cause a data-storage 
interrupt to occur. When CCR0[U0XE]=0, stores to U0 memory locations do not cause an 
exception. See Data-Storage Interrupt (0x0300), page 218 for information on identifying 
U0 exceptions. 

If no U0 behavior is implemented by the embedded system, setting and clearing the U0 
attribute has no effect on instruction fetches or data loads. However, the U0-exception 
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enable can be used to trigger data-storage interrupts as described above whether the 
system defines U0 behavior.

Endian (E)
The endian attribute controls the byte ordering of accesses into a memory region.

When the E attribute is cleared to 0, memory accesses use big-endian byte ordering. When 
the E attribute is set to 1, memory accesses use little-endian byte ordering. See Byte 
Ordering, page 49 for more information on big-endian and little-endian memory accesses.

Storage-Attribute Control Registers
The storage-attribute control registers specify the real-mode storage attributes. In virtual 
mode, these registers are ignored and storage attributes are taken from the page translation 
entries (TLB entries). See Storage-Attribute Fields, page 187 for information on virtual-
mode storage attributes.

The storage-attribute control-registers are 32-bit registers. Each bit is associated with a 
128 MB memory region: bit 0 controls the lowest 128 MB region, bit 1 controls the next-
lowest 128 MB region, and so on. Together, the 32 register bits provide storage control 
across the entire 4 GB physical-address space. The five most-significant effective-address 
bits (EA0:4) are used to select a specific bit within the register. Table 5-2 shows the address 
ranges associated with each register bit.

The following sections describe the six storage-attribute control registers in the PPC405.

Table 5-2: Storage-Attribute Control-Register Address Ranges

Register Bit 
Indexed 

with EA0:4

Address Range
Register Bit 

Indexed 
with EA0:4

Address Range

0 0x0000_0000 to 0x07FF_FFFF 16 0x8000_0000 to 0x87FF_FFFF

1 0x0800_0000 to 0x0FFF_FFFF 17 0x8800_0000 to 0x8FFF_FFFF

2 0x1000_0000 to 0x17FF_FFFF 18 0x9000_0000 to 0x97FF_FFFF

3 0x1800_0000 to 0x1FFF_FFFF 19 0x9800_0000 to 0x9FFF_FFFF

4 0x2000_0000 to 0x27FF_FFFF 20 0xA000_0000 to 0xA7FF_FFFF

5 0x2800_0000 to 0x2FFF_FFFF 21 0xA800_0000 to 0xAFFF_FFFF

6 0x3000_0000 to 0x37FF_FFFF 22 0xB000_0000 to 0xB7FF_FFFF

7 0x3800_0000 to 0x3FFF_FFFF 23 0xB800_0000 to 0xBFFF_FFFF

8 0x4000_0000 to 0x47FF_FFFF 24 0xC000_0000 to 0xC7FF_FFFF

9 0x4800_0000 to 0x4FFF_FFFF 25 0xC800_0000 to 0xCFFF_FFFF

10 0x5000_0000 to 0x57FF_FFFF 26 0xD000_0000 to 0xD7FF_FFFF

11 0x5800_0000 to 0x5FFF_FFFF 27 0xD800_0000 to 0xDFFF_FFFF

12 0x6000_0000 to 0x67FF_FFFF 28 0xE000_0000 to 0xE7FF_FFFF

13 0x6800_0000 to 0x6FFF_FFFF 29 0xE800_0000 to 0xEFFF_FFFF

14 0x7000_0000 to 0x77FF_FFFF 30 0xF000_0000 to 0xF7FF_FFFF

15 0x7800_0000 to 0x7FFF_FFFF 31 0xF800_0000 to 0xFFFF_FFFF
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Data-Cache Write-Through Register (DCWR)
The data-cache write-through register (DCWR) specifies real-mode caching policy (the W 
storage attribute). Its format is shown in Figure 5-7. Each bit in the DCWR controls 
whether a physical-memory region (as shown in Table 5-2) has a write-back or write-
through caching policy. This register controls only the data-cache caching policy. The 
caching policy is not applicable to the instruction cache because writes into the instruction-
cache are not supported.

When a bit in the DCWR is cleared to 0, the specified memory region has a write-back 
caching policy. Writes that hit the cache update the cacheline but they do not update 
system memory. Writes that miss the cache allocate a new cacheline and update that line, 
but they do not update system memory. When the bit is set to 1, the specified memory 
region has a write-through caching policy. Writes that hit the cache update both the 
cacheline and system memory. Writes that miss the cache update system memory, but they 
do not allocate a new cacheline.

After a processor reset, all bits in the DCWR are cleared to 0. This establishes a write-back 
caching policy for all real-mode memory.

The DCWR is a privileged SPR with an address of 954 (0x3BA) and can be read and written 
using the mfspr and mtspr instructions.

Data-Cache Cacheability Register (DCCR)
The data-cache cacheability register (DCCR) specifies real-mode data-memory 
cacheability (the I storage attribute). Its format is shown in Figure 5-8. Each bit in the 
DCCR controls whether a physical-memory region (as shown in Table 5-2) is cacheable in 
the data cache.

When a bit in the DCCR is cleared to 0, the specified memory region is not cacheable. 
Memory accesses bypass the data cache and access main memory. It is considered a 
programming error if a memory address is cached by the data cache when the 
corresponding bit in the DCCR is cleared to 0. The result of such an access are undefined. 
When the bit is set to 1, the specified memory region is cacheable, and its caching policy is 
governed by the DCWR register.

After a processor reset, all bits in the DCCR are cleared to 0, indicating that physical 
memory is not cacheable by the data cache. Prior to specifying memory regions as 
cacheable, software must invalidate all data-cache congruence classes by executing the 
dccci instruction once for each class (see Cache Instructions, page 160 for more 
information). After the congruence classes are invalidated, the DCCR can be configured.

The interpretation of the I attribute is reversed in virtual-mode when using page 
translations (TLB entries) to specify cacheability. See Caching Inhibited (I), page 155 for 
more information.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-7: Data-Cache Write-Through Register (DCWR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-8: Data-Cache Cacheability Register (DCCR)

http://www.xilinx.com


158 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Memory-System Control
R

The DCCR is a privileged SPR with an address of 1018 (0x3FA) and can be read and written 
using the mfspr and mtspr instructions.

Instruction-Cache Cacheability Register (ICCR)
The instruction-cache cacheability register (ICCR) specifies real-mode instruction-memory 
cacheability (the I storage attribute). Its format is shown in Figure 5-9. Each bit in the ICCR 
controls whether a physical-memory region (as shown in Table 5-2) is cacheable in the 
instruction cache.

When a bit in the ICCR is cleared to 0, the specified memory region is not cacheable. 
Memory accesses bypass the instruction cache and access main memory. It is considered a 
programming error if a memory address is cached by the instruction cache when the 
corresponding bit in the ICCR is cleared to 0. The result of such an access are undefined. 
When the bit is set to 1, the specified memory region is cacheable.

After a processor reset, all bits in the ICCR are cleared to 0, indicating that physical 
memory is not cacheable by the instruction cache. Prior to specifying memory regions as 
cacheable, software must execute the iccci instruction, which invalidates the entire 
instruction cache (see Cache Instructions, page 160 for more information). After the cache 
is invalidated, the ICCR can be configured.

The polarity of the I attribute is opposite in virtual-mode when using page translations 
(TLB entries) to specify cacheability. See Caching Inhibited (I), page 155 for more 
information.

The ICCR is a privileged SPR with an address of 1019 (0x3FB) and can be read and written 
using the mfspr and mtspr instructions.

Storage Guarded Register (SGR)
The storage guarded register (SGR) specifies guarded memory in real-mode (the G storage 
attribute). Its format is shown in Figure 5-10. Each bit in the SGR controls whether a 
physical-memory region (as shown in Table 5-2) is guarded against speculative accesses. 
This register affects instruction memory only. Speculative loads are not performed on the 
PPC405, so guarding data memory has no effect. See Preventing Inappropriate 
Speculative Accesses, page 152 for more information.

When a bit in the SGR is cleared to 0, the specified memory region is not guarded and 
speculative accesses from the memory region can occur. When the bit is set to 1, the 
specified memory region is guarded and speculative accesses are not permitted.

After a processor reset, all bits in the SGR are set to 1. This establishes all of real-mode 
memory as guarded.

The SGR is a privileged SPR with an address of 953 (0x3B9) and can be read and written 
using the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-9: Instruction-Cache Cacheability Register (ICCR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-10: Storage Guarded Register (SGR)
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Storage User-Defined 0 Register (SU0R)
The storage user-defined 0 register (SU0R) specifies the implementation-dependent 
behavior of real-mode memory accesses (the U0 storage attribute). Its format is shown in 
Figure 5-11. Some embedded-system implementations use the SU0R to identify physical 
memory regions (as shown in Table 5-2) containing compressed instructions. In those 
implementations, memory regions with U0=1 contain compressed instructions and 
memory regions with U0=0 contain uncompressed instructions.

System software can use the U0 storage attribute to implement real-mode write protection. 
Writes to memory regions with U0=1 cause a data-storage exception if the U0 exception 
condition is enabled. This exception condition is enabled by setting the U0-exception 
enable bit (U0XE) in the CCR0 register to 1 (see Core-Configuration Register 0, page 164). 
When CCR0[U0XE]=0, writes to physical-memory locations do not cause an exception 
when the corresponding SU0R bit is set. See Data-Storage Interrupt (0x0300), page 218 for 
information on the U0 exception condition. 

After a processor reset, all bits in the SU0R are cleared to 0.

The SU0R is a privileged SPR with an address of 956 (0x3BC) and can be read and written 
using the mfspr and mtspr instructions.

Storage Little-Endian Register (SLER)
The storage little-endian register (SLER) specifies the byte ordering for real-mode memory 
accesses (the E storage attribute). Its format is shown in Figure 5-12. Each bit in the SLER 
controls whether a physical-memory region (as shown in Table 5-2) is accessed using big-
endian or little-endian byte ordering. See Byte Ordering, page 49 for more information on 
big-endian and little-endian memory accesses.

When a bit in the SLER is cleared to 0, the specified memory region is accessed using big-
endian ordering. When the bit is set to 1, the specified memory region is accessed using 
little-endian ordering. 

After a processor reset, all bits in the SLER are cleared to 0. This specifies big-ending 
accesses for all real-mode memory.

The SLER is a privileged SPR with an address of 955 (0x3BB) and can be read and written 
using the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-11: Storage User-Defined 0 Register (SU0R)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5-12: Storage Little-Endian Register (SLER)
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Cache Control

Cache Instructions
The following sections describe the user and privileged instructions used in cache 
management. Within the instruction name, the term cache block often appears. A cache 
block is synonymous with a cacheline.

Table 5-3 summarizes which cache-control instructions are privileged and which 
instructions can be executed in user mode.

Instruction-Cache Control Instructions
Table 5-4 shows the instruction-cache control instructions supported by the PPC405. These 
instructions provide the ability to invalidate the entire cache array or a single cacheline, 
prefetch instructions into the cache, and debug the cache.

Table 5-3: Privileged and User Cache-Control Instructions

Instruction Cache Data Cache

Mnemonic Privilege Level Mnemonic Privilege Level

icbi User dcba User

icbt User dcbf User

iccci Privileged dcbi Privileged

icread Privileged dcbst User

dcbt User

dcbtst User

dcbz User

dccci Privileged

dcread Privileged
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Data-Cache Control Instructions
Table 5-5 shows the data-cache control instructions supported by the PPC405. These 
instructions provide the ability to invalidate the entire cache array or a single cacheline, 
prefetch data into the cache, and debug the cache.

Table 5-4: Instruction-Cache Control Instructions

Mnemonic Name Operation
Operand 
Syntax

icbi Instruction Cache Block Invalidate If the instruction specified by the effective address 
(EA) is cached by the instruction cache, the 
cacheline containing that instruction is invalidated.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

icbt Instruction Cache Block Touch If the instruction specified by the effective address 
(EA) is cacheable and is not currently cached by the 
instruction cache, the cacheline containing that 
instruction is loaded into the instruction cache 
from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

iccci Instruction Cache Congruence Class 
Invalidate

Invalidates the entire instruction cache. —

icread Instruction Cache Read If the instruction specified by the effective address 
(EA) is cached by the instruction cache, the 
ICDBDR register is loaded with information from 
one of the two ways indexed by the EA. CCR0 
fields specify the cache way, and whether the 
instruction tag or instruction word is loaded into 
the ICDBDR. See icread Instruction, page 175 for 
more information.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB
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Table 5-5: Data-Cache Control Instructions

Mnemonic Name Operation
Operand 
Syntax

dcba Data Cache Block Allocate An effective address (EA) is calculated using 
register-indirect with index addressing:

EA = (rA|0) + (rB)

This instruction can be used as a hint that a 
program might soon store into EA. It allocates a 
data cacheline for the byte addressed by EA. A 
subsequent store to EA hits the cache, improving 
program performance.

rA,rB

dcbf Data Cache Block Flush If the byte specified by the effective address (EA) is 
cached by the data cache, the cacheline containing 
that byte is invalidated. If the cacheline is modified 
(dirty), the entire contents of the cacheline are 
written to system memory before the line is 
invalidated.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbi Data Cache Block Invalidate If the byte specified by the effective address (EA) is 
cached by the data cache, the cacheline containing 
that byte is invalidated. If the cacheline is modified 
(dirty), those modifications are lost.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbst Data Cache Block Store If the byte specified by the effective address (EA) is 
cached by the data cache and the cacheline is 
modified (dirty), the entire contents of the 
cacheline are written to system memory. After the 
store completes, the cacheline is marked as 
unmodified (not dirty).

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbt Data Cache Block Touch If the byte specified by the effective address (EA) is 
cacheable and is not currently cached by the data 
cache, the cacheline containing that byte is loaded 
into the data cache from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcbtst Data Cache Block Touch for Store If the byte specified by the effective address (EA) is 
cacheable and is not currently cached by the data 
cache, the cacheline containing that byte is loaded 
into the data cache from system memory.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB
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The dcbt and dcbtst instructions are implemented identically on the PPC405. On some 
processor implementations, these instructions can cause separate bus operations to occur 
that differentiate data-cache touches for loads from data-cache touches for stores.

dcbz establishes a cacheline without accessing system memory. It is possible for software 
to erroneously use this instruction to establish a cacheline for unimplemented memory 
locations. A subsequent access that attempts to update unimplemented system memory 
(such as a cacheline replacement) can cause unpredictable results or system failure.

dcbz Data Cache Block Clear to Zero An effective address (EA) is calculated using 
register-indirect with index addressing:

EA = (rA|0) + (rB)

If the byte referenced by EA is not cached, a 
cacheline is allocated for that address. The 
cacheline containing the byte referenced by EA is 
cleared to 0 and marked modified (dirty).

If the EA is non-cacheable or write-through, an 
alignment exception occurs. The alignment-
interrupt handler can emulate the operation by 
clearing the corresponding bytes in system 
memory to 0.

rA,rB

dccci Data Cache Congruence Class 
Invalidate

Invalidates both data-cache ways in the 
congruence class specified by the effective address 
(EA). Any modified data is lost.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rA,rB

dcread Data Cache Read If the byte specified by the effective address (EA) is 
cached by the data cache, rD is loaded with 
information from one of the two ways indexed by 
the EA. CCR0 fields specify the cache way and 
whether the data tag or data word is loaded into 
rD. See dcread Instruction, page 177 for more 
information.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rD,rA,rB

Table 5-5: Data-Cache Control Instructions (Continued)

Mnemonic Name Operation
Operand 
Syntax
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Core-Configuration Register 0
The core-configuration register (CCR0) is a 32-bit register used to configure memory-
system features, including:

• Whether cache misses cause cacheline allocation.
• Whether instruction prefetching is permitted.
• The size of non-cacheable requests over the processor local bus.
• The priority given by the processor when it makes a request over the processor local 

bus on behalf of a cache unit.
• Enablement of the U0 storage-attribute exception.
• Cache-debug features.

Figure 5-13 shows the format of the CCR0. The fields in CCR0 are defined as shown in 
Table 5-6. 

0 6 7 8 9 10 11 12 13 14 15 18 19 20 21 22 23 27 28 31

LWL LWOA SWOA DPP1 IPP DPE DPP U0XE LBDE IPE TPE PFC PFNC NCRS FWOA CIS PRS CWS

Figure 5-13: Core-Configuration Register 0 (CCR0)

Table 5-6: Core-Configuration Register 0 (CCR0) Field Definitions

Bit Name Function Description

0:5 Reserved

6 LWL Load Word as Line

0—Load only requested data
1—Load entire cacheline

When this bit is set to 1, eight words are loaded into the fill buffer 
when a data-cache load-miss occurs, or when a load from non-
cacheable memory occurs. The requested data is included in the 
eight words. When this bit is cleared to 0, only the requested data 
is loaded.

7 LWOA Load Without Allocate

0—Allocate
1—Do not allocate

When this bit is set to 1, a load miss behaves like a non-cacheable 
load and does not allocate a data cacheline. When cleared to 0, 
load misses allocate a data cacheline.

8 SWOA Store Without Allocate

0—Allocate
1—Do not allocate

When this bit is set to 1, a store miss behaves like a non-cacheable 
store and does not allocate a data cacheline. When cleared to 0, 
store misses to write-back memory allocate a data cacheline.

9 DPP1 DCU PLB-Priority Bit 1

0—DCU PLB priority 0 on bit 1
1—DCU PLB priority 1 on bit 1

Establishes the value of bit 1 in the 2-bit request-priority signal 
driven by the data-cache unit onto the processor local bus (PLB). 
Bit 0 is controlled by the processor and cannot be controlled by 
software. See PLB-Request Priority, page 167 for more 
information.

10:11 IPP ICU PLB-Priority Bits 0:1

00—Lowest PLB req priority
01—Next-to-lowest priority
02—Next-to-highest priority
03—Highest PLB req priority

Establishes the value of the 2-bit request-priority signal driven by 
the instruction-cache unit onto the processor local bus (PLB). See 
PLB-Request Priority, page 167 for more information.

12 DPE Data Cache Parity Enable

0—Disables DCU parity checking.
1—Enables DCU parity checking.

(Virtex-4 devices only) Enables or disables DCU parity checking.
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13 DPP Data Cache Parity Precision

0—Imprecise mode is selected.
1—Precise mode is selected.

(Virtex-4 devices only) Selects precise or imprecise mode for data 
cache parity.

14 U0XE Enable U0 Exception

0—Disabled.
1—Enabled.

Controls data-storage interrupts for memory with the U0 storage 
attribute set. A data-storage interrupt occurs when this bit is set to 
1 and a store is performed to U0 memory. See Data-Storage 
Interrupt (0x0300), page 218 for more information.

15 LDBE Load-Debug Enable

0—Load data is not visible on
the data-side OCM.

1—Load data is visible on the
data-side OCM.

16:17 Reserved

18 IPE Instruction Cache Parity Enable

0—Disables ICU parity checking.
1—Enables ICU parity checking.

(Virtex-4 devices only) Enables or disables ICU parity checking.

19 TPE Translation Lookaside Buffer Parity 
Enable

0—Disables TLB parity checking.
1—Enables TLB parity checking.

(Virtex-4 devices only) Enables or disables TLB parity checking.

20 PFC Prefetching for Cacheable Regions

0—Disabled.

1—Enabled.

When this bit is set to 1, the processor can prefetch instructions 
from cacheable memory regions into the instruction-prefetch 
buffers. Clearing this bit to 0 disables prefetching from cacheable 
memory regions, generally at a cost to performance.

21 PFNC Prefetching for Non-Cacheable 
Regions

0—Disabled.

1—Enabled.

When this bit is set to 1, the processor can prefetch instructions 
from non-cacheable memory regions into the instruction-prefetch 
buffers. Clearing this bit to 0 disables prefetching from non-
cacheable memory regions, generally at a cost to performance.

22 NCRS Non-Cacheable Request Size

0—Request size is four words.

1—Request size is eight words.

Specifies the number of instructions requested from non-
cacheable memory when an instruction fetch or prefetch occurs. 
(Requests to cacheable memory are always eight words.)

23 FWOA Fetch Without Allocate

0—Allocate.

1—Do not allocate.

When this bit is set to 1, an instruction-fetch miss behaves like a 
non-cacheable fetch and does allocate a data cacheline. When 
cleared to 0, fetch misses from cacheable memory allocate a data 
cacheline.

24:26 Reserved

27 CIS Cache-Information Select

0—Information is cache data.

1—Information is cache tag.

This bit is used by the dcread and icread instructions, and 
specifies whether cache-data or cache-tag information is loaded 
into the destination register. See Cache Debugging, page 174 for 
more information.

Table 5-6: Core-Configuration Register 0 (CCR0) Field Definitions (Continued)

Bit Name Function Description
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The CCR0 is a privileged SPR with an address of 947 (0x3B3) and can be read and written 
using the mfspr and mtspr instructions.

28 PRS Parity Select (Virtex-4 devices only) This bit, used by the dcread and icread 
instructions, specifies whether data/tag information or parity 
information is loaded into the destination register.

29:30 Reserved

31 CWS Cache-Way Select

0—Cache way is A.

1—Cache way is B.

This bit is used by the dcread and icread instructions, and 
identifies the cache way (A or B) from which the cache 
information specified by CCR0[CIS] is read. The information is 
loaded into the destination register. See Cache Debugging, 
page 174 for more information.

Table 5-6: Core-Configuration Register 0 (CCR0) Field Definitions (Continued)

Bit Name Function Description
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Core-Configuration Register 1 (Virtex-4 Devices Only)
Additional cache and TLB debugging options are controlled by a second core 
configuration register, CCR1 (Virtex-4 devices only).

Figure 5-14 shows the format of the CCR1. The fields in the CCR1 are defined as shown in 
Table 5-7.

The CCR1 is a privileged SPR with an address of 888 (0x378) and can be read and written 
using the mfspr and mtspr instructions.

PLB-Request Priority
Table 5-8 shows the encoding of the 2-bit PLB-request priority signal. This signal is sent 
from a PLB master to a PLB arbiter indicating the priority of the master request. The arbiter 
uses these signals along with priority signals from other masters to determine which 

0 1 2 3 4 5 31

ICTE ICDE DCTE DCDE TLBE

Figure 5-14: Core-Configuration Register 1 (CCR1)

Table 5-7: Core-Configuration Register 1 (CCR1) Field Definitions

Bit Name Function Description

0 ICTE Instruction Cache Tag Parity Insertion

0—ICU line fills do not generate parity error 
insertions in the tag array

1—ICU line fills inject parity errors in the tag 
array

When this bit is set to 0, ICU line fills do not generate 
parity error insertions in the tag array. When this bit is 
set to 1, ICU line fills inject parity errors in the tag 
array.

1 ICDE Instruction Cache Data Parity Insertion

0—ICU line fills do not generate parity error 
insertions in the data array

1—ICU line fills inject parity errors in the 
data array

When this bit is set to 0, ICU line fills do not generate 
parity error insertions in the data array. When this bit 
is set to 1, ICU line fills inject parity errors in the data 
array.

2 DCTE Data Cache Tag Parity Insertion

0—DCU line fills do not generate parity error 
insertions in the tag array

1—DCU line fills inject parity errors in the tag 
array

When this bit is set to 0, DCU line fills do not generate 
parity error insertions in the tag array. When this bit is 
set to 1, DCU line fills inject parity errors in the tag 
array.

3 DCDE Data Cache Data Parity Insertion

0—DCU line fills do not generate parity error 
insertions in the data array

1—DCU line fills inject parity errors in the 
data array

When this bit is set to 0, DCU line fills do not generate 
parity error insertions in the data array. When this bit 
is set to 1, DCU line fills inject parity errors in the data 
array.

4 TLBE TLB Parity Insertion

0—tlbwe instruction generates correct parity 
bits

1—tlbwe instruction generates incorrect 
parity bits

When this bit is set to 0, the tlbwe instruction 
generates correct parity bits. When this bit is set to 1, 
the tlbwe instruction generates incorrect parity bits. 
When the WS field in the tlbwe instruction is 0, errors 
are injected in the tag array. When the WS field is 1, 
errors are injected in the data array.

5:31 Reserved
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request should be granted. The PPC405 ICU and DCU are both PLB masters, and software 
can control their respective PLB-request priority using CCR0[IPP] and CCR0[DPP1].

CCR0 Programming Guidelines
Several fields in CCR0 affect the instruction-cache and data-cache operation. Severe 
problems can occur—including a processor hang—if these fields are modified while the 
cache unit is involved in a PLB operation. To prevent problems, certain code sequences 
must be followed when modifying the CCR0 fields.

The first code example (Sequence 1) can be used to alter any field within CCR0. Use of this 
sequence is required when altering either CCR0[IPP] or CCR0[FWOA], both of which affect 
instruction-cache operation. In this and the following example, registers rN, rM, rX, and rZ 
are any available GPRs.

# SEQUENCE 1 - Required when altering CCR0[IPP, FWOA].
#
# Turn off interrupts.
mfmsr rM
addis rZ,r0,0x0002 # CE bit
ori rZ,rZ,0x8000 # EE bit
andc rZ,rM,rZ # Turn off MSR[CE,EE]
mtmsr rZ
# Synchronize execution.
sync
# Touch the CCR0-altering function into the instruction cache.
addis rX,r0,seq1@h
ori rX,rX,seq1@l
icbt r0,rX

# Call the CCR0-altering function.
b seq1

back:
# Restore MSR to original value.
mtmsr rM
...

# The following function must be in cacheable memory so that it can be 
touched into the instruction cache.

.align 5 # Align the CCR0-altering function code on a cacheline
# boundary.

seq1:
# Repeat the instruction-cache touch and synchronize context to
# guarantee the most recent value of CCR0 is read. A total of eight
# instructions are touched into a single cacheline. This function
# example contains seven instructions. If more than eight instructions

Table 5-8: PLB-Request Priority Encoding

Bit 0 Bit 1 Definition

0 0 Lowest PLB-request priority.

0 1 Next-to-lowest PLB-request priority.

1 0 Next-to-highest PLB-request priority.

1 1 Highest PLB-request priority.
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# are required, additional lines must be touched into the cache.
icbt r0,rX 
isync # The CCR0-altering code has been completely

# fetched across the PLB.
mfspr rN,CCR0 # Read CCR0
# Use and/or instructions to modify any CCR0 bits. Because one cache
# line was touched in this example, up to two instructions can be used 
# to modify CCR0.
andi/ori rN,rN,0xnnnn 
mtspr CCR0,rN # Update CCR0.
isync # Refetch instructions under new processor context.
b back # Branch back to initialization code.

The following code example (Sequence 2) can be used to alter either CCR0[DPP1] or 
CCR0[U0XE]. Sequence 1 can also be used to alter these fields.

# SEQUENCE 2 - Alter CCR0[DPP1, U0XE].
# Turn off interrupts.
mfmsr rM
addis rZ,r0,0x0002 # CE bit
ori rZ,rZ,0x8000 # EE bit
andc rZ,rM,rZ # Turn off MSR[CE,EE]
mtmsr rZ
# Synchronize execution.
sync
# Modify CCR0.
mfspr rN,CCR0 # Read CCR0
# Use and/or instructions to modify any CCR0 bits.
andi/ori rN,rN,0xnnnn 
mtspr CCR0,rN # Update CCR0.
isync # Refetch instructions under new processor context.
# Restore MSR to original value.
mtmsr rM

Modifications to CCR0[CIS] and CCR0[CWS] do not require special treatment.

Software Management of Cache Coherency
The PPC405 does not support memory-coherency management in hardware. This section 
describes the situations that can cause a loss of memory coherency and the steps software 
must take to prevent such loss.

How Coherency is Lost
Generally, coherency is lost when software shares cacheable memory with external 
devices. When a memory address is cached, the potential for losing memory coherency 
exists each time the address is accessed by any external device in the system. If a device 
reads cacheable system-memory, it can receive incorrect data. This occurs when modified 
data resides in write-back cachelines. Such data is not stored to system memory until the 
modified line is replaced by another line or until it is stored explicitly by a cache-control 
instruction. The use of write-through cachelines does not completely solve the problem. 
When an external device updates a cacheable system-memory location, copies present in 
the cache are not updated.

For example, when a DMA controller reads and writes cacheable system memory, 
coherency can be lost because:

• The processor does not automatically supply the DMA controller with the latest copy 
of data from the cache.
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• The processor does not update cached locations with the latest copy written to system 
memory by the DMA controller.

To illustrate how coherency can be lost, consider the initial state of system memory and the 
contents of cache memory shown in the following table. For simplicity, the example uses a 
cacheline size of 16 bytes rather than 32 bytes. Each data element in the table represents a 
word (four bytes), although for clarity only byte values are shown. A row in the system-
memory portion and cache-memory portion of the table each contain 16 data bytes. The 
“V” column indicates whether the cacheline is valid and the “D” column indicates whether 
the line data is dirty (modified). A “—” in the cache-memory portions indicates a don’t 
care.

This example assumes write-back caching is enabled for all system-memory addresses 
represented in the above table (0x1000–0x103F). The following program is executed, 
updating the data words in addresses 0x1004–0x1030:

li r1,0x1004-4 # Start at address 0x1004.
li r2,12 # Fill 12 words.
mtctr r2 # Initialize counter.
li r3,0 # Initialize data to zero.
loop:
stwu r3,4(r1) # r1=r1+4, write (r3) to address in r1.
addi r3,r3,1 # Increment data (r3=r3+1).
bdnz loop # Repeat until done.

As the program executes, cachelines are fetched from system memory into the cache and 
portions of the lines are overwritten with new data as specified by the program. The result 
is shown in the following table. Because the addresses are write-back cacheable, system 
memory is not updated. If an external device reads or writes the gray-shaded system-
memory locations, a loss of coherency occurs. This can be prevented only if software 
flushes the affected lines from cache memory before the external device accesses system 
memory.

To further illustrate coherency loss, assume normal cache operations cause the first two 
cachelines to be replaced by unrelated data. Cacheline replacement updates system 
memory as shown below. Here, fewer system-memory locations are not coherent (shaded 
gray). An “x” indicates a replacement value in the cache unrelated to the program.

System Memory Cache Memory

Address Data (Words) Address V D Data (Words)

1000 A9 2A 3A EB — No No — — — —

1010 0C 93 EE A1 — No No — — — —

1020 EF 39 EB A6 — No No — — — —

1030 3D 5F 8F 34 — No No — — — —

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 2A 3A EB 1000 Yes Yes A9 00 01 02

1010 0C 93 EE A1 1010 Yes Yes 03 04 05 06

1020 EF 39 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34
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Next, assume an external device updates the words at system-memory addresses 0x100C–
0x1024, while at the same time a cacheline reload from 0x1010 occurs. This causes neither 
system memory nor the cache to contain data expected by the programmer (gray-shaded 
locations). 

Coherency Loss Through Dual-Mapping
Some memory controllers support dual-mapping of physical-address ranges. With dual-
mapping, two address ranges are resolved as a single address range. For example, assume 
a memory controller is programmed to ignore the high-order physical-address bit (bit 0). 
Here, accesses to physical addresses 0x0000_0000 and 0x8000_0000 are resolved by the 
memory controller to the same physical address.

Software running on the PPC405 can specify address ranges as cacheable or non-cacheable 
using the cacheability registers (DCCR and ICCR) in real mode or using page translations 
in virtual mode. Using the above dual-mapping example, assume address 0x0000_0000 is 
cacheable and address 0x8000_0000 is non-cacheable. Software that reads data from 
address 0x0000_0000 does so using the cached copy, and reads from address 0x8000_0000 
use the system-memory copy. Coherency is lost when the cached copy differs from the 
system-memory copy. To prevent this problem, dual-mapping should not be used to 
resolve cacheable address ranges and non-cacheable address ranges into a single address 
range.

Enforcing Coherency With Software
If a processor can cache shared-memory regions, access to those regions must be controlled 
by software. Software must ensure that addresses from a shared-memory region are not 
present in any of the processor caches before granting another device access to the region. 
Software must also avoid cacheable accesses into a shared-memory region until after the 
other device completes its access.

Cacheable accesses to non-shared-memory regions should not inadvertently cache 
information from adjacent, shared-memory regions. It is recommended that the alignment 
and size of shared-memory regions be a multiple of the cacheline size. By configuring all 
shared-memory regions to start on a cacheline boundary and span an integral number of 

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 00 01 02 x Yes x x x x x

1010 03 04 05 06 x Yes x x x x x

1020 EF 39 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34

System Memory Cache Memory

Address Data (Words) Address V D Line Data (Words)

1000 A9 00 01 FF x Yes x x x x x

1010 FE FD FC FB 1010 Yes No FE FD 05 06

1020 FA F9 EB A6 1020 Yes Yes 07 08 09 0A

1030 3D 5F 8F 34 1030 Yes Yes 0B 5F 8F 34
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cachelines, software can ensure that no cacheline contains a mixture of shared and non-
shared memory.

The instruction and data caches in the PPC405 have a cacheline size of 32 bytes. If a C 
program executing on a PPC405 requires 150 bytes of shared-buffer space, it should 
allocate the corresponding memory region as shown in the following programming 
example. In this example, shared represents the shared-memory region. However, system 
software controls the cacheability of buffer rather than shared. 

#define LINE_LENGTH 32 // Cacheline length in bytes.
#define BIT_MASK 0x1F // Address bits that select a byte in line.
char *buffer; // Buffer allocated by malloc.
char *shared; // Cacheline-aligned buffer.

// Obtain the buffer.
buffer = (char) malloc(150+2*LINE_LENGTH-2);

// If the buffer is not at the beginning of the cacheline,
// point to the start of the next cacheline.
if (buffer & BIT_MASK != 0)
shared = buffer + LINE_LENGTH - (buffer & BIT_MASK);

else
shared = buffer; // otherwise use as is

Figure 5-15 shows the placement of buffer and shared in memory after the above 
program is executed (cacheline boundaries are represented by heavy vertical lines). 
Because malloc does not necessarily allocate memory aligned on a cacheline boundary, 
the size of buffer is increased to account for alignment, and to span an integral number of 
cachelines. The second memory region, shared, is overlaid on buffer. The starting 
address of shared is adjusted to fall on the first cacheline boundary within buffer. The 
ending address of shared falls before a cacheline boundary, but that cacheline boundary 
falls within buffer.

Failure to allocate memory using this technique, or through compiler directives that align 
and pad variables in a similar manner, can cause coherency problems. 

It is important that software control the cacheability of buffer when managing access to 
shared. The alignment and size of buffer is such that information in shared cannot be 
inadvertently cached by accesses to adjacent memory regions. If the cacheability of 
shared is managed instead, it is possible for data near the last address in shared to be 
cached inadvertently.

Cache Flushing
Before another device can access a shared-memory region, software must flush all shared-
memory contents from the data cache. If the region contains executable code, all shared 
contents must be invalidated in the instruction cache. Data-cache flushing and instruction-
cache invalidation are both required if software treats executable code as data (for 
example, moves executable code into or out of a shared-memory region). Invalidating 

Figure 5-15: Example of Shared-Memory Allocation
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shared-memory contents in the instruction cache keeps it coherent with system memory 
when executable code is relocated.

The method used to flush shared memory from the data cache depends on the size of the 
memory region relative to the data-cache size. Flushing shared memory address-by-
address is most efficient when the region is smaller than the data cache. The following code 
sequence is an example of how shared-memory can be flushed from the data cache:

# r1 = start of shared-memory region.
# r2 = end of shared-memory region.
loop:
dcbf 0,r1 # Flush cacheline at address r1.
addi r1,r1,32 # Point to the next cacheline.
cmpw r1,r2 # Check if finished.
ble loop # If not, continue until done.

In the above example, the dcbf instruction invalidates all data cachelines containing 
shared-memory addresses. If a cacheline contains modified data, it is written back to 
system memory prior to invalidation. No action is taken if the cache does not contain 
addresses from the shared-memory region.

If the shared-memory region is larger than the data cache, flushing the entire data cache 
can often yield better performance than using the process shown above. However, the 
PPC405 does not provide a data-cache flush instruction. Instead, software must replace the 
data-cache contents, forcing writes of all modified lines to system memory. 

The following code sequence uses the dcbz instruction in such a manner. dcbz can be used 
to establish a line in the data cache at an unused (and possibly non-existent) address 
without causing a load from system memory (and consuming PLB bandwidth). By 
executing two dcbz instructions using different addresses in the same congruence class, 
software can flush both cachelines in a set. Afterward, software can execute a dccci 
instruction to invalidate both of these new lines.

<Disable interrupts>
li r1,<start of unused address range as large as data cache>
li r2,16384 # Cache size in bytes/2.
li r3,256 # Number of congruence classes in cache.
mtctrr3

loop:
dcbz 0,r1 # Flush one way of the cache set.
dcbz r2,r1 # Flush the other way of the cache set.
dccci0,r1 # Invalidate the cache set.
addi r1,r1,32 # Point to the next cacheline.
bdnz loop # Continue until all sets are flushed.
sync # Ensure cache data has been written.

<Re-enable interrupts>

Interrupts are disabled during the flush procedure to prevent possible system-memory 
corruption occurring due to an unexpected system-memory access. These problems can 
arise if an interrupt occurs after a dcbz establishes a new cacheline but before the dccci 
invalidates that line. Executing the interrupt handler could cause a flush of the new line 
due to normal line replacement. This could corrupt system-memory or cause invalid 
memory accesses. Disabling interrupts eliminates the potential for unexpected cache 
activity.
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Self-Modifying Code
Software that updates executable-memory locations is known as self-modifying code. If self-
modifying code operates on cacheable-memory locations, cache-control instructions must 
be executed to maintain coherency between the instruction cache, system memory, and the 
data cache. Data-cache coherency is an issue because the instructions are treated as data 
when they are modified by other instructions.

Software that relocates executable code from one cacheable-memory location to another 
requires the same coherency treatment as self-modifying code. Although instructions are 
not changed, they are treated as data by the program that moves them, and can therefore 
be cached by the data cache.

The following code sequence can be used to enforce coherency between system memory 
and both the instruction and data caches. In this example, instructions are moved 
individually from one memory location to another while caching is enabled. Cache 
coherency is maintained throughout the process. Performance can be improved if software 
prohibits execution of the instructions while they are moved so that the caches are flushed 
and invalidated outside the loop.

# r1 = Instruction source address (word aligned).
# r2 = Instruction target address (word aligned).
# r3 = Number of instructions to move.
addi r1,r1,-4 # Initialize for use of lwzu and stwu
addi r2,r2,-4
mtctrr3

loop:
lwzu r4,4(r1) # Read source instruction.
stwu r4,4(r2) # Write target instruction.
dcbf 0,r2 # Remove target instruction from data cache.
icbi 0,r2 # Remove target instruction from instruction cache.
bdnz loop # Repeat until all instructions are moved.
sync # Synchronize execution.
isync # Synchronize context.

Coherency of self-modifying code can be maintained in an similar fashion. Instead of 
moving an instruction from one location to another, the source and target addresses are 
identical. A modifying instruction (or sequence of instructions) is inserted between the 
instruction load and instruction store. Below is a simple assembler-code sequence that can 
be used to maintain cache coherency during self-modifying code operations.

# rN contains a modified instruction.
stw rN, addr1 # Store the modified instruction.
dcbst addr1 # Force instruction to be written to system memory.
sync # Wait for the system-memory update.
icbi addr1 # Invalidate unmodified instruction-cache entry.
isync # The unmodified instruction might be in the 

# prefetch buffers. isync invalidates the prefetch 
# buffers.

Cache Debugging
The PPC405 provides two instructions that can read cache-tag and cache-data information 
for a specific cache congruence class. icread performs this function for the instruction 
cache and dcread performs this function for the data cache. These instructions operate 
under the control of certain bit fields in the CCR0 and CCR1 registers (see Core-
Configuration Register 0, page 164 and Core-Configuration Register 1 (Virtex-4 Devices 
Only), page 167). The operation of each instruction is described in the following sections.
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icread Instruction
The icread instruction reads instruction cacheline information for a specific effective 
address. A congruence class is selected from the instruction cache using the effective 
address bits EA19:26. A way is selected from the congruence class using the cache-way select 
field (CWS) in the CCR0 register. CCR0[CWS] = 0 selects way A, and CCR0[CWS] = 1 
selects way B. CCR0[CIS] = 0 causes the instruction word at effective address EA27:29 to be 
loaded, while CCR0[CIS] = 1 causes the cache tag and status to be loaded. The cacheline 
information in the selected congruence class and way are loaded into the 32-bit instruction-
cache debug-data register (ICDBDR).

On Virtex-4 devices only, the above behavior corresponds to setting CCR0[PRS] = 0. If 
CCR0[PRS] = 1, icread reads the ICU parity bits for the instruction words or tag in the 
cacheline selected by CCR0[CIS, CWS]. 

Figure 5-16 shows the format of the ICDBDR. The corresponding fields in the ICDBDR are 
defined as shown in Table 5-9.

0 31

INFO

Figure 5-16: Instruction-Cache Debug-Data Register (ICDBDR)

Table 5-9: Instruction-Cache Debug-Data Register (ICDBDR) Field Definitions

Bit Name Function and Description

0:31 INFO Instruction-Cache Information

Virtex-II Pro and Virtex-4 FPGAs with CCR0[PRS] = 0

CCR0
ICDBDR Contents Result

CIS CWS

0 0 Instruction word from way A INFO[0:31]: WORD

0 1 Instruction word from way B

1 0 Cacheline tag and status for way A INFO[0:21]: TAG
INFO[27]: V
INFO[31]: LRU
INFO[22:26], INFO[28:30]: Reserved

1 1 Cacheline tag and status for way B

Virtex-4 FPGAs with CCR0[PRS] = 1

CCR0
ICDBDR Contents Result

CIS CWS

0 X Parity for instruction words from ways 
A and B

INFO[0:3]: ParA[0:3]
INFO[4:7]: ParB[0:3]
INFO[8:31]: Reserved

1 0 Cacheline tag, status, and parity for 
way A

INFO[0:21]: TAG
INFO[25]: TagPar
INFO[27]: V
INFO[31]: LRU
INFO[22:24], INFO[26], INFO[28:30]: Reserved

1 1 Cacheline tag, status, and parity for 
way B
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ICDBDR is a privileged, read-only SPR with an address of 979 (0x3D3). It can be read using 
the mfspr instruction.

Synchronization is required between the icread instruction and the mfspr instruction that 
reads the ICDBDR contents. This guarantees that the values read by mfspr are those 
loaded by the most-recent execution of icread. The following assembler-code sequence 
provides an example:

icread rA,rB # Read instruction-cache information.
isync # Ensure icread completes execution.
mficdbdr rD # Copy information to GPR.

0:31
(cont.)

INFO WORD: Instruction data word

TAG: Instruction tag

V: Cacheline valid bit

0 – Cacheline is not valid.
1 – Cacheline is valid.

LRU: Least-recently used bit of the congruence class associated with the cacheline

0 – Way A is least-recently used.
1 – Way B is least-recently used.

ParA, ParB: Parity data for the instruction cacheline from ways A and B

TagPar: Parity value for the instruction tag 

Table 5-9: Instruction-Cache Debug-Data Register (ICDBDR) Field Definitions (Continued)

Bit Name Function and Description
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dcread Instruction
The dcread instruction reads data cacheline information for a specific effective address. A 
congruence class is selected from the data cache using the effective-address bits EA19:26. A 
way is selected from the congruence class using the cache-way select field (CWS) in the 
CCR0 register. CCR0[CWS] = 0 selects way A, and CCR0[CWS] = 1 selects way B. 
CCR0[CIS] = 0 causes the cache word to be loaded at effective address EA27:29, while 
CCR0[CIS] = 1 causes the cache tag to be loaded. The cacheline information in the selected 
congruence-class and way are loaded into the destination GPR, rD. 

On Virtex-4 devices only, the above behavior corresponds to setting CCR0[PRS] = 0. If 
CCR0[PRS] = 1, dcread reads the DCU parity bits for the data word or tag in the cacheline 
selected by CCR0[CIS, CWS]. 

Figure 5-17 shows the format of the cache information loaded into rD. The information 
fields loaded in rD are defined as shown in Table 5-10 when the tag is loaded.

0 31

INFO

Figure 5-17: Information Loaded by dcread into rD

Table 5-10: dcread Destination Register Field Definitions

Bit Name Function and Description

0:31 INFO Data-Cache Information

Virtex-II Pro and Virtex-4 FPGAs with CCR0[PRS] = 0

CCR0
ICDBDR Contents Result

CIS CWS

0 0 Data word from way A INFO[0:31]: WORD

0 1 Data word from way B

1 0 Cacheline tag and status for way A INFO[0:18]: TAG
INFO[26]: D
INFO[27]: V
INFO[31]: LRU
INFO[19:25], INFO[28:30]: Reserved

1 1 Cacheline tag and status for way B

Virtex-4 FPGAs with CCR0[PRS] = 1

CCR0
ICDBDR Contents Result

CIS CWS

0 X Parity for data words from ways A and 
B

INFO[0:15]: ParA[0:15]
INFO[16:31]: ParB[0:15]

1 0 Cacheline tag, status, and parity for 
way A

INFO[0:18]: TAG
INFO[24]: U0
INFO[25]: TagPar
INFO[26]: D
INFO[27]: V
INFO[31]: LRU
INFO[19:23], INFO[28:30]: Reserved

1 1 Cacheline tag, status, and parity for 
way B
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0:31
(cont.)

INFO WORD: Data word from the selected way

TAG: Data tag from the selected way

U0: User-defined attribute from the selected way

0 – Attribute is disabled.
1 – Attribute is enabled.

D: Dirty bit from the selected way

0 – Cacheline is not dirty.
1 – Cacheline is dirty.

V: Cacheline valid bit from the selected way

0 – Cacheline is not valid.
1 – Cacheline is valid.

LRU: Least-recently used bit of the congruence class associated with the cacheline

0 – Way A is least-recently used.
1 – Way B is least-recently used.

ParA, ParB: Parity data for the data cacheline from ways A and B

TagPar: Parity value for the data tag from the selected way

Table 5-10: dcread Destination Register Field Definitions (Continued)

Bit Name Function and Description
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Chapter 6

Virtual-Memory Management

Programs running on the PPC405 use effective addresses to access a flat 4 GB address 
space. The processor can interpret this address space in one of two ways, depending on the 
translation mode:

• In real mode, effective addresses are used to directly access physical memory.
• In virtual mode, effective addresses are translated into physical addresses by the 

virtual-memory management hardware in the processor.

Virtual mode provides system software with the ability to relocate programs and data 
anywhere in the physical address space. System software can move inactive programs and 
data out of physical memory when space is required by active programs and data. 
Relocation can make it appear to a program that more memory exists than is actually 
implemented by the system. This frees the programmer from working within the limits 
imposed by the amount of physical memory present in a system. Programmers do not 
need to know which physical-memory addresses are assigned to other software processes 
and hardware devices. The addresses visible to programs are translated into the 
appropriate physical addresses by the processor. 

Virtual mode provides greater control over memory protection. Blocks of memory as small 
as 1 KB can be individually protected from unauthorized access. Protection and relocation 
enable system software to support multitasking. This capability gives the appearance of 
simultaneous or near-simultaneous execution of multiple programs.

In the PPC405, virtual mode is implemented by the memory-management unit (MMU). 
The MMU controls effective-address to physical-address mapping and supports memory 
protection. Using these capabilities, system software can implement demand-paged 
virtual memory and other memory management schemes. 

The MMU features are summarized as follows:

• Translates effective addresses into physical addresses.
• Controls page-level access during address translation.
• Provides additional virtual-mode protection control through the use of zones.
• Provides independent control over instruction-address and data-address translation 

and protection.
• Supports eight page sizes: 1 KB, 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, and 16 MB. 

Any combination of page sizes can be used by system software.
• Software controls the page-replacement strategy.
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Real Mode
The processor references memory when it fetches an instruction and when it accesses data 
with a load, store, or cache-control instruction. Programs reference memory locations 
using a 32-bit effective address (EA) calculated by the processor based on the address 
mode (see Effective-Address Calculation, page 44). When real mode is enabled, the 
physical address is identical to the effective address and the processor uses the EA to 
access physical memory. After a processor reset, the processor operates in real mode. Real 
mode can also be enabled independently for instruction fetches and data accesses by 
clearing the appropriate bits in the MSR:

• Clearing the instruction-relocate bit (MSR[IR]) to 0 disables instruction-address 
translation. Instruction fetches from physical memory are performed in real mode 
using the effective address.

• Clearing the data-relocate bit (MSR[DR]) to 0 disables data-address translation. 
Physical-memory data accesses (loads and stores) are performed in real mode using 
the effective address.

Real mode does not provide system software with the level of memory-management 
flexibility available in virtual mode. Storage attributes are associated with real-mode 
memory but access protection is limited (the U0 storage attribute can be used for write 
protection). Implementation of a real-mode memory manager is more straightforward 
than a virtual-mode memory manager. Real mode is often an appropriate solution for 
memory management in simple embedded environments.

See Storage-Attribute Control Registers, page 156, for more information on real-mode 
memory control.

Virtual Mode
In virtual mode, the processor translates an EA into a physical address using the process 
shown in Figure 6-1. Virtual mode can be enabled independently for instruction fetches 
and data accesses by setting the appropriate bits in the MSR:

• Setting the instruction-relocate bit (MSR[IR]) to 1 enables address translation (virtual 
mode) for instruction fetches.

• Setting the data-relocate bit (MSR[DR]) to 1 enables address translation (virtual mode) 
for data accesses (loads and stores).
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Each address shown in Figure 6-1 contains a page-number field and an offset field. The 
page number represents the portion of the address translated by the MMU. The offset 
represents the byte offset into a page and is not translated by the MMU. The virtual 
address consists of an additional field, called the process ID (PID), which is taken from the 
PID register (see Process-ID Register, page 182). The combination of PID and effective 
page number (EPN) is referred to as the virtual page number (VPN). The value n is 
determined by the page size, as shown in Table 6-2, page 187.

System software maintains a page-translation table that contains entries used to translate 
each virtual page into a physical page (see page 183). The page size defined by a page-
translation entry determines the size of the page number and offset fields. For example, 
when a 4 KB page size is used, the page-number field is 20 bits and the offset field is 12 bits. 
The VPN in this case is 28 bits. See Table 6-2, page 187, for more information on page size.

Then the most frequently used page translations are stored in the translation look-aside 
buffer (TLB). When translating a virtual address, the MMU examines the page-translation 
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table, 
only entries contained in the processor TLB are examined (see page 184, for information on 
the TLB). When a page-translation entry is found with a matching VPN, the corresponding 
physical-page number is read from the entry and combined with the offset to form the 32-
bit physical address. This physical address is used by the processor to reference memory.

System software can use the PID to uniquely identify software processes (tasks, 
subroutines, threads) running on the processor. Independently compiled processes can 
operate in effective-address regions that overlap each other. This overlap must be resolved 
by system software if multitasking is supported. Assigning a PID to each process enables 
system software to resolve the overlap by relocating each process into a unique region of 
virtual-address space. The virtual-address space mappings enable independent translation 
of each process into the physical-address space. Figure 6-2 shows an example of how the 
PID is used in virtual-memory mapping (overlapping areas are shaded gray).

Figure 6-1: Virtual-Mode Address Translation
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Process-ID Register
The process-ID register (PID) is a 32-bit register used in virtual-address translation. 
Figure 6-3 shows the format of the PID register. The fields in the PID are defined as shown 
in Table 6-1.

The PID is a privileged SPR with an address of 945 (0x3B1) and is read and written using 
the mfspr and mtspr instructions.

Figure 6-2: Process-Mapping Example
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Figure 6-3: Process-ID Register (PID)

Table 6-1: Process-ID Register (PID) Field Definitions

Bit Name Function Description

0:23 Reserved

24:31 PID Process Identifier Used to uniquely identify a software process during address 
translation.
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Page-Translation Table
The page-translation table is a software-defined and software-managed data structure 
containing page translations. The requirement for software-managed page translation 
represents an architectural trade-off targeted at embedded-system applications. 
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory 
management to be optimized for each embedded system in the following ways:

• The page-translation table can be organized to maximize page-table search performance 
(also called table walking) so that a given page-translation entry is located quickly. 
Most general-purpose processors implement either an indexed page table (simple 
search method, large page-table size) or a hashed page table (complex search method, 
small page-table size). With software table walking, any hybrid organization can be 
employed that suits the particular embedded system. Both the page-table size and 
access time can be optimized.

• Independent page sizes can be used for application modules, device drivers, system-
service routines, and data. Independent page-size selection enables system software 
to more efficiently use memory by reducing fragmentation (unused memory). For 
example, a large data structure can be allocated to a 16 MB page and a small I/O 
device-driver can be allocated to a 1 KB page.

• Page replacement can be tuned to minimize the occurrence of missing page-
translations. As described in the following section, the most-frequently used page 
translations are stored in the translation look-aside buffer (TLB). Software is 
responsible for deciding which translations are stored in the TLB and which 
translations are replaced when a new translation is required. The replacement 
strategy can be tuned to avoid thrashing, whereby page-translation entries are 
constantly being moved in and out of the TLB. The replacement strategy can also be 
tuned to prevent replacement of critical-page translations, a process sometimes 
referred to as page locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data 
page-translation entries accessible by the MMU. Software uses the unified TLB to cache a 
subset of instruction and data page-translation entries for use by the MMU. Software is 
responsible for reading entries from the page-translation table in system memory and 
storing them in the TLB. The following section describes the unified TLB in more detail.

Internally, the MMU also contains a 4-entry shadow TLB for instructions and an 8-entry 
shadow TLB for data. These shadow TLBs are managed entirely by the processor 
(transparent to software) and are used to minimize access conflicts with the unified TLB. 
Figure 6-4 shows the relationship of the page-translation tables and the TLBs.
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Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the PPC405 MMU for address 
translation, memory protection, and storage control when the processor is running in 
virtual mode. Each entry within the TLB contains the information necessary to identify a 
virtual page (PID and effective page number), specify its translation into a physical page, 
determine the protection characteristics of the page, and specify the storage attributes 
associated with the page.

The PPC405 TLB is physically implemented as three separate TLBs:

• Unified TLB—The UTLB contains 64 entries and is fully associative. Instruction-page 
and data-page translation can be stored in any UTLB entry. The initialization and 
management of the UTLB is controlled completely by software.

• Instruction Shadow TLB—The ITLB contains four instruction page-translation entries 
and is fully associative. The page-translation entries stored in the ITLB represent the 
four most-frequently accessed instruction-page translations from the UTLB. The ITLB 
is used to minimize contention between instruction translation and UTLB-update 
operations. The initialization and management of the ITLB is controlled completely by 
hardware and is transparent to software.

• Data Shadow TLB—The DTLB contains eight data page-translation entries and is fully 
associative. The page-translation entries stored in the DTLB represent the eight most-
frequently accessed data-page translations from the UTLB. The DTLB is used to 
minimize contention between data translation and UTLB-update operations. The 
initialization and management of the DTLB is controlled completely by hardware and 
is transparent to software. 

Figure 6-4: Page-Translation Table and TLB Organization
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Figure 6-5 shows the address translation flow through the three TLBs.  

Although software is not responsible for managing the shadow TLBs, software must make 
sure the shadow TLBs are invalidated when the UTLB is updated. See Maintaining 
Shadow-TLB Consistency, page 197, for more information.

TLB Entries
Figure 6-6 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of 
two portions: TLBHI (also referred to as the tag entry), and TLBLO (also referred to as the 
data entry). The fields within a TLB entry are categorized as follows:

• Virtual-page identification—These fields identify the page-translation entry. They are 
compared with the virtual-page number during the translation process.

• Physical-page identification—These fields identify the translated page in physical 
memory.

• Access control—These fields specify the type of access allowed in the page and are 
used to protect pages from improper accesses.

• Storage attributes—These fields specify the storage-control attributes, such as whether 
a page is cacheable and how bytes are ordered (endianness).

The following sections describe the fields within each category.

Figure 6-5: ITLB/DTLB/UTLB Address Translation Flow
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Virtual-Page Identification Fields
The virtual-page identification portion of a TLB entry contains the following fields:

• TAG (TLB-entry tag)—TLBHI, bits 0:21. This field is compared with the EPN portion 
of the EA (EA[EPN]) under the control of the SIZE field. Table 6-2, page 187, shows 
the bit ranges used in comparing the TAG with EA[EPN]. In this table, TAGx:y 
represents the bit range from the TAG field in TLBHI and EAx:y represents the bit 
range from EA[EPN].

• SIZE (Page size)—TLBHI, bits 22:24. This field specifies the page size as shown in 
Table 6-2, page 187. The SIZE field controls the bit range used in comparing the TAG 
field with EA[EPN].

• V (Valid)—TLBHI, bit 25. When this bit is set to 1, the TLB entry is valid and contains 
a page-translation entry. When cleared to 0, the TLB entry is invalid.

• TID (Process Tag)—TLBHI, bits 28:35. This 8-bit field is compared with the PID field 
in the process-ID register. When TID is clear (0x00), the field is ignored and not 
compared with the PID field. A clear TID indicates the TLB entry is used by all 
processes.

Physical-Page Identification Fields
The physical-page identification portion of a TLB entry contains the following field:

• RPN (Physical-page number, or real-page number)—TLBLO, bits 0:21. When a TLB 
hit occurs, this field is read from the TLB entry and is used to form the physical 
address. Depending on the value of the SIZE field, some of the RPN bits are not used 
in the physical address. Software must clear unused bits in this field to 0. See Table 6-2, 
page 187, for information on which bits must be cleared.

Access-Control Fields
The access-control portion of a TLB entry contains the following fields:

• EX (Executable)—TLBLO, bit 22. When this bit is set to 1, the page contains executable 
code and instructions can be fetched from the page. When this bit is cleared to 0, 
instructions cannot be fetched from the page. Attempts to fetch instructions from a 
page with a clear EX bit cause an instruction-storage exception.

• WR (Writable)—TLBLO, bit 23. When this bit is set to 1, the page is writable and store 
instructions can be used to store data at addresses within the page. When this bit is 
cleared to 0, the page is read only (not writable). Attempts to store data into a page 
with a clear WR bit cause a data-storage exception.

• ZSEL (Zone select)—TLBLO, bits 24:27. This field selects one of 16 zone fields (Z0–
Z15) from the zone-protection register (ZPR). For example, if ZSEL=0b0101, zone field 
Z5 is selected. The selected ZPR field is used to modify the access protection specified 
by the TLB entry EX and WR fields. It is also used to prevent access to a page by 

0 21 22 24 25 26 27 28 35

TAG SIZE V E U0 TID

TLBHI (Tag Entry)

0 21 22 23 24 27 28 29 30 31

RPN EX WR ZSEL W I M G

TLBLO (Data Entry)

Figure 6-6: TLB-Entry Format
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overriding the TLB V (valid) field. See Zone Protection, page 192, for more 
information.

Storage-Attribute Fields
The storage-attribute portion of a TLB entry contains the following fields:

• E (Endian)—TLBHI, bit 26. When this bit is set to 1, the page is accessed as a little-
endian page. When cleared to 0, the page is accessed as a big-endian page. See Byte 
Ordering, page 49, for information on little-endian and big-endian byte accesses.

• U0 (User defined)—TLBHI, bit 27. When this bit is set to 1, access to the page is 
governed by a user-defined storage attribute. When cleared to 0, the user-defined 
storage attribute does not govern accesses to the page. See User Defined (U0), 
page 155, for more information.

• W (Write Through)—TLBLO, bit 28. When this bit is set to 1, accesses to the page are 
cached using a write-through caching policy. When cleared to 0, accesses to the page 
are cached using a write-back caching policy. See Write Through (W), page 154, for 
more information.

• I (Caching inhibited)—TLBLO, bit 29. When this bit is set to 1, accesses to the page are 
not cached (caching is inhibited). When cleared to 0, accesses to the page are 
cacheable, under the control of the W attribute (write-through caching policy). See 
Caching Inhibited (I), page 155, for more information.

• M (Memory coherent)—TLBLO, bit 30. Setting and clearing this bit does not affect 
memory accesses in the PPC405. In implementations that support multi-processing, 
this bit can be used to improve the performance of hardware that manages memory 
coherency.

• G (Guarded)—TLBLO, bit 31. When this bit is set to 1, speculative page accesses are 
not allowed (memory is guarded). When cleared to 0, speculative page accesses are 
allowed. The G attribute is often used to protect memory-mapped I/O devices from 
inappropriate accesses. See Guarded (G), page 155, for more information.

In real mode, the storage-attribute control registers are used to define storage attributes. 
See Storage-Attribute Control Registers, page 156 for more information.

Table 6-2 shows the relationship between the TLB-entry SIZE field and the translated page 
size. This table also shows how the page size determines which address bits are involved in 
a tag comparison, which address bits are used as a page offset, and which bits in the 
physical page number are used in the physical address. The final column, “n”, refers to a 
bit position shown in Figure 6-1, page 181. 

When assigning sizes to instruction pages, software must be careful to avoid creating the 
opportunity for instruction-cache synonyms. See Instruction-Cache Synonyms, page 145, 
for more information.

Table 6-2: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
(TLB Field)

Tag Comparison
Bit Range

Page
Offset

Physical-Page 
Number

RPN Bits
Clear to 0

n
(Figure 6-1)

1 KB 0b000 TAG0:21 ↔ EA0:21 EA22:31 RPN0:21 — 22

4 KB 0b001 TAG0:19 ↔ EA0:19 EA20:31 RPN0:19 20:21 20

16 KB 0b010 TAG0:17 ↔ EA0:17 EA18:31 RPN0:17 18:21 18

64 KB 0b011 TAG0:15 ↔ EA0:15 EA16:31 RPN0:15 16:21 16

256 KB 0b100 TAG0:13 ↔ EA0:13 EA14:31 RPN0:13 14:21 14
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TLB Access
When the MMU translates a virtual address (the combination of PID and effective address) 
into a physical address, it first examines the appropriate shadow TLB for the page-
translation entry. If an entry is found, it is used to access physical memory. If an entry is not 
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB 
must be accessed due to a shadow TLB miss. For the ITLB, the miss latency is four cycles. 
The DTLB has a miss latency of three cycles. The DTLB has priority over the ITLB if both 
simultaneously access the UTLB.

Figure 6-7 shows the logical process the MMU follows when examining a page-translation 
entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked. In 
the PPC405, all entries in a specific TLB (shadow or unified) are examined simultaneously. 
A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid.
• The TAG field in the entry matches the EA[EPN] under the control of the SIZE field in 

the entry. 
• The TID field in the entry matches the PID. 

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an 
exception, as described in TLB-Access Failures, page 189.

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. 
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a 
process-independent translation. Pages that are accessed globally by all processes should 
be assigned a TID value of 0x00. 

A PID value of 0x00 does not identify a process that can access any page. When PID=0x00, 
a page-translation hit only occurs when TID=0x00.

It is possible for software to load the TLB with multiple entries that match an EA[EPN] and 
PID combination. However, this is considered a programming error and results in 
undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some 
or all of the bits in this field are used, depending on the value of the SIZE field (see 
Table 6-2, page 187). For example, if the SIZE field specifies a 256 KB page size, RPN0:13 
represents the physical page number and is used to form the physical address. RPN14:21 is 
not used, and software must clear those bits to 0 when initializing the TLB entry. The 
remainder of the physical address is taken from the page-offset portion of the EA. If the 
page size is 256 KB, the 32-bit physical address is formed by concatenating RPN0:13 with 
EA14:31.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control 
fields. These fields indicate whether the currently executing program is allowed to 
perform the requested memory access. See Virtual-Mode Access Protection, page 191, for 
more information.

1 MB 0b101 TAG0:11 ↔ EA0:11 EA12:31 RPN0:11 12:21 12

4 MB 0b110 TAG0:9 ↔ EA0:9 EA10:31 RPN0:9 10:21 10

16 MB 0b111 TAG0:7 ↔ EA0:7 EA8:31 RPN0:7 8:21 8

Table 6-2: Page-Translation Bit Ranges by Page Size (Continued)

Page
Size

SIZE
(TLB Field)

Tag Comparison
Bit Range

Page
Offset

Physical-Page 
Number

RPN Bits
Clear to 0

n
(Figure 6-1)
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If access is allowed, the MMU checks the storage-attribute fields to determine how to 
access the page. The storage-attribute fields specify the caching policy and byte ordering 
for memory accesses. See Storage-Attribute Fields, page 187, for more information.

TLB-Access Failures
A TLB-access failure causes an exception to occur. This interrupts execution of the 
instruction that caused the failure and transfers control to an interrupt handler to resolve 
the failure. A TLB access can fail for two reasons:

• A matching TLB entry was not found, resulting in a TLB miss.
• A matching TLB entry was found, but access to the page was prevented by either the 

storage attributes or zone protection.

Figure 6-7: General Process for Examining a TLB Entry
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When an interrupt occurs, the processor enters real mode by clearing MSR[IR, DR] to 0. In 
real mode, all address translation and memory-protection checks performed by the MMU 
are disabled. After system software initializes the UTLB with page-translation entries, 
management of the PPC405 UTLB is usually performed using interrupt handlers running 
in real mode.

The following sections describe the conditions under which exceptions occur due to TLB-
access failures.

Data-Storage Exception
When data-address translation is enabled (MSR[DR]=1), a data-storage exception occurs 
when access to a page is not permitted for any of the following reasons:

• From user mode:
- The TLB entry specifies a zone field that prevents access to the page 

(ZPR[Zn]=00). This applies to load, store, dcbf, dcbst, dcbz, and icbi instructions.
- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise 

overridden by the zone field (ZPR[Zn]≠ 11). This applies to store and dcbz 
instructions.

- The TLB entry specifies a U0 page (TLBHI[U0]=1) and U0 exceptions are enabled 
(CCR0[U0XE]=1). This applies to store and dcbz instructions.

• From privileged mode:
- The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise 

overridden by the zone field (ZPR[Zn]≠ 10 and ZPR[Zn]≠ 11). This applies to 
store, dcbi, dcbz, and dccci instructions.

- The TLB entry specifies a U0 page (TLBHI[U0]=1) and U0 exceptions are enabled 
(CCR0[U0XE]=1). This applies to store, dcbi, dcbz, and dccci instructions.

See Data-Storage Interrupt (0x0300), page 218, for more information on this exception and 
Zone Protection, page 192, for more information on zone protection.

Instruction-Storage Exception
When instruction-address translation is enabled (MSR[IR]=1), an instruction-storage 
exception occurs when access to a page is not permitted for any of the following reasons:

• From user mode:
- The TLB entry specifies a zone field that prevents access to the page 

(ZPR[Zn]=00).
- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not 

otherwise overridden by the zone field (ZPR[Zn]≠ 11).
- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

• From privileged mode:
- The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not 

otherwise overridden by the zone field (ZPR[Zn]≠ 10 and ZPR[Zn]≠ 11).
- The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

See Instruction-Storage Interrupt (0x0400), page 220, for more information on this 
exception, Guarded (G), page 155, for more information on guarded storage, and Zone 
Protection, page 192, for more information on zone protection.

Data TLB-Miss Exception
When data-address translation is enabled (MSR[DR]=1), a data TLB-miss exception occurs 
if a valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any load, 
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store, or cache instruction (excluding cache-touch instructions) can cause a data TLB-miss 
exception. See Data TLB-Miss Interrupt (0x1100), page 231, for more information.

Instruction TLB-Miss Exception
When instruction-address translation is enabled (MSR[IR]=1), an instruction TLB-miss 
exception occurs if a valid, matching TLB entry was not found in the TLB (shadow and 
UTLB). Any instruction fetch can cause an instruction TLB-miss exception. See Instruction 
TLB-Miss Interrupt (0x1200), page 232, for more information.

Virtual-Mode Access Protection
System software uses access protection to protect sensitive memory locations from 
improper access. System software can restrict memory accesses for both user-mode and 
privileged-mode software. Restrictions can be placed on reads, writes, and instruction 
fetches. Access protection is available only when instruction or data address translation is 
enabled.

Virtual-mode access control applies to instruction fetches, data loads, data stores, and 
cache operations. The TLB entry for a virtual page specifies the type of access allowed to 
the page. The TLB entry also specifies a zone-protection field in the zone-protection 
register that is used to override the access controls specified by the TLB entry. 

TLB Access-Protection Controls
Each TLB entry controls three types of access:

• Process—Processes are protected from unauthorized access by assigning a unique 
process ID (PID) to each process. When system software starts a user-mode 
application, it loads the PID for that application into the PID register. As the 
application executes, memory addresses are translated using only TLB entries with a 
TLBHI[TID] field that matches the PID. This enables system software to restrict 
accesses for an application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that 
are accessed globally by all processes should be assigned a TID value of 0x00. 

• Execution—The processor executes instructions only if they are fetched from a virtual 
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents 
execution of instructions fetched from a page, instead causing an instruction-storage 
interrupt (ISI) to occur. The ISI does not occur when the instruction is fetched, but 
instead occurs when the instruction is executed. This prevents speculatively fetched 
instructions that are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write—Data is written only to virtual pages marked as writable 
(TLBLO[WR]=1). Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to 
write to a read-only page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone 
protection is used to read-protect pages. This is done by defining a no-access-allowed zone 
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs 
running in user mode can be prevented from reading a page. Privileged programs always 
have read access to a page. See Zone Protection below.
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Zone Protection
Zone protection is used to override the access protection specified in a TLB entry. Zones are 
an arbitrary grouping of virtual pages with common access protection. Zones can contain 
any number of pages specifying any combination of page sizes. There is no requirement for 
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection 
override applied to each of 16 possible zones. The protection override for a zone is encoded 
in the ZPR as a 2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects 
one of the 16 zone fields from the ZPR (Z0–Z15). For example, zone Z5 is selected when 
ZSEL = 0b0101. 

Changing a zone field in the ZPR applies a protection override across all pages in that 
zone. Without the ZPR, protection changes require individual alterations to each page-
translation entry within the zone.

Figure 6-8 shows the format of the ZPR register. The protection overrides encoded by the 
zone fields are shown in Table 6-3.

The ZPR is a privileged SPR with an address of 944 (0x3B0) and is read and written using 
the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15

Figure 6-8: Zone-Protection Register (ZPR)

Table 6-3: Zone-Protection Register (ZPR) Bit Definitions

Bit Name Function Description

0:1 Z0 Zone 0 Protection User Mode (MSR[PR]=1)

00—Override V in TLB entry. 
No access to the page is al-
lowed.

01—No override. Use V, WR, 
and EX from TLB entry.

10—No override. Use V, WR, 
and EX from TLB entry.

11—Override WR and EX. 
Access the page as writable 
and executable.

Privileged Mode (MSR[PR]=0)

00—No override. Use V, WR, 
and EX from TLB entry.

01—No override. Use V, WR, 
and EX from TLB entry.

10—Override WR and EX. 
Access the page as writable 
and executable.

11—Override WR and EX. 
Access the page as writable 
and executable.

2:3 Z1 Zone 1 Protection

4:5 Z2 Zone 2 Protection

6:7 Z3 Zone 3 Protection

8:9 Z4 Zone 4 Protection

10:11 Z5 Zone 5 Protection

12:13 Z6 Zone 6 Protection

14:15 Z7 Zone 7 Protection

16:17 Z8 Zone 8 Protection

18:19 Z9 Zone 9 Protection

20:21 Z10 Zone 10 Protection

22:23 Z11 Zone 11 Protection

24:25 Z12 Zone 12 Protection

26:27 Z13 Zone 13 Protection

28:29 Z14 Zone 14 Protection

30:31 Z15 Zone 15 Protection

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 193
UG011 (v1.2) January 19, 2007

Chapter 6: Virtual-Memory Management
R

Effect of Access Protection on Cache-Control Instructions
The access-protection mechanisms apply to certain cache-control instructions, depending 
on how those instructions affect data. Cache-control instructions—including those that 
affect the instruction cache—are treated as data loads or data stores by the access-
protection mechanism. If an access-protection violation occurs, the resulting interrupt is a 
data-storage interrupt. The following summarizes how access protection is applied to 
cache-control instructions:

• Cache-control instructions that can modify data are treated as stores (writes) by the 
access-protection mechanism. Instructions that can cause loss of data by invalidating 
cachelines are also treated as stores. TLB write-protection and zone protection are 
used to restrict access by these instructions as follows:
- dcbi—Affected by TLBLO[WR] only. Because this is a privileged instruction, 

access cannot be denied by zone protection.
- dcbz—Affected by TLBLO[WR] and (in user mode only) ZPR[Zn]=00.

• Other cache-control instructions can invalidate an entire cache-congruence class. 
These instructions are not address-specific and can affect multiple pages with 
different access protections. Because they are privileged instructions, access cannot be 
denied by zone protection.
- dccci—Affected by TLBLO[WR] only. This instruction can cause data loss by 

invalidating modified data in the cache-congruence class.
- iccci—Not affected by TLBLO[WR]. The instruction cache cannot hold modified 

data.

Both dccci and iccci can cause TLB-miss interrupts. Because these instructions are not 
address-specific, it is recommended that software does not execute them when data-
relocation is enabled (MSR[DR]=1). 

• Some cache-control instructions update system memory with data already present in 
the cache. These instructions are treated as loads (reads) by the access-protection 
mechanism rather than as stores. The reason is that stores were already used to place 
the modified data into the cache and passed the access-protection check. Therefore, 
these instructions are not affected by TLBLO[WR].
- dcbf—Affected by ZPR[Zn]=00 in user mode only.
- dcbst—Affected by ZPR[Zn]=00 in user mode only.

• Speculative cache-control instructions are restricted by TLB write-protection access 
control and by zone protection. However, if these instructions fail access protection 
checks they do not cause an exception and are instead treated as a “no operation”.
- dcba—Affected by TLBLO[WR] and (in user mode only) ZPR[Zn]=00.
- dcbt—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as a 

load and is therefore not affected by TLBLO[WR].
- dcbtst—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as 

a load and is therefore not affected by TLBLO[WR].
- icbt—Affected by ZPR[Zn]=00 in user mode only. This instruction is treated as a 

load and is therefore not affected by TLBLO[WR].
• Certain privileged cache-control instructions are treated as loads and are therefore 

unaffected by TLBLO[WR]. Because they are privileged instructions, access cannot be 
denied when ZPR[Zn]=00. These instructions are:
- dcread.
- icbi.
- icread.
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Table 6-4 summarizes the effect of access violations that occur when a cache-control 
instruction is executed. In this table, the “Read-Only Page” column applies to the 
execution of an instruction in privileged mode and (for the non-privileged instructions) 
user mode. The “No-Access Allowed Page” column applies to the execution of instructions 
only in user mode (no-access allowed protection is not available in supervisor mode).

Enabling Access to OCM
If address translation is enabled (MSR[IR, DR] = 1), one or more TLB entries for the OCM 
address space must exist to validate accesses. However, the virtual addresses are not 
translated, and 32-bit effective addresses (virtual addresses) are presented to the OCM.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management 
software. System software manages the UTLB to tell the MMU how to translate virtual 
addresses into physical addresses. When a problem occurs due to a missing translation or 
an access violation, the MMU communicates the problem to system software using the 
exception mechanism. System software is responsible for providing interrupt handlers to 
correct these problems so that the MMU can proceed with memory translation.

Table 6-5 lists the PowerPC TLB-management instructions that enable system software to 
manage UTLB entries. These instructions are used to search the UTLB for specific entries, 
read entries, invalidate entries, and write entries. All of these instructions are privileged.

Table 6-4: Effect of Cache-Control Instruction Access Violations

Instruction
Read-Only Page
(TLBLO[WR]=0)

No-Access Allowed Page
(ZPR[Zn]=00)

dcba No operation. No operation.

dcbf No violation—treated as load. Data-storage interrupt.

dcbi Data-storage interrupt. No violation—privileged instruction.

dcbst No violation—treated as load. Data-storage interrupt.

dcbt No violation—treated as load. No operation.

dcbtst No violation—treated as load. No operation.

dcbz Data-storage interrupt. Data-storage interrupt.

dccci Data-storage interrupt. No violation—privileged instruction.

dcread No violation—treated as load. No violation—privileged instruction.

icbi No violation—treated as load. No violation—privileged instruction.

icbt No violation—treated as load. No operation.

iccci Data-storage interrupt. No violation—privileged instruction.

icread No violation—treated as load. No violation—privileged instruction.
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Software reads and writes UTLB entries using the tlbre and tlbwe instructions, 
respectively. These instructions specify an index (numbered 0 to 63) corresponding to one 
of the 64 entries in the UTLB. The tag and data portions are read and written separately, so 
software must execute two tlbre or tlbwe instructions to completely access an entry. The 
UTLB is searched for a specific translation using the tlbsx instruction. tlbsx locates a 
translation using an effective address and loads the corresponding UTLB index into a 
register.

Simplified mnemonics are defined for the TLB read and write instructions. See TLB-
Management Instructions, page 554, for more information.

The tlbia instruction invalidates the entire contents of the UTLB. Individual entries are 
invalidated using the tlbwe instruction to clear the valid bit in the tag portion of a TLB 
entry (TLBHI[V]).

The tlbsync instruction performs no operation on the PPC405 because the processor does 
not provide hardware support for multiprocessor memory coherency.

Table 6-5: TLB-Management Instructions

Mnemonic Name Operation
Operand 
Syntax

tlbia TLB Invalidate All Invalidates all UTLB entries by clearing their valid 
bits (TLBHI[V]) to 0. No other fields in the UTLB 
entries are modified.

—

tlbre TLB Read Entry rA contains an index value ranging from 0 to 63. 
Part of the UTLB entry specified by the index in rA 
is loaded into rD. If WS=0, the tag portion (TLBHI) 
is loaded into rD and the PID is updated with the 
TLBHI[TID] field. If WS=1, the data portion 
(TLBLO) is loaded into rD.

rD,rA,WS

tlbsx TLB Search Indexed If a translation is found, rD is loaded with the index 
of the UTLB entry for the page specified by EA. If a 
translation is not found, rD is undefined. The index 
is used by the tlbre and tlbre instructions.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

rD,rA,rB

tlbsx. TLB Search Indexed and Record If a translation is found, rD is loaded with the index 
of the UTLB entry for the page specified by EA, and 
CR0[EQ] is set to 1. If a translation is not found, rD 
is undefined and CR0[EQ] is cleared to 0. The index 
is used by the tlbre and tlbre instructions.

EA is calculated using register-indirect with index 
addressing:

EA = (rA|0) + (rB)

tlbsync TLB Synchronize On the PPC405, this instruction performs no 
operation.

—

tlbwe TLB Write Entry rA contains an index value ranging from 0 to 63. 
Part of the UTLB entry specified by the index in rA 
is loaded with the value in rS. If WS=0, the tag 
portion (TLBHI) is loaded from rS and the 
TLBHI[TID] field is updated with the PID. If WS=1, 
the data portion (TLBLO) is loaded from rS.

rS,rA,WS
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Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more memory 
than is physically available. Some of the software and data pages must be stored 
outside physical memory, such as on a hard drive, when they are not used. Ideally, the 
most-frequently used pages stay in physical memory and infrequently used pages are 
stored elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it is 
important to know whether the replaced (old) pages were modified. If they were 
modified, they must be saved prior to loading the replacement (new) pages. If the old 
pages were not modified, the new pages can be loaded without saving the old pages.

• A limited number of page translations are kept in the UTLB. The remaining 
translations must be stored in the page-translation table. When a translation is not 
found in the UTLB (due to a miss), system software must decide which UTLB entry to 
discard so that the missing translation can be loaded. It is desirable for system 
software to replace infrequently used translations rather than frequently used 
translations.

Solving the above problems in an efficient manner requires keeping track of page accesses 
and page modifications. The PPC405 does not track page access and page modification in 
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage 
exception to collect this information. As the information is collected, it can be stored in a 
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical 
memory and which are replaced when physical-memory space is required. System 
software can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This 
requires page translations be initialized as not valid (TLBHI[V]=0) to indicate they have 
not been accessed. The first attempt to access a page causes a TLB-miss exception, either 
because the UTLB entry is marked not valid or because the page translation is not present 
in the UTLB. The TLB-miss handler updates the UTLB with a valid translation 
(TLBHI[V]=1). The set valid bit serves as a record that the page and its translation have 
been accessed. The TLB-miss handler can also record the information in a separate data 
structure associated with the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten 
with a new page or the old page must first be stored to a hard disk. System software can 
use the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. 
This requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they 
have not been modified. The first attempt to write data into a page causes a data-storage 
exception, assuming the page has already been accessed and marked valid as described 
above. If software has permission to write into the page, the data-storage handler marks 
the page as writable (TLBLO[WR]=1) and returns. The set write-protection bit serves as a 
record that a page has been modified. The data-storage handler can also record this 
information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new 
process is started.
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Maintaining Shadow-TLB Consistency
The PPC405 TLBs are maintained by two different mechanisms: software manages the 
UTLB and the processor manages the shadow TLBs. Software must ensure the shadow 
TLBs remain consistent with the UTLB when updates are made to entries in the UTLB. If 
software updates any field in a UTLB entry, it must synchronize that update with the 
shadow TLBs. Failure to properly synchronize the shadow TLBs can cause unexpected 
behavior. 

Synchronization occurs when the processor hardware replaces a shadow-TLB entry with 
an updated entry from the UTLB. To force a replacement, software must invalidate the 
shadow-TLB entry. This forces the MMU to read the modified entry from the UTLB the 
next time it is accessed. The processor invalidates all shadow-TLB entries when any of the 
following context-synchronizing events occur:

• An isync instruction is executed.
• An sc instruction is executed.
• An interrupt occurs.
• An rfi or rfci instruction is executed.

TLB entries are normally modified by interrupt handlers. The shadow TLB is 
automatically invalidated when an interrupt occurs. The interrupt also disables address 
translation, placing the processor in real mode. The MMU does not access the UTLB or 
update the shadow TLBs when address translation is disabled. If the interrupt handler 
updates the UTLB and returns from the interrupt handler (using rfi) without enabling 
virtual mode, no additional context synchronization is required. 

However, if virtual mode is enabled by the interrupt handler and the UTLB is updated, 
those updates are not synchronized with the shadow TLBs until an rfi is executed to exit 
the handler. If UTLB updates must be reflected in the shadow TLB while the interrupt 
handler is executing, isync must be executed after updating the UTLB.

As a general rule, software manipulation of UTLB entries should always be followed by a 
context-synchronizing operation, typically an isync instruction.
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Chapter 7

Exceptions and Interrupts

The PowerPC embedded-environment architecture extends the base PowerPC exception 
and interrupt mechanism in the following ways:

• A dual-level interrupt structure is defined supporting critical and noncritical 
interrupts.

• New save/restore registers are defined in support of the dual-level interrupt 
structure.

• A new interrupt-return instruction is defined in support of the dual-level interrupt 
structure.

• New special-purpose registers are defined for recording exception information.
• New exceptions and interrupts are defined.

This chapter describes the exceptions recognized by the PPC405D5 and how the interrupt 
mechanism responds to those exceptions.

Overview
Exceptions are events detected by the processor that often require action by system 
software. Most exceptions are unexpected and are the result of error conditions. A few 
exceptions can be programmed to occur through the use of exception-causing instructions. 
Some exceptions are generated by external devices and communicated to the processor 
using external signalling. Still other exceptions can occur when pre-programmed 
conditions are recognized by the processor.

Interrupts are automatic control transfers that occur as a result of an exception. An 
interrupt occurs when the processor suspends execution of a program after detecting an 
exception. The processor saves the suspended-program machine state and a return address 
into the suspended program. This information is stored in a pair of special registers, called 
save/restore registers. A predefined machine state is loaded by the processor, which transfers 
control to an interrupt handler. An interrupt handler is a system-software routine that 
responds to the interrupt, often by correcting the condition causing the exception. System 
software places interrupt handlers at predefined addresses in physical memory and the 
interrupt mechanism automatically transfers control to the appropriate handler based on 
the exception condition.

An interrupt places the processor in both privileged mode and real mode (instruction-
address and data-address relocation are disabled). Interrupts are context-synchronizing 
events. All instructions preceding the interrupted instruction are guaranteed to have 
completed execution when the interrupt occurs. All instructions following the interrupted 
instruction (in the program flow) are discarded.

Returning from an interrupt handler to an interrupted program requires that the old 
machine state and program return address be restored from the save/restore register pair. 
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This is accomplished using a return-from-interrupt instruction. Like interrupts, return-from-
interrupt instructions are context synchronizing.

Certain interrupts can be disabled (masked) or enabled (unmasked). Disabling an 
interrupt prevents it from occurring when the corresponding exception condition is 
detected by the processor.

Synchronous and Asynchronous Exceptions
Exceptions (and the corresponding interrupt) can be synchronous or asynchronous. 
Synchronous exceptions are directly caused by the execution or attempted execution of an 
instruction. Asynchronous exceptions occur independently of instruction execution. The 
cause of an asynchronous exception is generally not related to the instruction executing at 
the time the exception occurs.

Precise and Imprecise Interrupts
Most interrupts are precise. A precise interrupt occurs in program order and on the 
instruction boundary where the exception is recognized. A precise interrupt causes the 
following to occur:

• The return address points to the excepting instruction. For synchronous exceptions, 
the return address points to either the instruction causing the exception or the 
instruction that immediately follows, depending on the exception condition. For 
asynchronous exceptions, the return address points to the instruction boundary 
where the exception is recognized by the processor.

• All instructions preceding the excepting instruction complete execution before the 
interrupt occurs. However, it is possible that some storage accesses initiated by those 
instructions are not complete with respect to external devices.

• Depending on the exception condition, it is possible for the excepting instruction to 
have completed execution, partially completed execution, or not have begun 
execution.

• No instructions following the excepting instruction are executed prior to transferring 
control to the interrupt handler.

When a imprecise interrupt occurs, the excepting instruction is unrelated to the exception 
condition. Here, there is a delay between the point where the exception is recognized by 
the processor and the time when the interrupt occurs. An imprecise interrupt causes the 
following to occur:

• The excepting instruction follows (in program order) the instruction boundary where 
the exception is recognized by the processor. The delay can span several instructions.

• All instructions preceding the excepting instruction complete execution before the 
interrupt occurs. However, it is possible that some storage accesses initiated by those 
instructions are not complete with respect to external devices.

• It is possible for the excepting instruction to have completed execution, partially 
completed execution, or not have begun execution.

• No instructions following the excepting instruction are executed prior to transferring 
control to the interrupt handler.

On the PPC405, only the machine-check interrupt is imprecise. A machine check can be 
caused indirectly by the execution of an instruction. In this case, it is possible for the 
processor to execute additional instructions before recognizing the occurrence of a 
machine check.
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Partially-Executed Instructions
Certain instructions can cause an alignment exception or data-storage exception part-way 
through their execution. When an interrupt occurs, some software-visible state can be 
updated to reflect the partial execution of the excepting instruction. The instructions and 
the effect interrupts have on partial execution are as follows:

• Load-multiple and load-string instructions.

It is possible that some of the target registers are updated when a data-storage 
exception or an alignment exception occurs. When the instruction is restarted, the 
modified registers are updated again.

• Store-multiple and store-string instructions.

It is possible that some of the target bytes in memory are updated when a data-storage 
exception or an alignment exception occurs. When the instruction is restarted, the 
modified memory locations are updated again.

• Scalar load instructions that cross a word boundary.

It is possible that some memory bytes have been accessed (read) when a data-storage 
exception or alignment exception occurs. However, no registers are updated.

• Scalar store instructions that cross a word boundary.

It is possible that some of the target bytes in memory are updated when a data-storage 
exception or alignment exception occurs. If the instruction is an update form, the 
update register is not updated. When the instruction is restarted, the modified memory 
locations are updated again.

In the above cases, memory protection is never violated by the partial execution of an 
instruction. No other instruction updates software-visible state if an exception occurs part-
way through execution. 

To prevent load and store instructions from being interrupted and restarted, only scalar 
instructions (not string or multiple) should be used to reference memory. Also, one of the 
following two rules must be followed:

• The memory operand must be aligned on the operand-size boundary (see Table 2-1, 
page 53).

• The accessed memory location must be protected by the guarded storage attribute 
(see Guarded (G), page 155).

If a properly-aligned scalar load or store is interrupted, a memory-access request does not 
appear on the processor local bus (PLB). Conversely, the processor does not interrupt a 
properly-aligned scalar load or store once its corresponding memory-access request 
appears on the PLB. Thus, the guarded storage attribute is not required to prevent 
interruption of properly-aligned loads and stores.

PPC405D5 Exceptions and Interrupts
Table 7-1 lists the exceptions supported by the PPC405D5. Included is the exception-vector 
offset into the interrupt-handler table, the exception classification, and a brief description 
of the cause. Gray-shaded rows indicate exceptions that are not supported by the 
PPC405D5 but can occur on other implementations of the PowerPC 405 processor. Refer to 
Interrupt Reference, page 214, for a detailed description of each exception and its 
resulting interrupt.
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Critical and Noncritical Exceptions
The PPC405 supports critical and noncritical exceptions. Generally, the processor responds 
to critical exceptions before noncritical exceptions (certain debug exceptions are handled at 
a lower priority). Four exceptions and their associated interrupts are critical:

• Critical-input exception.
• Machine-check exception.
• Watchdog-timer exception.
• Debug exception.

Critical interrupts use a different save/restore register pair (SRR2 and SRR3) than is used 
by noncritical interrupts (SRR0 and SRR1). This enables a critical interrupt to interrupt a 
noncritical-interrupt handler. The state saved by the noncritical interrupt is not 
overwritten by the critical interrupt.

Because a different register pair is used for saving processor state, a different instruction is 
used to return from critical interrupt handlers—rfci.

Table 7-1: Exceptions Supported by the PPC405D5

Exception
Vector
Offset

Classification Cause

Critical Input 0x0100 Critical Asynchronous Precise External critical-interrupt signal.

Machine Check 0x0200 Critical Asynchronous Imprecise External bus error.

Data Storage 0x0300 Noncritical Synchronous Precise Data-access violation.

Instruction Storage 0x0400 Noncritical Synchronous Precise Instruction-access violation.

External 0x0500 Noncritical Asynchronous Precise External noncritical-interrupt signal.

Alignment 0x0600 Noncritical Synchronous Precise Unaligned operand of dcread, lwarx, stwcx.

dcbz to non-cacheable or write-through 
memory.

Program 0x0700 Noncritical Synchronous Precise Improper or illegal instruction execution.

Execution of trap instructions.

FPU Unavailable 0x0800 Noncritical Synchronous Precise Attempt to execute an FPU instruction when 
FPU is disabled.

System Call 0x0C00 Noncritical Synchronous Precise Execution of sc instruction.

APU Unavailable 0x0F20 Noncritical Synchronous Precise Attempt to execute an APU instruction 
when APU is disabled.

Programmable-
Interval Timer

0x1000 Noncritical Asynchronous Precise Time-out on the programmable-interval 
timer.

Fixed-Interval Timer 0x1010 Noncritical Asynchronous Precise Time-out on the fixed-interval timer.

Watchdog Timer 0x1020 Critical Asynchronous Precise Time-out on the watchdog timer.

Data TLB Miss 0x1100 Noncritical Synchronous Precise No data-page translation found.

Instruction TLB Miss 0x1200 Noncritical Synchronous Precise No instruction-page translation found.

Debug 0x2000 Critical Asynchronous 
and synchronous

Precise Occurrence of a debug event.
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Transferring Control to Interrupt Handlers
Figure 7-1 shows how the components of the PPC405 exception mechanism interact when 
transferring program control to an interrupt handler. 

Referring to Figure 7-1, the actions performed by the processor when an interrupt occurs 
are:

1. Save the interrupt-return address (effective address).

Generally, the return address is either that of the instruction that caused the exception, 
or the next-sequential instruction that would have executed had no exception 
occurred. It is saved in one of two save/restore registers, depending on the type of 
interrupt:

- Critical interrupts load SRR2 with the return address.

Figure 7-1: PPC405 Exception Mechanism
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- Noncritical interrupts load SRR0 with the return address.

Refer to the specific interrupt description in Interrupt Reference, page 214 for 
information on the saved return address.

2. Save the interrupted-program state.

The contents of the machine-state register (MSR) are copied into one of two 
save/restore registers, depending on the type of interrupt:

- Critical interrupts load SRR3 with a copy of the MSR.
- Noncritical interrupts load SRR1 with a copy of the MSR.

3. Update the exception-syndrome register (ESR), if applicable.

Five exceptions report status information in the ESR when control is transferred to the 
interrupt handler (ESR is not modified by the remaining exceptions):

- Machine check.
- Data storage.
- Instruction storage.
- Program.
- Data TLB miss.

Interrupt handlers use the ESR to determine the cause of an exception.

4. Update the data exception-address register (DEAR), if applicable.

Three exceptions report the address of a failed data access in the DEAR when control 
is transferred to the interrupt handler (DEAR is not modified by the remaining 
exceptions):

- Data storage.
- Alignment.
- Data TLB miss.

5. Load the new program state into the MSR.

All interrupts load new program state into the MSR. The new state places the 
processor in privileged mode. Instruction-address and data-address translation are 
disabled, placing the processor in real mode. Certain interrupts are disabled, 
depending on the exception.

6. Synchronize the processor context.

All interrupts are context synchronizing. The processor fetches and executes the first 
instruction in the interrupt handler in the context established by the new MSR 
contents.

7. Transfer control to the interrupt handler.

An exception-vector offset is associated with each exception. The offset is added to a 
64KB-aligned base address located in the exception-vector prefix register (EVPR). The 
sum represents a physical address that points to the first instruction of the interrupt 
handler.

Interrupt handlers are located in an interrupt-handler table. The available space in this 
table is generally insufficient to hold entire interrupt handlers. Instead, system 
software typically places “glue code” in the table for transferring control to the full 
handler, located elsewhere in memory.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 205
UG011 (v1.2) January 19, 2007

Chapter 7: Exceptions and Interrupts
R

Returning from Interrupt Handlers
System software exits an interrupt handler using one of two privileged instructions. 
Noncritical-interrupt handlers return to an interrupted program using the return-from-
interrupt instruction (rfi). Critical-interrupt handlers return to an interrupted program 
using the return-from-critical-interrupt instruction (rfci). Both instructions operate in a 
similar fashion, with the only difference being the save/restore register pair used to restore 
the interrupted-program state. rfi and rfci perform the following functions:

1. All previous instructions complete execution in the context they were issued 
(privilege, protection, and address-translation mode).

2. All previous instructions are completed to a point where they can no longer cause an 
exception.

3. The processor loads the MSR with the interrupted-program state from one of two 
save/restore registers, depending on the instruction:
- rfi copies SRR1 into the MSR.
- rfci copies SRR3 into the MSR.

4. Processor context is synchronized.

Both instructions are context synchronizing. The processor fetches and executes the 
instruction at the return address in the interrupted-program context.

5. The processor begins fetching and executing instructions from the interrupted 
program:
- Instructions are fetched from the address in SRR0 following completion of the rfi.
- Instructions are fetched from the address in SRR2 following completion of the 

rfci.

Simultaneous Exceptions and Interrupt Priority
The PPC405 interrupt mechanism responds to exceptions serially. If multiple exceptions 
are pending simultaneously, the associated interrupts occur in a consistent and predictable 
order. Even though critical and noncritical exceptions use different save/restore register 
pairs, simultaneous occurrences of these exceptions are also processed serially. 

The PPC405 uses the interrupt priority shown in Table 7-2 for handling simultaneous 
exceptions. Lower-priority interrupts occur ahead of masked higher-priority interrupts.

Table 7-2: Interrupt Priority for Simultaneous Exceptions

Priority Exception Cause

1 Machine check—Data. External bus error during data access.

2 Debug—Instruction-address compare. Instruction-address compare (IAC) debug event.

3 Machine check—Instruction. Attempted execution of an instruction for which an external bus error 
occurred during instruction fetch.

4 Debug—Exception. Exception (EDE) debug event.

Debug—Unconditional. Unconditional (UDE) debug event.

5 Critical input Critical-interrupt input signal is asserted.

6 Watchdog timer Watchdog timer time-out.

7 Instruction TLB Miss Attempted execution of an instruction from a memory address with no 
valid, matching page translation loaded in the TLB (virtual mode only).
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8 Instruction storage—No access. In user mode, attempted execution of an instruction from a memory 
address with no-access-allowed zone protection (virtual mode only).

9 Instruction storage—Non-executable. Attempted execution of an instruction from a non-executable memory 
address (virtual mode only).

Instruction storage—Guarded. Attempted execution of an instruction from a guarded memory address.

10 Program Attempted execution of:
• An illegal instruction.
• Unimplemented floating-point instructions.
• Unimplemented auxiliary-processor instructions.
• A privileged instruction from user mode.
• Execution of a trap instruction that satisfies the trap conditions.

System call Execution of the sc instruction.

FPU unavailable Attempted execution of an implemented floating-point instruction when 
MSR[FP]=0. Not implemented by the PPC405D5.

APU unavailable Attempted execution of an implemented auxiliary-processor instruction 
when MSR[AP]=0. Not implemented by the PPC405D5.

11 Data TLB Miss Attempted access of data from an address with no valid, matching page 
translation loaded in the TLB (virtual mode only).

12 Data storage—No access. In user mode, attempted access of data from a memory address with no-
access-allowed zone protection (virtual mode only).

13 Data storage—Read-only. Attempted data write (store) into a read-only memory address (virtual 
mode only).

Data storage—User defined. Attempted data write (store) into a memory address with the U0 storage 
attribute set to 1, when U0 exceptions are enabled.

14 Alignment Attempted execution of:
• dcbz to a non-cacheable or write-though cacheable address.
• lwarx or stwcx. to an address that is not word aligned.
• dcread to an address that is not word aligned (privileged mode only).

15 Debug—Branch taken. Branch taken (BT) debug event.

Debug—Data-address compare. Data-address compare (DAC) debug event.

Debug—Data-value compare. Data-value compare (DVC) debug event.

Debug—Instruction completion. Instruction completion (IC) debug event.

Debug—Trap instruction. Trap instruction (TDE) debug event.

16 External Noncritical-interrupt input signal is asserted.

17 Fixed-interval timer Fixed-interval timer time-out.

18 Programmable-interval timer Programmable-interval timer time-out.

Table 7-2: Interrupt Priority for Simultaneous Exceptions (Continued)

Priority Exception Cause
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Persistent Exceptions and Interrupt Masking
When certain exceptions are recognized by the processor, system software can prevent the 
corresponding interrupt from occurring by disabling, or masking, the interrupt. In general, 
disabling an interrupt only delays its occurrence. The processor continues to recognize the 
exception. When software re-enables (unmasks) the interrupt, the interrupt occurs. Such 
exceptions are referred to as persistent exceptions.

An persistent exception normally sets a status bit in a specific register associated with the 
exception mechanism. The only way for software to prevent the interrupt from occurring is 
to clear the exception-status bit before unmasking (enabling) the interrupt. Likewise, the 
interrupt handler must clear the exception-status bit to prevent the interrupt from 
reoccurring, should it be re-enabled upon exiting the interrupt handler.

The following exceptions are persistent and their corresponding interrupts can be 
disabled:

• Critical input—Exception status is recorded in a device control register (DCR) 
associated with the external interrupt controller. The MSR[CE] bit is used to enable 
and disable the interrupt.

• External—Exception status is recorded in a device control register (DCR) associated 
with the external interrupt controller. The MSR[EE] bit is used to enable and disable 
the interrupt.

• Programmable-interval timer—Exception status is recorded in the PIT-status bit of the 
timer-status register, TSR[PIS]. The MSR[EE] bit is used to enable and disable the 
interrupt.

• Fixed-interval timer—Exception status is recorded in the FIT-status bit of the timer-
status register, TSR[FIS]. The MSR[EE] bit is used to enable and disable the interrupt.

• Debug—Imprecise exception status is recorded in the imprecise-debug exception bit 
of the debug-status register, DBSR[IDE]. This indicates that a debug event occurred 
while debug interrupts were disabled. Other bits in the DBSR can be set, indicating 
which debug events occurred while the interrupt was disabled. The MSR[DE] bit is 
used to enable and disable the interrupt.

The watchdog-timer exception is also persistent, but its persistence prevents further 
interrupts from occurring. This function causes an interrupt to occur on a watchdog time-
out but prevents interrupts on subsequent time-outs. Exception status is recorded in the 
watchdog-status bit of the timer-status register, TSR[WIS]. Once the status bit is set, further 
watchdog-timer time-outs do not cause an interrupt. Clearing the bit enables time-out 
interrupts to occur. The MSR[CE] bit is used to enable and disable the interrupt.

The machine-check interrupt can be disabled but the exception is not persistent. Machine-
check exception status is recorded in the machine-check interrupt status bit of the 
exception-syndrome register, ESR[MCI]. However, enabling machine-check interrupts 
when the status bit is set does not necessarily cause the interrupt to occur. Instead, the 
interrupt occurs when the appropriate external bus-error signal is asserted. The error 
signal persists only for the duration of the bus cycle that causes the error.

Interrupt-Handling Registers
When an exception occurs and an interrupt is taken, the interrupt-handling mechanism 
uses the following registers:

• Save/restore register 0 (SRR0)—Contains the return address for noncritical interrupts.
• Save/restore register 1 (SRR1)—Contains a copy of the MSR for noncritical interrupts.
• Save/restore register 2 (SRR2)—Contains the return address for critical interrupts.
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• Save/restore register 3 (SRR3)—Contains a copy of the MSR for critical interrupts.
• Exception-vector prefix register (EVPR)—Contains the base address of the interrupt-

handler table.
• Exception-syndrome register (ESR)—Identifies the cause of an exception. ESR is used by 

five exceptions.
• Data exception-address register (DEAR)—Contains the memory-operand effective 

address of the data-access instruction that caused the exception. DEAR is used by 
three exceptions.

• (Virtex-4 devices only) Machine check syndrome register (MCSR)—Specifies the exact 
cause of a machine check interrupt.

The machine-state register is also updated, placing the processor in privileged and real 
mode. The following sections describe the effect of the interrupt-handling mechanism on 
the interrupt-handling registers.

Machine-State Register Following an Interrupt
During an interrupt, the contents of the MSR (see page 132) are loaded into either SRR1 
(noncritical interrupts) or SRR3 (critical interrupts). Depending on the interrupt, the MSR 
is updated with the values shown in Table 7-3.

Table 7-3: Effect of Interrupts on Machine-State Register Contents

Bit Name Interrupt Value Description

0:5 All 0 Reserved

6 AP All 0 This unsupported bit is cleared, but otherwise ignored.

7:11 All 0 Reserved

12 APE All 0 This unsupported bit is cleared, but otherwise ignored.

13 WE All 0 Processor wait state is disabled.

14 CE Critical-Input Interrupt

Machine-Check Interrupt

Watchdog-Timer Interrupt

Debug Interrupt

0 Critical-input interrupts are disabled (masked).

All Others No Change Critical-input interrupts are enabled or disabled.

15 All 0 Reserved

16 EE All 0 External interrupts are disabled (masked).

17 PR All 0 Processor is in privileged mode.

18 FP All 0 This unsupported bit is cleared, but otherwise ignored.

19 ME Machine-Check Interrupt 0 Machine-check interrupts are disabled (masked).

All Others No Change Machine-check interrupts are enabled or disabled.

20 FE0 All 0 This unsupported bit is cleared, but otherwise ignored.

21 DWE All 0 Debug wait-mode is disabled.
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Save/Restore Registers 0 and 1
The save/restore registers 0 and 1 (SRR0 and SRR1) are 32-bit registers used to save 
machine state when a noncritical interrupt occurs. The format of each register is shown in 
Figure 7-3.

During a noncritical interrupt, SRR0 is loaded by the processor with the effective address 
of the interrupted instruction (bits 30:31 are always 0, because instruction addresses are 
word aligned). An rfi instruction is used to return from the noncritical-interrupt handler to 
the instruction address stored in SRR0. Depending on the exception, this effective address 
represents either:

• The instruction that caused the exception.
• The instruction that would have executed had no exception occurred. For example, 

when an sc instruction is executed SRR0 is loaded with the instruction effective 
address following the sc.

See the specific instruction for details.

SRR1 is loaded with a copy of the MSR when a noncritical interrupt occurs. An rfi 
instruction restores the machine state by copying the contents of SRR0 into the MSR 
(defined and reserved MSR fields are updated).

SRR0 is a privileged SPR with an address of 26 (0x01A) and SRR1 is a privileged SPR with 
an address of 27 (0x01B). Both registers are read and written using the mfspr and mtspr 
instructions.

22 DE Critical-Input Interrupt

Machine-Check Interrupt

Watchdog-Timer Interrupt

Debug Interrupt

0 Debug interrupts are disabled (masked).

All Others No Change Debug interrupts are enabled or disabled.

23 FE1 All 0 This unsupported bit is cleared, but otherwise ignored.

24:25 All 0 Reserved

26 IR All 0 Instruction-address translation is disabled (real mode).

27 DR All 0 Data-address translation is disabled (real mode).

28:31 All 0 Reserved

Table 7-3: Effect of Interrupts on Machine-State Register Contents (Continued)

Bit Name Interrupt Value Description

0 30 31

Interrupted-Instruction Effective Address 0 0

SRR0

Figure 7-2:

0 31

Copy of Machine-State Register

SRR1

Figure 7-3: Save/Restore Registers 0 and 1
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Save/Restore Registers 2 and 3
The save/restore registers 2 and 3 (SRR2 and SRR3) are 32-bit registers used to save 
machine state when a critical interrupt occurs. Interrupts defined as critical are:

• Critical-Input Interrupt.
• Machine-Check Interrupt.
• Watchdog-Timer Interrupt.
• Debug Interrupt.

The format of each register is shown in Figure 7-5.

During a critical interrupt, SRR2 is loaded by the processor with the effective address of the 
interrupted instruction (bits 30:31 are always 0, because instruction addresses are word 
aligned). An rfci instruction is used to return from the critical-interrupt handler to the 
instruction address stored in SRR2. Depending on the exception, this effective address 
represents either:

• The instruction that caused the exception.
• The instruction that would have executed had no exception occurred. For example, 

when a watchdog-timer interrupt occurs SRR2 is loaded with the effective address of 
the next-sequential instruction.

See the specific instruction for details.

SRR3 is loaded with a copy of the MSR when a critical interrupt occurs. An rfci instruction 
restores the machine state by copying the contents of SRR3 into the MSR (defined and 
reserved MSR fields are updated).

SRR2 is a privileged SPR with an address of 990 (0x3DE) and SRR3 is a privileged SPR with 
an address of 991 (0x3DF). Both registers are read and written using the mfspr and mtspr 
instructions.

Exception-Vector Prefix Register
The exception-vector prefix register (EVPR) is a 32-bit register that contains the base 
address of the interrupt-handler table. Software can locate the interrupt-handler table 
anywhere in physical-address space, with a base address that falls on a 64KB-aligned 
boundary. When an exception occurs, the high-order 16 bits in EVPR are concatenated on 
the left with the 16-bit exception-vector offset (the low-order 16 reserved bits in the EVPR 
are ignored by the processor). The resulting 32-bit exception-vector physical address is 
used by the interrupt mechanism to transfer control to the appropriate interrupt handler. 
Figure 7-6 shows the format of the EVPR register. The fields in the EVPR are defined as 
shown in Table 7-4.

0 30 31

Interrupted-Instruction Effective Address 0 0

SRR2

Figure 7-4:

0 31

Copy of Machine-State Register

SRR3

Figure 7-5: Save/Restore Registers 2 and 3
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The EVPR is a privileged SPR with an address of 982 (0x3D6) and is read and written using 
the mfspr and mtspr instructions.

Exception-Syndrome Register
The exception-syndrome register (ESR) is a 32-bit register used to identify the cause of the 
following exceptions:

• Program exception.
• Instruction machine-check exception.
• Instruction-storage exception.
• Data-storage exception.
• Data TLB-miss exception.

Figure 7-7 shows the format of the ESR register. The fields in the ESR are defined as shown 
in Table 7-5.

0 15 16 31

EVP

Figure 7-6: Exception-Vector Prefix Register (EVPR)

Table 7-4: Exception-Vector Prefix Register (EVPR) Field Definitions

Bit Name Function Description

0:15 EVP Exception-Vector Prefix Used to locate the interrupt-handler table base address on an 
arbitrary 64KB physical-address boundary.

16:31 Reserved

0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31

MCI PIL PPR PTR PEU DST DIZ PFP PAP U0F

Figure 7-7: Exception-Syndrome Register (ESR)

Table 7-5: Exception-Syndrome Register (ESR) Field Definitions

Bit Name Function Description

0 MCI  Machine Check—Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates an instruction machine-
check exception occurred.

1:3 Reserved

4 PIL Program—Illegal Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates an illegal-instruction 
program exception occurred.

5 PPR Program—Privileged Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a privileged-instruction 
program exception occurred.

6 PTR Program—Trap Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a successful trap-instruction 
compare occurred, resulting in a trap-instruction 
program exception.
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In general, an exception sets its corresponding ESR bit and clears all other bits. However, if 
machine-check interrupts are not enabled (MSR[ME]=0), a previously set ESR[MCI] bit is 
not cleared when other exceptions occur. This is true whether or not the other exception 
occurs simultaneously with the instruction machine-check exception that sets ESR[MCI]. 
Handling ESR[MCI] in this manner prevents losing a record of an instruction machine-
check exception when machine-check interrupts are disabled. It is recommended that 
instruction machine-check interrupt handlers clear the ESR[MSI] bit prior to returning to 
the interrupted program.

If machine-check interrupts are enabled (MSR[ME]=1), an instruction machine-check 
exception sets ESR[MCI] and clears all other ESR bits.

The ESR is a privileged SPR with an address of 980 (0x3D4) and is read and written using 
the mfspr and mtspr instructions.

Data Exception-Address Register
The data exception-address register (DEAR) is a 32-bit register that contains the memory-
operand effective address of the data-access instruction that caused one of the following 
exceptions:

• Alignment exception.

7 PEU Program—Unimplemented Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

8 DST Data Storage—Store Instruction

0—Did not occur.

1—Occurred.

When set to 1, indicates a store instruction 
(including dcbi, dcbz, and dccci) caused an 
exception to occur (data-storage exception or data 
TLB-miss exception).

9 DIZ Data and Instruction Storage—Zone Protection

0—Did not occur.

1—Occurred.

When set to 1, indicates a zone-protection violation 
caused a data-storage or instruction-storage 
exception to occur.

For instruction-storage exceptions, DIZ is cleared to 
0 when the exception is caused by a fetch from a 
non-executable address or from guarded storage.

10:11 Reserved

12 PFP Program—Floating-Point Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

13 PAP Program—Auxiliary-Processor Instruction

0—Did not occur.

1—Occurred.

Not supported by the PPC405D5.

14:15 Reserved

16 U0F Data Storage—U0 Protection

0—Did not occur.

1—Occurred.

When set to 1, indicates a U0-protection violation 
caused a data-storage exception to occur.

17:31 Reserved

Table 7-5: Exception-Syndrome Register (ESR) Field Definitions (Continued)

Bit Name Function Description
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• Data-storage exception.
• Data TLB-miss exception.

Figure 7-8 shows the format of the DEAR register.

The DEAR is a privileged SPR with an address of 981 (0x3D5) and is read and written using 
the mfspr and mtspr instructions.

Machine Check Syndrome Register (MCSR) (Virtex-4 Devices Only)
The MCSR (Virtex-4 devices only) is a 32-bit register used to specify the exact cause of a 
machine check interrupt. Although interrupt handling routines are not required to reset 
the MCSR, it is recommended that instruction machine check handlers reset the MCSR.

Figure 7-9 shows the format of the MCSR. The fields in MCSR are defined as shown in 
Table 7-6.

0 31

Data-Access Effective Address

Figure 7-8: Data Exception-Address Register (DEAR)

0 1 2 3 4 5 6 7 8 9 10 11 31

MCS IPLBE DPLBE TLBE ICPE DCLPE DCFPE IMCE TLBS

Figure 7-9: Machine Check Syndrome Register (MCSR)

Table 7-6: Machine Check Syndrome Register (MCSR) Field Definitions

Bit Name Function Description

0 MCS Machine Check Summary

0—Machine check did not occur

1—Machine check occurred

This bit is set to 1 if a 
machine check occurred. 
This bit is set to 0 if a 
machine check did not 
occur. This bit is set to 1 
whenever any MCSR 
error bit is set to 1.

1 IPLBE Instruction PLB Error

0—Instruction PLB error did not occur

1—Instruction PLB error occurred

This bit is set to 1 if an 
Instruction PLB error 
occurred. This bit is set to 
0 if an Instruction PLB 
error did not occur.

2 DPLBE Data PLB Error

0—Data PLB error did not occur

1—Data PLB error occurred

This bit is set to 1 if a Data 
PLB error occurred. This 
bit is set to 0 if a Data PLB 
error did not occur.

3 Reserved

4 TLBE TLB Parity Error

0—TLB parity error did not occur

1—TLB parity error occurred

This bit is set to 1 if a TLB 
parity error occurred. 
This bit is set to 0 if a TLB 
parity error did not occur.

5 ICPE ICU Parity Error

0—ICU parity error did not occur

1—ICU parity error occurred

This bit is set to 1 if an 
ICU parity error occurred. 
This bit is set to 0 if an 
ICU parity error did not 
occur.
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The MCSR is a privileged SPR with an address of 0x23C. Hardware sets the status bits. 
Software is responsible for reading and clearing the bits. It is read using the mfspr 
instruction. The register is cleared but not directly written, using the mtspr instruction. 
Values in the source register, rS, behave as a mask when clearing the MCSR. Here, a value 
of 0b1 in any bit position of rS clears the corresponding bit in the MCSR. A value of 0b0 in 
an rS bit position does not alter the corresponding bit in the MCSR.

Interrupt Reference
This section describes each interrupt, using the following outline:

• The name of each interrupt is shown, followed by its exception-vector offset.
• Interrupts are classified based on whether they are critical or noncritical, synchronous 

or asynchronous, and precise or imprecise.
• The conditions that cause the exception for which the interrupt occurs are described.
• The methods used to enable and disable (mask) the interrupt are described, if 

applicable.
• The values of the registers affected by taking the interrupt are shown.

6 DCLPE DCU Load Parity Error

0—DCU load parity error did not occur

1—DCU load parity error occurred

This bit is set to 1 if a DCU 
load parity error 
occurred. This bit is set to 
0 if a DCU load parity 
error did not occur. The 
setting of this bit is 
enabled when 
CCR0[DPP] is set to 1.

7 DCFPE DCU Flush Parity Error

0—DCU flush parity error did not occur

1—DCU flush parity error occurred

This bit is set to 1 if a DCU 
flush parity error 
occurred. This bit is set to 
0 if a DCU flush parity 
error did not occur. 

8 IMCE Imprecise Machine Check Exception

0—Imprecise machine check exception did not 
occur

1—Imprecise machine check exception occurred

This bit is set to 1 if an 
imprecise machine check 
exception occurred. This 
bit is set to 0 if an 
imprecise machine check 
exception did not occur. 
The setting of this bit is 
disabled when 
CCR0[DPP] is set to 1.

9:10 TLBS TLB Parity Source

00—Instruction fetch parity error

01—Data fetch parity error

10—tlbsx instruction resulted in parity error

11—tlbre instruction resulted in parity error

These bits are valid when 
MCSR[TLBE] is asserted.

11:31 Reserved

Table 7-6: Machine Check Syndrome Register (MCSR) Field Definitions (Continued)

Bit Name Function Description
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Critical-Input Interrupt (0x0100)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous.
• Precise.

Description
A critical-input exception is caused by an external device (usually the external-interrupt 
controller) asserting the critical-interrupt input signal to the processor.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in the appropriate device control register (DCR) 
associated with the external-interrupt controller before returning, and before re-enabling 
critical interrupts.

This interrupt is enabled using the critical-interrupt enable bit (CE) in the MSR. When 
MSR[CE]=1, the processor recognizes exceptions caused by asserting the critical-interrupt 
input signal and forces a critical-input interrupt to occur. When MSR[CE]=0, the processor 
does not recognize the critical-interrupt input signal and critical-input interrupts cannot 
occur.

All maskable interrupts, except those caused by machine-check exceptions, are disabled 
when a critical-input interrupt occurs. The critical-input interrupt handler should not re-
enable MSR[CE] until it has cleared the exception and saved SRR2 and SRR3. Saving these 
registers avoids potential corruption of the interrupt handler should a watchdog-timer 
interrupt or another critical-input interrupt occur.

In some PowerPC implementations, this exception-vector offset corresponds to a system-
reset interrupt.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.
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Machine-Check Interrupt (0x0200)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous (not guaranteed to be synchronous).
• Imprecise (not guaranteed to be precise).

Description
A machine-check exception is caused by an error detected on the processor-local bus (PLB). 
External devices assert an error signal to the processor when a machine-check error is 
recognized. The processor supports two external PLB-error signals, one for instructions 
and one for data. This enables the processor to differentiate between machine checks due 
to instruction fetching and those caused by data access.

This interrupt is enabled using the machine-check enable bit (ME) in the MSR. When 
MSR[ME]=1, the processor recognizes exceptions caused by asserting one of the PLB-error 
input signals and forces a machine-check interrupt to occur. When MSR[ME]=0, the 
processor continues to recognize the PLB-error input signals, but an associated machine-
check interrupt does not occur. The exception is not persistent.

All maskable interrupts, including those caused by machine-check exceptions, are 
disabled when a machine-check interrupt occurs. The machine-check interrupt handler 
should not re-enable MSR[ME] until it has saved SRR2 and SRR3. Saving these registers 
avoids potential corruption of the interrupt handler should another machine-check 
interrupt occur.

Instruction Machine-Check Interrupt

Instruction machine-check errors are reported to the processor by an external device 
during an instruction fetch. However, the exception and subsequent interrupt do not occur 
until the processor attempts to execute the instruction that caused the error. If the erroneous 
instruction fetch results in a cache-line fill, any instruction later executed from the 
cacheline can cause the exception to occur. Machine-check exceptions associated with 
cached instructions always invalidate the corresponding instruction-cacheline.

ESR[MCI] is set to 1 by all instruction machine-check exceptions. This is true regardless of 
whether the machine-check interrupt is enabled or not. If machine-check interrupts are 
disabled (MSR[ME]=0), software can periodically examine ESR[MCI] to determine if any 
instruction machine-check exceptions have occurred. Software should clear ESR[MCI] to 0 
before returning from the machine-check interrupt handler to avoid any ambiguity when 
handling subsequent machine-check interrupts.

Data Machine-Check Interrupt

Data machine-check errors are reported to the processor by an external device during a 
data access. Determining the cause is dependent on the system implementation. Generally 
the data machine-check interrupt handler must examine the error-reporting registers 
located in the external-PLB devices to determine the exception cause.
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Affected Registers

Instruction Machine-Check Interrupt

Data Machine-Check Interrupt

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the instruction that caused the machine-
check exception.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR [MCI] ← 1

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, CE, EE, PR, FP, ME, FE0, DWE, DE, FE1, IR, DR] ← 0.

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, ME, FE0, DWE, DE, FE1, IR, DR] ← 0.
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Data-Storage Interrupt (0x0300)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Data-storage exceptions are associated with the execution of an instruction that accesses 
memory, including certain cache-control instructions. A data-storage exception occurs 
when a data access fails for any of the following reasons:

• An access is made to an address with no-access-allowed zone protection (the 
corresponding zone-field value is 0b00). Any load, store, dcbf, dcbst, dcbz, or icbi 
instruction can cause an exception for this reason. No-access-allowed zone protection 
is possible only in user mode with data virtual-mode enabled (MSR[DR]=1).

• A store is made to a read-only address. Read-only addresses can only be specified 
when data virtual-mode is enabled (MSR[DR]=1). Read-only addresses have the 
write-enable bit (TLBLO[WR]) in the corresponding TLB entry cleared to zero. The 
cause of this exception further depends on the privilege mode:
- In user mode, any store or dcbz instruction can cause an exception for this reason. 

No zone-protection override can be specified (the corresponding zone-field value 
is not equal to 0b11).

- In privileged mode, any store, dcbi, dcbz, or dccci instruction can cause an 
exception for this reason. No zone-protection override can be specified (the 
corresponding zone-field value is not equal to 0b10 or 0b11).

• A store is made to an address with the corresponding U0 storage attribute set to 1 and 
U0 exceptions are enabled (CCR0[U0XE]=1). In real mode, the U0 storage attribute is 
specified by the SU0R register. In virtual mode, the U0 storage attribute is specified by 
the TLB entry (TLBHI[U0]) used to translate the address. The instructions that can 
cause an exception for this reason are:
- In user mode, any store or dcbz instruction.
- In privileged mode, any store, dcbi, dcbz, or dccci instruction.

System software can use this exception condition to implement real-mode write 
protection. 

Software cannot disable data-storage interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the data-storage 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3
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ESR [DST] ← 1 if the operation is a store, dcbi, dcbz, or dccci, otherwise 0.

[DIZ] ← 1 if the exception was caused by a zone-protection violation, otherwise 0.

[U0F] ← 1 if the exception was caused by a U0 violation, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Loaded with the effective address of the failed data-access.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Interrupt
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Instruction-Storage Interrupt (0x0400)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Instruction-storage exceptions are associated with the fetching of an instruction from 
memory. However, an instruction-storage interrupt occurs only if an attempt is made to 
execute the instruction as required by the sequential-execution model. Speculative fetches 
that are later discarded do not cause instruction-storage interrupts. An instruction-storage 
exception occurs when an instruction fetch fails for any of the following reasons:

• An instruction is fetched from an address with no-access-allowed zone protection (the 
corresponding zone-field value is 0b00). No-access-allowed zone protection is 
possible only in user mode with instruction virtual-mode enabled (MSR[IR]=1).

• An instruction is fetched from a non-executable address. Non-executable addresses can 
only be specified when instruction virtual-mode is enabled (MSR[IR]=1). Non-
executable addresses have the write-executable bit (TLBLO[EX]) in the corresponding 
TLB entry cleared to zero. No zone-protection override can be specified:
- In user mode, the corresponding zone-field value is not equal to 0b11.
- In privileged mode, the corresponding zone-field value is not equal to 0b00 or 

0b11.
• An instruction is fetched from guarded storage (G attribute set to 1) regardless of 

privilege. In real mode, guarded storage is specified by the SGR register. In virtual 
mode, guarded storage is specified by the TLB entry (TLBLO[G]) used to translate the 
address.

Software cannot disable instruction-storage interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the instruction-
storage exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR [DIZ] ← 1 if the exception was caused by a zone-protection violation.

[DIZ] ← 0 if the exception was caused by fetching from a non-executable 
address or from guarded storage.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 221
UG011 (v1.2) January 19, 2007

Chapter 7: Exceptions and Interrupts
R

External Interrupt (0x0500)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
An external exception is caused by an external device (usually the external-interrupt 
controller) asserting the noncritical-interrupt input signal to the processor.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in the appropriate device control register (DCR) 
associated with the external-interrupt controller before returning.

This interrupt is enabled using the external-interrupt enable bit (EE) in the MSR. When 
MSR[EE]=1, the processor recognizes exceptions caused by asserting the noncritical-
interrupt input signal and forces an external interrupt to occur. When MSR[EE]=0, the 
processor does not recognize the noncritical-interrupt input signal and external interrupts 
cannot occur.

External interrupts are disabled when an external interrupt occurs. The external interrupt 
handler should not re-enable MSR[EE] until it has cleared the exception and saved SRR0 
and SRR1. Saving these registers avoids potential corruption of the interrupt handler 
should an external interrupt, programmable-interval timer interrupt, or fixed-interval 
timer interrupt occur.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Alignment Interrupt (0x0600)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Alignment exceptions are caused by the following memory accesses:

• Executing a dcbz instruction with an operand located in non-cacheable or write-
through memory.

• Executing an lwarx instruction with an operand that is not aligned on a word 
boundary.

• Executing an stwcx. instruction with an operand that is not aligned on a word 
boundary.

• From privileged mode (MSR[PR]=0), executing a dcread instruction with an operand 
that is not aligned on a word boundary.

Software cannot disable alignment interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the alignment 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR Loaded with the effective address of the operand that caused the alignment 
exception.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Program Interrupt (0x0700)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Program exceptions are caused by any of the following conditions:

• Attempted execution of an illegal instruction. Floating-point instructions are 
considered illegal instructions in the PPC405D5. 

• Attempted execution of a privileged instruction from user mode.
• Execution of a trap instruction that satisfies the trap conditions. Following execution 

of a trap instruction, SRR0 contains the address of the trap instruction. To avoid 
repeated program interrupts as a result of returning from the trap handler, software 
should either:
- Replace the trap instruction with a non-trapping instruction.
- Modify the trap conditions to prevent a program interrupt.
- Modify the address in SRR0 to point to the next-sequential instruction in the 

interrupted program prior to executing the rfi.

The following exception conditions do not occur on the PPC405D5 but can occur on other 
versions of the PowerPC 405 processor:

• Exceptions caused by attempting to execute an unimplemented FPU or APU 
instruction. This exception condition sets ESR[PEU]=1.

• Exceptions caused by FPU-instruction errors. This exception condition sets 
ESR[PFP]=1.

• Exceptions caused by APU-instruction errors. This exception condition sets 
ESR[PAP]=1.

Software cannot disable program interrupts.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the program 
exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3
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ESR [PIL] ← 1 for attempted execution of an illegal instruction, otherwise 0. This bit is set 
if software attempts to execute a floating-point instruction.

[PPR] ← 1 for attempted execution of a privileged instruction in user mode, 
otherwise 0.

[PTR] ← 1 for exceptions due to trap instructions, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Not used.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Interrupt
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FPU-Unavailable Interrupt (0x0800)
Programs running on the PPC405D5 cannot cause this interrupt to occur because the 
floating-point unit is not implemented. It is shown for completeness to assist in porting 
software between systems containing different implementations of the PowerPC 405 
processor.

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
FPU-unavailable exceptions occur when a program attempts to execute an implemented 
floating-point instruction when the FPU is disabled (MSR[FP]=0).

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the FPU-
unavailable exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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System-Call Interrupt (0x0C00)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
System-call exceptions occur as a result of executing the system-call instruction (sc). The sc 
instruction provides a means for a user-level program to call a privileged system-service 
routine. It is assumed that the appropriate linkage information expected by the system-call 
handler is initialized prior to executing the sc instruction.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction following the system-call 
instruction.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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APU-Unavailable Interrupt (0x0F20)
Programs running on the PPC405D5 cannot cause this interrupt to occur because the 
auxiliary-processor unit is not implemented. It is shown for completeness to assist in 
porting software between systems containing different implementations of the PowerPC 
405 processor.

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
APU-unavailable exceptions occur when a program attempts to execute an implemented 
auxiliary-processor instruction when the APU is disabled (MSR[AP]=0).

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the APU-
unavailable exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Programmable-Interval Timer Interrupt (0x1000)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
A programmable-interval timer exception is caused by a time-out on the programmable-
interval timer (PIT). A time-out occurs when:

1. The current PIT contents are 1.

2. The PIT is decremented. Decrementing the PIT when the current value is 1 can cause 
the PIT to be loaded either with a value of 0, or cause a new non-zero value to be 
automatically loaded.

When a time-out is detected, the processor sets the PIT-status bit in the timer-status register 
(TSR[PIS]) to 1. At the beginning on the next clock cycle, the set TSR[PIS] bit causes the PIT 
interrupt to occur. Using the mtspr instruction to clear the PIT to 0 does not cause a PIT 
interrupt.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in TSR[PIS] before returning.

This interrupt is enabled only by setting both of the following:

• The PIT-interrupt enable bit in the timer-control register (TCR[PIE]) must be set to 1.
• The external-interrupt enable bit in the machine-state register (MSR[EE]) must be set 

to 1.

If either TCR[PIE]=0 or MSR[EE]=0, a PIT interrupt does not occur. See Chapter 8, Timer 
Resources, for more information on the PIT, TCR, and TSR.

Affected Registers

The timer-status register (TSR) is also updated as a result of a PIT exception.

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Exception

TSR [PIS] ← 1.

All others are unchanged.
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Fixed-Interval Timer Interrupt (0x1010)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Asynchronous.
• Precise.

Description
A fixed-interval timer exception is caused by a time-out on the fixed-interval timer (FIT). 
The processor detects a time-out when a 0 to 1 transition occurs on the time-base bit 
corresponding to the fixed-interval time period.

When a time-out is detected, the processor sets the FIT-status bit in the timer-status register 
(TSR[FIS]) to 1. At the beginning on the next clock cycle, the set TSR[FIS] bit causes the FIT 
interrupt to occur.

This exception is persistent. To prevent repeated interrupts from occurring, the interrupt 
handler must clear the exception status in TSR[FIS] before returning.

This interrupt is enabled only by setting both of the following:

• The FIT-interrupt enable bit in the timer-control register (TCR[FIE]) must be set to 1.
• The external-interrupt enable bit in the machine-state register (MSR[EE]) must be set 

to 1.

If either TCR[FIE]=0 or MSR[EE]=0, a FIT interrupt does not occur. See Chapter 8, Timer 
Resources, for more information on the FIT, TCR, and TSR.

Affected Registers

The timer-status register (TSR) is also updated as a result of a FIT exception.

Register Value After Interrupt

SRR0 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.

Register Value After Exception

TSR [FIS] ← 1.

All others are unchanged.
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Watchdog-Timer Interrupt (0x1020)

Interrupt Classification
• Critical—return using the rfci instruction.
• Asynchronous.
• Precise.

Description
A watchdog-timer exception is caused by a time-out on the watchdog timer. For a 
watchdog-timer interrupt to occur, the interrupt must be enabled and the processor must 
be enabled to detect the watchdog-timer exception, as follows:

• The watchdog-timer interrupt is enabled only by setting both of the following:
- The watchdog-interrupt enable bit in the timer-control register (TCR[WIE]) must 

be set to 1.
- The critical-interrupt enable bit in the machine-state register (MSR[CE]) must be 

set to 1.

If either TCR[WIE]=0 or MSR[CE]=0, a watchdog-timer interrupt does not occur.

• The processor detects a watchdog-timer exception when:
- The enable-next-watchdog bit in the timer-status register (TSR[ENW]) is set to 1.
- The watchdog-interrupt status bit in the timer-status register (TSR[WIS]) is 

cleared to 0.
- A 0 to 1 transition occurs on the time-base bit corresponding to the watchdog time 

period.

During the cycle following detection of the watchdog time-out, the processor sets 
TSR[WIS] to 1. At the beginning of the next cycle, the processor detects TSR[WIS]=1 and 
causes the watchdog-timer interrupt to occur.

This exception is persistent, but the persistence prevents further interrupts from occurring. 
This function causes an interrupt to occur on the first watchdog time-out, but prevents 
interrupts on subsequent time-outs. To enable additional interrupts, the interrupt handler 
must clear the exception status in TSR[WIS] before returning.

See Chapter 8, Watchdog-Timer Events, for more information on the watchdog timer and 
its relationship to the TCR and TSR.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1

SRR2 Loaded with the effective address of the next-sequential instruction to be 
executed at the point the interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.
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The timer-status register (TSR) is also updated as a result of a watchdog-timer interrupt. 

Data TLB-Miss Interrupt (0x1100)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Data TLB-miss exceptions can occur only when data translation is enabled (MSR[DR]=1). 
They are associated with the execution of an instruction that accesses memory, including 
certain cache-control instructions. A data TLB-miss exception occurs when no valid TLB 
entry is found with both:

• A TAG field that matches the data effective-address page number (EA[EPN]).
• A TID field that matches the current process ID (PID).

Software cannot disable data TLB-miss interrupts.

See TLB Access, page 188, for more information on how TLB hits and misses are 
determined.

Affected Registers

Register Value After Interrupt

TSR [WIS] ← 1.

All others are unchanged.

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the data TLB-
miss exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR [DST] ← 1 if the operation is a store, dcbi, dcbz, or dccci, otherwise 0.

[MCI] ← Unchanged.

All remaining bits are cleared to 0.

DEAR Loaded with the effective address of the failed data-access.

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Instruction TLB-Miss Interrupt (0x1200)

Interrupt Classification
• Noncritical—return using the rfi instruction.
• Synchronous.
• Precise.

Description
Instruction TLB-miss exceptions can occur only when instruction translation is enabled 
(MSR[IR]=1). An instruction TLB-miss exception occurs when no valid TLB entry is found 
with both:

• A TAG field that matches the instruction effective-address page number (EA[EPN]).
• A TID field that matches the current process ID (PID).

Instruction TLB-miss exceptions are associated with the fetching of an instruction from 
memory. However, an instruction TLB-miss interrupt occurs only if an attempt is made to 
execute the instruction as required by the sequential-execution model. Speculative fetches 
that are later discarded do not cause instruction TLB-miss interrupts.

Software cannot disable instruction TLB-miss interrupts.

See TLB Access, page 188, for more information on how TLB hits and misses are 
determined.

Affected Registers

Register Value After Interrupt

SRR0 Loaded with the effective address of the instruction that caused the instruction 
TLB-miss exception.

SRR1 Loaded with a copy of the MSR at the point the interrupt occurs.

SRR2 Not used.

SRR3

ESR

DEAR

MSR [AP, APE, WE, EE, PR, FP, FE0, DWE, FE1, IR, DR] ← 0.

[CE, ME, DE] ← Unchanged.
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Debug Interrupt (0x2000)

Interrupt Classification
• Critical—return using the rfci instruction.
• The debug interrupt can be synchronous or asynchronous, depending on the debug 

event:

Synchronous debug events:

- BT—Branch taken.
- DAC—Data-address compare.
- DVC—Data-value compare.
- IAC—Instruction-address compare.
- IC—Instruction completion.
- TDE—Trap instruction.

Asynchronous debug events:

- EDE—Exception taken.
- UDE—Unconditional.

• Precise.

Description
A debug exception is caused by an enabled debug event. Debug events are enabled and 
disabled using the debug-control registers (DBCR0 and DBCR1). A debug event occurs 
when a predefined debug condition is met, such as a data-address match.

This exception is persistent. If a debug exception occurs when debug interrupts are 
disabled, the imprecise-debug exception-status bit in the debug-status register is set, 
DBSR[IDE]. This bit is set in addition to other debug-status bits. When debug interrupts are 
later enabled, the set IDE bit causes a debug interrupt to occur immediately. When exiting 
an interrupt handler using an rfci instruction, the interrupt handler must clear DBSR[IDE] 
to prevent repeated interrupts from occurring. To prevent ambiguity in reporting debug 
status, all other DBSR bits should be cleared as well.

This interrupt is enabled using the debug-interrupt enable bit (DE) in the MSR. When 
MSR[DE]=1, the processor recognizes exceptions caused by enabled debug events. When 
MSR[DE]=0, the processor does not cause a debug interrupt when an enabled debug event 
occurs.

All maskable interrupts, except those caused by machine-check exceptions, are disabled 
when a debug interrupt occurs. The debug-interrupt handler should not re-enable 
MSR[DE] until it has cleared the exception and saved SRR2 and SRR3. Saving these 
registers avoids potential corruption of the interrupt handler should a subsequent debug 
interrupt occur.

See Chapter 9, Debugging, for more information on debug events.

Affected Registers

Register Value After Interrupt

SRR0 Not used.

SRR1
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The debug-status register (DBSR) is also updated as a result of a debug interrupt. See 
Debug-Status Register, page 253, for more information on the DBSR.

SRR2 Loaded based on the debug event, as follows:

BT

DAC

IAC

TDE

Loaded with the effective address of the instruction that caused the 
debug exception.

DVC

IC

Loaded with the effective address of the instruction following the 
instruction that caused the debug exception.

EDE Loaded with the 32-bit exception-vector physical address of the 
exception that caused the debug interrupt. This corresponds to the first 
instruction in the interrupt handler.

UDE Loaded with the effective address of the next-sequential instruction to 
be executed at the point the debug interrupt occurs.

SRR3 Loaded with a copy of the MSR at the point the interrupt occurs.

ESR Not used.

DEAR

MSR [AP, APE, WE, CE, EE, PR, FP, FE0, DWE, DE, FE1, IR, DR] ← 0.

[ME] ← Unchanged.

Register Value After Interrupt

DBSR Updated to reflect the debug event.

Register Value After Interrupt
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Chapter 8

Timer Resources

The PPC405 supports several timer resources that can be used for a variety of time-keeping 
functions. Possible uses of these timer resources include:

• Time-of-day computation.
• Data-logging for system-service routines.
• Periodic servicing of time-sensitive external devices.
• Preemptive multitasking.

The timer resources supported by the PPC405 consist of:

• Two timer registers:
- A 64-bit incrementing timer, called the time-base.
- A 32-bit decrementing timer, called the programmable-interval timer.

• Three timer-event interrupts:
- A watchdog-timer interrupt that provides the ability to set critical interrupts that 

can aid in recovery from system failures.
- A programmable-interval timer interrupt that provides the ability to set noncritical 

variable-time interrupts.
- A fixed-interval timer interrupt that provides the ability to set noncritical interrupts 

with a fixed, repeatable time period.
• A timer-control register for setting up and controlling the timer events.
• A timer-status register for recording timer-event status.

Figure 8-1 shows the relationship of the two timers and three timer-event interrupts. The 
two timers are clocked at the same frequency. This frequency is determined using external 
input signals to the processor. Refer to UG018, PowerPC® 405 Processor Block Manual for 
more information on setting the timer frequency.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug018.pdf


236 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Time Base
R

Time Base
The time base is a 64-bit incrementing counter supported by all PowerPC processors. 
64 bits provide a long time period before rolling over from 0xFFFF_FFFF_FFFF_FFFF to 
0x0000_0000_0000_0000. At a clock rate of 300 MHz, for example, the time base increments 
for about 1,950 years before rolling over. This makes it suitable for certain long-term timing 
functions, such as time-of-day calculation. A time-base rollover is silent—it does not cause 
an exception to timer event. 

The 64-bit time base is implemented as two 32-bit registers. The time-base upper register 
(TBU) holds time-base bits 0:31, and the time-base lower register (TBL) holds time-base bits 
32:63. Figure 8-2 shows the format of the time base.

The TBU and TBL registers are SPRs with user-mode read access and privileged-mode 
write access. Reading the time-base registers requires use of the move from time-base register 
instruction. This instruction, shown in Table 8-1, is similar to the move from SPR 
instruction. The TBR number (TBRN) shown in the operand syntax column can be 
specified as a decimal or hexadecimal value in the assembler listing. Within the instruction 
opcode, this number is encoded using a split-field notation (see Split-Field Notation, 
page 281).

Figure 8-1: PPC405 Timer Resources
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Figure 8-2: Time-Base Register
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Table 8-2 summarizes the time-base numbers and SPR numbers used by the above 
instructions to access the time base registers. Simplified instruction mnemonics are 
available for reading and writing the time base. See Special-Purpose Registers, page 552, 
for more information.  

Reading and Writing the Time Base
The 64-bit time-base cannot be read or written using a single instruction. Software must 
access the upper and lower portions separately. During the time it takes to execute the 
instructions necessary to access the time base, it is possible for the TBU to be incremented. 
This occurs when TBL rolls over from 0xFFFF_FFFF to 0x0000_0000 (at 300 MHz, this 
happens every 14.3 seconds). If there is a rollover, the values read from or written to TBU 
and TBL can be inconsistent.

Following is a code example for reading the time base. The comparison of old and new 
TBU values within the loop ensures that a consistent pair of TBU and TBL values are read, 
avoiding problems with TBL rollover.

loop:
mftbu rx # Read TBU.
mftbl ry # Read TBL.
mftbu rz # Read TBU again.
cmpw rz,rx # Check for TBU rollover by comparing old and new.
bne loop # Read the time base again if a rollover occurred.

Following is a code example for writing the time base (simplified mnemonics are used for 
writing the time-base registers). Clearing TBL to 0 before writing it with a non-zero value 
ensures TBL rollover does not occur in the brief time required to update both TBU and TBL.

lwz rx,upper_value # Load upper 32-bit time-base value into rx.
lwz ry,lower_value # Load lower 32-bit time-base value into ry.
li rz, 0 # Clear rz.
mttbl rz # Clear TBL to avoid rollover after writing TBU.
mttbu rx # Update TBU.
mttbl ry # Update TBL.

Table 8-1: Time-Base Register Instructions

Mnemonic Name Operation
Operand 
Syntax

mftb Move from Time Base Register This instruction provides read-only access from the time 
base for user and privileged software.

rD is loaded with the contents of the time-base register 
specified by TBRN.

rD,TBRN

mtspr Move to Special Purpose Register This instruction provides write-only access to the time base 
for privileged software.

The time-base register specified by SPRN is loaded with 
the contents of rS.

SPRN,rS

Table 8-2: Time-Base Register Numbers

Register Decimal Hex Access

TBL 268 0x10C User and privileged read-only—mftb.

TBU 269 0x10D

TBL 284 0x11C Privileged write-only—mtspr.

TBU 285 0x11D
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Computing Time of Day
Calculating the time-of-day from the current time-base value requires the following 
information:

• A fixed-reference time.
• The equivalent time-base value corresponding to the fixed reference time.
• The system-dependent time-base update frequency.

Following is an algorithm that calculates the time-of-day. Awkward 64-bit division is 
avoided by assuming the algorithm is initiated by a time-keeping interrupt at least once per 
second. This periodic interrupt can be triggered by the fixed-interval timer or some 
external-interrupt device. The algorithm uses the following variables:

• billion—one billion (1,000,000,000).
• posix_tb—A 64-bit variable containing the last value read from the time base. 
• posix_sec—A 32-bit variable containing the number of seconds that have elapsed since 

the fixed-reference time. When timekeeping actually begins, this variable must be 
initialized with the number of seconds that have elapsed from the fixed-reference 
time. For example, assume:
- The fixed-reference time is 12:00:00 AM, January 1, 2001
- The equivalent time-base value for the fixed-reference time is 0.
- Timekeeping begins at 12:00:00 AM, July 1, 2001.

Using these parameters, this variable is initialized with 0x00EE_9F80, which 
represents the number of seconds that have elapsed since the fixed-reference time.

• posix_ns—A 32-bit variable containing the number of nanoseconds that have elapsed 
since the last time-of-day calculation.

• ticks_per_sec—The number of times the time base increments per second. In this 
example, the processor clock is 300 MHz and the time base is incremented once every 
32 processor clocks. Thus, the variable is set to 0x8F_0D18 (300 MHz ÷ 32 = 9,375,000).

• ns_adj—The number of nanoseconds per increment of the time base. In this example, 
the variable is set to 0x6B (billion ÷ ticks_per_sec = 107).

The following code sequence implements the algorithm:

loop:
mftbu rx # Read TBU.
mftbl ry # Read TBL.
mftbu rz # Read TBU again.
cmpw rz, rx # Check for TBU rollover by comparing old and new.
bne loop # Read the time base again if a rollover occurred.

# We now have a consistent 64-bit time base in rx and ry.

lwz rz, posix_tb+4 # Load rz with the low-32 bits of posix_tb.
sub rz, ry, rz # rz = change in TB since last read.
lwz rw, ns_adj # Load the number of ns per time-base increment.
mullw rz, rz, rw # rz = number of elapsed ns since TB last read.
lwz rw, posix_ns # Load elapsed ns since last computation.
add rz, rz, rw # rz = new ns since last computation.
lwz rw billion # A billion nanoseconds is 1 second.
cmpw rz, rw # Are new elapsed ns more than 1 second?
blt nochange # Branch if not.
sub rz, rz, rw # Subtract 1 second from elapsed nanoseconds.
lwz rw, posix_sec # Load the number of elapsed seconds.
addi rw, rw, 1 # Add 1 second.
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stw rw, posix_sec # Store the number of elapsed seconds.
nochange:
stw rz, posix_ns # Update elapsed ns.
stw rx, posix_tb # Update record of last time-base value.
stw ry, posix_tb+4

Timekeeping software can use the posix_sec value to compute the current date and time by 
adding it to the fixed reference time.

Varying the Update Frequency
Time-of-day computations require a comparison between the current time-base value and 
a fixed-reference time. This reference time is valid only when the time-base update 
frequency remains fixed. Many embedded systems change the time-base update frequency 
periodically. Changes are often initiated by system software, but hardware can also cause 
a frequency change (for example, a low-power mode that is initiated by a sudden power 
failure). When the frequency changes, a mechanism must be provided to the time-of-day 
calculation routine notifying it of the change. If the change is software initiated, a system 
call to the calculation routine can be used. If the change is hardware initiated, an external 
interrupt can be used.

When the time-of-day calculation routine is called, it must compute new reference values. 
This involves the following: 

• Saving the time-base value at the point the frequency is changed.
• Computing and saving the current time-of-day using the old update frequency and 

the saved time-base value.
• Computing and saving a new value for ticks_per_sec.

Later calls to compute the time-of-day can use the updated variables along with the 
current time-base value to calculate the correct time.

Timer-Event Registers
Three PPC405 registers are defined for managing timer-event interrupts:

• Programmable-interval timer register.
• Timer-control register.
• Timer-status register.

A description of each register is provided in the following sections.

Programmable-Interval Timer Register
The programmable-interval timer (PIT) register is a 32-bit decrementing counter that is 
clocked at the same frequency as the time-base register. It can be used by software to cause 
a PIT interrupt after a variable-length time period elapses. Figure 8-3 shows the format of 
the PIT register.

The PIT is a privileged SPR with an address of 987 (0x3DB). It is read and written using the 
mfspr and mtspr instructions.

When the PIT contains a value of 1 and is decremented, a PIT event occurs. A PIT event can 
be used to cause a PIT interrupt as described in Programmable-Interval Timer Events, 

0 31

Time remaining to PIT event

Figure 8-3: Programmable-Interval Timer Register (PIT)
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page 245. Auto-reload mode controls the state of the PIT register when it contains a value 
of 1 and is decremented, as follows:

• In auto-reload mode, the PIT is reloaded with the last value loaded by an mtspr 
instruction. In this mode, the PIT never contains a value of 0. Auto-reload mode is 
enabled by setting the auto-reload enable bit in the timer-control register 
(TCR[ARE]=1).

• If auto-reload mode is disabled (TCR[ARE]=0), the PIT decrements from 1 to 0. When 
the PIT contains a value of 0, it stops decrementing until software loads it with a non-
zero value.

Auto-reload mode is disabled after a reset.

Timer-Control Register
The timer-control register (TCR) is a 32-bit register used to control the PPC405 timer 
events. Figure 8-4 shows the format of the TCR. The fields in TCR are defined as shown in 
Table 8-3.

The TCR is a privileged SPR with an address of 986 (0x3DA). It is read and written using 
the mfspr and mtspr instructions.

0 1 2 3 4 5 6 7 8 9 10 31

WP WRC WIE PIE FP FIE ARE

Figure 8-4: Timer-Control Register (TCR)

Table 8-3: Timer-Control Register (TCR) Field Definitions

Bit Name Function Description

0:1 WP Watchdog Period

00—217 clocks
01—221 clocks
10—225 clocks
11—229 clocks

Specifies the period for a watchdog-timer event.

2:3 WRC Watchdog Reset Control

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Specifies the type of reset that occurs as a result of a watchdog-
timer event.

After a bit is set in the WRC field, it cannot be cleared by software. 
Only a reset can clear the bit. This prevents errant code from 
disabling watchdog resets.

4 WIE Watchdog-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables watchdog interrupts.

5 PIE PIT-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables programmable-interval timer interrupts.

6:7 FP FIT Period

00—29 clocks
01—213 clocks
10—217 clocks
11—221 clocks

Specifies the period for a fixed-interval timer event.
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Timer-Status Register
The timer-status register (TSR) is a 32-bit register used to report status for the PPC405 timer 
events. Figure 8-5 shows the format of the TSR. The fields in TSR are defined as shown in 
Table 8-4.

The TSR is a privileged SPR with an address of 984 (0x3D8). Hardware sets the status bits. 
Software is responsible for reading and clearing the bits. It is read using the mfspr 
instruction. The register is cleared, but not directly written, using the mtspr instruction. 
Values in the source register, rS, behave as a mask when clearing the TSR. Here, a value of 
0b1 in any bit position of rS clears the corresponding bit in the TSR. A value of 0b0 in an rS 
bit position does not alter the corresponding bit in the TSR.

8 FIE FIT-Interrupt Enable

0—Disabled
1—Enabled

Enables and disables fixed-interval timer interrupts.

9 ARE Auto-Reload Enable

0—Disabled
1—Enabled

Enables and disables the programmable-interval timer auto-reload 
mode.

10:31 Reserved

Table 8-3: Timer-Control Register (TCR) Field Definitions (Continued)

Bit Name Function Description

0 1 2 3 4 5 6 31

ENW WIS WRS PIS FIS

Figure 8-5: Timer-Status Register (TSR)

Table 8-4: Timer-Status Register (TSR) Field Definitions

Bit Name Function Description

0 ENW Enable Next Watchdog

0—Next watchdog time-out
sets TSR[ENW]=1

1—Next watchdog time-out
determined by TSR[WIS]

Enables the watchdog-timer event. See Watchdog-Timer Events, 
page 242, for more information.

1 WIS Watchdog-Interrupt Status

0—No interrupt occurred
1—Interrupt occurred

Specifies whether a watchdog interrupt occurred, or could have 
occurred had it been enabled.

2:3 WRS Watchdog Reset Status

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Specifies the type of reset that occurred as a result of a watchdog-
timer event, if the event caused a reset.
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Timer-Event Interrupts
Three timer-event interrupts are defined by the PPC405. Each interrupt transfers control to 
a unique exception-vector offset (see Interrupt Reference, page 214, for more 
information):

• Watchdog-timer (WDT) interrupt. This critical interrupt is assigned to exception-
vector offset 0x1020.

• Programmable-interval timer (PIT) interrupt. This noncritical interrupt is assigned to 
exception-vector offset 0x1000.

• Fixed-interval timer (FIT) interrupt. This noncritical interrupt is assigned to 
exception-vector offset 0x1010.

The following sections describe the use of the timer-event registers in managing the 
interrupts.

Watchdog-Timer Events
The watchdog timer can aid in recovery from software or hardware failure. It can be 
programmed to cause a watchdog time-out (also called the watchdog event) after a fixed 
time-period elapses. Watchdog time-outs can be further programmed to cause a critical 
interrupt called the watchdog interrupt. Normally, the watchdog-interrupt handler clears 
the watchdog event before returning. However, if a software or hardware failure prevents 
the interrupt handler from clearing the event, a subsequent watchdog time-out can be 
programmed to force a reset.

Watchdog interrupts are enabled when both of the following bits are set to 1:

• The watchdog-interrupt enable bit in the timer-control register, TCR[WIE].
• The critical-interrupt enable bit in the machine-state register, MSR[CE].

If either TCR[WIE]=0 or MSR[CE]=0, watchdog-timer interrupts are disabled. However, 
watchdog time-outs can be programmed to force a reset whether or not the watchdog 
interrupt is enabled.

A watchdog time-out occurs when a selected bit in the time-base lower register (TBL) 
changes from 0 to 1. The watchdog-period bit in the timer-control register (TCR[WP]) is 
used to select the TBL bit that controls the time-out, as shown in Table 8-5.

4 PIS PIT-Interrupt Status

0—No interrupt pending
1—Interrupt is pending

If programmable-interval timer interrupts are disabled, this bit 
specifies whether a PIT interrupt is pending. If they are enabled, the 
bit specifies whether a PIT interrupt occurred.

5 FIS FIT-Interrupt Status

0—No interrupt pending
1—Interrupt is pending

If fixed-interval timer interrupts are disabled, this bit specifies 
whether a FIT interrupt is pending. If they are enabled, the bit 
specifies whether a FIT interrupt occurred.

6:31 Reserved

Table 8-4: Timer-Status Register (TSR) Field Definitions (Continued)

Bit Name Function Description
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Software cannot disable watchdog time-outs. This is because the time-base register is 
always incrementing and a valid watchdog interval is always specified by TCR[WP]. 
Instead of preventing watchdog time-outs, software controls the action taken by the 
processor when a time-out occurs by managing the watchdog-event state machine. A 
timer-control register field and two timer-status register bits are used to control the state 
machine:

• Watchdog-reset control, TCR[WRC]—This field specifies the type of reset to be 
performed when the state machine enters the reset state:
- 00—No reset. The processor ignores the watchdog time-out.
- 01—A processor-only reset occurs. No external devices are reset.
- 10—A chip reset occurs. The processor and all external devices on the same chip 

are reset. No other system components are reset.
- 11—The entire system, including the processor and chip, are reset.

Each bit in TCR[WRC] is sticky. Software can set these bits but cannot clear them. After 
a bit is set only a reset can clear it. 

• Enable next watchdog, TSR[ENW]—This bit performs the following functions:
- When cleared to 0, the TSR[WIS] bit is not updated or used by the processor. 

Watchdog time-outs cannot cause an interrupt or reset. The next watchdog time-
out sets this bit to 1.

- When set to 1, the TSR[WIS] bit can be updated and is used by the processor as 
described below. When TSR[ENW]=1, the next watchdog time-out causes a 
watchdog interrupt (if enabled) or forces a reset (if a reset is specified). The value 
of the TSR[WIS] bit determines whether the action taken is an interrupt or a reset. 
In this case, the watchdog time-out that causes an interrupt is often referred to as 
the second watchdog time-out.

The processor sets the TSR[ENW] bit but never clears it. Only software can clear the 
bit.

• Watchdog-interrupt status, TSR[WIS]—This bit is used by the processor only when 
TSR[ENW]=1. It indicates whether or not a watchdog interrupt occurred and controls 
further watchdog interrupts and reset, as follows:
- When cleared to 0, no watchdog interrupt occurred. The next watchdog time-out 

can cause a watchdog interrupt to occur, if the interrupt is enabled. When 
TSR[ENW]=1, the next time-out sets this bit to 1.

- When set to 1, a watchdog interrupt occurred or would have occurred if enabled. 
The next watchdog time-out forces a reset if a reset condition is specified by 
TCR[WRC].

The processor sets the TSR[WIS] bit but never clears it. Only software can clear the bit.

Table 8-5: Watchdog Time-Out Periods

TCR[WP] Selected TBL Bit
Time-Base

Clock Period
Watchdog Period
(300 MHz Clock)

00 15 217 0.437 msec

01 11 221 6.99 msec

10 7 225 0.112 sec

11 3 229 1.79 sec

http://www.xilinx.com


244 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Timer-Event Interrupts
R

Figure 8-6 shows the watchdog-event state machine and the transitions described in the 
previous paragraphs. The transitions for the interrupt handler and system service routines 
(both shown as dashed lines) are described in the following paragraphs.

Watchdog time-outs can be used to recover from otherwise unrecoverable errors. In the 
absence of software intervention, consecutive watchdog time-outs can cause a reset under 
the control of TCR[WRC]. This happens when the watchdog-event state machine enters 
the “Reset” state shown in Figure 8-6. After a reset, system software can determine the 
cause of the unrecoverable error and take appropriate action.

If no errors occur, software must periodically update the state of the state machine to 
prevent a reset. Figure 8-6, shows three possible methods for properly managing the state 
machine:

• Method (1)—an interrupt handler manages the state machine.

This method uses the watchdog interrupt. The watchdog interrupt handler clears 
TSR[WIS]=0 before returning. TSR[ENW] is never cleared and is always set to 1. If an 
error prevents watchdog interrupts, consecutive watchdog time-outs force a reset.

• Method (2)—the combination of a system-service routine and an interrupt handler 
manages the state machine.

This method attempts to avoid watchdog interrupts. Here, a system-service routine 
periodically clears the TSR[ENW] bit to 0, preventing watchdog interrupts. The system 
service routine must run more frequently than the watchdog time-out period. The 
fixed-interval timer can be used to initiate this routine at the proper time interval.

If an error prevents the system-service routine from clearing TSR[ENW], the next 
watchdog time-out causes a watchdog interrupt. The interrupt handler can attempt to 
correct the problem and clear both TSR[ENW] and TSR[WIS]. If an error prevents 
watchdog interrupts, another watchdog time-out forces a reset.

• Method (3)—a system-service routine manages the state machine.

This method avoids the watchdog interrupt entirely and requires that the interrupt be 
disabled. A system-service routine periodically clears the TSR[WIS] bit to 0 and leaves 

Figure 8-6: Watchdog-Event State Machine
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TSR[ENW] set to 1. If an error prevents the system-service routine from clearing 
TSR[WIS], the next watchdog time-out causes a reset. As with method (2), the system 
service routine must run more frequently than the watchdog time-out period. The 
fixed-interval timer can be used to initiate this routine at the proper time interval.

Disabling Watchdog Time-outs
After a reset (including power-on reset), watchdog interrupts are disabled because 
MSR[CE]=0. However, watchdog time-outs continue to occur because the time-base 
register is always incrementing, and a valid watchdog interval is always specified by 
TCR[WP]. 

Unless prevented by software, consecutive watchdog time-outs cause the state machine to 
enter the “Reset” state shown in Figure 8-6. If the state machine enters the “Reset” state 
and TCR[WRC]=00 (the value following a reset), watchdog time-outs become silent, 
causing neither an interrupt or reset. This effectively disables the event.

Programmable-Interval Timer Events
The programmable-interval timer (PIT) is a 32-bit decrementing register that is clocked at 
the same frequency as the time-base register. The PIT begins decrementing when it is 
loaded with a non-zero value and it stops decrementing when the contents reach 0. When 
the PIT contains a value of 1 and is decremented, a PIT event occurs. The value in the PIT 
following a PIT event depends on whether auto-reload mode is enabled:

• If auto-reload is not enabled (TCR[ARE]=0), the next PIT value is 0 and decrementing 
is halted. Loading the PIT with a value of 0 does not cause a PIT event.

• If auto-reload is enabled (TCR[ARE]=1), the PIT is loaded with the last value written 
to it. Decrementing continues from that value.

A PIT event causes a PIT interrupt when both of the following bits are set to 1:

• The PIT interrupt-enable bit in the timer-control register, TCR[PIE].
• The external-enable bit in the machine-state register, MSR[EE].

PIT events always set the PIT-interrupt status bit in the timer-status register (TSR[PIS]=1). 
This happens whether or not PIT interrupts are enabled. If TSR[PIS]=1 and the PIT 
interrupt is disabled, the PIT interrupt is pending. A PIT interrupt occurs if the status bit is 
set and the interrupt is enabled.

PIT events are disabled as follows:

• Disable PIT interrupts by clearing TCR[PIE]=0. 
• Clear TSR[PIS] to 0 to remove pending PIT interrupts.
• Halt PIT decrementing by loading the PIT with 0. Alternatively, auto-reload mode can 

be disabled by clearing TCR[ARE]=0. When the PIT reaches to 0, decrementing is 
halted.

Fixed-Interval Timer Events
A fixed-interval timer (FIT) event occurs when a selected bit in the time-base lower register 
(TBL) changes from 0 to 1. The FIT-period bit in the timer-control register (TCR[FP]) is used 
to select the TBL bit controlling the FIT event, as shown in Table 8-6.
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Software cannot prevent FIT events from occurring. This is because the time-base register 
is always incrementing and a valid fixed interval is always specified by TCR[FP].

A FIT event causes a FIT interrupt when both of the following bits are set to 1:

• The FIT interrupt-enable bit in the timer-control register, TCR[FIE].
• The external-enable bit in the machine-state register, MSR[EE].

FIT events always set the FIT-interrupt status bit in the timer-status register (TSR[FIS]=1). 
This happens whether or not FIT interrupts are enabled. If TSR[FIS]=1 and the FIT 
interrupt is disabled, the interrupt is considered pending. A FIT interrupt occurs if the 
status bit is set and the interrupt is enabled.

To disable FIT interrupts, software must clear TCR[FIE]=0. TSR[FIS] should be cleared to 0 
to remove pending FIT interrupts.

Table 8-6: Fixed-Interval Timer-Event Periods

TCR[FP] Selected TBL Bit
Time-Base

Clock Period
FIT Period

(300 MHz Clock)

00 23 29 1.71 μsec

01 19 213 27.3 μsec

10 15 217 0.437 msec

11 11 221 6.99 msec
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Chapter 9

Debugging

The PPC405 debugging resources can be used by system software and external hardware 
to implement software debug and trace-capture tools (collectively referred to as debuggers). 
These resources provide the following capabilities:

• Debug modes that support various debug tools and debug tasks commonly used in 
embedded-systems development.

• A debug exception (vector offset 0x2000) for use by debuggers when debug events 
occur.

• A variety of debugging functions (not all functions are available from all debug 
modes):
- Debug Events—Several types of debug events are available from the various 

debug modes. When detected, debug events can cause an interrupt or stop the 
processor, depending on the debug mode.

- Trap Instructions—The trap instructions (tw and twi) can be used to set software 
breakpoints that cause debug events rather than program interrupts.

- Halt—An external debug signal can be used to halt (stop) the processor. No 
instructions are executed during a halt, but processor registers can be read and 
written using the JTAG port. Execution resumes when the external halt signal is 
de-asserted.

- Stop—Stop can be used to halt the processor using the JTAG port rather than the 
external halt signal. No instructions are executed during a halt, but processor 
registers can be read and written using the JTAG port.

- Instruction Step—Using the JTAG port, the processor can be stopped and single-
stepped one instruction at a time.

- Instruction Stuff—Using the JTAG port, the processor can be stopped and 
instructions can be inserted (stuffed) into the processor and executed. The 
instructions do not replace existing instruction.

- Freeze Timers—The JTAG port or a debug-control register can be used to control 
the PPC405 timer resources. The timers can be frozen (stopped) completely, frozen 
only for the duration of debug events, or left running.

- Reset—A processor, chip, or system reset can be forced using the JTAG port, a 
debug-control register, or external signalling.

• Control registers used to manage the debug modes and functions.
• Status registers used to report debug information. 
• Status reporting through the JTAG port, including:

- Execution Status—Indicates whether the processor is stopped, waiting, or running.
- Exception Status—Indicates the status of pending synchronous exceptions.
- Most Recent Reset—Indicates the cause of the most-recent reset.
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• A debug interface (JTAG) and a trace interface for connecting external hardware and 
software debug tools.

Debug Modes
The PPC405 supports the following four debug modes:

• Internal-debug mode for use by software debuggers.
• External-debug mode for use by JTAG debuggers.
• Debug-wait mode for interrupt servicing when a JTAG debugger is in use.
• Real-time trace mode for use by instruction-trace tools.

The internal-debug and external-debug modes can be enabled simultaneously. Debug-
wait mode and real-time trace mode are available only when both the internal-debug and 
external-debug modes are disabled.

Internal-Debug Mode
Internal-debug mode is used during normal program execution and provides an effective 
means for debugging system software and application programs. The mode supports 
setting breakpoints and monitoring processor status. In this mode, debug events can cause 
debug interrupts. The debug-interrupt handler is used to collect status information and to 
alter software-visible resources.

Internal-debug mode is enabled by setting the internal-debug mode bit in debug-control 
register 0, DBCR0[IDM]=1. Debug interrupts are enabled by setting MSR[DE]=1. An 
internal debug event can cause a debug interrupt only when both DBCR0[IDM]=1 and 
MSR[DE]=1.

External-Debug Mode
External-debug mode can be used to alter normal program execution. It provides the 
ability to debug system hardware as well as software. The mode supports starting and 
stopping the processor, single-stepping instruction execution, setting breakpoints, and 
monitoring processor status. Access to processor resources is provided through the JTAG 
port. 

External-debug events stop the processor, halting instruction execution. External-bus 
activity continues when the processor is stopped. Processor resources are accessed through 
the JTAG port when the processor is stopped. External-debug mode also enables 
instructions to be stuffed (inserted) into the processor through the JTAG port and executed. 
This capability does not cause privileged (program) exceptions, so privileged instructions 
can be stuffed when the processor is in user mode.

Instructions stuffed into the processor can provide access to a variety of system resources, 
including DCRs and system memory. However, memory-protection mechanisms continue 
to operate in external-debug mode. Debug software can modify the MSR or TLB entries as 
necessary to enable access into protected memory locations.

External-debug mode is enabled by setting the external-debug mode bit in debug-control 
register 0, DBCR0[EDM]=1.

Debug events in external-debug mode can cause debug interrupts if internal-debug mode 
is also enabled. Here, the processor stops with a debug-interrupt pending. The external 
debugger can perform debug operations and restart the processor. When the processor is 
restarted the debug interrupt occurs, transferring control to the debug-interrupt handler. 
The handler can be used to collect processor-status information and to alter software-
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visible resources. An external debug event can cause a debug interrupt only when both 
DBCR0[IDM]=1 and MSR[DE]=1.

Debug-Wait Mode
Debug-wait mode causes the processor to enter a state in which interrupts can be handled 
when the processor appears to be stopped. The mode operates in a fashion similar to 
external-debug mode. It supports starting and stopping the processor, single-stepping 
instruction execution, setting breakpoints, and monitoring processor status. Access to 
processor resources is provided through the JTAG port.

External-debug events stop the processor, halting instruction execution. External-bus 
activity continues when the processor is stopped. Processor resources are accessed through 
the JTAG port when the processor is stopped. External-debug mode also enables 
instructions to be stuffed (inserted) into the processor through the JTAG port and executed. 
This capability does not cause privileged (program) exceptions, so privileged instructions 
can be stuffed when the processor is in user mode.

Unlike external-debug mode, debug-wait mode enables external devices to interrupt the 
processor when it is stopped. The processor transfers control to the critical-input interrupt 
handler (0x0100) or the external-interrupt handler (0x0500), as appropriate. After the 
interrupt handler completes and executes a return-from-interrupt instruction, the 
processor re-enters the stopped state.

Debug-wait mode is enabled by setting the debug-wait mode bit in the MSR, 
MSR[DWE]=1. Internal-debug mode and external debug mode must both be disabled 
(DBCR0[IDM]=0 and DBCR0[EDM]=0).

Real-Time Trace-Debug Mode
Real-time trace-debug mode supports real-time tracing of the instruction stream executed 
by the processor. In this mode, debug events are used to cause external trigger events. An 
external trace tool uses the trigger events to control the collection of trace information. The 
broadcast of trace information occurs independently of external trigger events (trace 
information is always supplied by the processor). Real-time trace-debug does not affect 
processor performance.

Real-time trace-debug mode is always enabled. However, the trigger events occur only 
when both internal-debug mode and external debug mode are disabled (DBCR0[IDM]=0 
and DBCR0[EDM]=0). Most trigger events are blocked when either of those two debug 
modes are enabled.

Information on the trace-debug capabilities, how trace-debug works, and how to connect 
an external trace tool is available in the RISCWatch Debugger User’s Guide.

Debug Registers
The PPC405 debug resources include the following registers:

• Debug-control registers (DBCR0 and DBCR1).
• Debug-status register (DBSR).
• Instruction address-compare registers (IAC1–IAC4).
• Data address-compare registers (DAC1–DAC2).
• Data value-compare registers (DVC1–DVC2).

A description of each register is provided in the following sections.
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Debug-Control Registers
Two debug-control registers are supported by the PPC405: DBCR0 and DBCR1.

Debug-control register 0 (DBCR0) is used to enable the debug modes. It also is used to 
enable instruction-complete, branch-taken, exception-taken, and trap-instruction debug 
events. It controls the various features of the instruction address-compare debug event. 
DBCR0 is also used to freeze the timers during a debug event. Figure 9-1 shows the format 
of the DBCR0 register. The fields in the DBCR0 are defined as shown in Table 9-1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 30 31

EDM IDM RST IC BT EDE TDE 1A1 1A2 1A12 1A12X 1A3 1A4 1A34 1A34X 1A12T 1A34T FT

Figure 9-1: Debug-Control Register 0 (DBCR0)

Table 9-1: Debug-Control Register 0 (DBCR0) Field Definitions

Bit Name Function Description

0 EDM External-Debug Mode

0—Disabled
1—Enabled

Specifies whether or not external-debug mode is 
enabled.

1 IDM Internal-Debug Mode

0—Disabled
1—Enabled

Specifies whether or not internal-debug mode is 
enabled.

2:3 RST Reset

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Causes the specified reset to occur when written. 
The reset occurs immediately after the processor 
recognizes the value written to the register.

4 IC Instruction-Complete Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction-complete 
debug event is enabled.

5 BT Branch-Taken Debug Event

0—Disabled
1—Enabled

Specifies whether or not the branch-taken debug 
event is enabled.

6 EDE Exception-Taken Debug Event

0—Disabled
1—Enabled

Specifies whether or not the exception debug event 
is enabled.

7 TDE Trap-Instruction Debug Event

0—Disabled
1—Enabled

Specifies whether or not the trap debug event is 
enabled.

8 IA1 Instruction Address-Compare 1 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 1 (IAC1) debug event is enabled.

9 IA2 Instruction Address-Compare 2 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 2 (IAC2) debug event is enabled.
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The DBCR0 is a privileged SPR with an address of 1010 (0x3F2) and is read and written 
using the mfspr and mtspr instructions.

Debug-control register 1 (DBCR1) is used to enable the parameters governing the various 
data address-compare and data value-compare debug events. Figure 9-2 shows the format 
of the DBCR1 register. The fields in the DBCR1 are defined as shown in Table 9-2.

10 IA12 Instruction-Address Range-Compare 1-2

0—Disabled
1—Enabled

Instruction address-compare registers IAC1 and 
IAC2 specify an address range used by either the 
IAC1 or IAC2 debug events. If address-range 
comparison is disabled, exact-address comparison is 
enabled. 

11 IA12X IA12 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the 1A12 address range (enabled 
by bit 10) is an inclusive range or an exclusive range.

12 IA3 Instruction Address-Compare 3 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 3 (IAC3) debug event is enabled.

13 IA4 Instruction Address-Compare 4 Debug Event

0—Disabled
1—Enabled

Specifies whether or not the instruction address-
compare 4 (IAC4) debug event is enabled.

14 IA34 Instruction-Address Range-Compare 3-4

0—Disabled
1—Enabled

Instruction address-compare registers IAC3 and 
IAC4 specify an address range used by either the 
IAC3 or IAC4 debug events. If address-range 
comparison is disabled, exact-address comparison is 
enabled. 

15 IA34X IA34 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the 1A34 address range (enabled 
by bit 14) is an inclusive range or an exclusive range.

16 IA12T IA12 Range-Compare Toggle

0—No toggle
1—Toggle.

Toggles the value of the 1A12X bit ( bit 11) from 1 to 
0 or 0 to 1 when a debug event caused by a IA12 
range comparison (bit 10) occurs.

17 IA34T IA34 Range-Compare Toggle

0—No toggle
1—Toggle.

Toggles the value of the 1A34X bit ( bit 15) from 1 to 
0 or 0 to 1 when a debug event caused by a IA34 
range comparison (bit 14) occurs.

18:30 Reserved

31 FT Freeze Timers on Debug Event

0—Do not freeze
1—Freeze

Specifies whether the timers are frozen when a 
debug event occurs.

Table 9-1: Debug-Control Register 0 (DBCR0) Field Definitions (Continued)

Bit Name Function Description

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 23 24 31

D1R D2R D1W D2W D1S D2S DA12 DA12X DV1M DV2M DV1BE DV2BE

Figure 9-2: Debug-Control Register 1 (DBCR1)
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Table 9-2: Debug-Control Register 1 (DBCR1) Field Definitions

Bit Name Function Description

0 D1R Data Address-Compare 1 Read Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 1 
(DAC1) debug event is enabled for reads.

1 D2R Data Address-Compare 2 Read Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 2 
(DAC2) debug event is enabled for reads.

2 D1W Data Address-Compare 1 Write Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 1 
(DAC1) debug event is enabled for writes.

3 D2W Data Address-Compare 2 Write Debug Event

0—Disabled
1—Enabled

Specifies whether or not the data address-compare 2 
(DAC2) debug event is enabled for writes.

4:5 D1S Data Address-Compare 1 Size

00—Compare all bits
01—Ignore least-significant bit
10—Ignore least-significant two bits
11—Ignore least-significant five bits

Specifies the granularity of DAC1 exact-address 
comparisons:

00—Byte granular
01—Halfword granular
10—Word granular
11—Cache-line (8-byte) granular

6:7 D2S Data Address-Compare 2 Size

00—Compare all bits
01—Ignore least-significant bit
10—Ignore least-significant two bits
11—Ignore least-significant five bits

Specifies the granularity of DAC2 exact-address 
comparisons:

00—Byte granular
01—Halfword granular
10—Word granular
11—Cache-line (8-byte) granular

8 DA12 Data-Address Range-Compare 1-2

0—Disabled
1—Enabled

Data address-compare registers DAC1 and DAC2 
specify an address range used by either the DAC1 or 
DAC2 debug events. If address-range comparison is 
disabled, exact-address comparison is enabled. 

9 DA12X DA12 Range-Compare Exclusive

0—Inclusive
1—Exclusive

Specifies whether the DA12 address range (enabled 
by bit 8) is an inclusive range or an exclusive range.

10:11 Reserved

12:13 DV1M Data-Value Compare 1 Mode

00—Undefined
01—All selected bytes must match
10—At least one selected byte must match
11—At least one selected halfword must match

Specifies the conditions under which a data value-
comparison with the DVC1 register causes a debug 
event (DVC1 event). The comparison is made using 
the bytes selected by DV1BE.

14:15 DV2M Data-Value Compare 2 Mode

00—Undefined
01—All selected bytes must match
10—At least one selected byte must match
11—At least one selected halfword must match

Specifies the conditions under which a data value-
comparison with the DVC2 register causes a debug 
event (DVC2 event). The comparison is made using 
the bytes selected by DV2BE.
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The DBCR1 is a privileged SPR with an address of 957 (0x3BD) and is read and written 
using the mfspr and mtspr instructions.

Debug-Status Register
The PPC405 contains a 32-bit debug-status register (DBSR). Fields within the register are 
set by the various debug events to report debug status. The DBSR can be updated by a 
debug event even when all debug modes are disabled. DBSR[MRR] is updated by a reset, 
not by a debug event. Figure 9-3 shows the format of the DBSR register. The fields in the 
DBSR are defined as shown in Table 9-3.

16:19 DV1BE Data-Value Compare 1 Byte Enables Specifies which bytes in the DVC1 register are used 
in the comparison. Each DV1BE bit corresponds to a 
byte in the DVC1 register.

DVC1 events are disabled when DV1BE=0b0000.

20:23 DV2BE Data-Value Compare 2 Byte Enables Specifies which bytes in the DVC2 register are used 
in the comparison. Each DV2BE bit corresponds to a 
byte in the DVC2 register.

DVC2 events are disabled when DV2BE=0b0000.

24:31 Reserved

Table 9-2: Debug-Control Register 1 (DBCR1) Field Definitions (Continued)

Bit Name Function Description

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 22 23 24 31

IC BT EDE TIE UDE IA1 IA2 DR1 DW1 DR2 DW2 IDE IA3 IA4 MRR

Figure 9-3: Debug-Status Register (DBSR)

Table 9-3: Debug-Status Register (DBSR) Field Definitions

Bit Name Function Description

0 IC Instruction-Complete Debug Event

0—Did not occur
1—Occurred

Indicates whether an instruction-complete debug 
event occurred.

1 BT Branch-Taken Debug Event

0—Did not occur
1—Occurred

Indicates whether a branch-taken debug event 
occurred.

2 EDE Exception-Taken Debug Event

0—Did not occur
1—Occurred

Indicates whether an exception-taken debug event 
occurred.

3 TDE Trap-Instruction Debug Event

0—Did not occur
1—Occurred

Indicates whether a trap-instruction debug event 
occurred.

4 UDE Unconditional Debug Event

0—Did not occur
1—Occurred

Indicates whether an unconditional debug event 
occurred.

5 IA1 Instruction-Address Compare 1 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC1 debug event occurred.
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The DBSR is a privileged SPR with an address of 1008 (0x3F0). Hardware sets the status 
bits and software is responsible for reading and clearing the bits. It is read using the mfspr 
instruction. The register is cleared, but not directly written, using the mtspr instruction. 
Values in the source register, rS, behave as a mask when clearing the DBSR. Here, a value 
of 0b1 in any bit position of rS clears the corresponding bit in the DBSR. A value of 0b0 in 
an rS bit position does not alter the corresponding bit in the DBSR.

Instruction Address-Compare Registers
The PPC405 contains four 32-bit instruction address-compare registers: IAC1, IAC2, IAC3, 
and IAC4. These registers are used by the instruction address-compare debug event. 
Figure 9-4 shows the format of the IACn registers. The instruction effective-addresses 
loaded in these registers must be word aligned (address bits 30:31 must be 0).

6 IA2 Instruction-Address Compare 2 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC2 debug event occurred.

7 DR1 Data-Address Compare 1 Read Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC1-read debug event 
occurred.

8 DW1 Data-Address Compare 1 Write Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC1-write debug event 
occurred.

9 DR2 Data-Address Compare 2 Read Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC2-read debug event 
occurred.

10 DW2 Data-Address Compare 2 Write Debug Event

0—Did not occur
1—Occurred

Indicates whether a DAC2-write debug event 
occurred.

11 IDE Imprecise Debug Event

0—No debug event occurred
1—At least one debug event occurred

Indicates whether a debug event occurred when 
debug interrupts were disabled (MSR[DE]=0). This 
bit is not set if MSR[DE]=1.

12 IA3 Instruction-Address Compare 3 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC3 debug event occurred.

13 IA4 Instruction-Address Compare 4 Debug Event

0—Did not occur
1—Occurred

Indicates whether an IAC4 debug event occurred.

14:21 Reserved

22:23 MRR Most-Recent Reset

00—No reset
01—Processor reset
10—Chip reset
11—System reset

Indicates the type of reset that last occurred.

24:31 Reserved

Table 9-3: Debug-Status Register (DBSR) Field Definitions (Continued)

Bit Name Function Description
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The IACn registers are privileged SPRs with the following addresses:

• IAC1—1012 (0x3F4).
• IAC2—1013 (0x3F5).
• IAC3—948 (0x3B4).
• IAC4—949 (0x3B5).

These registers are read and written using the mfspr and mtspr instructions.

Data Address-Compare Registers
The PPC405 contains two 32-bit data address-compare registers, DAC1 and DAC2. These 
registers are used by the data address-compare debug event. Figure 9-5 shows the format 
of the DACn registers. Any byte-aligned data effective-address can be loaded in these 
registers.

The DACn registers are privileged SPRs with the following addresses:

• DAC1—1014 (0x3F6).
• DAC2—1015 (0x3F7).

These registers are read and written using the mfspr and mtspr instructions.

Data Value-Compare Registers
The PPC405 contains two 32-bit data value-compare registers, DVC1 and DVC2. These 
registers are used by the data value-compare debug event. Figure 9-5 shows the format of 
the DVCn registers. Any data value can be loaded in these registers.

The DVCn registers are privileged SPRs with the following addresses:

• DVC1—950 (0x3B6).
• DVC2—951 (0x3B7).

These registers are read and written using the mfspr and mtspr instructions.

Debug Events
A debug event occurs when a debug condition is detected by the processor. Debug 
conditions are enabled using the debug-control registers (DBCR0 and DBCR1). Some of the 
debug events make use of one or more of the compare registers (IACn, DACn, and DVCn). 
Depending on the debug mode, a debug event causes the following to occur:

• In internal-debug mode, a debug event is synonymous with debug exception. A 

0 29 30 31

Instruction Effective-Address 00

Figure 9-4: Instruction Address-Compare Registers (IAC1–IAC4)

0 31

Data Effective-Address

Figure 9-5: Data Address-Compare Registers (DAC1, DAC2)

0 7 8 15 16 23 24 31

Data-Value Byte 0 Data-Value Byte 1 Data-Value Byte 2 Data-Value Byte 3

Figure 9-6: Data Value-Compare Registers (DVC1, DVC2)
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debug event can cause a debug interrupt if debug interrupts are enabled 
(MSR[DE]=1). If debug interrupts are disabled, a debug event results in a pending 
debug interrupt. A debug interrupt occurs when a debug interrupt is pending and 
software sets MSR[DE] to 1.

• In external-debug mode, a debug event stops the processor. An external debugger 
connected to the processor through the JTAG port can restart the processor. A debug 
event can also cause a debug interrupt if both internal-debug mode and debug 
exceptions are enabled.

• If debug interrupts are enabled and both internal-debug and external-debug mode are 
enabled, a debug event stops the processor and the debug interrupt is pending.

• In debug-wait mode, a debug event stops the processor. A critical or noncritical 
external interrupt can restart the processor to handle the interrupt. The processor 
stops again when the interrupt handler is exited. An external debugger connected to 
the processor through the JTAG port can restart the processor.

• In real-time trace mode, a debug event can cause an external trigger event. Trigger 
events are used by external tools to collect instruction-trace information.

Debug status is recorded in the debug-status register (DBSR). A debug event can set 
debug-status bits even if all debug modes and debug exceptions are disabled. System 
software can use this capability to periodically poll the DBSR rather than use debug 
exceptions. Three events do not operate in this manner:

• Instruction-complete (IC).
• Branch-taken (BT).
• Instruction address-compare (IAC) when toggling is used.

The corresponding sections for these debug events describe the conditions under which 
debug status is not updated.

When debug interrupts are disabled (MSR[DE]=0), debug events are often recorded 
imprecisely. The occurrence of a debug event is reported by the debug status register, but 
the processor continues to operate normally and the debug interrupt is pending. When 
debug interrupts are later enabled, the pending interrupt causes a debug interrupt to 
immediately occur. See Imprecise Debug Event, page 267 for more information.

Debug events are not caused by speculatively executed instructions. The processor only 
reports events for resolved instructions that reflect the normal operation of the sequential-
execution model.

Table 9-4 summarizes the debug resources used by each debug event.

Table 9-4: Debug Resources Used by Debug Events

Debug Event DBCR0 DBCR1 DBSR IAC DAC DVC

IC

Instruction Complete

IC IC

BT

Branch Taken

BT BT

EDE

Exception Taken

EDE EDE

TDE

Trap Instruction

TDE TDE
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Instruction-Complete Debug Event
An instruction-complete (IC) debug event occurs immediately after completing execution 
of each instruction. It is enabled by setting DBCR0[IC]=1 and disabled by clearing 
DBCR0[IC]=0. The processor reports the occurrence of an IC debug event by setting the IC 
bit in the debug-status register (DBSR[IC]) to 1. After an IC event is recorded by a 
debugger, the status bit should be cleared to prevent ambiguity when recording future 
debug events.

The IC debug event does not set the DBSR status bit if all of the following are true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

Instruction completion is a common event (it can occur every processor clock) and this 
condition prevents the DBSR from recording its obvious occurrence when exceptions are 
disabled.

Many instructions do not complete execution when they cause an exception (other than the 
debug exception). Instructions that cause an exception do not result in an IC debug event. 
This sc instruction, however, causes a system-call exception after it executes. Here, the 
debug event occurs after the sc instruction, but before control is transferred to the system-
call interrupt handler.

The IC debug event is useful for single-stepping through a program. Either the debug-
interrupt handler (internal-debug mode) or an external debugger attached to the JTAG 
port (external-debug mode) can read and report the processor state and single-step to the 
next instruction. 

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the instruction following the one that caused the IC event.

UDE

Unconditional

UDE

IAC

Instruction Address-Compare

IA1, IA2, IA3, IA4

IA12, IA12X, IA12T

IA34, IA34X, IA34T

IA1, IA2, 
IA3, IA4

IAC1, 
IAC2, 
IAC3, 
IAC4

DAC

Data Address-Compare

D1R, D2R, D1W, D2W

D1S, D2S

DA12, DA12X

DR1, DR2

DW1, DW2

DAC1, 
DAC2

DVC

Data Value-Compare

D1R, D2R, D1W, D2W

D1S, D2S

DV1M, DV2M

DV1BE, DV2BE

DR1, DR2

DW1, DW2

DAC1, 
DAC2

DVC1, 
DVC2

IDE

Imprecise

IDE

Table 9-4: Debug Resources Used by Debug Events (Continued)

Debug Event DBCR0 DBCR1 DBSR IAC DAC DVC
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Branch-Taken Debug Event
A branch-taken (BT) debug event occurs immediately before executing a resolved (non-
speculative) branch instruction. It is enabled by setting DBCR0[BT]=1 and disabled by 
clearing DBCR0[BT]=0. The processor reports the occurrence of a BT debug event by 
setting the BT bit in the debug-status register (DBSR[BT]) to 1. After a BT event is recorded 
by a debugger, the status bit should be cleared to prevent ambiguity when recording future 
debug events.

The BT debug event does not set a DBSR status bit if all of the following are true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

Branches are a common event and this condition prevents the DBSR from recording their 
obvious occurrence when exceptions are disabled.

This debug event is useful for single-stepping through branches to narrow the search for 
code sequences of interest. Once identified, debug software can enable IC debug events 
and single-step the code sequence instruction-by-instruction.

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the branch instruction that caused the BT event.

Exception-Taken Debug Event
An exception-taken (EDE) debug event occurs immediately after an exception occurs, but 
before the first instruction in the exception handler is executed. It is enabled by setting 
DBCR0[EDE]=1 and disabled by clearing DBCR0[EDE]=0. The processor reports the 
occurrence of an EDE debug event by setting the EDE bit in the debug-status register 
(DBSR[EDE]) to 1. After an EDE event is recorded by a debugger, the status bit should be 
cleared to prevent ambiguity when recording future debug events.

Noncritical exceptions always cause an EDE event when EDE is enabled. Critical 
exceptions cause an EDE event only when EDE is enabled and external-debug mode is 
enabled.

This debug event is useful for debugging interrupt handlers. Upon entering an interrupt 
handler, debug software can enable IC debug events and single-step the handler 
instruction-by-instruction.

If debug interrupts are enabled, the SRR2 register is loaded with the 32-bit exception-
vector physical address. This corresponds to the effective address of the first instruction in 
the interrupt handler.

Trap-Instruction Debug Event
A trap-instruction (TDE) debug event occurs immediately before executing a trap 
instruction (tw or twi), if the conditions are such that a program exception would normally 
occur (invoking the system trap-handler). If the trap conditions are not met, the debug 
event does not occur and the program executes normally. The event is enabled by setting 
DBCR0[TDE]=1 and disabled by clearing DBCR0[TDE]=0. The processor reports the 
occurrence of a TDE debug event by setting the TDE bit in the debug-status register 
(DBSR[TDE]) to 1. After a TDE event is recorded by a debugger, the status bit should be 
cleared to prevent ambiguity when recording future debug events.

When TDE events are enabled, execution of a trap instruction does not cause a program 
exception if any of the following conditions are true:

• Internal-debug mode is enabled and debug exceptions are enabled.
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• External-debug mode is enabled.
• Debug wait-mode is enabled.

A program exception does occur when TDE events are enabled and internal-debug mode 
is enabled, but debug interrupts are disabled. In this case, the processor records an 
imprecise-debug exception by setting DBSR[IDE]=1.

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the trap instruction that caused the TDE event.

Unconditional Debug Event
An unconditional (UDE) debug event occurs immediately if either of the following two 
conditions are true:

• An external debugger attached to the JTAG port causes the event.
• The external unconditional-debug-event signal is asserted.

There is no enable bit for this event. The processor reports a UDE event by setting the UDE 
bit in the debug-status register (DBSR[UDE]) to 1. After a UDE event is recorded by a 
debugger, the status bit should be cleared to prevent ambiguity when recording future 
debug events.

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the instruction that would have executed had the UDE event not occurred.

Instruction Address-Compare Debug Event
An instruction address-compare (IAC) debug event occurs immediately before executing an 
instruction. The effective address of the instruction must match the value contained in one 
of the four IACn registers. The IAC event is controlled by conditions specified in the 
DBCR0 register. Three IAC conditions can be specified:

• Check for an exact instruction-address match.
• Check for an instruction-address match within a range of addresses.
• Check for an instruction-address match outside a range of addresses.

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the instruction that caused the IAC event.

IAC Exact-Address Match
An IAC exact-address match causes a debug event when the effective address in the 
specified IACn register exactly matches the effective address of the executing instruction. 
IACn register comparisons are enabled by setting the appropriate IAn enable bits in the 
DBCR0 register to 1. If a match occurs, the corresponding status bit in DBSR is set to 1.

Table 9-6 shows the control bits used to enable the IAC exact-address-match debug events, 
the IACn register used in the comparison, and the debug-status register bit set when the 
event occurs. Any number of the IAC exact-address-match conditions can be enabled 
simultaneously. IAC address-range comparisons must be disabled as follows:

• DBCR0[IA12]=0 for IAC1 and IAC2 exact-match comparisons.
• DBCR0[IA34]=0 for IAC3 and IAC4 exact-match comparisons.
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The processor does not clear the DBSR status bits when IAC events fail to occur. After an 
IAC event is recorded by a debugger, the corresponding status bits should be cleared to 
prevent ambiguity when recording future debug events.

IAC Address-Range Match
An IAC address-range match causes a debug event when the effective address of the 
executing instruction falls within a range of addresses specified an IACn register pair, as 
follows:

• IA12 designates an address range specified by the IAC1 and IAC2 register pair. To 
enable range comparisons using this register pair, software must:
- Set DBCR0[IA12]=1.
- Set either (or both) IA1=1 or IA2=1.

• IA34 designates an address range specified by the IAC3 and IAC4 register pair. To 
enable range comparisons using this register pair, software must:
- Set DBCR0[IA34]=1.
- Set either (or both) IA3=1 or IA4=1.

If IAC address-range comparison is enabled for a register pair, IAC exact-address 
comparison is disabled for that register pair.

When an address-range match is detected, the IAn enable bits in DBCR0 determine which 
DBSR status bits are set to 1. For example, both DBSR[IA1, IA2] are set to 1 if 
DBCR0[IA1, IA2]=1 when an IA12 address-range match is detected. However, only 
DBSR[IA1] is set to 1 if DBCR0[IA1]=1 and DBCR0[IA2]=0 when an IA12 address-range 
match is detected. The processor does not clear the DBSR status bits when IAC events fail 
to occur. After an IAC event is recorded by a debugger, the corresponding status bits 
should be cleared to prevent ambiguity when recording future debug events.

Inclusive and Exclusive Ranges

The DBCR0[IA12X, IA34X] bits specify whether the corresponding address ranges are 
inclusive or exclusive, as follows:

• When clear, the corresponding range is inclusive. 

If DBCR0[IA12X]=0, instruction addresses from (IAC1) to (IAC2)-1 fall within the 
range. Addresses from 0 to (IAC1)-1 and (IAC2) to 0xFFFF_FFFF fall outside the range.

If DBCR0[IA34X]=0, instruction addresses from (IAC3) to (IAC4)-1 fall within the 
range. Addresses from 0 to (IAC3)-1 and (IAC4) to 0xFFFF_FFFF fall outside the range.

• When set, the corresponding range is exclusive. 

If DBCR0[IA12X]=1, instruction addresses from 0 to (IAC1)-1 and (IAC2) to 
0xFFFF_FFFF fall within the range. Addresses from (IAC1) to (IAC2)-1 fall outside the 
range. 

Table 9-5: IAC Exact-Address Match Resources

Event Enable Bit
(DBCR0)

IAC Range Disable
(DBCR0)

IAC Register Used
Event Status Bit

(DBSR)

IA1 IA12=0 IAC1 IA1

IA2 IAC2 IA2

IA3 IA34=0 IAC3 IA3

IA4 IAC4 IA4
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If DBCR0[IA34X]=1, instruction addresses from 0 to (IAC3)-1 and (IAC4) to 
0xFFFF_FFFF fall within the range. Addresses from (IAC3) to (IAC4)-1 fall outside the 
range. 

Figure 9-7 illustrates how ranges are specified using DBCR0[IA12X]. No shading indicates 
addresses that are in range and gray-shading indicates addresses that are out of range.

Range Toggling

Range comparisons can be set to toggle between inclusive and exclusive each time a debug 
event occurs on the specified range. DBCR0[IA12T]=1 enables toggling of the 
DBCR0[IA12X] bit and DBCR0[IA34T]=1 enables toggling of the DBCR0[IA34X] bit. 
Clearing a toggle bit disables toggling of the corresponding range bit. 

As an example, assume IA12 exclusive-range toggling is enabled (IA12T=1 and IA12X=1):

• The first IAC event occurs when an instruction address is in the exclusive IA12 range. 
The processor clears IA12X to 0.

• The second IAC event occurs when an instruction address is in the inclusive IA12 
range. The processor sets IA12X to 0.

• The third IAC event occurs when an instruction address is in the exclusive IA12 
range. The processor clears IA12X to 0.

• And so on.

The IAC debug event does not set a DBSR status bit when toggling is used if all of the 
following are true:

• Internal-debug mode is enabled.
• Debug exceptions are disabled.
• External-debug mode is disabled.

When toggling is enabled IAC events occur frequently. This condition prevents the DBSR 
from recording their obvious occurrence when exceptions are disabled.

Data Address-Compare Debug Event
A data address-compare (DAC) debug event occurs before executing a data-access 
instruction. The effective address of the operand must match the value contained in one of 
the two DACn registers. Aligned memory accesses generate a single effective address that 
is used in checking for a DAC event. Unaligned memory accesses, load/store multiple 
instructions, and load/store string instructions can generate multiple effective addresses, 
all of which are used to check for a DAC event. The DAC event is controlled by conditions 
specified in the DBCR1 register. 

A variety of DAC conditions can be specified:

• Check for an exact data-address match.
• Check for a data-address match using halfword, word, or cacheline granularity.

0 (IAC1)-1 (IAC1) (IAC2)-1 (IAC2) 0xFFFF_FFFF

Inclusive Range, DBCR0[IA12X]=0

0 (IAC1)-1 (IAC1) (IAC2)-1 (IAC2) 0xFFFF_FFFF

Exclusive Range, DBCR0[IA12X]=1

Figure 9-7: IAC Address-Range Specification
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• Check for a data-address match within a range of addresses.
• Check for a data-address match outside a range of addresses.

Each of the above DAC conditions can be further controlled to cause a debug event only if 
the matching data access is a read or a write.

If debug interrupts are enabled, the SRR2 register is loaded with the effective address of 
the instruction that caused the DAC event.

DAC Exact-Address Match
A DAC exact-address match causes a debug event when the effective address contained in 
the specified DACn register matches the effective address of the operand. Read and write 
accesses can be checked independently. If a match occurs, the corresponding status bit in 
DBSR is set to 1.

Table 9-6 shows the control bits used to enable the DAC exact-address-match debug 
events, the type of access that is checked by each event, the DACn register used in the 
comparison, and the debug-status register bit set when the event occurs. Any number of 
DAC exact-address-match conditions can be enabled simultaneously. DAC address-range 
comparison must be disabled (DBCR1[DA12]=0).

The processor does not clear the DBSR status bits when DAC events fail to occur. After a 
DAC event is recorded by a debugger, the corresponding status bits should be cleared to 
prevent ambiguity when recording future debug events.

Specifying Exact-Match Granularity

Software can specify an operand-size granularity for use when performing the address 
comparison with each DAC register. Normally, the comparison checks for an exact address 
match or a byte-granular match. The comparison can be modified to check for halfword, 
word, and cache-line granular matches. This is useful when a debugger wants to cause a 
DAC event to occur when any byte in a word is accessed.

Granularity is specified using the DBCR1[D1S] size field for comparisons against the 
DAC1 register and the DBCR1[D2S] size field for comparisons against the DAC2 register. 
This field specifies which low-order address bits are ignored during the comparison. 
Because low-order address bits are ignored, the comparison is aligned on an address 
boundary equivalent to the granularity. The following table shows the possible size-field 
values, the address bits that are ignored during the comparison, and the resulting 
granularity used in the comparison.

Table 9-6: DAC Exact-Address Match Resources

Event Enable Bit
(DBCR1)

Type of Access 
Checked

DAC Register Used
Event Status Bit

(DBSR)

D1R Load (Read) DAC1 DR1

D1W Store (Write) DW1

D2R Load (Read) DAC2 DR2

D2W Store (Write) DW2
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Table 9-8 shows an example of using the D1S size field. The table shows how comparisons 
against the DAC address are modified using the size field. The first four entries apply byte-
granular comparisons and only one of the four accesses produces a match. The second set 
of four entries apply a word-granular comparison. Here, all four of the accesses produce a 
match.

The load-string and store-string instructions move bytes of data between memory and 
registers. However, when these instructions are used to access data PPC405 moves four 
bytes at a time by using word-aligned effective addresses and an access size of one word. 
Bytes not required by the instructions are discarded. Thus, it is not possible to produce a 
byte-granular DAC match on every byte address referenced by a string instruction. In 
some cases, software must use a word-size granularity to produce a DAC match on a 
specific byte address.

DAC Address-Range Match
A DAC address-range match causes a debug event when the effective address of the 
operand falls within a range specified by the DA12 register pair. DAC1 and DAC2 form the 
DA12 pair. DA12 range comparison is enabled by setting DBCR1[DA12]=1. When DAC 
address-range comparison is enabled, DAC exact-address comparison is disabled. The 
DBCR1[D1S, D2S] size bits are not used by DAC address-range comparisons.

Read and write accesses can be checked independently. To check read accesses, software 
sets the D1R and/or D2R bits in the DBCR1 register. Only one of the two bits must be set to 
enable read checking for the entire range. If a read-access match is detected, the 
corresponding status bits in the DBSR are set (DR1 and/or DR2). Likewise, write-access for 
the entire range is checked by setting the D1W and/or D2W bits in the DBCR1 register. If 
a write-access match is detected, the corresponding status bits in the DBSR are set (DW1 
and/or DW2).

Table 9-7: Effect of D1S/D2S Size-Field Encoding

Size-Field Encoding Address Bits Used Address Bits Ignored Granularity

00 0:31 — Byte

01 0:30 31 Halfword

10 0:29 30:31 Word

11 0:26 27:31 Cacheline

Table 9-8: Examples of Using the D1S Size Field

DAC Address
D1S Value

(Granularity)
Operand Address Access Size DAC Match

0x0002
00

(Byte)

0x0000 Byte No

0x0000 Word No

0x0002 Word Yes

0x0003 Byte No

0x0002
10

(Word)

0x0000 Byte Yes

0x0000 Word Yes

0x0002 Word Yes

0x0003 Byte Yes

http://www.xilinx.com


264 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Debug Events
R

Inclusive and Exclusive Ranges

The DBCR1[DA12X] bit determines whether the address range specified by the DACn 
registers is inclusive or exclusive:

• When DBCR1[DA12X]=0, the range is inclusive. Addresses from (DAC1) to (DAC2)-1 
fall within the range. Addresses from 0 to (DAC1)-1 and (DAC2) to 0xFFFF_FFFF fall 
outside the range.

• When DBCR1[DA12X]=1, the range is exclusive. Addresses from 0 to (DAC1)-1 and 
(DAC2) to 0xFFFF_FFFF fall within the range. Addresses from (DAC1) to (DAC2)-1 
fall outside the range.

Figure 9-8 shows the range specification based on the value of DBCR1[DA12X]. No 
shading indicates addresses that are in range and gray-shading indicates addresses that 
are out of range.

Table 9-9 summarizes the DBCR1 bits used to control DAC address-range comparisons 
and the DBSR bits used to report their status.

The processor does not clear the DBSR status bits when DAC events fail to occur. After a 
DAC event is recorded by a debugger, the corresponding status bits should be cleared to 
prevent ambiguity when recording future debug events.

DAC Events Caused by Cache Instructions
DAC events can be caused by the execution of cache-control instructions. The following 
summarizes the type of DAC events that can occur when a cache-control instruction is 
executed:

• Cache-control instructions that can modify data are treated as stores (writes) by the 
debug mechanism. Instructions that can cause loss of data through invalidation are 
also treated as stores. Both types of instructions can cause DAC-write events. 
Instructions in this category are dcbi and dcbz.

• Cache-control instructions that invalidate unmodified are treated as loads. These 
instructions can cause DAC-read events but not DAC-write events. The icbi 
instruction falls in this category.

0 (DAC1)-1 (DAC1) (DAC2)-1 (DAC2) 0xFFFF_FFFF

Inclusive Range, DBCR1[DA12X]=0

0 (DAC1)-1 (DAC1) (DAC2)-1 (DAC2) 0xFFFF_FFFF

Exclusive Range, DBCR1[DA12X]=1

Figure 9-8: DAC Address-Range Specification

Table 9-9: DAC Address-Range Match Resources

Event Enable Bit
(DBCR1)

DBCR1
[DA12X]

Type of Access Checked
Event Status Bit

(DBSR)

D1R and/or D2R 0 Load (read) inclusive (DAC1) and (DAC2)-1 DR1 and/or DR2

D1W and/or D2W Store (write) inclusive (DAC1) and (DAC2)-1 DW1 and/or DW2

D1R and/or D2R 1 Load (read) exclusive (DAC1) and (DAC2)-1 DR1 and/or DR2

D1W and/or D2W Store (write) exclusive (DAC1) and (DAC2)-1 DW1 and/or DW2
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• Cache-control instructions that are not address specific do not cause DAC events. 
Instructions in this category are dccci, iccci, dcread, and icread.

• Cache-control instructions that update system memory with data already present in 
the cache are treated as loads (reads) by the access-protection mechanism. However, 
the debug mechanism can be used to cause a DAC-write event when these 
instructions are executed. Instructions in this category are dcbf and dcbst.

• Cache-control instructions that are speculative are treated as loads by the debug 
mechanism. These instructions can cause DAC-read events. Instructions in this 
category are dcbt, dcbtst, and icbt.

• Cache-control instructions that allocate cachelines are treated as stores. These 
instructions can cause DAC-write events. The dcba instruction falls in this category.

Table 9-10 summarizes the type of DAC event that can occur for each cache-control 
instruction.

Data Value-Compare Debug Event
A data value-compare (DVC) debug event occurs when:

1. A DAC match occurs. The operand effective-address of the data-access instruction 
must match the value contained in one of the DACn registers, using the conditions 
specified by the DBCR1 register.

2. If the preceding DAC comparison detects a matching address, the data-value accessed 
at that address must match the value contained in one of the DVCn registers, using the 
conditions specified by the DBCR1 register.

The DAC comparison performed in the first step is set up to perform exact-address or 
address-range comparisons as described in the previous section (Data Address-Compare 
Debug Event). However, the DAC comparison does not cause a DAC debug event. 
Because DVC and DAC events share the same DAC registers, control bits, and status bits, 
a DAC event is disabled when the corresponding DVC event is enabled, as follows:

• If DVC1 events are enabled, DAC1 events are disabled.

Table 9-10: DAC Events Caused by Cache-Control Instructions

Instruction DAC Read DAC Write

dcba No Yes

dcbf No Yes

dcbi No Yes

dcbst No Yes

dcbt Yes No

dcbtst Yes No

dcbz No Yes

dccci Does not cause DAC events.

dcread Does not cause DAC events.

icbi Yes No

icbt Yes No

iccci Does not cause DAC events.

icread Does not cause DAC events.
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• If DVC2 events are enabled, DAC2 events are disabled.
• If DVC1 and DVC2 events are enabled (as in range comparisons), DAC1 and DAC2 

events are disabled.

Unlike DAC events, the DVC event occurs after the data-access instruction executes. If 
debug interrupts are enabled, the SRR2 register is loaded with the effective address of the 
instruction following the one that caused the DVC event.

DVC events are enabled by loading a non-zero value (≠ 0b0000) into the byte-enable 
controls of the corresponding DVCn register. A non-zero value loaded into 
DBCR1[DV1BE] enables DVC1 events and a non-zero value loaded into DBCR1[DV2BE] 
enables DVC2 events. Referring to Figure 9-6, page 255, the byte-enables specify which 
DVCn register bytes participate in the DVC comparison:

• DVnBE0 controls participation of DVCn data-value byte 0.

• DVnBE1 controls participation of DVCn data-value byte 1.

• DVnBE2 controls participation of DVCn data-value byte 2.

• DVnBE3 controls participation of DVCn data-value byte 3.

When a DVnBE bit is set to 1, the specified byte in DVCn is compared against the 
corresponding operand byte. If the bit is cleared to 0, the specified byte is not compared. If 
DVnBE=0b0000, no bytes participate in the comparison and the DVCn event is disabled.

The data-value compare-mode bits in DBCR1 control how the enabled DVCn bytes are 
compared against the operand value. The DV1M bits control the DVC1 comparison and 
the DV2M bits control the DVC2 comparison. The modes defined by these two-bit fields 
are:

• 00—The effect of this mode is undefined and should not be used.
• 01—AND mode. All DVCn bytes selected by DVnBE must match the corresponding 

operand bytes.
• 10—OR mode. At least one of the DVCn bytes selected by DVnBE must match the 

corresponding operand byte.
• 11—AND–OR mode. This mode uses the following algorithm to determine whether a 

DVC event occurs:
( DVnBE0 ∧ (DVn[byte_0] = data_value[byte_0]) ∧ 

DVnBE1 ∧ (DVn[byte_1] = data_value[byte_1])) ∨ 
( DVnBE2 ∧ (DVn[byte_2] = data_value[byte_2]) ∧ 

DVnBE3 ∧ (DVn[byte_3] = data_value[byte_3]))

This comparison mode is useful when the byte enables are set to 0b1111. Here, a DVC 
event occurs if either the upper halfword or lower halfword of the DVCn register 
matches the corresponding operand halfword.

Table 9-11 shows example settings of DV1BE and DV1M and how they affect detection of a 
DVC1 match.
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Occasionally, it is desirable to cause a DVC event during an access to unaligned data. 
Software can use both DVC1 and DVC2 to (and the corresponding DACn registers) to 
detect accesses to either portion of the misaligned data. However, misaligned accesses can 
result in the generation of two effective addresses that are accessed separately by the 
processor. If the first address causes a DVC event, that event is recorded before completing 
access to the second address. If an interrupt occurs as a result of the DVC event, the second 
access is lost. This can result in a corrupted register and/or memory value.

DVC read and write events are enabled by initializing the DAC comparison and the DnR 
and DnW control bits in DBCR1. When a DVC event occurs, DBSR status bits are set to 
reflect the event. Read and write DVC events are recorded independently using the DRn 
and DWn status bits. Table 9-12 summarizes how the status bits are used by DVC events.

Status bits can be set by either DAC events or DVC events. However, a DAC event can 
occur only when DVC events are disabled. DAC matches do not set the status bits if DVC 
events are enabled but fail to occur. After a DAC or DVC event is recorded by a debugger, 
the corresponding status bits should be cleared to prevent ambiguity when recording 
future debug events.

Imprecise Debug Event
Imprecise (IDE) debug events are the result of any debug event occurring when debug 
interrupts are disabled (MSR[DE]=0). Internal-debug mode can be enabled or disabled. 

Table 9-11: Examples of Using DVC1 Controls

Data Value DVC1 Value DV1BE DV1M DVC1 Match

0xABCD_FFFF 0xABCD_0123

0b0111

01 (AND) No

10 (OR) Yes

11 (AND–OR) No

0b1000

01 (AND) Yes

10 (OR) Yes

11 (AND–OR) No

0b1100

01 (AND) Yes

10 (OR) Yes

11 (AND–OR) Yes

0b1111

01 (AND) No

10 (OR) Yes

11 (AND–OR) Yes

Table 9-12: DVC Event Status

DAC Enable Bit
(DBCR1)

Type of Access 
Checked

Registers Used
DVC Status Bit

(DBSR)

D1R Load (Read) DAC1 DVC1 DR1

D1W Store (Write) DW1

D2R Load (Read) DAC2 DVC2 DR2

D2W Store (Write) DW2
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When this happens, the imprecise-debug-exception bit in the debug-status register 
(DBSR[IDE]) is set to 1. This bit is set in addition to all other debug-status bits associated 
with the actual event. 

If DBSR[IDE]=1 and debug interrupts are enabled, a debug interrupt immediately occurs. 
The SRR2 register is loaded with the effective address of the instruction following the one 
that enabled debug interrupts. For example, assume internal-debug mode and debug 
interrupts are both disabled. If MSR[DE] is enabled first, followed by an enable of 
DBCR0[IDM], SRR2 is loaded with the instruction address following the one that enabled 
DBCR0[IDM].

To prevent repeated interrupts from occurring, the interrupt handler must clear 
DBSR[IDE] before returning. After the event is recorded by a debugger, debug-status bits 
should be cleared to prevent ambiguity when recording future debug events.

The following debug events can result in an imprecise debug event when MSR[DE]=0:

• Instruction complete (IC), if DBCR0[IDM]=0. If internal-debug mode is enabled, IC 
events cannot cause imprecise debug events when MSR[DE]=0.

• Branch taken (BT), if DBCR0[IDM]=0. If internal-debug mode is enabled, BT events 
cannot cause imprecise debug events when MSR[DE]=0.

• Exception taken (EDE).
• Trap instruction (TDE).
• Unconditional (UDE).
• Instruction address-compare (IAC). However, if IAC range toggling is enabled and 

internal-debug mode is enabled, IAC events cannot cause imprecise debug events 
when MSR[DE]=0. 

• Data address-compare (DAC).
• Data value-compare (DVC).

This feature is useful for indicating that one or more debug events occurred during 
execution of a critical-interrupt handler (debug interrupts are disabled by critical 
interrupts). Upon returning from the interrupt handler, debug interrupts are re-enabled 
and the processor immediately transfers control to the debug-interrupt handler.

Freezing the Timers
The PPC405 timers can be frozen (stopped) when a debug event occurs. This is done by 
setting the freeze timers bit (FT) in DBCR0 to 1. If DBCR0[FT]=1 when any debug event 
occurs, the time base stops incrementing and the programmable-interval timer stops 
decrementing. Freezing the timers also prevents the occurrence of the PIT, FIT, and WDT 
timer events. The timers are not frozen when a debug event occurs and DBCR0[FT]=0.

After the timers are frozen, they are not unfrozen until the record of all debug events is 
cleared from the debug-status register. All bits in the DBSR except for the most-recent reset 
(MRR) must be cleared to 0 to restart the timers. The timers are unfrozen when the 
processor recognizes the cleared state of the DBSR.
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Debug Interface
The PPC405 provides a JTAG interface and trace interface to support testing and 
debugging of both hardware and software. Typically, the JTAG interface is exposed at the 
board level as a JTAG debug port, where an external debugger can connect to it using a 
JTAG connector. The trace interface is also exposed at the board level using a separate 
interface.

JTAG Debug Port
The PPC405 JTAG (Joint Test Action Group) debug port complies with IEEE standard 
1149.1–1990, IEEE Standard Test Access Port and Boundary Scan Architecture. This standard 
describes a method for accessing internal chip resources using a four-signal or five-signal 
interface. The PPC405 JTAG debug port supports scan-based board testing and is further 
enhanced to support the attachment of debug tools. These enhancements comply with the 
IEEE 1149.1 specifications for vendor-specific extensions and are compatible with standard 
JTAG hardware for boundary-scan system testing.

The PPC405 JTAG debug port supports the following;

• JTAG Signals—The JTAG debug port implements the four required JTAG signals: 
TCK, TMS, TDI, and TDO. It also implements the optional TRST signal.

• JTAG Clock—The frequency of the JTAG clock signal (TCK) can range from 0 MHz 
(DC) to one-half of the processor clock frequency.

• JTAG Reset—The JTAG-debug port logic is reset at the same time the system is reset, 
using the JTAG reset signal (TRST). When TRST is asserted, the JTAG TAP controller 
returns to the test-logic reset state.

The JTAG debug port supports the required extest, idcode, sample/preload, and bypass 
instructions. The optional highz and clamp instructions are also supported. Invalid 
instructions behave as the bypass instruction. 

Refer to UG018, PowerPC® 405 Processor Block Manual for more information on the JTAG 
debug-port signals. Information on JTAG is found in the IEEE standard 1149.1–1990.

JTAG Connector
A male, 16-pin 2x8-header connector is suggested for use as the JTAG debug port 
connector. This connector supports direct attachment to the IBM RISCWatch debugger. The 
layout of the connector is shown in Figure 9-9 and the signals are described in Table 9-13. 
At the board level, the connector should be placed as close as possible to the processor chip 
to ensure signal integrity. Position 14 is used as a connection key and does not contain a 
pin.

http://www.xilinx.com
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Figure 9-9: JTAG-Connector Physical Layout

Table 9-13: JTAG Connector Signals

Pin I/O Signal Name Description

1 O TDO JTAG test-data out.

2 NC Reserved (no connection)

3 I TDI1 JTAG test-data in.

4 I TRST

5 NC Reserved (no connection)

6 I +Power2 Processor power OK

7 I TCK3 JTAG test clock.

8 NC Reserved (no connection)

9 I TMS JTAG test-mode select.

10 NC Reserved (no connection)

11 I HALT Processor halt.

12 NC Reserved (no connection)

13 NC Reserved (no connection)

14 KEY No pin should be placed at this position.

15 NC Reserved (no connection)

16 GND Ground

Notes: 
1. A 10KΩ pull-up resistor should be connected to this signal to reduce chip-power consumption. 

The pull-up resistor is not required.
2. The +POWER signal, is provided by the board, and indicates whether the processor is 

operating. This signal does not supply power to the debug tools or to the processor. A series 
resistor (1KΩ or less) should be used to provide short-circuit current-limiting protection.

3. A 10KΩ pull-up resistor must be connected to these signals to ensure proper chip operation 
when these inputs are not used.

UG011_49_033101

15

1

16

2

0.1"

0.1"

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 271
UG011 (v1.2) January 19, 2007

Chapter 9: Debugging
R

BSDL
The boundary-scan description language (BSDL) provides a description of component 
testability features. It is used by automated test-pattern generation tools for package-
interconnect tests and by electronic design-automation (EDA) tools for verification and for 
synthesizing test logic. BSDL supports extensions that can be used for internal-test 
generation and to write software for hardware debugging and diagnostics.

The primary components of BSDL include:

• The logical-port description, which assigns symbolic names to each pin at the chip level. 
Pins are also assigned a logical-type description of in, out, inout, buffer, or linkage. This 
description defines the direction of information flow through the pin.

• The physical-pin map, which provides correlation between the chip-level logical ports 
and the physical pin locations on a specific package. A BSDL description can contain 
several physical pin maps that describe different packages. Every pin map within the 
BSDL description is given a unique name.

• The instruction statements, which describe bit patterns that must be shifted into the 
instruction register to place the chip into the various test modes defined by the BSDL 
standard. Instruction-statements also support instruction descriptions unique to the 
chip.

• The boundary-register description, which lists each shift cell (also known as a shift stage) 
in the boundary register. Each cell is numbered. Cell 0 is defined as the cell closest to 
the test-data out (TDO) pin. The cell with the highest number is defined as the cell 
closest to the test-data in (TDI) pin. Cells contain additional information, including 
the cell type, the logical port associated with the cell, the logical function of the cell, 
the “safe” value for the cell, the “disable” value for the cell, the reset value for the cell, 
and a control number.

For more information, refer to IEEE standard 1149.1b-1994, which defines BSDL. This 
standard is a supplement to IEEE standards 1149.1-1990 (standard test-access port) and 
1149.1a-1993 (boundary-scan architecture). BSDL is a subset of the VHSIC hardware 
description language (VHDL), a standard defined by IEEE 1076-1993.
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Chapter 10

Reset and Initialization

This chapter describes the reset operations recognized by the PPC405, the initial state of the 
PPC405 after a reset, and an example of the initialization code required to configure the 
processor. Initialization of external devices (on-chip or off-chip) is outside the scope of this 
document.

Reset
A reset causes the processor to perform a hardware initialization. It always occurs when the 
processor is powered-up and can occur at any time during normal operation. If it occurs 
during normal operation, instruction execution is immediately halted and all processor 
state is lost. 

The PPC405 recognizes three types of reset:

• A processor reset affects the processor only, including the execution units and cache 
units. External devices (on-chip and off-chip) are not affected. This type of reset is 
sometimes referred to as a core reset.

• A chip reset affects the processor and all other devices or peripherals located on the 
same chip as the processor.

• A system reset affects the processor chip and all other devices or peripherals external to 
the processor chip that are connected to the same system-reset network. The scope of 
a system reset depends on the system implementation.

The type of reset is recorded in the most-recent reset field of the debug-status register 
(DBSR[MRR]). System software can examine this field if it needs to determine the cause of 
a reset. The effect of a reset on the processor is always the same regardless of the type.

Reset is caused by any of the following conditions:

• The processor is powered-up. Normally, the system performs a power-up sequence 
that includes asserting the external reset signals during a system reset.

• During normal operation, a system reset can be asserted using external reset signals. 
The processor logs this as a system reset, never as a processor reset or a chip reset.

• The second time-out of the watchdog timer can be programmed to cause a reset.
• Software can cause a reset by writing a non-zero value into the reset field of debug-

control register 0 (DBCR0[RST]).
• An external debug tool can force a reset through the JTAG debug port.

Throughout this document, the term “reset” is applied collectively to all forms of reset. A 
type of reset is specified explicitly only when it is germane to the discussion.
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Processor State After Reset
System software is responsible for fully initializing and configuring most processor 
resources. After a reset, the contents of most PPC405 registers are undefined and software 
should not rely on any initial values contained in those registers. The machine-state 
register and several special-purpose registers have defined contents following a reset. This 
enables the processor to quickly initialize the minimum number of registers for proper 
instruction fetching and execution. 

At the chip level, device control registers can be initialized to defined values following a 
reset. However, the registers and their initial contents are implementation-dependent.

Machine-State Register
Following a reset, the machine-state register (MSR) is cleared to 0x0000_0000. Table 10-1 
lists the implication of reset on the processor state as controlled by the MSR.

Special-Purpose Registers
Table 10-2 shows the contents of the special-purpose registers (SPRs) that have defined 
values following a reset. The contents of all other SPRs are undefined after a reset.

Table 10-1: MSR State Following Reset

MSR Bit Value Implication

AP 0 Auxiliary-processor unit unavailable.

APE 0 Auxiliary-processor unit exceptions disabled.

WE 0 Wait state disabled.

CE 0 Critical interrupts (external) disabled.

EE 0 Noncritical interrupts (external) disabled.

PR 0 Processor is in privileged mode.

FP 0 Floating-point unit unavailable.

ME 0 Machine-check exceptions disabled.

FE0 0 Floating-point exceptions disabled.

DWE 0 Debug-wait mode disabled.

DE 0 Debug exceptions disabled.

FE1 0 Floating-point exceptions disabled.

IR 0 Processor is in real mode (instruction translation is disabled).

DR 0 Processor is in real mode (data translation is disabled).
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First Instruction
After the processor completes the hardware-initialization sequence caused by a reset, it 
performs an instruction fetch from the address 0xFFFF_FFFC. This first instruction is 
typically an unconditional branch to the initialization code. If the instruction at this 
address is not a branch, instruction fetching wraps to address 0x0000_0000. The system 
must be designed to provide non-volatile memory that contains the first instruction and 
the initialization code.

Because the processor is initially in big endian mode, initialization code must be in big 
endian format. It must remain in big endian format until memory and the processor are 
configured for little-endian operation.

Initialization
During reset, the minimum number of resources required for software execution are 
initialized by the processor. Initialization software is generally required to fully configure 
both the processor and system for normal operation. The following provides a checklist of 
tasks the initialization code should follow when performing this configuration.

Table 10-2: SPR Contents Following Reset

Register Value Comment

DBCR0 0x0000_0000 Debug modes, events, and instruction comparisons are 
disabled.

DBCR1 0x0000_0000 Data comparisons are disabled.

DBSR Undefined1 Most-recent reset (MRR) is set as specified in the note.

DCCR 0x0000_0000 Data-cache is disabled.

ESR 0x0000_0000 No exception syndromes are recorded.

ICCR 0x0000_0000 Instruction-cache is disabled.

PVR Depends on device 
family and part

The reset value depends on the device family as described in 
Processor-Version Register, page 134.

SGR 0xFFFF_FFFF All memory is guarded.

SLER 0x0000_0000 All memory is big endian.

SU0R 0x0000_0000 All user-defined memory attributes are disabled.

TCR Undefined2 Watchdog-reset control (WRC) is cleared.

TSR Undefined1 Most-recent watchdog reset (WRS) is set as specified in the note.

CCR0 0x0070_0000 Highest PLB-Request priority.

Notes: 
1. The most-recent reset bits are set as follows:

00—No reset occurred. This is the value of WRS if the watchdog timer did not cause the reset.
01—A processor-only reset occurred.
10—A chip reset occurred.
11—A system reset occurred.

2. WRC is cleared, disabling watchdog time-out resets.
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1. Configure the real-mode memory system by updating the storage-attribute control 
registers.
- After reset, all memory is marked as guarded storage, preventing speculative 

instruction fetches. To improve fetch performance, the SGR register should be 
updated to mark memory as guarded only where necessary. All remaining 
memory should not be guarded.

- Initially, memory is big endian. If little-endian memory is accessed, the SLER 
register must be updated appropriately.

- User-defined storage attributes are disabled. If used by system software, they 
must be enabled in the SU0R register.

2. Configure the instruction cache to further improve instruction-fetch performance.
- The instruction cache must first be invalidated. The contents of the cache are 

undefined following a reset and it is possible that some cachelines are improperly 
marked valid. Cache invalidation guarantees that false hits do not occur.

- After reset, all memory is initialized as non-cacheable (the ICCR register is 
cleared). Software should update this register as appropriate to enable instruction 
caching.

3. Configure the data cache to improve data-access performance.
- Like the instruction cache, the data cache must first be invalidated. The contents 

of the cache are undefined following a reset and it is possible that some cachelines 
are improperly marked valid. Cache invalidation guarantees that false hits do not 
occur.

- The DCWR register must be initialized to specify which memory locations use a 
write-back caching policy and which locations use a write-through policy. This 
specification is required only for those locations marked cacheable in the next 
step.

- After reset, all memory is initialized as non-cacheable (the DCCR register is 
cleared). Software should update this register as appropriate to enable data 
caching.

4. Configure the interrupt-handling mechanism. Internal exceptions are always enabled. 
Up to this point it is important that initialization code not cause an exception.
- Interrupt handlers must be loaded into the appropriate system memory locations.
- The interrupt-handler table must be loaded with the “glue code” that properly 

transfers control to the interrupt handlers following an exception.
- The EVPR register must be loaded with the base address of the interrupt-handler 

table.
- The timer resources must be initialized. If timers are not used, the TCR register 

must be initialized to prevent the occurrence of timer exceptions. Timer 
exceptions are enabled when critical and noncritical external exceptions are 
enabled.

- Enable critical and noncritical external exceptions by setting their enable bits in 
the MSR register.

5. If necessary, additional processor features can be initialized, including the memory-
management resources. 

6. System-level initialization is typically required. This often involves configuration of 
external devices and the loading of device drivers into system memory.

Following the initialization sequence outlined above, the operating system and application 
software can be loaded and executed.

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 277
UG011 (v1.2) January 19, 2007

Chapter 10: Reset and Initialization
R

Sample Initialization Code
Following is sample initialization code that illustrates the steps outlined above. The 
sample code is presented as pseudocode. Where appropriate, function calls are given 
names similar to the PowerPC instruction mnemonics. Specific chip-level implementations 
containing the PPC405 might require a different initialization sequence to ensure the 
processor is properly configured.

/* --------------------------------- */
/* PPC405 INITIALIZATION PSEUDOCODE */
/* --------------------------------- */

@0xFFFFFFFC: /* Initial instruction fetch from 0xFFFF_FFFC. */
ba(init_code); /* Branch to initialization code. */

@init_code:

/* -------------------------------------------- */
/* Configure guarded attribute for performance. */
/* -------------------------------------------- */
mtspr(SGR, guarded_attribute);

/* --------------------------------------------- */
/* Configure endian and user-defined attributes. */
/* --------------------------------------------- */
mtspr(SLER, endian);
mtspr(SU0R, user_defined);

/* -------------------------------------------------------- */
/* Invalidate the instruction cache and enable cachability. */
/* -------------------------------------------------------- */
iccci; /* Flash invalidate the cache. */
mtspr(ICCR, i_cache_cachability); /* Enable the instruction cache */
isync; /* Synchronize the context. */

/* ------------------------------------------------- */
/* Invalidate the data cache and enable cachability. */
/* ------------------------------------------------- */
address = 0; /* Start with the first congruence class. */

/* Iterate through the data-cache congruence classes. */
for (line = 0; line <256; line++)
{

dccci(address);/* Invalidate the congruence class. */
address += 32; /* Point to the next congruence class. */

}

mtspr(DCWR, write-back, write-through); /* Set the caching policy. */
mtspr(DCCR, d_cache_cachability); /* Enable the data cache. */
isync; /* Synchronize the context. */

/* ---------------------------------- */
/* Prepare the system for interrupts. */
/* ---------------------------------- */

/* Load interrupt handlers. */
/* Initialize interrupt-vector table. */

/* Initialize exception-vector prefix */
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mtspr(EVPR, prefix_addr);

/* ------------------------------------------- */
/* Prepare system for asynchronous interrupts. */
/* ------------------------------------------- */

/* Initialize and configure timer resources. */
mtspr(PIT, 0); /* Disable PIT. */
mtspr(TSR, 0xFFFFFFFF); /* Clear TSR */
mtspr(TCR, timer_enable);/* Enable desired timers */
mtspr(TBL, 0); /* First clear TBL to avoid rollover. */
mtspr(TBU, time_base_u); /* Set TBU to desired value. */
mtspr(TBL, time_base_l); /* Set TBL to desired value. */
mtspr(PIT, pit_count); /* Initialize PIT. */

/* Enable exceptions immediately to avoid missing timer events. */
mtmsr(enable_exceptions);

/* ------------------------------------------------------ */
/* The MSR also controls: */
/* 1. Privileged and user mode */
/* 2. Address translation */
/* These can be initialized by the operating system. */
/* ------------------------------------------------------ */

/* If enabling translation, the TLB must be initialized. */

/* Set the machine state as desired. */
mtmsr(machine_state);

/* ------------------------------------- */
/* Initialize other processor resources. */
/* ------------------------------------- */

/* ----------------------------------- */
/* Initialize non-processor resources. */
/* ----------------------------------- */

/* ----------------------------------------------- */
/* Branch to operating system or application code. */
/* ----------------------------------------------- */
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Chapter 11

Instruction Set

This chapter lists the PPC405 instructions in alphabetical order by mnemonic. Figure 11-1 
shows an example format for an instruction description.

Each instruction description contains the following information shown in Figure 11-1:

Mnemonic—A short, single-word name for the base instruction. Throughout this 
document, instruction mnemonics are shown in lowercase bold (e.g. add). 

Name—The descriptive name for the instruction. For example, the descriptive name for 
the srawi instruction is Shift Right Algebraic Word Immediate.

Figure 11-1: Instruction Description Format

UG011_50_033101

add
Add

Description
The sum of the contents of register rA and register rB is loaded into register rD.

Pseudocode
(rD) ← (rA) + (rB)

Registers Altered
• rD.

• CR[CR0]LT,GT,EQ,SO if Rc=1.

• XER[SO,OV] if OE=1.

If an overflow occurs, it is possible the contents of CR0 do not reflect the infinitely-
precise result.

Exceptions
• None

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is
implemented by all PowerPC processors.

add rD, rA, rB (OE=0, Rc=0)

add. rD, rA, rB (OE=0, Rc=1)

addo rD, rA, rB (OE=1, Rc=0)

addo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 266 Rc

0 6 11 16 21 22 31

Mnemonic
Name

Syntax

Form
Encoding

Description

Pseudocode

Registers Altered

Exceptions

Compatibility
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Syntax—The assembler syntax used for the instruction. Some instructions have up to four 
possible syntax variations. These variations depend on whether the instruction form 
contains an overflow-enable bit (OE) and/or a record bit (Rc). For these instructions, the 
use of the OE and Rc bits is reflected in the instruction mnemonic.

Form—The format used to encode the instruction. All PowerPC instructions are encoded 
using one of the following forms: A, B, D, I, M, SC, X, XL, XO, XFX, or XFL. See 
Instructions Grouped by Form, page 513 for a description of each form and a list of 
instructions sorted by form.

Encoding—The specific encoding used to specify the instruction and its operands. See 
Instruction Encoding, below for more information.

Description—A description of how each instruction operates on the specified operands. 
The effect of the instruction on the CR and XER registers is also described. For some 
instructions, additional information is provided as to the purpose and use of the 
instruction. Many descriptions have cross-references to more detail in other sections of the 
manual. If simplified mnemonics are defined for an instruction, a cross-reference into 
Appendix C, Simplified Mnemonics is provided.

Pseudocode—A description of the instruction operation using a semi-formal language. 
The pseudocode conventions are used throughout this document and are described in the 
Preface in Pseudocode Conventions, page 15. The precedence of pseudocode operations is 
further described in the Preface in Operator Precedence, page 17.

Registers Altered—A summary of the PowerPC registers that are modified by executing 
the instruction.

Exceptions—A list of the exceptions that can occur as a result of executing the instruction. 
Asynchronous exceptions and exceptions associated with instruction fetching are not 
listed because those exceptions can occur with any instruction. This section also describes 
the effect of invalid instruction forms on instruction execution.

Compatibility—A brief description of instruction portability to other PowerPC 
implementations.

Instruction Encoding 
All instructions are four bytes long and are word aligned. Bits 0:5 always contain the 
primary opcode, which is used to determine the instruction form. The instruction form 
defines fields within the encoding for identifying the operands. Some instruction forms 
define an extended opcode field for specifying additional instructions.

All instruction fields belong to one of the following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The 
instruction encoding diagrams specify the values of defined fields. If any bit in a 
defined field does not contain the expected value, the instruction is illegal and an 
illegal-instruction exception occurs.

• Variable

These fields contain operands, such as general-purpose register identifiers or 
displacement values, that can vary from instruction to instruction. The instruction 
encoding diagrams specify the operands in variable fields.

• Reserved

Bits in a reserved field should be cleared to 0. In the instruction encoding diagrams, 
reserved fields are shaded and contain a value of 0. If any bit in a reserved field does 

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 281
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

not contain 0, the instruction form is invalid and its result is undefined. Unless 
otherwise noted, invalid instruction forms execute without causing an illegal-
instruction exception.

Split-Field Notation
Some instructions contain a field with an encoding that is a permutation of the 
corresponding assembler operand. Such fields are called split fields. Split fields are used by 
instructions that move data between the general-purpose registers and the special-purpose 
registers, device-control registers, and the time-base registers. For these instructions, 
assembler operands and split fields are indicated as follows:

• In the mfspr and mtspr instructions, SPRN is the assembler operand and SPRF is the 
split field. SPRF corresponds to SPRN as follows:
- SPRF0:4 is equivalent to SPRN5:9.
- SPRF5:9 is equivalent to SPRN0:4.

• In the mfdcr and mtdcr instructions, DCRN is the assembler operand and DCRF is the 
split field. DCRF corresponds to DCRN as follows:
- DCRF0:4 is equivalent to DCRN5:9.
- DCRF5:9 is equivalent to DCRN0:4.

• In the mftb instruction, TBRN is the assembler operand and TBRF is the split field. 
TBRF corresponds to TBRN as follows:
- TBRF0:4 is equivalent to TBRN5:9.
- TBRF5:9 is equivalent to TBRN0:4.

Throughout this document, references to SPRs, DCRs, and time-base registers use the 
respective SPRN, DCRN, and TBRN values. The assembler handles the conversion to the 
split-field format when encoding the instruction.

Alphabetical Instruction Listing
The following pages list the instructions supported by the PPC405 in alphabetical order.
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add
Add

Description
The sum of the contents of register rA and register rB is loaded into register rD.

Pseudocode
(rD) ← (rA) + (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

If an overflow occurs, it is possible that the contents of CR0 do not reflect the infinitely 
precise result.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

add rD, rA, rB (OE=0, Rc=0)

add. rD, rA, rB (OE=0, Rc=1)

addo rD, rA, rB (OE=1, Rc=0)

addo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 266 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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addc
Add Carrying

Description
The sum of the contents of register rA and register rB is loaded into register rD. XER[CA] 
is updated to reflect the unsigned magnitude of the resulting sum.

Pseudocode
(rD) ← (rA) + (rB)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addc rD, rA, rB (OE=0, Rc=0)

addc. rD, rA, rB (OE=0, Rc=1)

addco rD, rA, rB (OE=1, Rc=0)

addco. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 10 Rc

0 6 1
1

1
6

2
1

2
2

3
1

>
u
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adde
Add Extended

Description
The sum of the contents of register rA, register rB, and XER[CA] is loaded into register rD. 
XER[CA] is updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 91.

Pseudocode
(rD) ← (rA) + (rB) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

adde rD, rA, rB (OE=0, Rc=0)

adde. rD, rA, rB (OE=0, Rc=1)

addeo rD, rA, rB (OE=1, Rc=0)

addeo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 138 Rc

0 6 1
1

1
6

2
1

2
2

3
1

>
u
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addi
Add Immediate

Description
If the rA field is 0, the SIMM field is sign-extended to 32 bits and loaded into register rD. If 
the rA field is nonzero, the SIMM field is sign-extended to 32 bits and added to the contents 
of register rA. The resulting sum is loaded into register rD.

Simplified mnemonics defined for this instruction are described in the following sections:

• Load Address, page 556.
• Load Immediate, page 556.
• Subtract Instructions, page 554.

Pseudocode
(rD) ← (rA|0) + EXTS(SIMM)

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addi rD, rA, SIMM

D Instruction Form

14 rD rA SIMM

0 6 1
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addic
Add Immediate Carrying

Description
The SIMM field is sign-extended to 32 bits and added to the contents of register rA. The 
resulting sum is loaded into register rD. XER[CA] is updated to reflect the unsigned 
magnitude of the resulting sum.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 554.

Pseudocode
(rD) ← (rA) + EXTS(SIMM)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addic rD, rA, SIMM

D Instruction Form

12 rD rA SIMM
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addic.
Add Immediate Carrying and Record

Description
The SIMM field is sign-extended to 32 bits and added to the contents of register rA. The 
resulting sum is loaded into register rD. XER[CA] is updated to reflect the unsigned 
magnitude of the resulting sum.

addic. is one of three instructions that implicitly update CR[CR0] without having an RC 
field. The other instructions are andi. and andis..

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 554.

Pseudocode
(rD) ← (rA) + EXTS(SIMM)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addic. rD, rA, SIMM

D Instruction Form

13 rD rA SIMM
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addis
Add Immediate Shifted

Description
If the rA field is 0, the SIMM field is concatenated on the right with sixteen 0-bits and the 
result is loaded into register rD. If the rA field is nonzero, the SIMM field is concatenated 
on the right with sixteen 0-bits and the result is added to the contents of register rA. The 
resulting sum is loaded into register rD.

Simplified mnemonics defined for this instruction are described in the following sections:

• Load Immediate, page 556.
• Subtract Instructions, page 554.

An addis instruction followed by an ori instruction can be used to load an arbitrary 32-bit 
value in a GPR, as shown in the following example:

addis rD, 0, high 16 bits of value
ori rD, rD, low 16 bits of value

Pseudocode
(rD) ← (rA|0) + (SIMM || 160)

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addis rD, rA, SIMM

D Instruction Form

15 rD rA SIMM
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addme
Add to Minus One Extended

Description
The sum of the contents of register rA, the XER[CA] bit, and the value −1 is loaded into 
register rD. XER[CA] is updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 91.

Pseudocode
(rD) ← (rA) + XER[CA] + (−1)
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addme rD, rA (OE=0, Rc=0)

addme. rD, rA (OE=0, Rc=1)

addmeo rD, rA (OE=1, Rc=0)

addmeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 234 Rc
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addze
Add to Zero Extended

Description
The sum of the contents of register rA and XER[CA] is loaded into register rD. XER[CA] is 
updated to reflect the unsigned magnitude of the resulting sum.

The add-extended instructions can be used to perform addition on integers larger than 32 
bits, as described on page 91.

Pseudocode
(rD) ← (rA) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

addze rD, rA (OE=0, Rc=0)

addze. rD, rA (OE=0, Rc=1)

addzeo rD, rA (OE=1, Rc=0)

addzeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 202 Rc
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and
AND

Description
The contents of register rS are ANDed with the contents of register rB and the result is 
loaded into register rA.

Pseudocode
(rA) ← (rS) ∧ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

and rA, rS, rB (Rc=0)

and. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 28 Rc
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andc
AND with Complement

Description
The contents of register rS are ANDed with the one’s complement of the contents of 
register rB and the result is loaded into register rA.

Pseudocode
(rA) ← (rS) ∧ ¬(rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andc rA, rS, rB (Rc=0)

andc. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 60 Rc
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andi.
AND Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
register rS are ANDed with the extended UIMM field and the result is loaded into register 
rA.

andi. is one of three instructions that implicitly update CR[CR0] without having an Rc 
field. The other instructions are addic. and andis..

The andi. instruction can be used to test whether any of the 16 least-significant bits in a 
GPR are 1-bits.

Pseudocode
(rA) ← (rS) ∧ (160 || UIMM)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andi. rA, rS, UIMM

D Instruction Form

28 rS rA UIMM
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andis.
AND Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of register rS are ANDed with the extended UIMM field and the result is loaded into 
register rA.

andis. is one of three instructions that implicitly update CR[CR0] without having an Rc 
field. The other instructions are addic. and andi..

The andis. instruction can be used to test whether any of the 16 most-significant bits in a 
GPR are 1-bits.

Pseudocode
(rA) ← (rS) ∧ (UIMM || 160)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

andis. rA, rS, UIMM

D Instruction Form

29 rS rA UIMM
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b
Branch

Description
target is a 32-bit operand that specifies a displacement to the branch-target address. The 
assembler sets the instruction-opcode LI field to the value of target6:29.

The next instruction address (NIA) is the effective address of the branch target. The NIA is 
calculated by adding the displacement to a base address, which are formed as follows:

• The displacement is obtained by concatenating two 0-bits to the right of the BD field 
and sign-extending the result to 32 bits.

• If the AA field contains 0 (relative addressing), the branch-instruction address is used 
as the base address. The branch-instruction address is the current instruction address 
(CIA).

• If the AA field contains 1 (absolute addressing), the base address is 0.

Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

Pseudocode
If AA = 1

then NIA ← EXTS(LI || 0b00)
else NIA ← CIA + EXTS(LI || 0b00)

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• LR if LK=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

b target (AA=0, LK=0)

ba target (AA=1, LK=0)

bl target (AA=0, LK=1)

bla target (AA=1, LK=1)

I Instruction Form

18 LI AA LK

0 6 3
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bc
Branch Conditional 

Description
target is a 32-bit operand that specifies a displacement to the branch-target address. The 
assembler sets the instruction-opcode BD field to the value of target16:29.

The next instruction address (NIA) is the effective address of the branch target. The NIA is 
calculated by adding the displacement to a base address, which are formed as follows:

• The displacement is obtained by concatenating two 0-bits to the right of the BD field 
and sign-extending the result to 32 bits.

• If the AA field contains 0 (relative addressing), the branch-instruction address is used 
as the base address. The branch-instruction address is the current instruction address 
(CIA).

• If the AA field contains 1 (absolute addressing), the base address is 0.

Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 68. The BI field specifies which CR bit is tested if the branch is conditional on 
the CR register.

Simplified mnemonics defined for this instruction are described in Appendix C.

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧ CR_cond_met

then if AA = 1
then NIA ← EXTS(BD || 0b00)
else NIA ← CIA + EXTS(BD || 0b00)

else NIA ← CIA + 4
if LK = 1 then

(LR) ← CIA + 4

bc BO, BI, target (AA=0, LK=0)

bca BO, BI, target (AA=1, LK=0)

bcl BO, BI, target (AA=0, LK=1)

bcla BO, BI, target (AA=1, LK=1)

B Instruction Form

16 BO BI BD AA LK

0 6 11 16 30 31
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Registers Altered
• CTR if BO2=0.

• LR if LK=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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bcctr
Branch Conditional to Count Register

Description
The next instruction address (NIA) is the effective address of the branch target. The NIA is 
formed by concatenating the 30 most-significant bits of the CTR with two 0-bits on the 
right. Program flow is transferred to the NIA. If the LK field contains 1, then the address of 
the instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 68. The BI field specifies which CR bit is tested if the branch is conditional on 
the CR register.

Simplified mnemonics defined for this instruction are described in Appendix C.

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧ CR_cond_met

then NIA ← CTR0:29 || 0b00
else NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• CTR if BO2=0.

• LR if LK=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

bcctr BO, BI (LK=0)

bcctrl BO, BI (LK=1)

XL Instruction Form

19 BO BI 0 0 0 0 0 528 LK
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• BO2=0. In this case the branch is taken if the branch condition is true. The contents of 
the decremented CTR are used as the NIA.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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bclr
Branch Conditional to Link Register

Description
The next instruction address (NIA) is the effective address of the branch target. The NIA is 
formed by concatenating the 30 most-significant bits of the LR with two 0-bits on the right. 
Program flow is transferred to the NIA. If the LK field contains 1, then the address of the 
instruction following the branch instruction (CIA + 4) is loaded into the LR.

The BO field specifies whether the branch is conditional on the contents of the CTR and/or 
the CR registers and how those conditions are tested. The BO field also specifies whether 
the CTR is decremented. The encoding of the BO field is described in Conditional Branch 
Control, page 68. The BI field specifies which CR bit is tested if the branch is conditional on 
the CR register.

Simplified mnemonics defined for this instruction are described in Appendix C.

Pseudocode
if BO2 = 0 then

CTR ← CTR − 1
CTR_cond_met ← BO2 ∨ ((CTR ≠ 0) ⊕ BO3))
CR_cond_met ← BO0 ∨ (CRBI = BO1)
if CTR_cond_met ∧ CR_cond_met

then NIA ← LR0:29 || 0b00
else NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

Registers Altered
• CTR if BO2=0.

• LR if LK=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

bclr BO, BI (LK=0)

bclrl BO, BI (LK=1)

XL Instruction Form

19 BO BI 0 0 0 0 0 16 LK
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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cmp
Compare 

Description
A 32-bit signed comparison is performed between the contents of register rA and register 
rB. crfD which CR field is updated to reflect the comparison results. The value of XER[SO] 
is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 550.

Pseudocode
c0:3 ← 0b0000
if (rA) < (rB) then c0 ← 1
if (rA) > (rB) then c1 ← 1
if (rA) = (rB) then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmp crfD, 0, rA, rB

X Instruction Form

31 crfD 0 0 rA rB 0 0
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cmpi
Compare Immediate

Description
The SIMM field is sign-extended to 32 bits. A 32-bit signed comparison is performed 
between the contents of register rA and the sign-extended SIMM field. crfD specifies 
which CR field is updated to reflect the comparison results. The value of XER[SO] is loaded 
into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 550.

Pseudocode
c0:3 ← 0b0000
if (rA) < EXTS(SIMM)then c0 ← 1
if (rA) > EXTS(SIMM)then c1 ← 1
if (rA) = EXTS(SIMM)then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpi crfD, 0, rA, SIMM

D Instruction Form

11 crfD 0 0 rA SIMM

0 6 9 11 16 31
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cmpl
Compare Logical 

Description
A 32-bit unsigned comparison is performed between the contents of register rA and 
register rB. crfD specifies which CR field is updated to reflect the comparison results. The 
value of XER[SO] is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 550.

Pseudocode
c0:3 ← 0b0000
if (rA) (rB) then c0 ← 1
if (rA) (rB) then c1 ← 1
if (rA) = (rB) then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpl crfD, 0, rA, rB

X Instruction Form

31 crfD 0 0 rA rB 32 0
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cmpli
Compare Logical Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. A 32-bit 
unsigned comparison is performed between the contents of register rA and the zero-
extended UIMM field. crfD specifies which CR field is updated to reflect the comparison 
results. The value of XER[SO] is loaded into the same CR field.

Simplified mnemonics defined for this instruction are described in Compare Instructions, 
page 550.

Pseudocode
c0:3 ← 0b0000
if (rA) (160 || UIMM)then c0 ← 1
if (rA) (160 || UIMM)then c1 ← 1
if (rA) = (160 || UIMM)then c2 ← 1
c3 ← XER[SO]
n ← crfD
CR[CRn] ← c0:3

Registers Altered

• CR[CRn] as specified by the crfD field.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cmpli crfD, 0, rA, UIMM

D Instruction Form

10 crfD 0 0 rA UIMM
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cntlzw
Count Leading Zeros Word

Description
The consecutive leading 0 bits in register rS are counted and the count is loaded into 
register rA. This count ranges from 0 through 32, inclusive.

Pseudocode
n ← 0
do while n < 32

if (rS)n = 1 then leave
n ← n + 1

(rA) ← n

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cntlzw rA, rS (Rc=0)

cntlzw. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 26 Rc
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crand
Condition Register AND

Description
The CR bit specified by crbA is ANDed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∧ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crand crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 257 0

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


308 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Alphabetical Instruction Listing
R

crandc
Condition Register AND with Complement

Description
The CR bit specified by crbA is ANDed with the one’s complement of the CR bit specified 
by crbB and the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∧ ¬CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crandc crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 129 0

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 309
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

creqv
Condition Register Equivalent

Description
The CR bit specified by crbA is XORed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 551.

Pseudocode
CR[crbD] ← ¬(CR[crbA] ⊕ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

creqv crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 289 0
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crnand
Condition Register NAND

Description
The CR bit specified by crbA is ANDed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← ¬(CR[crbA] ∧ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crnand crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 225 0
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crnor
Condition Register NOR

Description
The CR bit specified by crbA is ORed with the CR bit specified by crbB and the one’s 
complement of the result is loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 551.

Pseudocode
CR[crbD] ← ¬(CR[crbA] ∨ CR[crbB])

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crnor crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 33 0
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cror
Condition Register OR

Description
The CR bit specified by crbA is ORed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 551.

Pseudocode
CR[crbD] ← CR[crbA] ∨ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

cror crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 449 0
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crorc
Condition Register OR with Complement

Description
The CR bit specified by crbA is ORed with the one’s complement of the CR bit specified by 
crbB and the result is loaded into the CR bit specified by crbD.

Pseudocode
CR[crbD] ← CR[crbA] ∨ ¬CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crorc crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 417 0
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crxor
Condition Register XOR

Description
The CR bit specified by crbA is XORed with the CR bit specified by crbB and the result is 
loaded into the CR bit specified by crbD.

Simplified mnemonics defined for this instruction are described in CR-Logical 
Instructions, page 551.

Pseudocode
CR[crbD] ← CR[crbA] ⊕ CR[crbB]

Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

crxor crbD, crbA, crbB

XL Instruction Form

19 crbD crbA crbB 193 0
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dcba
Data Cache Block Allocate

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The operation of this instruction depends on the cachability and caching policy of EA as 
follows:

• If EA is cached by the data cache and has a write-back caching policy, the value of all 
bytes in the data cacheline referenced by EA become undefined. The data cacheline 
remains valid.

• If EA is not cached but is cacheable with a write-back caching policy, a corresponding 
data cacheline is allocated and the value of the bytes in that line are undefined.

• If EA is cacheable and has a write-through caching policy, a no-operation occurs. This 
is true whether or not EA is cached by the data cache.

• If EA is not cacheable, a no-operation occurs.

dcba provides a hint that a block of memory is either no longer needed, or will soon be 
written. There is no need to retain the data in the memory block. Establishing a data 
cacheline without reading from main memory can improve performance.

dcba establishes an address in the data cache without copying data from main memory. 
Software must ensure that the established address does not represent an invalid main-
memory address. A subsequent operation could cause the processor to attempt a write of 
the cacheline to the invalid main-memory address, possibly causing a machine-check 
exception to occur.

Pseudocode
EA ← (rA|0) + (rB)
Allocate data cacheline corresponding to EA

Registers Altered
• None.

dcba rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 758 0
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Exceptions
This instruction is considered a “store” with respect to data-access exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcba is treated as a no-
operation. This instruction is also considered a “store” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. Implementation of this instruction is optional, and it is not 
guaranteed to be implemented on all PowerPC processors.
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dcbf
Data Cache Block Flush

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is invalidated. If the 
data cacheline is marked as modified, the contents of the cacheline are written (flushed) to 
main memory prior to the invalidation. The flush operation is performed whether or not 
the corresponding storage attribute indicates EA is cacheable. If EA is not cached, no 
operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Flush data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbf rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 86 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbi
Data Cache Block Invalidate

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is invalidated. The 
invalidation is performed whether or not the corresponding storage attribute indicates EA 
is cacheable. If modified data exists in the cacheline, it is lost. If EA is not cached, no 
operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

• Program—Attempted execution of this instruction from user mode.

dcbi rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 470 0
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This instruction is considered a “store” with respect to the above data-access exceptions. It 
is also considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbst
Data Cache Block Store

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the data cache, the corresponding data cacheline is checked to see if it is 
marked modified. If it is modified, it is stored to main memory and marked as unmodified. 
The store operation is performed whether or not the corresponding storage attribute 
indicates EA is cacheable. No operation occurs if the data cacheline is unmodified, or if EA 
is not cached.

Pseudocode
EA ← (rA|0) + (rB)
Store modified data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbst rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 54 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbt
Data Cache Block Touch

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cacheable but not in the data cache, the corresponding cacheline is loaded into the 
data cache from main memory. If EA is already cached, or if the storage attributes indicate 
EA is not cacheable, no operation is performed.

This instruction is a hint to the processor that the program will likely load data from EA in 
the near future. The processor can potentially improve performance by loading the 
cacheline into the data cache.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcbt is treated as a no-
operation. This instruction is also considered a “load” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbt rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 278 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbtst
Data Cache Block Touch for Store

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cacheable but not in the data cache, the corresponding cacheline is loaded into the 
data cache from main memory. If EA is already cached, or if the storage attributes indicate 
EA is not cacheable, no operation is performed.

This instruction is a hint to the processor that the program will likely store data to the EA 
in the near future. The processor can potentially improve performance by loading the 
cacheline into the data cache. In the PPC405, this instruction operates identically to dcbt. In 
other PowerPC implementations, this instruction can cause unique bus cycles to occur and 
additional cache-coherency state can be associated with the cacheline.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch data cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would otherwise cause these exceptions, dcbtst is treated as a no-
operation. This instruction is also considered a “load” with respect to data address-
compare (DAC) debug exceptions. Debug exceptions can occur as a result of executing this 
instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

dcbtst rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 246 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dcbz
Data Cache Block Set to Zero

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The operation of this instruction depends on the cachability and caching policy of EA as 
follows:

• If EA is cached by the data cache and has a write-back caching policy, the value of all 
bytes in the data cacheline referenced by EA are cleared to 0. The data cacheline is 
marked modified.

• If EA is not cached but is cacheable with a write-back caching policy, a corresponding 
data cacheline is allocated and the value of the bytes in that line are cleared to 0. The 
data cacheline is marked modified.

• If EA is cacheable and has a write-through caching policy, an alignment exception 
occurs. This is true whether or not EA is cached.

• If EA is not cacheable, an alignment exception occurs.

dcbz establishes an address in the data cache without copying data from main memory. 
Software must ensure that the established address does not represent an invalid main-
memory address. A subsequent operation could cause the processor to attempt a write of 
the cacheline to the invalid main-memory address, possibly causing a machine-check 
exception to occur.

Pseudocode
EA ← (rA|0) + (rB)
Clear contents of data cacheline corresponding to EA

Registers Altered
• None.

dcbz rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 1014 0
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Exceptions
• Alignment—if the EA is marked as non-cacheable or write-through. The alignment 

exception handler can emulate the effect of this instruction by storing zeros to the 
corresponding block of main memory.

• Data storage—if the access is prevented by zone protection when data relocation is 
enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

This instruction is considered a “store” with respect to the above data-access exceptions. It 
is also considered a “store” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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dccci
Data Cache Congruence Class Invalidate

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Both data cachelines in the congruence class specified by EA19:26 are invalidated. The 
invalidation is performed whether or not the corresponding storage attribute indicates EA 
is cacheable. The invalidation is also performed whether or not EA is cached in either line. 
If modified data exists in the cachelines, it is lost.

This instruction is intended for use during initialization to invalidate the entire data cache 
before is enabled. A sequence of dccci instructions should be executed, one for each 
congruence class. Afterwards, cachability can be enabled.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate the data-cache congruence class specified by EA19:26

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

A data-storage exception occurs if the U0 storage attribute associated with the EA is set 
to 1 and U0 exceptions are enabled (CCR0[U0XE]=1).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

dccci rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 454 0
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• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “store” with respect to the above data-access exceptions. It 
can cause data-access exceptions related to the EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction does not 
cause data address-compare (DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.
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dcread
Data Cache Read

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

This instruction can be used as a data-cache debugging aid. It is used to read information 
for a specific data cacheline. The cache information is loaded in register rD.

EA19:26 is used to specify a congruence class within the data cache. CCR0[CWS] is used to 
select one of the two cachelines within the congruence class. If CCR0[CWS] = 0, the line in 
way A is selected. If CCR0[CWS] = 1, the line in way B is selected.

If CCR0[CIS] = 0, the information read is a word of data from the selected cacheline. 
EA27:29 is used as an index to select the word from the 32-byte line. If CCR0[CIS] = 1, the 
information read is the tag associated with the selected cacheline.

On Virtex-4 devices only, the above behavior corresponds to setting CCR0[PRS] = 0. If 
CCR0[PRS] = 1, dcread reads the DCU parity bits for the data word or tag in the cacheline 
selected by CCR0[CIS, CWS]. 

dcread rD, rA, rB

X Instruction Form

31 rD rA rB 486 0
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Following execution of this instruction, rD contains either the cache word or the tag and 
other information as follows:

Bit Name Function and Description

0:31 INFO Data-Cache Information

WORD: Data word from the selected way

TAG: Data tag from the selected way

U0: User-defined attribute from the selected way

0 – Attribute is disabled.
1 – Attribute is enabled.

D: Dirty bit from the selected way

0 – Cacheline is not dirty.
1 – Cacheline is dirty.

V: Cacheline valid bit from the selected way

0 – Cacheline is not valid.
1 – Cacheline is valid.

LRU: Least-recently used bit of the congruence class associated with the cacheline

0 – Way A is least-recently used.
1 – Way B is least-recently used.

ParA, ParB: Parity data for the data cacheline from ways A and B

TagPar: Parity value for the data tag from the selected way

Virtex-II Pro and Virtex-4 FPGAs with CCR0[PRS] = 0

CCR0
ICDBDR Contents Result

CIS CWS

0 0 Data word from way A INFO[0:31]: WORD

0 1 Data word from way B

1 0 Cacheline tag and status for way A INFO[0:18]: TAG
INFO[26]: D
INFO[27]: V
INFO[31]: LRU
INFO[19:25], INFO[28:30]: Reserved

1 1 Cacheline tag and status for way B

Virtex-4 FPGAs with CCR0[PRS] = 1

CCR0
ICDBDR Contents Result

CIS CWS

0 X Parity for data words from ways A and 
B

INFO[0:15]: ParA[0:15]
INFO[16:31]: ParB[0:15]

1 0 Cacheline tag, status, and parity for 
way A

INFO[0:18]: TAG
INFO[24]: U0
INFO[25]: TagPar
INFO[26]: D
INFO[27]: V
INFO[31]: LRU
INFO[19:23], INFO[28:30]: Reserved

1 1 Cacheline tag, status, and parity for 
way B
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Pseudocode
EA ← (rA|0) + (rB)
if ((Virtex-II Pro) or (Virtex-4 ∧ (CCR0[PRS]=0))) then

if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (rD) ← (data-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (rD) ← (data-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (rD) ← (data-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (rD) ← (data-cache tag, way B)

else if (Virtex-4 ∧ (CCR0[PRS]=1))) then
if ((CCR0[CIS] = 0) then (rD) ←  (data-cache line parity, ways A and B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (rD) ← (data-cache tag, status, and parity, way

A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (rD) ← (data-cache tag, status, and parity, way

B)

Registers Altered
• rD.

Exceptions
• Alignment—if the EA is not aligned on a word boundary (EA30:31 ≠ 00).

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
can cause data TLB-miss exceptions related to EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction cannot 
cause data-storage exceptions. This instruction does not cause data address-compare 
(DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.
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divw
Divide Word

Description
The contents of register rA (dividend) are divided by the contents of register rB (divisor). 
The quotient is loaded into register rD. Both the dividend and the divisor are interpreted as 
signed integers. The quotient is the unique signed integer that satisfies the equation:

dividend = (quotient × divisor) + remainder
where the remainder has the same sign as the dividend, and:

• 0 ≤ remainder < ⏐divisor⏐, if the dividend is positive.
• −⏐divisor⏐ < remainder ≤ 0, if the dividend is negative.

The 32-bit remainder can be calculated using the following sequence of instructions:

divw rD, rA, rB # rD = quotient
mullw rD, rD, rB # rD = quotient × divisor
subf rD, rD, rA # rD = remainder

The contents of register rD are undefined if an attempt is made to perform either of the 
following invalid divisions:

• 0x8000 0000 ÷ −1.

• n ÷ 0, where n is any number.

The contents of CR[CR0]LT, GT, EQ are undefined if the Rc field is set to 1 and an invalid 
division is performed. Both invalid divisions set XER[OV, SO] to 1 if the OE field contains 
1.

Pseudocode
(rD) ← (rA) ÷ (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[OV, SO] if OE=1.

Exceptions
• None.

divw rD, rA, rB (OE=0, Rc=0)

divw. rD, rA, rB (OE=0, Rc=1)

divwo rD, rA, rB (OE=1, Rc=0)

divwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 491 Rc
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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divwu
Divide Word Unsigned

Description
The contents of register rA (dividend) are divided by the contents of register rB (divisor). 
The quotient is loaded into register rD. Both the dividend and the divisor are interpreted as 
unsigned integers. The quotient is the unique unsigned integer that satisfies the equation:

dividend = (quotient × divisor) + remainder
where 0 ≤ remainder < divisor.

The 32-bit unsigned remainder can be calculated using the following sequence of 
instructions:

divwu rD, rA, rB # rD = quotient
mullw rD, rD, rB # rD = quotient × divisor
subf rD, rD, rA # rD = remainder

If Rc=1, CR[CR0]LT, GT, EQ are set using a signed comparison of the result to 0 even though 
the instruction produces an unsigned integer as a quotient.

The contents of register rD are undefined if an attempt is made to perform the invalid 
division n ÷ 0 (where n is any number). The contents of CR[CR0]LT, GT, EQ are undefined if 
the Rc field is set to 1 and an invalid division is performed. An invalid division sets 
XER[OV, SO] to 1 if the OE field contains 1.

Pseudocode
(rD) ← (rA) ÷ (rB)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[OV, SO] if OE=1.

Exceptions
• None.

divwu rD, rA, rB (OE=0, Rc=0)

divwu. rD, rA, rB (OE=0, Rc=1)

divwuo rD, rA, rB (OE=1, Rc=0)

divwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 459 Rc
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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eieio
Enforce In Order Execution of I/O

Description
The eieio instruction enforces ordering of load and store operations. It ensures that all 
loads and stores preceding eieio in program order complete with respect to main memory 
before loads and stores following eieio access main memory. It is intended for use in 
managing shared data structures, in accessing memory-mapped I/O, and in preventing 
load/store combining operations in main memory.

With the exception of the dcba and dcbz instructions, eieio does not affect the order of 
cache operations. This is true whether the cache operation is initiated explicitly by the 
execution of a cache-control instruction, or implicitly during the normal operation of the 
cache controller. 

eieio orders memory access, not instruction completion. Non-memory instructions 
following eieio can complete before the memory operations ordered by eieio. The sync 
instruction is used to guarantee ordering of both instruction completion and storage 
access. The PPC405 implements eieio and sync identically (this is permitted by the 
PowerPC architecture). Programmers should use the appropriate ordering instruction to 
maximize the performance of software that is portable between various PowerPC 
implementations.

Pseudocode
Force prior memory accesses to complete before starting subsequent accesses

Registers Altered
• None.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

eieio

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0
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Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture and the PowerPC embedded-environment architecture. The 
instruction is not part of the PowerPC Book-E architecture.
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eqv
Equivalent

Description
The contents of register rS are XORed with the contents of register rB. A one’s complement 
of the result is calculated and loaded in register rA.

Pseudocode
(rA) ← ¬((rS) ⊕ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

eqv rA, rS, rB (Rc=0)

eqv. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 284 Rc
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extsb
Extend Sign Byte

Description
The least-significant byte of register rS is sign-extended to 32 bits by replicating bit rS24 into 
bits 0 through 23 of the result. The result is loaded into register rA.

Pseudocode
(rA) ← EXTS(rS24:31)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

extsb rA, rS (Rc=0)

extsb. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 954 Rc
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extsh
Extend Sign Halfword

Description
The least-significant halfword of register rS is sign-extended to 32 bits by replicating bit 
rS16 into bits 0 through 15 of the result. The result is loaded into register rA.

Pseudocode
(rA) ← EXTS(rS16:31)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

extsh rA, rS (Rc=0)

extsh. rA, rS (Rc=1)

X Instruction Form

31 rS rA 0 0 0 0 0 922 Rc
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icbi
Instruction Cache Block Invalidate

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cached by the instruction cache, the corresponding instruction cacheline is 
invalidated. The invalidation is performed whether or not the corresponding storage 
attribute indicates EA is cacheable. If EA is not cached, no operation is performed.

Pseudocode
EA ← (rA|0) + (rB)
Invalidate instruction cacheline corresponding to EA

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
is also considered a “load” with respect to data address-compare (DAC) debug exceptions. 
Debug exceptions can occur as a result of executing this instruction.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

icbi rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 982 0
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• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.
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icbt
Instruction Cache Block Touch

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If EA is cacheable but not in the instruction cache, the corresponding cacheline is loaded 
into the instruction cache from main memory. If EA is already cached, or if the storage 
attributes indicate the EA is not cacheable, no operation is performed.

This instruction is a hint to the processor that the program will likely execute the 
instruction referenced by the EA in the near future. The processor can potentially improve 
performance by loading the cacheline into the instruction cache.

Pseudocode
EA ← (rA|0) + (rB)
Prefetch instruction-cacheline corresponding to EA

Registers Altered
• None.

Exceptions
This instruction is considered a “load” with respect to data-storage exceptions. However, 
this instruction does not cause data storage exceptions or data TLB-miss exceptions. If 
conditions occur that would cause these exceptions, icbt is treated as a no-op. This 
instruction is also considered a “load” with respect to data address-compare (DAC) debug 
exceptions. Debug exceptions can occur as a result of executing this instruction.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

icbt rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 262 0
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• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC embedded-environment architecture and the PowerPC Book-E architecture. It is 
not defined by the PowerPC architecture, and is therefore not implemented by all 
PowerPC processors.
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iccci
Instruction Cache Congruence Class Invalidate

Description
This is a privileged instruction.

This instruction invalidates all lines in the instruction cache. The operands are not used. In 
previous implementations, the operands were used to calculate an effective address (EA) 
for use in protection checks. The instruction form is retained for software and tool 
compatibility.

This instruction is intended for use during initialization to invalidate the entire instruction 
cache before is enabled.

Pseudocode
Invalidate the instruction-cache

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

This instruction does not cause data-storage exceptions, data TLB-miss exceptions, or data 
address-compare (DAC) debug exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

iccci rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 966 0
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icread
Instruction Cache Read

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

This instruction can be used as an instruction-cache debugging aid. It is used to read 
information for a specific instruction cacheline. The cache information is loaded into the 
ICDBDR.

EA19:26 is used to specify a congruence class within the instruction cache. CCR0[CWS] is 
used to select one of the two cachelines within the congruence class. If CCR0[CWS] = 0, the 
line in way A is selected. If CCR0[CWS] = 1, the line in way B is selected.

If CCR0[CIS] = 0 the information read is the referenced instruction in the selected 
cacheline. EA27:29 is used as an index to select the instruction from the 32-byte line. If 
CCR0[CIS] = 1 the information read is the tag associated with the selected cacheline.

On Virtex-4 devices only, the above behavior corresponds to setting CCR0[PRS] = 0. If 
CCR0[PRS] = 1, icread reads the ICU parity bits for the instruction words or tag in the 
cacheline selected by CCR0[CIS, CWS]. 

icread rA, rB

X Instruction Form

31 0 0 0 0 0 rA rB 998 0
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Following execution of this instruction, ICDBDR contains the following:

The processor does not automatically wait for the ICDBDR to be updated by an icread 
instruction before executing an mfspr instruction that reads the ICDBDR. An isync 
instruction should be inserted between the icread and the mfspr used to access the 
ICDBDR.

Bit Name Function and Description

0:31 INFO Instruction-Cache Information

WORD: Instruction data word

TAG: Instruction tag

V: Cacheline valid bit

0 – Cacheline is not valid.
1 – Cacheline is valid.

LRU: Least-recently used bit of the congruence class associated with the cacheline

0 – Way A is least-recently used.
1 – Way B is least-recently used.

ParA, ParB: Parity data for the instruction cacheline from ways A and B

TagPar: Parity value for the instruction tag 

Virtex-II Pro and Virtex-4 FPGAs with CCR0[PRS] = 0

CCR0
ICDBDR Contents Result

CIS CWS

0 0 Instruction word from way A INFO[0:31]: WORD

0 1 Instruction word from way B

1 0 Cacheline tag and status for way A INFO[0:21]: TAG
INFO[27]: V
INFO[31]: LRU
INFO[22:26], INFO[28:30]: Reserved

1 1 Cacheline tag and status for way B

Virtex-4 FPGAs with CCR0[PRS] = 1

CCR0
ICDBDR Contents Result

CIS CWS

0 X Parity for instruction words from ways 
A and B

INFO[0:3]: ParA[0:3]
INFO[4:7]: ParB[0:3]
INFO[8:31]: Reserved

1 0 Cacheline tag, status, and parity for 
way A

INFO[0:21]: TAG
INFO[25]: TagPar
INFO[27]: V
INFO[31]: LRU
INFO[22:24], INFO[26], INFO[28:30]: Reserved

1 1 Cacheline tag, status, and parity for 
way B
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Pseudocode
EA ← (rA|0) + (rB)
if ((Virtex-II Pro) or (Virtex-4 ∧ (CCR0[PRS]=0))) then

if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (instruction-cache word, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (instruction-cache word, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (instruction-cache tag and status,

way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (instruction-cache tag and status, 

way B)
else if (Virtex-4 ∧ (CCR0[PRS]=1))) then

if ((CCR0[CIS] = 0) then (ICDBDR) ← (instruction-cache line parity, ways A and B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (instruction-cache tag, status, and

parity, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (instruction-cache tag, status, and

parity, way B)

Registers Altered
• ICDBDR.

Exceptions
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.
• Program—Attempted execution of this instruction from user mode.

This instruction is considered a “load” with respect to the above data-access exceptions. It 
can cause data TLB-miss exceptions related to the EA even though the instruction is not 
address specific (multiple addresses are selected by a single EA). This instruction cannot 
cause data-storage exceptions. This instruction does not cause data address-compare 
(DAC) debug exceptions.

Instruction-storage exceptions and instruction TLB-miss exceptions are associated with 
instruction fetching, not with instruction execution. Exceptions that occur during the 
execution of instruction-cache operations cause data-storage exceptions and data TLB-
miss exceptions.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.
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isync
Instruction Synchronize

Description
The isync instruction is context synchronizing. It enforces ordering of all instructions 
executed by the processor. It ensures that all instructions preceding isync in program order 
complete before isync completes. Accesses to main memory caused by instructions 
preceding the isync are not guaranteed to have completed. 

Instructions following the isync are not started until the isync completes execution. 
Prefetched instructions are discarded by the execution of isync. All instructions following 
isync are executed in the context established by the instructions preceding the isync.

isync does not affect the processor caches.

Pseudocode
Synchronize context

Registers Altered
• None.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture.

isync

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0
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lbz
Load Byte and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← 240 || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbz rD, d(rA)

D Instruction Form

34 rD rA d
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lbzu
Load Byte and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← 240 || MS(EA,1)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzu rD, d(rA)

D Instruction Form

35 rD rA d
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lbzux
Load Byte and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← 240 || MS(EA,1)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzux rD, rA, rB

X Instruction Form

31 rD rA rB 119 0
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lbzx
Load Byte and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The byte referenced by EA is extended to 32 bits by concatenating 24 0-bits on the left. The 
result is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 240 || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lbzx rD, rA, rB

X Instruction Form

31 rD rA rB 87 0
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lha
Load Halfword Algebraic

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← EXTS(MS(EA,2))

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lha rD, d(rA)

D Instruction Form

42 rD rA d

0 6 1
1

1
6

3
1

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 357
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

lhau
Load Halfword Algebraic with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD. The 
EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← EXTS(MS(EA,2))
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhau rD, d(rA)

D Instruction Form

43 rD rA d
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lhaux
Load Halfword Algebraic with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD. The 
EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← EXTS(MS(EA,2))
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhaux rD, rA, rB

X Instruction Form

31 rD rA rB 375 0
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lhax
Load Halfword Algebraic Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is sign-extended to 32 bits and loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← EXTS(MS(EA,2))

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhax rD, rA, rB

X Instruction Form

31 rD rA rB 343 0
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lhbrx
Load Halfword Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The memory halfword referenced by EA is byte-reversed and extended to 32 bits by 
concatenating 16 0-bits to its left. The result is loaded into register rD. The byte-reversal 
operation consists of:

• Bits 0:7 of the memory word are loaded into rD[24:31].
• Bits 8:15 of the memory word are loaded into rD[16:23].
• 16 0-bits are loaded into rD[0:15].

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 160 || MS(EA +1,1) || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

lhbrx rD, rA, rB

X Instruction Form

31 rD rA rB 790 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lhz
Load Halfword and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← 160 || MS(EA,2)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhz rD, d(rA)

D Instruction Form

40 rD rA d
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lhzu
Load Halfword and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← 160 || MS(EA,2)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzu rD, d(rA)

D Instruction Form

41 rD rA d
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lhzux
Load Halfword and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← 160 || MS(EA,2)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzux rD, rA, rB

X Instruction Form

31 rD rA rB 311 0
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lhzx
Load Halfword and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The halfword referenced by EA is extended to 32 bits by concatenating 16 0-bits on the left. 
The result is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← 160 || MS(EA,2)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lhzx rD, rA, rB

X Instruction Form

31 rD rA rB 279 0
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lmw
Load Multiple Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n = 32 − rD. 

n consecutive words starting at the memory address referenced by EA are loaded into 
GPRs rD through r31.

Pseudocode
EA ← (rA|0) + EXTS(d)
n ← rD
do while n ≤ 31

if ((n ≠ rA) ∨ (n = 31))
then (GPR(n)) ← MS(EA,4)

n ← n + 1
EA ← EA + 4

Registers Altered
• rD through r31.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. The word that 
would have been loaded into rA is discarded.

lmw rD, d(rA)

D Instruction Form

46 rD rA d
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lswi
Load String Word Immediate

Description
An effective address (EA) is determined by the rA field as follows:

• If the rA field is 0, the EA is 0.
• If the rA field is not 0, the contents of register rA are used as the EA.

Let n specify the byte count. If the NB field is 0, n is 32. Otherwise, n is equal to NB.

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).

Let RFINAL specify the last register to be loaded with data. n consecutive bytes starting at 
the memory address referenced by EA are loaded into GPRs rD through RFINAL. The 
sequence of registers wraps around to r0 if necessary. RFINAL = rD + nr − 1 (modulo 32).

Bytes are loaded in each register starting with the most-significant register byte and ending 
with the least-significant register byte. If the byte count is exhausted before RFINAL is filled, 
the remaining bytes in RFINAL are loaded with 0.

Pseudocode
EA ← (rA|0)
if NB = 0

then n ← 32
else n ← NB

RFINAL ← ((rD + CEIL(n/4) − 1) % 32)
reg ← rD − 1
bit ← 0
do while n > 0

if bit = 0
then

reg ← reg + 1
if reg = 32

then reg ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)) ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)bit:bit+7) ← MS(EA,1)
bit ← bit + 8

lswi rD, rA, NB

X Instruction Form

31 rD rA NB 597 0
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if bit = 32
then bit ← 0

EA ← EA + 1
n ← n − 1

Registers Altered
• rD and subsequent GPRs as described above.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. Bytes that 
would have been loaded into rA are discarded.

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lswx
Load String Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n specify the byte count contained in XER[TBC].

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).

Let RFINAL specify the last register to be loaded with data. n consecutive bytes starting at 
the memory address referenced by EA are loaded into GPRs rD through RFINAL. The 
sequence of registers wraps around to r0 if necessary. RFINAL = rD + nr − 1 (modulo 32).

Bytes are loaded in each register starting with the most-significant register byte and ending 
with the least-significant register byte. If the byte count is exhausted before RFINAL is filled, 
the remaining bytes in RFINAL are loaded with 0.

If XER[TBC] = 0, the contents of register rD are unchanged and lswx is treated as a no-
operation.

Pseudocode
EA ← (rA|0) + (rB)
n ← XER[TBC]
RFINAL ← ((rD + CEIL(n/4) − 1) % 32)
reg ← rD − 1
bit ← 0
do while n > 0

if bit = 0
then

reg ← reg + 1
if reg = 32

then reg ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

then (GPR(reg)) ← 0
if ((reg ≠ rA) ∨ (reg = RFINAL))

lswx rD, rA, rB

X Instruction Form

31 rD rA rB 533 0
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then (GPR(reg)bit:bit+7) ← MS(EA,1)
bit ← bit + 8
if bit = 32

then bit ← 0
EA ← EA + 1
n ← n − 1

Registers Altered
• rD and subsequent GPRs as described above.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

If XER[TBC]=0, data-storage and data TLB-miss exceptions do not occur. However, a data 
machine-check exception can occur when XER[TBC]=0 if the following conditions are true:

• The instruction access passes all protection checks.
• The data address is cacheable.
• Access of the data address causes a data-cacheline fill request due to a miss.
• The data-cacheline fill request encounters some form of bus error.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA is in the range of registers to be loaded, including the case rA=rD=0. Bytes that 
would have been loaded into rA are discarded.

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lwarx
Load Word and Reserve Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. A reservation bit internal to the 
processor is set.

The lwarx and the stwcx. instructions should paired in a loop to create the effect of an 
atomic memory operation for accessing a semaphore. See Semaphore Synchronization, 
page 127 for more information.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA,4)
RESERVE← 1

Registers Altered
• rD.

Exceptions
• Alignment—if the EA is not aligned on a word boundary.
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

lwarx rD, rA, rB

X Instruction Form

31 rD rA rB 20 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lwbrx
Load Word Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The memory word referenced by EA is byte-reversed and the result is loaded into register 
rD. The byte-reversal operation consists of:

• Bits 0:7 of the memory word are loaded into rD[24:31].
• Bits 8:15 of the memory word are loaded into rD[16:23].
• Bits 16:23 of the memory word are loaded into rD[8:15].
• Bits 23:31 of the memory word are loaded into rD[0:7].

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA+3,1) || MS(EA+2,1) || MS(EA+1,1) || MS(EA,1)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

lwbrx rD, rA, rB

X Instruction Form

31 rD rA rB 534 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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lwz
Load Word and Zero

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD.

Pseudocode
EA ← (rA|0) + EXTS(d)
(rD) ← MS(EA,4)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwz rD, d(rA)

D Instruction Form

32 rD rA d
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lwzu
Load Word and Zero with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
(rD) ← MS(EA,4)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzu rD, d(rA)

D Instruction Form

33 rD rA d
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lwzux
Load Word and Zero with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD. The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
(rD) ← MS(EA,4)
(rA) ← EA

Registers Altered
• rA.
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=rD.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzux rD, rA, rB

X Instruction Form

31 rD rA rB 55 0
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lwzx
Load Word and Zero Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The word referenced by EA is loaded into register rD.

Pseudocode
EA ← (rA|0) + (rB)
(rD) ← MS(EA,4)

Registers Altered
• rD.

Exceptions
• Data storage—if the access is prevented by no-access-allowed zone protection. This 

only applies to accesses in user mode when data relocation is enabled.
• Data TLB miss—if data relocation is enabled and a valid translation-entry 

corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

lwzx rD, rA, rB

X Instruction Form

31 rD rA rB 23 0
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macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-28, page 109.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchw rD, rA, rB (OE=0, Rc=0)

macchw. rD, rA, rB (OE=0, Rc=1)

macchwo rD, rA, rB (OE=1, Rc=0)

macchwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 172 Rc
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macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-28, page 109.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧ (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchws rD, rA, rB (OE=0, Rc=0)

macchws. rD, rA, rB (OE=0, Rc=1)

macchwso rD, rA, rB (OE=1, Rc=0)

macchwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 236 Rc
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macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-28, page 109.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchwsu rD, rA, rB (OE=0, Rc=0)

macchwsu. rD, rA, rB (OE=0, Rc=1)

macchwsuo rD, rA, rB (OE=1, Rc=0)

macchwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 204 Rc
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macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result. The contents of rD are replaced by the low-order 32 bits of the temporary 
result. An example of this operation is shown in Figure 3-28, page 109.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

macchwu rD, rA, rB (OE=0, Rc=0)

macchwu. rD, rA, rB (OE=0, Rc=1)

macchwuo rD, rA, rB (OE=1, Rc=0)

macchwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 140 Rc
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machhw
Multiply Accumulate High Halfword to Word Modulo Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-29, page 112.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhw rD, rA, rB (OE=0, Rc=0)

machhw. rD, rA, rB (OE=0, Rc=1)

machhwo rD, rA, rB (OE=1, Rc=0)

machhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 44 Rc
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machhws
Multiply Accumulate High Halfword to Word Saturate Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-29, page 112.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧ (rD0 ≠ temp1))

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhws rD, rA, rB (OE=0, Rc=0)

machhws. rD, rA, rB (OE=0, Rc=1)

machhwso rD, rA, rB (OE=1, Rc=0)

machhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 108 Rc
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machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-29, page 112.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhwsu rD, rA, rB (OE=0, Rc=0)

machhwsu. rD, rA, rB (OE=0, Rc=1)

machhwsuo rD, rA, rB (OE=1, Rc=0)

machhwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 76 Rc
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machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
unsigned product is added to the contents of rD and the sum is stored as a 33-bit 
temporary result. The contents of rD are replaced by the low-order 32 bits of the temporary 
result. An example of this operation is shown in Figure 3-29, page 112.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

machhwu rD, rA, rB (OE=0, Rc=0)

machhwu. rD, rA, rB (OE=0, Rc=1)

machhwuo rD, rA, rB (OE=1, Rc=0)

machhwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 12 Rc
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maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-30, page 114.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhw rD, rA, rB (OE=0, Rc=0)

maclhw. rD, rA, rB (OE=0, Rc=1)

maclhwo rD, rA, rB (OE=1, Rc=0)

maclhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 428 Rc
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maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The signed 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-30, page 114.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
temp0:32 ← prod0:31 + (rD)
if ((prod0 = rD0) ∧ (rD0 ≠ temp1))

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhws rD, rA, rB (OE=0, Rc=0)

maclhws. rD, rA, rB (OE=0, Rc=1)

maclhwso rD, rA, rB (OE=1, Rc=0)

maclhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 492 Rc
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maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The unsigned 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
greater than 232 − 1, the value stored in rD is 232 − 1. An example of this operation is shown 
in Figure 3-30, page 114.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← (temp1:32 ∨ 32temp0)

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhwsu rD, rA, rB (OE=0, Rc=0)

maclhwsu. rD, rA, rB (OE=0, Rc=1)

maclhwsuo rD, rA, rB (OE=1, Rc=0)

maclhwsuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 460 Rc
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maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The unsigned 
product is added to the contents of rD and the sum is stored as a 33-bit temporary result. 
The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-30, page 114.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 unsigned
temp0:32 ← prod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

maclhwu rD, rA, rB (OE=0, Rc=0)

maclhwu. rD, rA, rB (OE=0, Rc=1)

maclhwuo rD, rA, rB (OE=1, Rc=0)

maclhwuo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 396 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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mcrf
Move Condition Register Field

Description
The contents of the CR field specified by crfS are loaded into the CR field specified by crfD.

Pseudocode
m ← crfS
n ← crfD
(CR[CRn]) ← (CR[CRm])

Registers Altered

• CR[CRn] where n is specified by crfD.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mcrf crfD, crfS

XL Instruction Form

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

0 6 9 1
1

1
4

2
1

3
1
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mcrxr
Move to Condition Register from XER

Description
The contents of XER0:3 are loaded into the CR field specified by crfD. The contents of 
XER0:3 are then cleared to 0.

Pseudocode
n ← crfD
(CR[CRn]) ← XER0:3
XER0:3 ← 0b0000

Registers Altered

• CR[CRn] where n is specified by the crfD field.

• XER0:3.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mcrxr crfD

X Instruction Form

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

0 6 9 2
1

3
1
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mfcr
Move from Condition Register

Description
The contents of the CR are loaded into register rD.

Pseudocode
(rD) ← (CR)

Registers Altered
• rD.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mfcr rD

X Instruction Form

31 rD 0 0 0 0 0 0 0 0 0 0 19 0

0 6 1
1

2
1

3
1

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 395
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

mfdcr
Move from Device Control Register

Description
This is a privileged instruction.

The contents of the DCR specified by the DCR number (DCRN) are loaded into register rD. 
The DCRF opcode field is a split field representing DCRN. See Split-Field Notation, 
page 281 for more information.

Pseudocode
DCRN ← DCRF5:9 || DCRF0:4
(rD) ← (DCR(DCRN))

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported DCRF value.

Compatibility
This instruction is defined by the PowerPC embedded-environment architecture and the 
PowerPC Book-E architecture. It is not defined by the PowerPC architecture, and is 
therefore not implemented by all PowerPC processors. The specific registers accessed by 
this instruction are implementation dependent.

mfdcr rD, DCRN

XFX Instruction Form

31 rD DCRF 323 0

0 6 1
1

2
1

3
1
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mfmsr
Move from Machine State Register

Description
This is a privileged instruction.

The contents of the MSR are loaded into register rD.

Pseudocode
(rD) ← (MSR) 

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

mfmsr rD

X Instruction Form

31 rD 0 0 0 0 0 0 0 0 0 0 83 0

0 6 1
1

2
1

3
1
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mfspr
Move from Special Purpose Register

Description
The contents of the SPR specified by the SPR number (SPRN) are loaded into register rD. 
The SPRF opcode field is a split field representing SPRN. See Split-Field Notation, 
page 281 for more information. See Appendix A, Register Summary for a listing of the 
SPRs supported by the PPC405 and their corresponding SPRN and SPRF values.

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 552.

Pseudocode
SPRN ← SPRF5:9 || SPRF0:4
(rD) ← (SPR(SPRN))

Registers Altered
• rD.

Exceptions
• Program—Attempted execution of this instruction from user mode if SPRF[0] (bit 11 

of the instruction opcode) is 1.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported SPRF value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 
instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. However, not all SPRs supported by the PPC405 
are supported by other PowerPC processors.

mfspr rD, SPRN

XFX Instruction Form

31 rD SPRF 339 0

0 6 1
1

2
1

3
1
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mftb
Move from Time Base

Description
The contents of the TBR specified by the TBR number (TBRN) are loaded into register rD. 
The TBRF opcode field is a split field representing TBRN. See Split-Field Notation, 
page 281 for more information. The following TBRN values are recognized:

• Time-base lower register (TBL)—268 (0x10C).
• Time-base upper register (TBU)—269 (0x10D).

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 552.

Pseudocode
TBRN ← TBRF5:9 || TBRF0:4
(rD) ← (TBR(TBRN))

Registers Altered
• rD.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported TBRF value.

Compatibility
This instruction is defined by the virtual-environment architecture level (VEA) of the 
PowerPC architecture and the PowerPC embedded-environment architecture. The 
PowerPC Book-E architecture does not support this instruction, but does support the time-
base registers. Software running on PowerPC Book-E processors must use the mfspr 
instruction to access the time-base registers.

mftb rD, TBRN

XFX Instruction Form

31 rD TBRF 371 0

0 6 1
1

2
1

3
1
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mtcrf
Move to Condition Register Fields

Description
Some or all of the contents of register rS are loaded into the CR under the control of the 
CRM field.

Each bit in the CRM field specifies a set of 4 bits in both the rS and CR registers. If a CRM 
bit is set to 1, the specified set of bits in rS are copied into the corresponding CR bits. If a 
CRM bit is cleared to 0, the specified set of bits in rS are not copied and the corresponding 
CR bits are unchanged. The following table shows the relationship between the CRM field 
and the rS and CR registers. The CRn field is shown for completeness.

See mtcrf Field Mask (CRM), page 124, for more information on the CRM field and an 
example of its use.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 556.

Pseudocode
mask ← 4(CRM0) || 4(CRM1) || ... || 4(CRM6) || 4(CRM7)
(CR) ← ((rS) ∧ mask) ∨ ((CR) ∧ ¬mask)

mtcrf CRM, rS

XFX Instruction Form

31 rS 0 CRM 0 144 0

0 6 1
1

1
2

2
0

2
1

3
1

CRM Bit Number rS Bits CR Bits CRn Field

0 0:3 0:3 CR0

1 4:7 4:7 CR1

2 8:11 8:11 CR2

3 12:15 12:15 CR3

4 16:19 16:19 CR4

5 20:23 20:23 CR5

6 24:27 24:27 CR6

7 28:31 28:31 CR7
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Registers Altered
• CR.

Exceptions
• None.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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mtdcr
Move to Device Control Register

Description
This is a privileged instruction.

The contents of register rS are loaded into the DCR specified by the DCR number (DCRN). 
The DCRF opcode field is a split field representing DCRN. See Split-Field Notation, 
page 281 for more information.

Pseudocode
DCRN ← DCRF5:9 || DCRF0:4
(DCR(DCRN)) ← (rS)

Registers Altered
• DCR(DCRN).

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported DCRF value.

Compatibility
This instruction is defined by the PowerPC embedded-environment architecture and the 
PowerPC Book-E architecture. It is not defined by the PowerPC architecture, and is 
therefore not implemented by all PowerPC processors. The specific registers accessed by 
this instruction are implementation dependent.

mtdcr DCRN, rS

XFX Instruction Form

31 rS DCRF 451 0

0 6 1
1

2
1

3
1
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mtmsr
Move to Machine State Register

Description
This is a privileged instruction.

The contents of register rS are loaded into the MSR.

Pseudocode
(MSR) ← (rS)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

mtmsr rS

X Instruction Form

31 rS 0 0 0 0 0 0 0 0 0 0 146 0

0 6 1
1

2
1

3
1
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mtspr
Move to Special Purpose Register

Description
The contents of register rS are loaded into the SPR specified by the SPR number (SPRN). 
The SPRF opcode field is a split field representing SPRN. See Split-Field Notation, 
page 281 for more information. See Appendix A, Register Summary for a listing of the 
SPRs supported by the PPC405 and their corresponding SPRN and SPRF values.

Simplified mnemonics defined for this instruction are described in Special-Purpose 
Registers, page 552.

Pseudocode
SPRN ← SPRF5:9 || SPRF0:4
(SPR(SPRN)) ← (rS)

Registers Altered
• SPR(SPRN).

Exceptions
• Program—Attempted execution of this instruction from user mode if SPRF[0] (bit 11 

of the instruction) is 1.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• Use of an unsupported SPRF value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 
instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. However, not all SPRs supported by the PPC405 
are supported by other PowerPC processors.

mtspr SPRN, rS

XFX Instruction Form

31 rS SPRF 467 0

0 6 1
1

2
1

3
1
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mulchw
Multiply Cross Halfword to Word Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The resulting 
signed 32-bit product is loaded into register rD. An example of this operation is shown in 
Figure 3-34, page 121.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)0:15 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulchw rD, rA, rB (Rc=0)

mulchw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 168 Rc

0 6 1
1

1
6

2
1

3
1
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mulchwu
Multiply Cross Halfword to Word Unsigned

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The resulting 
unsigned 32-bit product is loaded into register rD. An example of this operation is shown 
in Figure 3-34, page 121.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)0:15 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulchwu rD, rA, rB (Rc=0)

mulchwu. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 136 Rc

0 6 1
1

1
6

2
1

3
1
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mulhhw
Multiply High Halfword to Word Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
resulting signed 32-bit product is loaded into register rD. An example of this operation is 
shown in Figure 3-35, page 122.

Pseudocode
(rD)0:31 ← (rA)0:15 × (rB)0:15 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulhhw rD, rA, rB (Rc=0)

mulhhw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 40 Rc

0 6 1
1

1
6

2
1

3
1
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mulhhwu
Multiply High Halfword to Word Unsigned

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The 
resulting unsigned 32-bit product is loaded into register rD. An example of this operation 
is shown in Figure 3-35, page 122.

Pseudocode
(rD)0:31 ← (rA)0:15 × (rB)0:15 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mulhhwu rD, rA, rB (Rc=0)

mulhhwu. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 8 Rc

0 6 1
1

1
6

2
1

3
1
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mulhw
Multiply High Word

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
signed product. The most-significant 32 bits of the result are loaded into register rD.

mulhwu should be used if the operands are to be interpreted as unsigned quantities.

This instruction can be used with mullw or mulli to calculate a full 64-bit product.

Pseudocode
prod0:63← (rA) × (rB) signed
(rD) ← prod0:31

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulhw rD, rA, rB (Rc=0)

mulhw. rD, rA, rB (Rc=1)

XO Instruction Form

31 rD rA rB 0 75 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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mulhwu
Multiply High Word Unsigned

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
unsigned product. The most-significant 32 bits of the result are loaded into register rD.

mulhw should be used if the operands are to be interpreted as signed quantities.

Pseudocode
prod0:63← (rA) × (rB) unsigned
(rD) ← prod0:31

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulhwu rD, rA, rB (Rc=0)

mulhwu. rD, rA, rB (Rc=1)

XO Instruction Form

31 rD rA rB 0 11 Rc

0 6 1
1

1
6

2
1

3
1
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mullhw
Multiply Low Halfword to Word Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The resulting 
signed 32-bit product is loaded into register rD. An example of this operation is shown in 
Figure 3-36, page 123.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)16:31 signed

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mullhw rD, rA, rB (Rc=0)

mullhw. rD, rA, rB (Rc=1)

X Instruction Form

4 rD rA rB 424 Rc

0 6 1
1

1
6

2
1

3
1
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mullhwu
Multiply Low Halfword to Word Unsigned

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The resulting 
unsigned 32-bit product is loaded into register rD. An example of this operation is shown 
in Figure 3-36, page 123.

Pseudocode
(rD)0:31 ← (rA)16:31 × (rB)16:31 unsigned

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

mullhwu rD, rA, rB (OE=0, Rc=0)

mullhwu. rD, rA, rB (OE=0, Rc=1)

X Instruction Form

4 rD rA rB 392 Rc

0 6 1
1

1
6

2
1

3
1
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mulli
Multiply Low Immediate

Description
The contents of register rA are multiplied with the sign-extended SIMM field, forming a 
48-bit signed product. The least-significant 32 bits of the product are loaded into register 
rD.

The result loaded into register rD is always correct, regardless of whether the operands are 
interpreted as signed or unsigned integers.

This instruction can be used with mulhw to calculate a full 64-bit product.

Pseudocode
prod0:47← (rA) × EXTS(SIMM) signed
(rD) ← prod16:47

Registers Altered
• rD.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mulli rD, rA, SIMM

D Instruction Form

7 rD rA SIMM

0 6 1
1

1
6

3
1
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mullw
Multiply Low Word

Description
The contents of register rA are multiplied with the contents of register rB, forming a 64-bit 
signed product. The least-significant 32 bits of the result are loaded into register rD.

If the signed product cannot be represented in 32 bits and OE=1, XER[SO, OV] are set to 1. 
This overflow indication is correct only if the operands are interpreted as signed integers. 
The result loaded into register rD is always correct, regardless of whether the operands are 
interpreted as signed or unsigned integers.

This instruction can be used with mulhw to calculate a full 64-bit product.

Pseudocode
prod0:63← (rA) × (rB) signed
(rD) ← prod32:63

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

mullw rD, rA, rB (OE=0, Rc=0)

mullw. rD, rA, rB (OE=0, Rc=1)

mullwo rD, rA, rB (OE=1, Rc=0)

mullwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 235 Rc

0 6 1
1

1
6

2
1

2
2

3
1
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nand
NAND

Description
The contents of register rS are ANDed with the contents of register rB and the one’s 
complement of the result is loaded into register rA.

The one’s complement of a number can be obtained using nand with rS = rB.

Pseudocode
(rA) ← ¬((rS) ∧ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

nand rA, rS, rB (Rc=0)

nand. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 476 Rc

0 6 1
1

1
6

2
1

3
1
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neg
Negate

Description
The two’s complement of the contents of register rA are loaded into register rD.

If rA contains the most-negative number (0x8000_0000), the result is the most-negative 
number and XER[OV] is set to 1 if OE=1.

Pseudocode
(rD) ← ¬(rA) + 1

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

neg rD, rA (OE=0, Rc=0)

neg. rD, rA (OE=0, Rc=1)

nego rD, rA (OE=1, Rc=0)

nego. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 104 Rc
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R

nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-31, page 116.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmacchw rD, rA, rB (OE=0, Rc=0)

nmacchw. rD, rA, rB (OE=0, Rc=1)

nmacchwo rD, rA, rB (OE=1, Rc=0)

nmacchwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 174 Rc
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nmacchws
Negative Multiply Accumulate Cross Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-31, page 116.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧ (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmacchws rD, rA, rB (OE=0, Rc=0)

nmacchws. rD, rA, rB (OE=0, Rc=1)

nmacchwso rD, rA, rB (OE=1, Rc=0)

nmacchwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 238 Rc

0 6 1
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nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-32, page 118.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmachhw rD, rA, rB (OE=0, Rc=0)

nmachhw. rD, rA, rB (OE=0, Rc=1)

nmachhwo rD, rA, rB (OE=1, Rc=0)

nmachhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 46 Rc
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nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

Description
The high-order halfword of rA is multiplied by the high-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-32, page 118.

Pseudocode
prod0:31 ← (rA)0:15 × (rB)0:15 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧ (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmachhws rD, rA, rB (OE=0, Rc=0)

nmachhws. rD, rA, rB (OE=0, Rc=1)

nmachhwso rD, rA, rB (OE=1, Rc=0)

nmachhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 110 Rc

0 6 1
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nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result. The contents of rD are replaced by the low-order 32 bits of the temporary result. An 
example of this operation is shown in Figure 3-33, page 120.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
(rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmaclhw rD, rA, rB (OE=0, Rc=0)

nmaclhw. rD, rA, rB (OE=0, Rc=1)

nmaclhwo rD, rA, rB (OE=1, Rc=0)

nmaclhwo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 430 Rc

0 6 1
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nmaclhws
Negative Multiply Accumulate Low Halfword to Word Saturate Signed

Description
The low-order halfword of rA is multiplied by the low-order halfword of rB. The negated 
signed product is added to the contents of rD and the sum is stored as a 33-bit temporary 
result.

If the result does not overflow, the low-order 32 bits of the temporary result are stored in 
rD. If the result overflows, rD is loaded with the nearest representable value. If the result is 
less than −231, the value stored in rD is −231. If the result is greater than 231 − 1, the value 
stored in rD is 231 − 1. An example of this operation is shown in Figure 3-33, page 120.

Pseudocode
prod0:31 ← (rA)16:31 × (rB)16:31 signed
nprod0:31 ← −1 × prod0:31 signed
temp0:32 ← nprod0:31 + (rD)
if ((nprod0 = rD0) ∧ (rD0 ≠ temp1)) 

then (rD) ← (rD0 || 31(¬rD0))
else (rD) ← temp1:32

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1

Exceptions
• None.

Compatibility
This instruction is implementation specific and is not guaranteed to be supported by other 
PowerPC processors.

nmaclhws rD, rA, rB (OE=0, Rc=0)

nmaclhws. rD, rA, rB (OE=0, Rc=1)

nmaclhwso rD, rA, rB (OE=1, Rc=0)

nmaclhwso. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

4 rD rA rB OE 494 Rc

0 6 1
1
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nor
NOR

Description
The contents of register rS are ORed with the contents of register rB and the one’s 
complement of the result is loaded into register rA.

The one’s complement of a number can be obtained using nor with rS = rB.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 556.

Pseudocode
(rA) ← ¬((rS) ∨ (rB))

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

nor rA, rS, rB (Rc=0)

nor. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 124 Rc

0 6 1
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or
OR

Description
The contents of register rS are ORed with the contents of register rB and the result is loaded 
into register rA.

The contents of one register can be copied into another register using or with rS = rB.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 556.

Pseudocode
(rA) ← (rS) ∨ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

or rA, rS, rB (Rc=0)

or. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 444 Rc
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orc
OR with Complement

Description
The contents of register rS are ORed with the one’s complement of the contents of register 
rB and the result is loaded into register rA.

Pseudocode
(rA) ← (rS) ∨ ¬(rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

orc rA, rS, rB (Rc=0)

orc. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 412 Rc
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ori
OR Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
the register rS are ORed with the extended UIMM field and the result is loaded into 
register rA.

Simplified mnemonics defined for this instruction are described in Other Simplified 
Mnemonics, page 556. The preferred no-operation (an instruction that does nothing) is:

ori 0,0,0

Pseudocode
(rA) ← (rS) ∨ (160 || UIMM)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

ori rA, rS, UIMM

D Instruction Form

24 rS rA UIMM

0 6 1
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oris
OR Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of the register rS are ORed with the extended UIMM field and the result is loaded into 
register rA.

Pseudocode
(rA) ← (rS) ∨ (UIMM || 160)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

oris rA, rS, UIMM

D Instruction Form

25 rS rA UIMM
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rfci
Return from Critical Interrupt

Description
This is a privileged instruction.

The MSR is loaded with the contents of SRR3. The contents of SRR2 are used as the next-
instruction address (NIA). Program control is transferred to the NIA. This instruction is 
context synchronizing. Instructions fetched from the NIA use the new context loaded into 
the MSR.

Pseudocode
(MSR) ← (SRR3)
Synchronize context
NIA ← (SRR2)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
It is not defined by the PowerPC architecture, and is therefore not implemented by all 
PowerPC processors.

rfci

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0

0 6 2
1
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rfi
Return from Interrupt

Description
This is a privileged instruction.

The MSR is loaded with the contents of SRR1. The contents of SRR0 are used as the next-
instruction address (NIA). Program control is transferred to the NIA. This instruction is 
context synchronizing. Instructions fetched from the NIA use the new context loaded into 
the MSR.

Pseudocode
(MSR) ← (SRR1)
Synchronize context
NIA ← (SRR0)

Registers Altered
• MSR.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
PowerPC architecture, the PowerPC embedded-environment architecture, and the 
PowerPC Book-E architecture. It is implemented by all PowerPC processors.

rfi

XL Instruction Form

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

0 6 2
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rlwimi
Rotate Left Word Immediate then Mask Insert

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 101.

The contents of register rS are rotated left by the number of bit positions specified by the 
SH field. The rotated data is inserted into register rA under control of the mask. If a mask 
bit contains a 1, the corresponding bit in the rotated data is inserted into the corresponding 
bit of register rA. If a mask bit contains a 0, the corresponding bit in rA is not changed.

This instruction can be used to extract a field from one register and insert it into another 
register.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 551.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), SH)
(rA) ← (r ∧ m) ∨ ((rA) ∧ ¬m)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwimi rA, rS, SH, MB, ME (Rc=0)

rlwimi. rA, rS, SH, MB, ME (Rc=1)

M Instruction Form

20 rS rA SH MB ME Rc
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rlwinm
Rotate Left Word Immediate then AND with Mask

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 101.

The contents of register rS are rotated left by the number of bit positions specified by the 
SH field. The rotated data is ANDed with the mask and the result is loaded into register rA.

This instruction can be used to extract, rotate, shift, and clear bit fields.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 551.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), SH)
(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwinm rA, rS, SH, MB, ME (Rc=0)

rlwinm. rA, rS, SH, MB, ME (Rc=1)

M Instruction Form

21 rS rA SH MB ME Rc

0 6 1
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rlwnm
Rotate Left Word then AND with Mask

Description
The MB field and ME field specify bit positions in a 32-bit mask, m. m is generated with 1-
bits starting at MB and ending at ME, with 0-bits elsewhere. If MB is at a higher bit position 
than ME, the 1-bits in the mask wrap from the highest bit position to the lowest. Rotate-
instruction masks are further described in Mask Generation, page 101.

The contents of register rS are rotated left by the number of bit positions specified by the 
contents of register rB27:31. The rotated data is ANDed with the mask and the result is 
loaded into register rA.

This instruction can be used to extract and rotate bit fields.

Simplified mnemonics defined for this instruction are described in Rotate and Shift 
Instructions, page 551.

Pseudocode
m ← MASK(MB, ME)
r ← ROTL((rS), (rB)27:31)
(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

rlwnm rA, rS, rB, MB, ME (Rc=0)

rlwnm. rA, rS, rB, MB, ME (Rc=1)

M Instruction Form

23 rS rA rB MB ME Rc

0 6 1
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sc
System Call

Description
This instruction causes a system-call exception to occur. The contents of the MSR are 
loaded into SRR1. The address of the instruction immediately following the sc instruction 
is loaded into SRR0.

The MSR[WE, EE, PR, DR, IR] bits are cleared to 0.

The exception-vector address is used as the next-instruction address (NIA) and program 
control is transferred to the NIA. The exception vector address is formed by concatenating 
the high halfword of the exception-vector-prefix register (EVPR) to the left of 0x0C00. This 
instruction is context synchronizing. Instructions fetched from the NIA use the new 
context loaded into the MSR.

Pseudocode
(SRR1) ← (MSR)
(MSR[WE, EE, PR, DR, IR])← 0
(SRR0) ← CIA + 4
Synchronize context
NIA ← EVPR0:15 || 0x0C00

Registers Altered
• SRR0.
• SRR1.
• MSR[WE, EE, PR, DR, IR].

Exceptions
• System call—execution of this instruction.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC architecture, the PowerPC embedded-
environment architecture, and the PowerPC Book-E architecture. It is part of the user 

sc

SC Instruction Form

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 6 3
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instruction-set architecture (UISA) and the operating-environment architecture (OEA). It is 
implemented by all PowerPC processors. 
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slw
Shift Left Word

Description
The contents of register rS are shifted left by the number of bits specified by the contents of 
register rB27:31. Bits shifted left out of the most-significant bit are lost and 0-bits fill vacated 
bit positions on the right. The result is loaded into register rA.

If rB26 = 1, register rA is cleared to zero.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), n)
if (rB)26 = 0

then m ← MASK(0, 31 − n)
else m ← 320

(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

slw rA, rS, rB (Rc=0)

slw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 24 Rc
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sraw
Shift Right Algebraic Word

Description
The contents of register rS are shifted right by the number of bits specified by the contents 
of register rB27:31. Bits shifted right out of the least-significant bit are lost. The most-
significant bit of register rS (rS0) is replicated to fill vacated bit positions on the left. The 
result is loaded into register rA.

If rS contains a negative number and any 1-bits are shifted out of the least-significant bit 
position, XER[CA] is set to 1. Otherwise XER[CA] is cleared to 0.

If rB26 = 1, XER[CA] and all bits in register rA are set to the value of rS0.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), 32 − n)
if (rB)26 = 0

then m ← MASK(n, 31)
else m ← 320

s ← (rS)0
(rA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0)

Registers Altered
• rA.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sraw rA, rS, rB (Rc=0)

sraw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 792 Rc
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srawi
Shift Right Algebraic Word Immediate

Description
The contents of register rS are shifted right by the number of bits specified by the SH field. 
Bits shifted right out of the least-significant bit are lost. The most-significant bit of register 
rS (rS0) is replicated to fill vacated bit positions on the left. The result is loaded into register 
rA.

If rS contains a negative number and any 1-bits are shifted out of the least-significant bit 
position, XER[CA] is set to 1. Otherwise XER[CA] is cleared to 0.

Pseudocode
n ← SH
r ← ROTL((rS), 32 − n)
m ← MASK(n, 31)
s ← (rS)0
(rA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0)

Registers Altered
• rA.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

srawi rA, rS, SH (Rc=0)

srawi. rA, rS, SH (Rc=1)

X Instruction Form

31 rS rA SH 824 Rc
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srw
Shift Right Word

Description
The contents of register rS are shifted right by the number of bits specified by the contents 
of register rB27:31. Bits shifted right out of the least-significant bit are lost and 0-bits fill the 
vacated bit positions on the left. The result is loaded into register rA.

If rB26 = 1, register rA is cleared to 0.

Pseudocode
n ← (rB)27:31
r ← ROTL((rS), 32 − n)
if (rB)26 = 0

then m ← MASK(n, 31)
else m ← 320

(rA) ← r ∧ m

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

srw rA, rS, rB (Rc=0)

srw. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 536 Rc
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stb
Store Byte

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 1)← (rS)24:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stb rS, d(rA)

D Instruction Form

38 rS rA d
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stbu
Store Byte with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA. The EA is 
loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 1)← (rS)24:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbu rS, d(rA)

D Instruction Form

39 rS rA d
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stbux
Store Byte with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA. The EA is 
loaded into rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 1)← (rS)24:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbux rS, rA, rB

X Instruction Form

31 rS rA rB 247 0
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stbx
Store Byte Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant byte of register rS is stored into the byte referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 1)← (rS)24:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stbx rS, rA, rB

X Instruction Form

31 rS rA rB 215 0
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sth
Store Halfword

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 2)← (rS)16:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sth rS, d(rA)

D Instruction Form

44 rS rA d
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sthbrx
Store Halfword Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is byte-reversed and stored into the halfword 
referenced by EA as follows:

• rS[24:31] are stored into the byte referenced by EA.
• rS[16:23] are stored into the byte referenced by EA+1.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 2)← (rS)24:31 || (rS)16:23

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

sthbrx rS, rA, rB

X Instruction Form

31 rS rA rB 918 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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sthu
Store Halfword with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA. 
The EA is loaded into rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 2)← (rS)16:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthu rS, d(rA)

D Instruction Form

45 rS rA d

0 6 1
1

1
6

3
1

http://www.xilinx.com


446 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Alphabetical Instruction Listing
R

sthux
Store Halfword with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA. 
The EA is loaded into rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 2)← (rS)16:31
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthux rS, rA, rB

X Instruction Form

31 rS rA rB 439 0
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sthx
Store Halfword Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is stored into the halfword referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 2)← (rS)16:31

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sthx rS, rA, rB

X Instruction Form

31 rS rA rB 407 0
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stmw
Store Multiple Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n = 32 − rS. 

GPRs rS through r31 are stored into n consecutive words starting at the memory address 
referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
r ← rS
do while r ≤ 31

MS(EA, 4) ← (GPR(r))
r ← r + 1
EA ← EA + 4

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

stmw rS, d(rA)

D Instruction Form

47 rS rA d
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stswi
Store String Word Immediate

Description
An effective address (EA) is determined by the rA field as follows:

• If the rA field is 0, the EA is 0.
• If the rA field is not 0, the contents of register rA are used as the EA.

Let n specify the byte count. If the NB field is 0, n is 32. Otherwise, n is equal to NB.

Let nr specify the number of registers to supply data. nr = CEIL(n÷4).

GPRs rS through rS + nr − 1 are stored into n consecutive bytes starting at the memory 
address referenced by EA. The sequence of registers wraps around to r0 if necessary. The 
bytes within each register are stored beginning with the most-significant byte and ending 
with the least-significant byte, until the byte count is satisfied.

Pseudocode
EA ← (rA|0)
if NB = 0

then n ← 32
else n ← NB

r ← rS − 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1

if r = 32
then r ← 0

MS(EA,1)←(GPR(r)i:i+7)
i ← i + 8
if i = 32

then i ← 0
EA ← EA + 1
n ← n − 1

Registers Altered
• None.

stswi rS, rA, NB

X Instruction Form

31 rS rA NB 725 0
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Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stswx
Store String Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

Let n specify the byte count contained in XER[TBC].

Let nr specify the number of registers to load with data. nr = CEIL(n÷4).

GPRs rS through rS + nr − 1 are stored into n consecutive bytes starting at the memory 
address referenced by EA. The sequence of registers wraps around to r0 if necessary. The 
bytes within each register are stored beginning with the most-significant byte and ending 
with the least-significant byte, until the byte count is satisfied.

If XER[TBC] = 0, stswx is treated as a no-operation.

Pseudocode
EA ← (rA|0) + (rB)
n ← XER[TBC]
r ← rS − 1
i ← 0
do while n > 0

if i = 0
then r ← r + 1

if r = 32
then r ← 0

MS(EA, 1)← (GPR(r)i:i+7)
i ← i + 8
if i = 32

then i ← 0
EA ← EA + 1
n ← n − 1

stswx rS, rA, rB

X Instruction Form

31 rS rA rB 661 0
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Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

If XER[TBC]=0, data-storage and data TLB-miss exceptions do not occur. However, a data 
machine-check exception can occur when XER[TBC]=0 if the following conditions are true:

• The instruction access passes all protection checks.
• The data address is cacheable.
• Access of the data address causes a data-cacheline fill request due to a miss.
• The data-cacheline fill request encounters some form of bus error.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stw
Store Word

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA.

Pseudocode
EA ← (rA|0) + EXTS(d)
MS(EA, 4)← (rS)

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stw rS, d(rA)

D Instruction Form

36 rS rA d
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stwbrx
Store Word Byte-Reverse Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The least-significant halfword of register rS is byte-reversed and stored into the halfword 
referenced by EA as follows:

• rS[24:31] are stored into the byte referenced by EA.
• rS[16:23] are stored into the byte referenced by EA+1.
• rS[8:15] are stored into the byte referenced by EA+2.
• rS[0:7] are stored into the byte referenced by EA+3.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA, 4)← (rS)24:31 || (rS)16:23 || (rS)8:15 || (rS)0:7

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

stwbrx rS, rA, rB

X Instruction Form

31 rS rA rB 662 0
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Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stwcx.
Store Word Conditional Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

If the reservation bit internal to the processor is set to 1 when the instruction is executed, 
the contents of register rS are stored into the word referenced by EA. If the reservation bit 
is cleared to 0 when the instruction is executed, no store operation is performed. Execution 
of this instruction always clears the reservation bit.

CR[CR0] is updated as follows:

• CR[CR0]LT, GT are cleared to 0.

• CR[CR0]EQ is set to the state of the reservation bit before the instruction is executed.

• CR[CR0]SO is set to the contents of the XER[SO] bit.

The lwarx and the stwcx. instructions should paired in a loop to create the effect of an 
atomic memory operation when accessing a semaphore. See Semaphore Synchronization, 
page 127 for more information.

Pseudocode
EA ← (rA|0) + (rB)
if RESERVE = 1

then
MS(EA, 4)← (rS)
RESERVE← 0
(CR[CR0])← 0b00 || 1 || XERso

else
(CR[CR0])← 0b00 || 0 || XERso

Registers Altered
• CR[CR0]LT, GT, EQ, SO.

stwcx. rS, rA, rB

X Instruction Form

31 rS rA rB 150 1
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Exceptions
• Alignment—if the EA is not aligned on a word boundary.
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.
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stwu
Store Word with Update

Description
An effective address (EA) is calculated by adding a displacement to a base address, which 
are formed as follows:

• The displacement is formed by sign-extending the 16-bit d instruction field to 32 bits.
• The contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA. The EA is loaded into 
rA.

Pseudocode
EA ← (rA) + EXTS(d)
MS(EA, 4)← (rS)
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwu rS, d(rA)

D Instruction Form

37 rS rA d
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stwux
Store Word with Update Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• The contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA. The EA is loaded into 
rA.

Pseudocode
EA ← (rA) + (rB)
MS(EA, 4)← (rS)
(rA) ← EA

Registers Altered
• rA.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• rA=0.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwux rS, rA, rB

X Instruction Form

31 rS rA rB 183 0

0 6 1
1

1
6

2
1

3
1

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 461
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

stwx
Store Word Indexed

Description
An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The contents of register rS are stored into the word referenced by EA.

Pseudocode
EA ← (rA|0) + (rB)
MS(EA,4) ← (rS)

Registers Altered
• None.

Exceptions
• Data storage—if the access is prevented by zone protection when data relocation is 

enabled. 
- No-access-allowed zone protection applies only to accesses in user mode. 
- Read-only zone protection applies to user and privileged modes.

• Data TLB miss—if data relocation is enabled and a valid translation-entry 
corresponding to the EA is not found in the TLB.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

stwx rS, rA, rB

X Instruction Form

31 rS rA rB 151 0
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subf
Subtract From

Description
The contents of register rA are subtracted from the contents of register rB, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of register rB to the one’s complement of register rA and 
adding 1 to the result.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 554.

Pseudocode
(rD) ← ¬(rA) + (rB) + 1

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subf rD, rA, rB (OE=0, Rc=0)

subf. rD, rA, rB (OE=0, Rc=1)

subfo rD, rA, rB (OE=1, Rc=0)

subfo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 40 Rc
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subfc
Subtract from Carrying

Description
The contents of register rA are subtracted from the contents of register rB, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of register rB to the one’s complement of register rA and 
adding 1 to the result.

XER[CA] is updated to reflect the unsigned magnitude of the result.

Simplified mnemonics defined for this instruction are described in Subtract Instructions, 
page 554.

Pseudocode
(rD) ← ¬(rA) + (rB) + 1
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfc rD, rA, rB (OE=0, Rc=0)

subfc. rD, rA, rB (OE=0, Rc=1)

subfco rD, rA, rB (OE=1, Rc=0)

subfco. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 8 Rc
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subfe
Subtract from Extended

Description
The contents of register rB are added to the one’s complement of register rA. The contents 
of XER[CA] are added to the result. The result is loaded into register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 93.

Pseudocode
(rD) ← ¬(rA) + (rB) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfe rD, rA, rB (OE=0, Rc=0)

subfe. rD, rA, rB (OE=0, Rc=1)

subfeo rD, rA, rB (OE=1, Rc=0)

subfeo. rD, rA, rB (OE=1, Rc=1)

XO Instruction Form

31 rD rA rB OE 136 Rc
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subfic
Subtract from Immediate Carrying

Description
The contents of register rA are subtracted from the sign-extended SIMM field, producing a 
two’s-complement result that is loaded into register rD. The subtraction operation is 
equivalent to adding the contents of the SIMM field (sign-extended to 32 bits) to the one’s 
complement of register rA and adding 1 to the result.

XER[CA] is updated to reflect the unsigned magnitude of the result.

Pseudocode
(rD) ← ¬(rA) + EXTS(SIMM) + 1
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfic rD, rA, SIMM

D Instruction Form

8 rD rA SIMM
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subfme
Subtract from Minus One Extended

Description
The value -1 is added to the one’s complement of register rA. The contents of XER[CA] are 
added to the result. The result is loaded into register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 93.

Pseudocode
(rD) ← ¬(rA) + 0xFFFF_FFFF + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfme rD, rA (OE=0, Rc=0)

subfme. rD, rA (OE=0, Rc=1)

subfmeo rD, rA (OE=1, Rc=0)

subfmeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 232 Rc
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subfze
Subtract from Zero Extended

Description
The one’s complement of register rA is added to XER[CA] and the result is loaded into 
register rD.

XER[CA] is updated to reflect the unsigned magnitude of the result.

The subtract-from extended instructions can be used to perform subtraction on integers 
larger than 32 bits, as described on page 93.

Pseudocode
(rD) ← ¬(rA) + XER[CA]
if (rD)  232 − 1

then XER[CA] ← 1
else XER[CA] ← 0

Registers Altered
• rD.
• XER[CA].
• CR[CR0]LT, GT, EQ, SO if Rc=1.

• XER[SO, OV] if OE=1.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

subfze rD, rA (OE=0, Rc=0)

subfze. rD, rA (OE=0, Rc=1)

subfzeo rD, rA (OE=1, Rc=0)

subfzeo. rD, rA (OE=1, Rc=1)

XO Instruction Form

31 rD rA 0 0 0 0 0 OE 200 Rc
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sync
Synchronize

Description
The sync instruction is execution synchronizing. It enforces ordering of all instructions 
executed by the processor. It ensures that all instructions preceding sync in program order 
complete before sync completes. Accesses to main memory caused by instructions 
preceding the sync are completed before the sync instruction is completed. 

Instructions following the sync are not started until the sync completes execution. Unlike 
the isync instruction, prefetched instructions are not discarded by the execution of sync.

The sync instruction can be used to guarantee ordering of both instruction completion and 
storage access. The eieio instruction orders memory access, not instruction completion. 
Non-memory instructions following eieio can complete before the memory operations 
ordered by eieio. The PPC405, however, implements eieio and sync identically. 
Programmers should use the appropriate ordering instruction to maximize the 
performance of software that is portable between various PowerPC implementations.

Pseudocode
Synchronize execution

Registers Altered
• None.

Exceptions
Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

sync

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0
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tlbia
TLB Invalidate All 

Description
This is a privileged instruction.

All TLB entries are invalidated. The instruction invalidates a TLB entry by clearing the 
valid (V) bit in the TLBHI portion of the entry. No other field within the TLB entry is 
modified by this instruction.

The TLB is invalidated regardless of whether address translation is enabled. A context-
synchronizing instruction should follow the tlbia instruction to guarantee that the effect of 
invalidating the TLB is visible to subsequent instructions.

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC architecture and the PowerPC embedded-environment 
architecture. Because it is optional it is not implemented by all PowerPC processors. 

tlbia

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0
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tlbre
TLB Read Entry

Description
This is a privileged instruction.

This instruction reads an entry from the TLB. rA26:31 contains an index that is used to select 
an entry in the TLB. The WS field specifies which portion of the TLB entry is loaded into rD. 
If WS = 0, the tag portion (TLBHI) is loaded into rD and the PID is updated with the 
TLBHI[TID] field. If WS = 1, the data portion (TLBLO) is loaded into rD and the PID is not 
modified.

On Virtex-4 devices only, the behavior of tlbre corresponds to setting CCR0[PRS] = 0. If 
CCR0[PRS] = 1 and WS = 0, the instruction reads TLB tag parity bits. If CCR0[PRS] = 1 and 
WS = 1, the instruction reads TLB data parity bits.

See TLB Entries, page 185 for a description of the TLB-entry format.

The TLB entry is read regardless of whether address translation is enabled.

Simplified mnemonics defined for this instruction are described in TLB-Management 
Instructions, page 554.

Pseudocode
tlb_entry = (rA26:31)
if ((Virtex-II Pro) or (Virtex-4 ∧ (CCR0[PRS]=0))) then

if WS4 = 1 then (rD) ← TLBLO[tlb_entry]
else if WS4 = 0 then

(rD) ← TLBHI[tlb_entry]
(PID) ← TID from TLB[tlb_entry]

else if (Virtex-4 ∧ (CCR0[PRS]=1))) then
if WS4 = 1 then (rD) ← [tlbDataEven, tlbDataOdd, 30'b0] (Parity for TLBLO[tlb_entry])
else if WS4 = 0 then

(rD) ←  [tlbTagEven, tlbTagOdd, tlbTagEvenDSize, tlbTagOddDSize, 28'b0]
(Parity for TLBHI[tlb_entry])

(PID) ← TID from TLB[tlb_entry]

Registers Altered
• rD.
• PID if WS=0.

tlbre rD, rA, WS

X Instruction Form

31 rD rA WS 946 0
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Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• WS value greater than 1.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 
architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 
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tlbsx
TLB Search Indexed

Description
This is a privileged instruction.

An effective address (EA) is calculated by adding an index to a base address, which are 
formed as follows:

• The contents of register rB are used as the index.
• If the rA field is 0, the base address is 0.
• If the rA field is not 0, the contents of register rA are used as the base address.

The TLB is searched for a valid entry that translates the combination of the EA and current 
PID (PID24:31). If a valid entry is found, the corresponding TLB index is loaded into rD. 

The TLB is searched regardless of whether address translation is enabled.

If Rc=1, CR[CR0] is updated to reflect the search result. If a valid entry is found, 
CR[CR0]EQ is set to 1. If a valid entry is not found, CR[CR0]EQ is cleared to 0.

Pseudocode
EA ← (rA|0) + (rB)
if Rc = 1

then CR[CR0]LT ← 0
CR[CR0]GT ← 0
CR[CR0]SO ← XER[SO]

if Valid TLB entry matching EA and PID is in the TLB
then (rD) ← Index of matching TLB Entry

if Rc = 1
then CR[CR0]EQ ← 1 

else (rD) ← Undefined 
if Rc = 1

then CR[CR0]EQ ← 0 

Registers Altered
• rD.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

tlbsx rD, rA, rB (Rc=0)

tlbsx. rD, rA, rB (Rc=1)

X Instruction Form

31 rD rA rB 914 Rc
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Exceptions
• Program—Attempted execution of this instruction from user mode.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 
architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 
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tlbsync
TLB Synchronize 

Description
This is a privileged instruction.

The tlbsync instruction is provided by the PowerPC architecture to support TLB 
synchronization in multi-processor systems. In the PPC405 this instruction performs no 
operation. It is provided to facilitate code portability.

Pseudocode
No operation

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC architecture, the PowerPC embedded-environment architecture, 
and the PowerPC Book-E architecture. Because it is optional it is not implemented by all 
PowerPC processors. 

tlbsync

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0
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tlbwe
TLB Write Entry 

Description
This is a privileged instruction.

This instruction writes a new entry into the TLB. rA26:31 contains an index which is used to 
select an entry in the TLB. The WS field specifies which portion of the TLB entry is written 
from rS. If WS=0, the tag portion (TLBHI) is written from rS and the PID field (PID24:31) is 
written into the TLBHI[TID] field. If WS=1, the data portion (TLBLO) is written from rS.

See TLB Entries, page 185 for a description of the TLB-entry format.

The TLB entry is written regardless of whether address translation is enabled. A context-
synchronizing instruction should follow the tlbwe instruction to guarantee that the effect 
of writing a TLB entry is visible to subsequent instructions.

Simplified mnemonics defined for this instruction are described in TLB-Management 
Instructions, page 554.

Pseudocode
tlb_entry = (rA26:31)
if WS4 = 1

then TLBLO[tlb_entry] ← (rS)
else TLBHI[tlb_entry] ← (rS)

TID of TLB[tlb_entry] ← (PID24:31)

Registers Altered
• None.

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.
• WS value greater than 1.

tlbwe rS, rA, WS

X Instruction Form

31 rS rA WS 978 0
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Compatibility
This instruction is defined as optional by the operating-environment architecture level 
(OEA) of the PowerPC embedded-environment architecture and the PowerPC Book-E 
architecture. Because it is optional and not defined by the PowerPC architecture it is not 
implemented by all PowerPC processors. 

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 477
UG011 (v1.2) January 19, 2007

Chapter 11: Instruction Set
R

tw
Trap Word

Description
The TO opcode field specifies the test conditions to be performed on the contents of 
registers rA and rB. See Table 3-13, page 79 for more information on the TO field. If any test 
condition is met, a trap occurs as follows:

• If the trap-instruction debug event is not enabled (DBCR[TDE] = 0, or both 
DBCR[IDM] = 0 and DBCR[EDM] = 0), a program interrupt occurs.

• If the trap-instruction debug event is enabled as an external-debug event 
(DBCR[TDE] = 1 and DBCR[EDM] = 1), the processor enters the debug stop state. An 
external debugger is used to control the processor from this state.

Also, if internal-debug events are enabled (DBCR[IDM] = 1) and debug exceptions are 
disabled (MSR[DE] = 0), an imprecise debug-event is reported by setting DBSR[IDE] to 
1.

• If the trap-instruction debug event is enabled as an internal-debug event 
(DBCR[TDE] = 1, DBCR[IDM] = 1, and DBCR[EDM] = 0), the action taken depends on 
whether debug exceptions are enabled:
- If debug exceptions are enabled (MSR[DE] = 1) a debug interrupt occurs.
- If debug exceptions are disabled (MSR[DE] = 0) a program interrupt occurs. An 

imprecise debug-event is also reported by setting DBSR[IDE] to 1.

Refer to the following for more information:

• Program Interrupt (0x0700), page 223.
• Debug Interrupt (0x2000), page 233.
• Trap-Instruction Debug Event, page 258.
• Internal-Debug Mode, page 248.
• External-Debug Mode, page 248.

Simplified mnemonics defined for this instruction are described in Trap Instructions, 
page 554.

tw TO, rA, rB

X Instruction Form

31 TO rA rB 4 0

0 6 1
1
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Pseudocode
if ((rA) (rB)) ∧ (TO0 = 1) then trap
if ((rA) (rB)) ∧ (TO1 = 1) then trap
if ((rA) (rB)) ∧ (TO2 = 1) then trap
if ((rA) (rB)) ∧ (TO3 = 1) then trap
if ((rA) (rB)) ∧ (TO4 = 1) then trap

Registers Altered
• None.

Exceptions
• Program—As specified above.
• Debug—As specified above.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors. However, the behavior of the trap as it relates to 
the debug exception is implementation-specific.

<
>
=
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twi
Trap Word Immediate

Description
The TO opcode field specifies the test conditions to be performed on the contents of 
register rA and the sign-extended SIMM field (sign-extended to 32 bits). See Table 3-13, 
page 79 for more information on the TO field. If any test condition is met, a trap occurs as 
follows:

• If the trap-instruction debug event is not enabled (DBCR[TDE] = 0, or both 
DBCR[IDM] = 0 and DBCR[EDM] = 0), a program interrupt occurs.

• If the trap-instruction debug event is enabled as an external-debug event 
(DBCR[TDE] = 1 and DBCR[EDM] = 1), the processor enters the debug stop state. An 
external debugger is used to control the processor from this state.

Also, if internal-debug events are enabled (DBCR[IDM] = 1) and debug exceptions are 
disabled (MSR[DE] = 0), an imprecise debug-event is reported by setting DBSR[IDE] to 
1.

• If the trap-instruction debug event is enabled as an internal-debug event 
(DBCR[TDE] = 1, DBCR[IDM] = 1, and DBCR[EDM] = 0), the action taken depends on 
whether debug exceptions are enabled:
- If debug exceptions are enabled (MSR[DE] = 1) a debug interrupt occurs.
- If debug exceptions are disabled (MSR[DE] = 0) a program interrupt occurs. An 

imprecise debug-event is also reported by setting DBSR[IDE] to 1.

Refer to the following for more information:

• Program Interrupt (0x0700), page 223.
• Debug Interrupt (0x2000), page 233.
• Trap-Instruction Debug Event, page 258.
• Internal-Debug Mode, page 248.
• External-Debug Mode, page 248.

Simplified mnemonics defined for this instruction are described in Trap Instructions, 
page 554.

twi TO, rA, SIMM

D Instruction Form

3 TO rA SIMM

0 6 1
1
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Pseudocode
if ((rA) EXTS(SIMM))∧ (TO0 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO1 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO2 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO3 = 1) then trap
if ((rA) EXTS(SIMM))∧ (TO4 = 1) then trap

Registers Altered
• None.

Exceptions
• Program—As specified above.
• Debug—As specified above.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors. However, the behavior of the trap as it relates to 
the debug exception is implementation-specific.
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wrtee
Write External Enable

Description
This is a privileged instruction.

MSR[EE] is set to the value specified by bit 16 in register rS.

Pseudocode
MSR[EE] ← (rS)16

Registers Altered
• MSR[EE].

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
Because it is not defined by the PowerPC architecture it is not implemented by all 
PowerPC processors. 

wrtee rS

X Instruction Form

31 rS 0 0 0 0 0 0 0 0 0 0 131 0

0 6 1
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wrteei
Write External Enable Immediate

Description
This is a privileged instruction.

MSR[EE] is set to the value specified by the E opcode field.

Pseudocode
MSR[EE] ← E

Registers Altered
• MSR[EE].

Exceptions
• Program—Attempted execution of this instruction from user mode.

Execution of any of the following invalid-instruction forms results in a boundedly-
undefined result rather than a program exception:

• Reserved bits containing a non-zero value.

Compatibility
This instruction is defined by the operating-environment architecture level (OEA) of the 
the PowerPC embedded-environment architecture and the PowerPC Book-E architecture. 
Because it is not defined by the PowerPC architecture it is not implemented by all 
PowerPC processors. 

wrteei E

X Instruction Form

31 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0 163 0

0 6 1
6
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xor
XOR

Description
The contents of register rS are XORed with the contents of register rB and the result is 
loaded into register rA.

Pseudocode
(rA) ← (rS) ⊕ (rB)

Registers Altered
• rA.
• CR[CR0]LT, GT, EQ, SO if Rc=1.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xor rA, rS, rB (Rc=0)

xor. rA, rS, rB (Rc=1)

X Instruction Form

31 rS rA rB 316 Rc

0 6 1
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xori
XOR Immediate

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of 
register rS are XORed with the extended UIMM field and the result is loaded into register 
rA.

Pseudocode
(rA) ← (rS) ⊕ (160 || UIMM)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xori rA, rS, UIMM

D Instruction Form

26 rS rA UIMM

0 6 1
1
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xoris
XOR Immediate Shifted

Description
The UIMM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents 
of register rS are XORed with the extended UIMM field and the result is loaded into 
register rA.

Pseudocode
(rA) ← (rS) ⊕ (UIMM || 160)

Registers Altered
• rA.

Exceptions
• None.

Compatibility
This instruction is defined by the PowerPC user instruction-set architecture (UISA). It is 
implemented by all PowerPC processors.

xoris rA, rS, UIMM

D Instruction Form

27 rS rA UIMM

0 6 1
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Appendix A

Register Summary

This appendix lists the registers supported by the PPC405. Each table following the register 
cross-reference shows the register name, its descriptive name, the register number, 
whether the register is privileged (accessible only from privileged mode), the type of 
access allowed, and the reset value. In these tables, a column headed “Dec” contains 
Decimal values and a column headed “Hex” contains hexadecimal values.

Register Cross-Reference
Table A-1 provides a cross-reference to detailed information on all registers supported by 
the PPC405.

Table A-1: PPC405 Register Cross-Reference

Name Descriptive Name Cross Reference

r0–r31 General-Purpose Registers 0–31 General-Purpose Registers (GPRs), page 60

CR Condition Register Condition Register (CR), page 61

MSR Machine-State Register Machine-State Register, page 132

CCR0, 
CCR1

Core-Configuration Registers 0 and 1 Core-Configuration Register 0, page 164, 
Core-Configuration Register 1 (Virtex-4 Devices 
Only), page 167

CTR Count Register Count Register (CTR), page 64

DAC1 Data Address-Compare 1 Data Address-Compare Registers, page 255

DAC2 Data Address-Compare 2

DBCR0 Debug-Control Register 0 Debug-Control Registers, page 250

DBCR1 Debug-Control Register 1

DBSR Debug-Status Register Debug-Status Register, page 253

DCCR Data-Cache Cacheability Register Data-Cache Cacheability Register (DCCR), page 157

DCWR Data-Cache Write-Through Register Data-Cache Write-Through Register (DCWR), 
page 157

DEAR Data-Error Address Register Data Exception-Address Register, page 212

DVC1 Data Value-Compare 1 Data Value-Compare Registers, page 255

DVC2 Data Value-Compare 2

ESR Exception-Syndrome Register Exception-Syndrome Register, page 211

EVPR Exception-Vector Prefix Register Exception-Vector Prefix Register, page 210
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IAC1 Instruction Address-Compare 1 Instruction Address-Compare Registers, page 254

IAC2 Instruction Address-Compare 2

IAC3 Instruction Address-Compare 3

IAC4 Instruction Address-Compare 4

ICCR Instruction-Cache Cacheability Register Instruction-Cache Cacheability Register (ICCR), 
page 158

ICDBDR Instruction-Cache Debug-Data Register icread Instruction, page 175

LR Link Register Link Register (LR), page 63

MCSR Machine Check Syndrome Register Machine Check Syndrome Register (MCSR) 
(Virtex-4 Devices Only), page 213

PID Process ID Register Process-ID Register, page 182

PIT Programmable-Interval Timer Programmable-Interval Timer Register, page 239

PVR Processor-Version Register Processor-Version Register, page 134

SGR Storage Guarded Register Storage Guarded Register (SGR), page 158

SLER Storage Little-Endian Register Storage Little-Endian Register (SLER), page 159

SPRG0 SPR General-Purpose Register 0 SPR General-Purpose Registers, page 133

SPRG1 SPR General-Purpose Register 1

SPRG2 SPR General-Purpose Register 2

SPRG3 SPR General-Purpose Register 3

SPRG4 SPR General-Purpose Register 4

SPRG5 SPR General-Purpose Register 5

SPRG6 SPR General-Purpose Register 6

SPRG7 SPR General-Purpose Register 7

SRR0 Save/Restore Register 0 Save/Restore Registers 0 and 1, page 209

SRR1 Save/Restore Register 1

SRR2 Save/Restore Register 2 Save/Restore Registers 2 and 3, page 210

SRR3 Save/Restore Register 3

SU0R Storage User-Defined 0 Register Storage User-Defined 0 Register (SU0R), page 159

TBL Time-Base Lower Time Base, page 236

TBU Time-Base Upper

TCR Timer-Control Register Timer-Control Register, page 240

TSR Timer-Status Register Timer-Status Register, page 241

USPRG0 User SPR General-Purpose Register 0 User-SPR General-Purpose Register, page 65

XER Fixed-Point Exception Register Fixed-Point Exception Register (XER), page 63

ZPR Zone-Protection Register Zone Protection, page 192

Table A-1: PPC405 Register Cross-Reference (Continued)

Name Descriptive Name Cross Reference
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General-Purpose Registers 
Table A-2 lists the general-purpose registers (GPRs). A binary version of the register 
number is shown to assist in interpreting instruction encodings often found in machine-
code listings.

Table A-2: General-Purpose Registers

Name Descriptive Name
Register Number

Privileged Access Reset Value
Dec Hex Binary

r0 General-Purpose Register 0 0 0x00 0b00000 No Read/Write Undefined

r1 General-Purpose Register 1 1 0x01 0b00001 No Read/Write Undefined

r2 General-Purpose Register 2 2 0x02 0b00010 No Read/Write Undefined

r3 General-Purpose Register 3 3 0x03 0b00011 No Read/Write Undefined

r4 General-Purpose Register 4 4 0x04 0b00100 No Read/Write Undefined

r5 General-Purpose Register 5 5 0x05 0b00101 No Read/Write Undefined

r6 General-Purpose Register 6 6 0x06 0b00110 No Read/Write Undefined

r7 General-Purpose Register 7 7 0x07 0b00111 No Read/Write Undefined

r8 General-Purpose Register 8 8 0x08 0b01000 No Read/Write Undefined

r9 General-Purpose Register 9 9 0x09 0b01001 No Read/Write Undefined

r10 General-Purpose Register 10 10 0x0A 0b01010 No Read/Write Undefined

r11 General-Purpose Register 11 11 0x0B 0b01011 No Read/Write Undefined

r12 General-Purpose Register 12 12 0x0C 0b01100 No Read/Write Undefined

r13 General-Purpose Register 13 13 0x0D 0b01101 No Read/Write Undefined

r14 General-Purpose Register 14 14 0x0E 0b01110 No Read/Write Undefined

r15 General-Purpose Register 15 15 0x0F 0b01111 No Read/Write Undefined

r16 General-Purpose Register 16 16 0x10 0b10000 No Read/Write Undefined

r17 General-Purpose Register 17 17 0x11 0b10001 No Read/Write Undefined

r18 General-Purpose Register 18 18 0x12 0b10010 No Read/Write Undefined

r19 General-Purpose Register 19 19 0x13 0b10011 No Read/Write Undefined

r20 General-Purpose Register 20 20 0x14 0b10100 No Read/Write Undefined

r21 General-Purpose Register 21 21 0x15 0b10101 No Read/Write Undefined

r22 General-Purpose Register 22 22 0x16 0b10110 No Read/Write Undefined

r23 General-Purpose Register 23 23 0x17 0b10111 No Read/Write Undefined

r24 General-Purpose Register 24 24 0x18 0b11000 No Read/Write Undefined

r25 General-Purpose Register 25 25 0x19 0b11001 No Read/Write Undefined

r26 General-Purpose Register 26 26 0x1A 0b11010 No Read/Write Undefined

r27 General-Purpose Register 27 27 0x1B 0b11011 No Read/Write Undefined

r28 General-Purpose Register 28 28 0x1C 0b11100 No Read/Write Undefined
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Machine-State Register and Condition Register
Table A-3 lists the machine-state and condition registers. These registers are accessed using 
special instructions and do not have register numbers associated with them.

Special-Purpose Registers
Table A-4 lists the special-purpose registers sorted by name. The SPRN is the SPR number 
that appears in the assembler syntax. The SPRF is the split-field version of the SPRN that 
appears in the instruction encoding. Table A-5, page 492 lists the special-purpose registers 
sorted by SPRN and Table A-6, page 494 lists the special-purpose registers sorted by SPRF.

The following notes apply to the “Reset Value” column in these tables:

Notes: 
1. The most-recent reset bits are set as follows:

00—No reset occurred. This is the value of WRS if the watchdog timer did not cause the reset.
01—A processor-only reset occurred.
10—A chip reset occurred.
11—A system reset occurred.
All remaining bits are undefined.

2. WRC is cleared, disabling watchdog time-out resets. All remaining bits are undefined.

r29 General-Purpose Register 29 29 0x1D 0b11101 No Read/Write Undefined

r30 General-Purpose Register 30 30 0x1E 0b11110 No Read/Write Undefined

r31 General-Purpose Register 31 31 0x1F 0b11111 No Read/Write Undefined

Table A-2: General-Purpose Registers (Continued)

Name Descriptive Name
Register Number

Privileged Access Reset Value
Dec Hex Binary

Table A-3: Machine-State and Condition Registers

Name Descriptive Name Register Number Privileged Access Reset Value

CR Condition Register Not Applicable No Read/Write Undefined

MSR Machine-State Register Not Applicable Yes Read/Write 0x0000_0000

Table A-4: Special-Purpose Registers Sorted by Name

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write 0x0070_0000

CCR1 Core-Configuration Register 1 888 0x378 0x31B 0b11000_11011 Yes Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1
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DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

MCSR Machine Check Syndrome Register 572 0x23C 0x391 0b11100_10001 Yes Read/Clear Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only Depends on 
device family

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

Table A-4: Special-Purpose Registers Sorted by Name (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary
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Table A-5 lists the special-purpose registers sorted by the SPRN. The SPRN is the SPR 
number that appears in the assembler syntax. This table is useful in interpreting assembler 
listings.

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

Table A-4: Special-Purpose Registers Sorted by Name (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

Table A-5: Special-Purpose Registers Sorted by SPRN

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 493
UG011 (v1.2) January 19, 2007

Appendix A: Register Summary
R

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only Depends on 
device family

MCSR Machine Check Syndrome Register 572 0x23C 0x391 0b11100_10001 Yes Read/Clear Undefined

CCR1 Core-Configuration Register 1 888 0x378 0x31B 0b11000_11011 Yes Read/Write Undefined

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write 0x0070_0000

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

Table A-5: Special-Purpose Registers Sorted by SPRN (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary
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Table A-6 lists the special-purpose registers sorted by SPRF. The SPRF is the split-field 
version of the SPRN that appears in the instruction encoding. This table is useful in 
interpreting machine-code listings.

Table A-6: Special-Purpose Registers Sorted by SPRF

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

USPRG0 User SPR General-Purpose Register 0 256 0x100 0x008 0b00000_01000 No Read/Write Undefined

XER Fixed-Point Exception Register 1 0x001 0x020 0b00001_00000 No Read/Write Undefined

SPRG4 SPR General-Purpose Register 4 260 0x104 0x088 0b00100_01000 No Read-Only Undefined

SPRG5 SPR General-Purpose Register 5 261 0x105 0x0A8 0b00101_01000 No Read-Only Undefined

SPRG6 SPR General-Purpose Register 6 262 0x106 0x0C8 0b00110_01000 No Read-Only Undefined

SPRG7 SPR General-Purpose Register 7 263 0x107 0x0E8 0b00111_01000 No Read-Only Undefined

LR Link Register 8 0x008 0x100 0b01000_00000 No Read/Write Undefined

CTR Count Register 9 0x009 0x120 0b01001_00000 No Read/Write Undefined

SPRG0 SPR General-Purpose Register 0 272 0x110 0x208 0b10000_01000 Yes Read/Write Undefined

ZPR Zone-Protection Register 944 0x3B0 0x21D 0b10000_11101 Yes Read/Write Undefined

DBSR Debug-Status Register 1008 0x3F0 0x21F 0b10000_11111 Yes Read/Clear Undefined1

SPRG1 SPR General-Purpose Register 1 273 0x111 0x228 0b10001_01000 Yes Read/Write Undefined

PID Process ID Register 945 0x3B1 0x23D 0b10001_11101 Yes Read/Write Undefined

SPRG2 SPR General-Purpose Register 2 274 0x112 0x248 0b10010_01000 Yes Read/Write Undefined

DBCR0 Debug-Control Register 0 1010 0x3F2 0x25F 0b10010_11111 Yes Read/Write 0x0000_0000

SPRG3 SPR General-Purpose Register 3 275 0x113 0x268 0b10011_01000 Yes Read/Write Undefined

CCR0 Core-Configuration Register 0 947 0x3B3 0x27D 0b10011_11101 Yes Read/Write 0x0070_0000

ICDBDR Instruction-Cache Debug-Data Register 979 0x3D3 0x27E 0b10011_11110 Yes Read-Only Undefined

SPRG4 SPR General-Purpose Register 4 276 0x114 0x288 0b10100_01000 Yes Read/Write Undefined

IAC3 Instruction Address-Compare 3 948 0x3B4 0x29D 0b10100_11101 Yes Read/Write Undefined

ESR Exception-Syndrome Register 980 0x3D4 0x29E 0b10100_11110 Yes Read/Write 0x0000_0000

IAC1 Instruction Address-Compare 1 1012 0x3F4 0x29F 0b10100_11111 Yes Read/Write Undefined

SPRG5 SPR General-Purpose Register 5 277 0x115 0x2A8 0b10101_01000 Yes Read/Write Undefined

IAC2 Instruction Address-Compare 2 1013 0x3F5 0x2B5 0b10101_11111 Yes Read/Write Undefined

IAC4 Instruction Address-Compare 4 949 0x3B5 0x2BD 0b10101_11101 Yes Read/Write Undefined

DEAR Data-Error Address Register 981 0x3D5 0x2BE 0b10101_11110 Yes Read/Write Undefined

SPRG6 SPR General-Purpose Register 6 278 0x116 0x2C8 0b10110_01000 Yes Read/Write Undefined

DVC1 Data Value-Compare 1 950 0x3B6 0x2DD 0b10110_11101 Yes Read/Write Undefined

EVPR Exception-Vector Prefix Register 982 0x3D6 0x2DE 0b10110_11110 Yes Read/Write Undefined

DAC1 Data Address-Compare 1 1014 0x3F6 0x2DF 0b10110_11111 Yes Read/Write Undefined

SPRG7 SPR General-Purpose Register 7 279 0x117 0x2E8 0b10111_01000 Yes Read/Write Undefined

DVC2 Data Value-Compare 2 951 0x3B7 0x2FD 0b10111_11101 Yes Read/Write Undefined
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Time-Base Registers
Table A-7 lists the time-base registers accessed (read) using the mftb instruction. These 
registers can be written using the mtspr instruction (see Special-Purpose Registers, 
page 490 for information on the time-base SPRs). The TBRN is the time-base number that 
appears in the assembler syntax. The TBRF is the split-field version of the TBRN that 
appears in the instruction encoding.

DAC2 Data Address-Compare 2 1015 0x3F7 0x2FF 0b10111_11111 Yes Read/Write Undefined

TSR Timer-Status Register 984 0x3D8 0x31E 0b11000_11110 Yes Read/Clear Undefined1

SGR Storage Guarded Register 953 0x3B9 0x33D 0b11001_11101 Yes Read/Write 0xFFFF_FFFF

SRR0 Save/Restore Register 0 26 0x01A 0x340 0b11010_00000 Yes Read/Write Undefined

DCWR Data-Cache Write-Through Register 954 0x3BA 0x35D 0b11010_11101 Yes Read/Write Undefined

TCR Timer-Control Register 986 0x3DA 0x35E 0b11010_11110 Yes Read/Write Undefined2

DCCR Data-Cache Cacheability Register 1018 0x3FA 0x35F 0b11010_11111 Yes Read/Write 0x0000_0000

SRR1 Save/Restore Register 1 27 0x01B 0x360 0b11011_00000 Yes Read/Write Undefined

SLER Storage Little-Endian Register 955 0x3BB 0x37D 0b11011_11101 Yes Read/Write 0x0000_0000

PIT Programmable-Interval Timer 987 0x3DB 0x37E 0b11011_11110 Yes Read/Write Undefined

ICCR Instruction-Cache Cacheability 
Register

1019 0x3FB 0x37F 0b11011_11111 Yes Read/Write 0x0000_0000

TBL Time-Base Lower 284 0x11C 0x388 0b11100_01000 Yes Write-Only Undefined

SU0R Storage User-Defined 0 Register 956 0x3BC 0x39D 0b11100_11101 Yes Read/Write 0x0000_0000

TBU Time-Base Upper 285 0x11D 0x3A8 0b11101_01000 Yes Write-Only Undefined

DBCR1 Debug-Control Register 1 957 0x3BD 0x3BD 0b11101_11101 Yes Read/Write 0x0000_0000

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE 0b11110_11110 Yes Read/Write Undefined

PVR Processor-Version Register 287 0x11F 0x3E8 0b11111_01000 Yes Read-Only Depends on 
device family

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE 0b11111_11110 Yes Read/Write Undefined

Table A-6: Special-Purpose Registers Sorted by SPRF (Continued)

Name Descriptive Name
SPRN SPRF

Privileged Access Reset Value
Dec Hex Hex Binary

Table A-7: Time-Base Registers

Name Descriptive Name
TBRN TBRF

Privileged Access Reset Value
Dec Hex Hex Binary

TBL Time-Base Lower 268 0x10C 0x188 0b01100_01000 No Read-Only Undefined

TBU Time-Base Upper 269 0x10D 0x1A8 0b01101_01000 No Read-Only Undefined
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Device Control Registers
The device-control register (DCR) interface provides a mechanism for the Processor Block 
to initialize and control peripheral devices that reside on the same FPGA chip. For 
example, the memory-transfer characteristics and address assignments for a bus-interface 
unit (BIU) can be configured by software using DCRs. The DCRs are accessed using the 
PowerPC mfdcr and mtdcr privileged instructions.

There are two types of device-control register (DCR) interfaces:

• Internal device-control registers in Processor Block gasket 
• User-defined device-control registers in CoreConnect DCR bus peripherals. 

The programming model to access these DCRs also depend on surrounding logic of 
Processor Block of the FPGAs. Therefore, please refer to the PowerPC 405 Processor Block 
Reference Guide for more details.
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Appendix B

Instruction Summary

This appendix lists the PPC405 instruction set sorted by mnemonic, opcode, function, and 
form. A reference table containing general instruction information such as the architecture 
level, privilege level, and compatibility is also provided.

In the following tables, reserved fields are shaded gray and contain a value of zero.

Instructions Sorted by Mnemonic
Table B-1 lists the PPC405 instruction set in alphabetical order by mnemonic.

Table B-1: Instructions Sorted by Mnemonic

0 6 9 11 12 14 16 17 20 21 22 26 30 31

add 31 rD rA rB OE 266 Rc

addc 31 rD rA rB OE 10 Rc

adde 31 rD rA rB OE 138 Rc

addi 14 rD rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addis 15 rD rA SIMM

addme 31 rD rA 00000 OE 234 Rc

addze 31 rD rA 00000 OE 202 Rc

and 31 rS rA rB 28 Rc

andc 31 rS rA rB 60 Rc

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

b 18 LI AA LK

bc 16 BO BI BD AA LK

bcctr 19 BO BI 00000 528 LK

bclr 19 BO BI 00000 16 LK

cmp 31 crfD 00 rA rB 0 0

cmpi 11 crfD 00 rA SIMM

cmpl 31 crfD 00 rA rB 32 0
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cmpli 10 crfD 00 rA SIMM

cntlzw 31 rS rA 00000 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcba 31 00000 rA rB 758 0

dcbf 31 00000 rA rB 86 0

dcbi 31 00000 rA rB 470 0

dcbst 31 00000 rA rB 54 0

dcbt 31 00000 rA rB 278 0

dcbtst 31 00000 rA rB 246 0

dcbz 31 00000 rA rB 1014 0

dccci 31 00000 rA rB 454 0

dcread 31 rD rA rB 486 0

divw 31 rD rA rB OE 491 Rc

divwu 31 rD rA rB OE 459 Rc

eieio 31 00000 00000 00000 854 0

eqv 31 rS rA rB 284 Rc

extsb 31 rS rA 00000 954 Rc

extsh 31 rS rA 00000 922 Rc

icbi 31 00000 rA rB 982 0

icbt 31 00000 rA rB 262 0

iccci 31 00000 rA rB 966 0

icread 31 00000 rA rB 998 0

isync 19 00000 00000 00000 150 0

lbz 34 rD rA d

lbzu 35 rD rA d

lbzux 31 rD rA rB 119 0

lbzx 31 rD rA rB 87 0

lha 42 rD rA d

lhau 43 rD rA d

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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lhaux 31 rD rA rB 375 0

lhax 31 rD rA rB 343 0

lhbrx 31 rD rA rB 790 0

lhz 40 rD rA d

lhzu 41 rD rA d

lhzux 31 rD rA rB 311 0

lhzx 31 rD rA rB 279 0

lmw 46 rD rA d

lswi 31 rD rA NB 597 0

lswx 31 rD rA rB 533 0

lwarx 31 rD rA rB 20 0

lwbrx 31 rD rA rB 534 0

lwz 32 rD rA d

lwzu 33 rD rA d

lwzux 31 rD rA rB 55 0

lwzx 31 rD rA rB 23 0

macchw 4 rD rA rB OE 172 Rc

macchws 4 rD rA rB OE 236 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchwu 4 rD rA rB OE 140 Rc

machhw 4 rD rA rB OE 44 Rc

machhws 4 rD rA rB OE 108 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhwu 4 rD rA rB OE 12 Rc

maclhw 4 rD rA rB OE 428 Rc

maclhws 4 rD rA rB OE 492 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhwu 4 rD rA rB OE 396 Rc

mcrf 19 crfD 00 crfS 00 00000 0 0

mcrxr 31 crfD 00 00000 00000 512 0

mfcr 31 rD 00000 00000 19 0

mfdcr 31 rD DCRF 323 0

mfmsr 31 rD 00000 00000 83 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtcrf 31 rS 0 CRM 0 144 0

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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mtdcr 31 rS DCRF 451 0

mtmsr 31 rS 00000 00000 146 0

mtspr 31 rS SPRF 467 0

mulchw 4 rD rA rB 168 Rc

mulchwu 4 rD rA rB 136 Rc

mulhhw 4 rD rA rB 40 Rc

mulhhwu 4 rD rA rB 8 Rc

mulhw 31 rD rA rB 0 75 Rc

mulhwu 31 rD rA rB 0 11 Rc

mullhw 4 rD rA rB 424 Rc

mullhwu 4 rD rA rB 392 Rc

mulli 7 rD rA SIMM

mullw 31 rD rA rB OE 235 Rc

nand 31 rS rA rB 476 Rc

neg 31 rD rA 00000 OE 104 Rc

nmacchw 4 rD rA rB OE 174 Rc

nmacchws 4 rD rA rB OE 238 Rc

nmachhw 4 rD rA rB OE 46 Rc

nmachhws 4 rD rA rB OE 110 Rc

nmaclhw 4 rD rA rB OE 430 Rc

nmaclhws 4 rD rA rB OE 494 Rc

nor 31 rS rA rB 124 Rc

or 31 rS rA rB 444 Rc

orc 31 rS rA rB 412 Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

rfci 19 00000 00000 00000 51 0

rfi 19 00000 00000 00000 50 0

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

sc 17 00000 00000 00000 00000 0000 1 0

slw 31 rS rA rB 24 Rc

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

srw 31 rS rA rB 536 Rc

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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stb 38 rS rA d

stbu 39 rS rA d

stbux 31 rS rA rB 247 0

stbx 31 rS rA rB 215 0

sth 44 rS rA d

sthbrx 31 rS rA rB 918 0

sthu 45 rS rA d

sthux 31 rS rA rB 439 0

sthx 31 rS rA rB 407 0

stmw 47 rS rA d

stswi 31 rS rA NB 725 0

stswx 31 rS rA rB 661 0

stw 36 rS rA d

stwbrx 31 rS rA rB 662 0

stwcx. 31 rS rA rB 150 1

stwu 37 rS rA d

stwux 31 rS rA rB 183 0

stwx 31 rS rA rB 151 0

subf 31 rD rA rB OE 40 Rc

subfc 31 rD rA rB OE 8 Rc

subfe 31 rD rA rB OE 136 Rc

subfic 8 rD rA SIMM

subfme 31 rD rA 00000 OE 232 Rc

subfze 31 rD rA 00000 OE 200 Rc

sync 31 00000 00000 00000 598 0

tlbia 31 00000 00000 00000 370 0

tlbre 31 rD rA WS 946 0

tlbsx 31 rD rA rB 914 Rc

tlbsync 31 00000 00000 00000 566 0

tlbwe 31 rS rA WS 978 0

tw 31 TO rA rB 4 0

twi 3 TO rA SIMM

wrtee 31 rS 00000 00000 131 0

wrteei 31 00000 00000 E 0000 163 0

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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Instructions Sorted by Opcode
Table B-2 lists the PPC405 instruction set in numeric order by primary and secondary 
opcode.

xor 31 rS rA rB 316 Rc

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

Table B-1: Instructions Sorted by Mnemonic (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31

Table B-2: Instructions Sorted by Opcode

0 6 9 11 12 14 16 17 20 21 22 26 30 31

twi 3 TO rA SIMM

mulhhwu 4 rD rA rB 8 Rc

machhwu 4 rD rA rB OE 12 Rc

mulhhw 4 rD rA rB 40 Rc

machhw 4 rD rA rB OE 44 Rc

nmachhw 4 rD rA rB OE 46 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhws 4 rD rA rB OE 108 Rc

nmachhws 4 rD rA rB OE 110 Rc

mulchwu 4 rD rA rB 136 Rc

macchwu 4 rD rA rB OE 140 Rc

mulchw 4 rD rA rB 168 Rc

macchw 4 rD rA rB OE 172 Rc

nmacchw 4 rD rA rB OE 174 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchws 4 rD rA rB OE 236 Rc

nmacchws 4 rD rA rB OE 238 Rc

mullhwu 4 rD rA rB 392 Rc

maclhwu 4 rD rA rB OE 396 Rc

mullhw 4 rD rA rB 424 Rc

maclhw 4 rD rA rB OE 428 Rc

nmaclhw 4 rD rA rB OE 430 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhws 4 rD rA rB OE 492 Rc

nmaclhws 4 rD rA rB OE 494 Rc

mulli 7 rD rA SIMM

subfic 8 rD rA SIMM
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cmpli 10 crfD 00 rA SIMM

cmpi 11 crfD 00 rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addi 14 rD rA SIMM

addis 15 rD rA SIMM

bc 16 BO BI BD AA LK

sc 17 00000 00000 00000 00000 0000 1 0

b 18 LI AA LK

mcrf 19 crfD 00 crfS 00 00000 0 0

bclr 19 BO BI 00000 16 LK

crnor 19 crbD crbA crbB 33 0

rfi 19 00000 00000 00000 50 0

rfci 19 00000 00000 00000 51 0

crandc 19 crbD crbA crbB 129 0

isync 19 00000 00000 00000 150 0

crxor 19 crbD crbA crbB 193 0

crnand 19 crbD crbA crbB 225 0

crand 19 crbD crbA crbB 257 0

creqv 19 crbD crbA crbB 289 0

crorc 19 crbD crbA crbB 417 0

cror 19 crbD crbA crbB 449 0

bcctr 19 BO BI 00000 528 LK

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

cmp 31 crfD 00 rA rB 0 0

tw 31 TO rA rB 4 0

subfc 31 rD rA rB OE 8 Rc

addc 31 rD rA rB OE 10 Rc

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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mulhwu 31 rD rA rB 0 11 Rc

mfcr 31 rD 00000 00000 19 0

lwarx 31 rD rA rB 20 0

lwzx 31 rD rA rB 23 0

slw 31 rS rA rB 24 Rc

cntlzw 31 rS rA 00000 26 Rc

and 31 rS rA rB 28 Rc

cmpl 31 crfD 00 rA rB 32 0

subf 31 rD rA rB OE 40 Rc

dcbst 31 00000 rA rB 54 0

lwzux 31 rD rA rB 55 0

andc 31 rS rA rB 60 Rc

mulhw 31 rD rA rB 0 75 Rc

mfmsr 31 rD 00000 00000 83 0

dcbf 31 00000 rA rB 86 0

lbzx 31 rD rA rB 87 0

neg 31 rD rA 00000 OE 104 Rc

lbzux 31 rD rA rB 119 0

nor 31 rS rA rB 124 Rc

wrtee 31 rS 00000 00000 131 0

subfe 31 rD rA rB OE 136 Rc

adde 31 rD rA rB OE 138 Rc

mtcrf 31 rS 0 CRM 0 144 0

mtmsr 31 rS 00000 00000 146 0

stwcx. 31 rS rA rB 150 1

stwx 31 rS rA rB 151 0

wrteei 31 00000 00000 E 0000 163 0

stwux 31 rS rA rB 183 0

subfze 31 rD rA 00000 OE 200 Rc

addze 31 rD rA 00000 OE 202 Rc

stbx 31 rS rA rB 215 0

subfme 31 rD rA 00000 OE 232 Rc

addme 31 rD rA 00000 OE 234 Rc

mullw 31 rD rA rB OE 235 Rc

dcbtst 31 00000 rA rB 246 0

stbux 31 rS rA rB 247 0

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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icbt 31 00000 rA rB 262 0

add 31 rD rA rB OE 266 Rc

dcbt 31 00000 rA rB 278 0

lhzx 31 rD rA rB 279 0

eqv 31 rS rA rB 284 Rc

lhzux 31 rD rA rB 311 0

xor 31 rS rA rB 316 Rc

mfdcr 31 rD DCRF 323 0

mfspr 31 rD SPRF 339 0

lhax 31 rD rA rB 343 0

tlbia 31 00000 00000 00000 370 0

mftb 31 rD TBRF 371 0

lhaux 31 rD rA rB 375 0

sthx 31 rS rA rB 407 0

orc 31 rS rA rB 412 Rc

sthux 31 rS rA rB 439 0

or 31 rS rA rB 444 Rc

mtdcr 31 rS DCRF 451 0

dccci 31 00000 rA rB 454 0

divwu 31 rD rA rB OE 459 Rc

mtspr 31 rS SPRF 467 0

dcbi 31 00000 rA rB 470 0

nand 31 rS rA rB 476 Rc

dcread 31 rD rA rB 486 0

divw 31 rD rA rB OE 491 Rc

mcrxr 31 crfD 00 00000 00000 512 0

lswx 31 rD rA rB 533 0

lwbrx 31 rD rA rB 534 0

srw 31 rS rA rB 536 Rc

tlbsync 31 00000 00000 00000 566 0

lswi 31 rD rA NB 597 0

sync 31 00000 00000 00000 598 0

stswx 31 rS rA rB 661 0

stwbrx 31 rS rA rB 662 0

stswi 31 rS rA NB 725 0

dcba 31 00000 rA rB 758 0

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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lhbrx 31 rD rA rB 790 0

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

eieio 31 00000 00000 00000 854 0

tlbsx 31 rD rA rB 914 Rc

sthbrx 31 rS rA rB 918 0

extsh 31 rS rA 00000 922 Rc

tlbre 31 rD rA WS 946 0

extsb 31 rS rA 00000 954 Rc

iccci 31 00000 rA rB 966 0

tlbwe 31 rS rA WS 978 0

icbi 31 00000 rA rB 982 0

icread 31 00000 rA rB 998 0

dcbz 31 00000 rA rB 1014 0

lwz 32 rD rA d

lwzu 33 rD rA d

lbz 34 rD rA d

lbzu 35 rD rA d

stw 36 rS rA d

stwu 37 rS rA d

stb 38 rS rA d

stbu 39 rS rA d

lhz 40 rD rA d

lhzu 41 rD rA d

lha 42 rD rA d

lhau 43 rD rA d

sth 44 rS rA d

sthu 45 rS rA d

lmw 46 rD rA d

stmw 47 rS rA d

Table B-2: Instructions Sorted by Opcode (Continued)

0 6 9 11 12 14 16 17 20 21 22 26 30 31
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Instructions Grouped by Function
Table B-3 though Table B-22 list the PPC405 instruction set grouped by function. Within 
each table, instructions are sorted in alphabetical order by mnemonic.

Table B-3: Integer Add and Subtract Instructions

0 6 11 16 21 22 31

add 31 rD rA rB OE 266 Rc

addc 31 rD rA rB OE 10 Rc

adde 31 rD rA rB OE 138 Rc

addi 14 rD rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addis 15 rD rA SIMM

addme 31 rD rA 00000 OE 234 Rc

addze 31 rD rA 00000 OE 202 Rc

neg 31 rD rA 00000 OE 104 Rc

subf 31 rD rA rB OE 40 Rc

subfc 31 rD rA rB OE 8 Rc

subfe 31 rD rA rB OE 136 Rc

subfic 8 rD rA SIMM

subfme 31 rD rA 00000 OE 232 Rc

subfze 31 rD rA 00000 OE 200 Rc

Table B-4: Integer Divide and Multiply Instructions

0 6 11 16 21 22 31

divw 31 rD rA rB OE 491 Rc

divwu 31 rD rA rB OE 459 Rc

mulchw 4 rD rA rB 168 Rc

mulchwu 4 rD rA rB 136 Rc

mulhhw 4 rD rA rB 40 Rc

mulhhwu 4 rD rA rB 8 Rc

mulhw 31 rD rA rB 0 75 Rc

mulhwu 31 rD rA rB 0 11 Rc

mullhw 4 rD rA rB 424 Rc

mullhwu 4 rD rA rB 392 Rc

mulli 7 rD rA SIMM

mullw 31 rD rA rB OE 235 Rc
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Table B-5: Integer Multiply-Accumulate Instructions

0 6 11 16 21 22 31

macchw 4 rD rA rB OE 172 Rc

macchws 4 rD rA rB OE 236 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchwu 4 rD rA rB OE 140 Rc

machhw 4 rD rA rB OE 44 Rc

machhws 4 rD rA rB OE 108 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhwu 4 rD rA rB OE 12 Rc

maclhw 4 rD rA rB OE 428 Rc

maclhws 4 rD rA rB OE 492 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhwu 4 rD rA rB OE 396 Rc

nmacchw 4 rD rA rB OE 174 Rc

nmacchws 4 rD rA rB OE 238 Rc

nmachhw 4 rD rA rB OE 46 Rc

nmachhws 4 rD rA rB OE 110 Rc

nmaclhw 4 rD rA rB OE 430 Rc

nmaclhws 4 rD rA rB OE 494 Rc

Table B-6: Integer Compare Instructions

0 6 9 11 16 21 31

cmp 31 crfD 00 rA rB 0 0

cmpi 11 crfD 00 rA SIMM

cmpl 31 crfD 00 rA rB 32 0

cmpli 10 crfD 00 rA SIMM

Table B-7: Integer Logical Instructions

0 6 11 16 21 31

and 31 rS rA rB 28 Rc

andc 31 rS rA rB 60 Rc

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

cntlzw 31 rS rA 00000 26 Rc

eqv 31 rS rA rB 284 Rc

extsb 31 rS rA 00000 954 Rc

extsh 31 rS rA 00000 922 Rc

nand 31 rS rA rB 476 Rc
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nor 31 rS rA rB 124 Rc

or 31 rS rA rB 444 Rc

orc 31 rS rA rB 412 Rc

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xor 31 rS rA rB 316 Rc

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

Table B-7: Integer Logical Instructions (Continued)

0 6 11 16 21 31

Table B-8: Integer Rotate Instructions

0 6 11 16 21 26 31

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

Table B-9: Integer Shift Instructions

0 6 11 16 21 31

slw 31 rS rA rB 24 Rc

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

srw 31 rS rA rB 536 Rc

Table B-10: Integer Load Instructions

0 6 11 16 21 31

lbz 34 rD rA d

lbzu 35 rD rA d

lbzux 31 rD rA rB 119 0

lbzx 31 rD rA rB 87 0

lha 42 rD rA d

lhau 43 rD rA d

lhaux 31 rD rA rB 375 0

lhax 31 rD rA rB 343 0

lhz 40 rD rA d

lhzu 41 rD rA d

lhzux 31 rD rA rB 311 0

lhzx 31 rD rA rB 279 0

lwz 32 rD rA d
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lwzu 33 rD rA d

lwzux 31 rD rA rB 55 0

lwzx 31 rD rA rB 23 0

Table B-10: Integer Load Instructions (Continued)

0 6 11 16 21 31

Table B-11: Integer Store Instructions

0 6 11 16 21 31

stb 38 rS rA d

stbu 39 rS rA d

stbux 31 rS rA rB 247 0

stbx 31 rS rA rB 215 0

sth 44 rS rA d

sthu 45 rS rA d

sthux 31 rS rA rB 439 0

sthx 31 rS rA rB 407 0

stw 36 rS rA d

stwu 37 rS rA d

stwux 31 rS rA rB 183 0

stwx 31 rS rA rB 151 0

Table B-12: Integer Load and Store with Byte Reverse Instructions

0 6 11 16 21 31

lhbrx 31 rD rA rB 790 0

lwbrx 31 rD rA rB 534 0

sthbrx 31 rS rA rB 918 0

stwbrx 31 rS rA rB 662 0

Table B-13: Integer Load and Store Multiple Instructions

0 6 11 16 31

lmw 46 rD rA d

stmw 47 rS rA d

Table B-14: Integer Load and Store String Instructions

0 6 11 16 21 31

lswi 31 rD rA NB 597 0

lswx 31 rD rA rB 533 0

stswi 31 rS rA NB 725 0

stswx 31 rS rA rB 661 0
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Table B-15: Branch Instructions

0 6 11 16 21 30 31

b 18 LI AA LK

bc 16 BO BI BD AA LK

bcctr 19 BO BI 00000 528 LK

bclr 19 BO BI 00000 16 LK

Table B-16: Condition Register Logical Instructions

0 6 9 11 14 16 21 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 00 crfS 00 00000 0 0

Table B-17: System Linkage Instructions

0 6 11 16 21 26 30 31

rfci 19 00000 00000 00000 51 0

rfi 19 00000 00000 00000 50 0

sc 17 00000 00000 00000 00000 0000 1 0

Table B-18: Trap Instructions

0 6 11 16 21 31

tw 31 TO rA rB 4 0

twi 3 TO rA SIMM

Table B-19: Synchronization Instructions

0 6 11 16 21 31

eieio 31 00000 00000 00000 854 0

isync 19 00000 00000 00000 150 0

lwarx 31 rD rA rB 20 0

stwcx. 31 rS rA rB 150 1

sync 31 00000 00000 00000 598 0
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Table B-20: Processor Control Instructions

0 6 9 11 12 16 17 20 21 31

mcrxr 31 crfD 00 00000 00000 512 0

mfcr 31 rD 00000 00000 19 0

mfdcr 31 rD DCRF 323 0

mfmsr 31 rD 00000 00000 83 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtcrf 31 rS 0 CRM 0 144 0

mtdcr 31 rS DCRF 451 0

mtmsr 31 rS 00000 00000 146 0

mtspr 31 rS SPRF 467 0

wrtee 31 rS 00000 00000 131 0

wrteei 31 00000 00000 E 0000 163 0

Table B-21: Cache Management Instructions

0 6 11 16 21 31

dcba 31 00000 rA rB 758 0

dcbf 31 00000 rA rB 86 0

dcbi 31 00000 rA rB 470 0

dcbst 31 00000 rA rB 54 0

dcbt 31 00000 rA rB 278 0

dcbtst 31 00000 rA rB 246 0

dcbz 31 00000 rA rB 1014 0

dccci 31 00000 rA rB 454 0

dcread 31 rD rA rB 486 0

icbi 31 00000 rA rB 982 0

icbt 31 00000 rA rB 262 0

iccci 31 00000 rA rB 966 0

icread 31 00000 rA rB 998 0

Table B-22: TLB Management Instructions

0 6 11 16 21 31

tlbia 31 00000 00000 00000 370 0

tlbre 31 rD rA WS 946 0

tlbsx 31 rD rA rB 914 Rc

tlbsync 31 00000 00000 00000 566 0

tlbwe 31 rS rA WS 978 0
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Instructions Grouped by Form
Table B-23 though Table B-31 list the PPC405 instruction set grouped by form. Within each 
table, instructions are sorted in numeric order by primary and secondary opcode.

Table B-23: B Form

0 6 11 16 30 31

bc 16 BO BI BD AA LK

Table B-24: D Form

0 6 9 11 16 31

twi 3 TO rA SIMM

mulli 7 rD rA SIMM

subfic 8 rD rA SIMM

cmpli 10 crfD 00 rA SIMM

cmpi 11 crfD 00 rA SIMM

addic 12 rD rA SIMM

addic. 13 rD rA SIMM

addi 14 rD rA SIMM

addis 15 rD rA SIMM

ori 24 rS rA UIMM

oris 25 rS rA UIMM

xori 26 rS rA UIMM

xoris 27 rS rA UIMM

andi. 28 rS rA UIMM

andis. 29 rS rA UIMM

lwz 32 rD rA d

lwzu 33 rD rA d

lbz 34 rD rA d

lbzu 35 rD rA d

stw 36 rS rA d

stwu 37 rS rA d

stb 38 rS rA d

stbu 39 rS rA d

lhz 40 rD rA d

lhzu 41 rD rA d

lha 42 rD rA d

lhau 43 rD rA d

sth 44 rS rA d
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sthu 45 rS rA d

lmw 46 rD rA d

stmw 47 rS rA d

Table B-24: D Form (Continued)

0 6 9 11 16 31

Table B-25: I Form

0 6 30 31

b 18 LI AA LK

Table B-26: M Form

0 6 11 16 21 26 31

rlwimi 20 rS rA SH MB ME Rc

rlwinm 21 rS rA SH MB ME Rc

rlwnm 23 rS rA rB MB ME Rc

Table B-27: SC Form

0 6 11 16 21 26 30 31

sc 17 00000 00000 00000 00000 0000 1 0

Table B-28: X Form

0 6 9 11 16 17 21 31

mulhhwu 4 rD rA rB 8 Rc

mulhhw 4 rD rA rB 40 Rc

mulchwu 4 rD rA rB 136 Rc

mulchw 4 rD rA rB 168 Rc

mullhwu 4 rD rA rB 392 Rc

mullhw 4 rD rA rB 424 Rc

cmp 31 crfD 00 rA rB 0 0

tw 31 TO rA rB 4 0

mfcr 31 rD 00000 00000 19 0

lwarx 31 rD rA rB 20 0

lwzx 31 rD rA rB 23 0

slw 31 rS rA rB 24 Rc

cntlzw 31 rS rA 00000 26 Rc

and 31 rS rA rB 28 Rc

cmpl 31 crfD 00 rA rB 32 0

dcbst 31 00000 rA rB 54 0

lwzux 31 rD rA rB 55 0

andc 31 rS rA rB 60 Rc
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mfmsr 31 rD 00000 00000 83 0

dcbf 31 00000 rA rB 86 0

lbzx 31 rD rA rB 87 0

lbzux 31 rD rA rB 119 0

nor 31 rS rA rB 124 Rc

wrtee 31 rS 00000 00000 131 0

mtmsr 31 rS 00000 00000 146 0

stwcx. 31 rS rA rB 150 1

stwx 31 rS rA rB 151 0

wrteei 31 00000 00000 E 0000 163 0

stwux 31 rS rA rB 183 0

stbx 31 rS rA rB 215 0

dcbtst 31 00000 rA rB 246 0

stbux 31 rS rA rB 247 0

icbt 31 00000 rA rB 262 0

dcbt 31 00000 rA rB 278 0

lhzx 31 rD rA rB 279 0

eqv 31 rS rA rB 284 Rc

lhzux 31 rD rA rB 311 0

xor 31 rS rA rB 316 Rc

lhax 31 rD rA rB 343 0

tlbia 31 00000 00000 00000 370 0

lhaux 31 rD rA rB 375 0

sthx 31 rS rA rB 407 0

orc 31 rS rA rB 412 Rc

sthux 31 rS rA rB 439 0

or 31 rS rA rB 444 Rc

dccci 31 00000 rA rB 454 0

dcbi 31 00000 rA rB 470 0

nand 31 rS rA rB 476 Rc

dcread 31 rD rA rB 486 0

mcrxr 31 crfD 00 00000 00000 512 0

lswx 31 rD rA rB 533 0

lwbrx 31 rD rA rB 534 0

srw 31 rS rA rB 536 Rc

tlbsync 31 00000 00000 00000 566 0

Table B-28: X Form (Continued)

0 6 9 11 16 17 21 31
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lswi 31 rD rA NB 597 0

sync 31 00000 00000 00000 598 0

stswx 31 rS rA rB 661 0

stwbrx 31 rS rA rB 662 0

stswi 31 rS rA NB 725 0

dcba 31 00000 rA rB 758 0

lhbrx 31 rD rA rB 790 0

sraw 31 rS rA rB 792 Rc

srawi 31 rS rA SH 824 Rc

eieio 31 00000 00000 00000 854 0

tlbsx 31 rD rA rB 914 Rc

sthbrx 31 rS rA rB 918 0

extsh 31 rS rA 00000 922 Rc

tlbre 31 rD rA WS 946 0

extsb 31 rS rA 00000 954 Rc

iccci 31 00000 rA rB 966 0

tlbwe 31 rS rA WS 978 0

icbi 31 00000 rA rB 982 0

icread 31 00000 rA rB 998 0

dcbz 31 00000 rA rB 1014 0

Table B-28: X Form (Continued)

0 6 9 11 16 17 21 31

Table B-29: XFX Form

0 6 11 12 20 21 31

mtcrf 31 rS 0 CRM 0 144 0

mfdcr 31 rD DCRF 323 0

mfspr 31 rD SPRF 339 0

mftb 31 rD TBRF 371 0

mtdcr 31 rS DCRF 451 0

mtspr 31 rS SPRF 467 0

Table B-30: XL Form

0 6 9 11 14 16 21 31

mcrf 19 crfD 00 crfS 00 00000 0 0

bclr 19 BO BI 00000 16 LK

crnor 19 crbD crbA crbB 33 0

rfi 19 00000 00000 00000 50 0

rfci 19 00000 00000 00000 51 0
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crandc 19 crbD crbA crbB 129 0

isync 19 00000 00000 00000 150 0

crxor 19 crbD crbA crbB 193 0

crnand 19 crbD crbA crbB 225 0

crand 19 crbD crbA crbB 257 0

creqv 19 crbD crbA crbB 289 0

crorc 19 crbD crbA crbB 417 0

cror 19 crbD crbA crbB 449 0

bcctr 19 BO BI 00000 528 LK

Table B-30: XL Form (Continued)

0 6 9 11 14 16 21 31

Table B-31: XO Form

0 6 11 16 21 22 31

machhwu 4 rD rA rB OE 12 Rc

machhw 4 rD rA rB OE 44 Rc

nmachhw 4 rD rA rB OE 46 Rc

machhwsu 4 rD rA rB OE 76 Rc

machhws 4 rD rA rB OE 108 Rc

nmachhws 4 rD rA rB OE 110 Rc

macchwu 4 rD rA rB OE 140 Rc

macchw 4 rD rA rB OE 172 Rc

nmacchw 4 rD rA rB OE 174 Rc

macchwsu 4 rD rA rB OE 204 Rc

macchws 4 rD rA rB OE 236 Rc

nmacchws 4 rD rA rB OE 238 Rc

maclhwu 4 rD rA rB OE 396 Rc

maclhw 4 rD rA rB OE 428 Rc

nmaclhw 4 rD rA rB OE 430 Rc

maclhwsu 4 rD rA rB OE 460 Rc

maclhws 4 rD rA rB OE 492 Rc

nmaclhws 4 rD rA rB OE 494 Rc

subfc 31 rD rA rB OE 8 Rc

addc 31 rD rA rB OE 10 Rc

mulhwu 31 rD rA rB 0 11 Rc

subf 31 rD rA rB OE 40 Rc

mulhw 31 rD rA rB 0 75 Rc

neg 31 rD rA 00000 OE 104 Rc

http://www.xilinx.com


518 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Instruction Set Information
R

Instruction Set Information
Table B-32 classifies general information about the PPC405 instruction set. A lower-case 
“x” within a cell indicates the instruction is a member of the class specified by the column 
heading.

subfe 31 rD rA rB OE 136 Rc

adde 31 rD rA rB OE 138 Rc

subfze 31 rD rA 00000 OE 200 Rc

addze 31 rD rA 00000 OE 202 Rc

subfme 31 rD rA 00000 OE 232 Rc

addme 31 rD rA 00000 OE 234 Rc

mullw 31 rD rA rB OE 235 Rc

add 31 rD rA rB OE 266 Rc

divwu 31 rD rA rB OE 459 Rc

divw 31 rD rA rB OE 491 Rc

Table B-31: XO Form (Continued)

0 6 11 16 21 22 31

Table B-32: Instruction Set Information

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form

add x x x UISA XO

addc x x x UISA XO

adde x x x UISA XO

addi x x x UISA D

addic x x x UISA D

addic. x x x UISA D

addis x x x UISA D

addme x x x UISA XO

addze x x x UISA XO

and x x x UISA X

andc x x x UISA X

andi. x x x UISA D

andis. x x x UISA D

b x x x UISA I

bc x x x UISA B

bcctr x x x UISA XL

bclr x x x UISA XL
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cmp x x x UISA X

cmpi x x x UISA D

cmpl x x x UISA X

cmpli x x x UISA D

cntlzw x x x UISA X

crand x x x UISA XL

crandc x x x UISA XL

creqv x x x UISA XL

crnand x x x UISA XL

crnor x x x UISA XL

cror x x x UISA XL

crorc x x x UISA XL

crxor x x x UISA XL

dcba x x x VEA x X

dcbf x x x VEA X

dcbi x x x OEA x X

dcbst x x x VEA X

dcbt x x x VEA X

dcbtst x x x VEA X

dcbz x x x VEA X

dccci x OEA x X

dcread x OEA x X

divw x x x UISA XO

divwu x x x UISA XO

eieio x x VEA X

eqv x x x UISA X

extsb x x x UISA X

extsh x x x UISA X

icbi x x x VEA X

icbt x x VEA X

iccci x OEA x X

icread x OEA x X

isync x x x VEA XL

lbz x x x UISA D

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
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Architecture
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Architecture
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http://www.xilinx.com


520 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Instruction Set Information
R

lbzu x x x UISA D

lbzux x x x UISA X

lbzx x x x UISA X

lha x x x UISA D

lhau x x x UISA D

lhaux x x x UISA X

lhax x x x UISA X

lhbrx x x x UISA X

lhz x x x UISA D

lhzu x x x UISA D

lhzux x x x UISA X

lhzx x x x UISA X

lmw x x x UISA D

lswi x x x UISA X

lswx x x x UISA X

lwarx x x x UISA X

lwbrx x x x UISA X

lwz x x x UISA D

lwzu x x x UISA D

lwzux x x x UISA X

lwzx x x x UISA X

macchw x UISA XO

macchws x UISA XO

macchwsu x UISA XO

macchwu x UISA XO

machhw x UISA XO

machhws x UISA XO

machhwsu x UISA XO

machhwu x UISA XO

maclhw x UISA XO

maclhws x UISA XO

maclhwsu x UISA XO

maclhwu x UISA XO

mcrf x x x UISA XL

Table B-32: Instruction Set Information (Continued)
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mcrxr x x x UISA X

mfcr x x x UISA X

mfdcr x x OEA x XFX

mfmsr x x x OEA x X

mfspr x x x
UISA

XFX
OEA x1

mftb x x VEA XFX

mtcrf x x x UISA XFX

mtdcr x x OEA x XFX

mtmsr x x x OEA x X

mtspr x x x
UISA

XFX
OEA x1

mulchw x UISA X

mulchwu x UISA X

mulhhw x UISA X

mulhhwu x UISA X

mulhw x x x UISA XO

mulhwu x x x UISA XO

mullhw x UISA X

mullhwu x UISA X

mulli x x x UISA D

mullw x x x UISA XO

nand x x x UISA X

neg x x x UISA XO

nmacchw x UISA XO

nmacchws x UISA XO

nmachhw x UISA XO

nmachhws x UISA XO

nmaclhw x UISA XO

nmaclhws x UISA XO

nor x x x UISA X

or x x x UISA X

orc x x x UISA X

ori x x x UISA D

Table B-32: Instruction Set Information (Continued)

Mnemonic
PowerPC

Architecture

PowerPC
Embedded

Environment
Architecture

PowerPC
Book-E 

Architecture

Implementation
Specific

Architecture
Level

Privileged Optional Form

http://www.xilinx.com


522 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Instruction Set Information
R

oris x x x UISA D

rfci x x OEA x XL

rfi x x x OEA x XL

rlwimi x x x UISA M

rlwinm x x x UISA M

rlwnm x x x UISA M

sc x x x UISA SC

slw x x x UISA X

sraw x x x UISA X

srawi x x x UISA X

srw x x x UISA X

stb x x x UISA D

stbu x x x UISA D

stbux x x x UISA X

stbx x x x UISA X

sth x x x UISA D

sthbrx x x x UISA X

sthu x x x UISA D

sthux x x x UISA X

sthx x x x UISA X

stmw x x x UISA D

stswi x x x UISA X

stswx x x x UISA X

stw x x x UISA D

stwbrx x x x UISA X

stwcx. x x x UISA X

stwu x x x UISA D

stwux x x x UISA X

stwx x x x UISA X

subf x x x UISA XO

subfc x x x UISA XO

subfe x x x UISA XO

subfic x x x UISA D

subfme x x x UISA XO

Table B-32: Instruction Set Information (Continued)
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Notes: 
1. Execution of this instruction can be either privileged or non-privileged, depending on the SPR 

number.
2. These instructions are not optional if the PowerPC embedded-environment processor or 

PowerPC Book-E processor includes a translation look-aside buffer (TLB). The presence of a TLB 
is optional.

List of Mnemonics and Simplified Mnemonics
Table B-33 provides an alphabetic list of all mnemonics and simplified mnemonics 
described in this document. If the mnemonic is a simplified mnemonic, its equivalent 
mnemonic is listed in the column headed “Equivalent Mnemonic”. Otherwise, the column 
is shaded gray.

subfze x x x UISA XO

sync x x x UISA X

tlbia x x OEA x x X

tlbre x x OEA x x2 X

tlbsx x x OEA x x2 X

tlbsync x x x OEA x x X

tlbwe x x OEA x x2 X

tw x x x UISA X

twi x x x UISA D

wrtee x x OEA X

wrteei x x OEA X

xor x x x UISA X

xori x x x UISA D

xoris x x x UISA D

Table B-32: Instruction Set Information (Continued)
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Table B-33: Complete List of Instruction Mnemonics
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or
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Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

add Add page 282

add. Add and Record

addc Add Carrying page 283

addc. Add Carrying and Record

addco Add Carrying with Overflow Enabled

addco. Add Carrying with Overflow Enabled and Record
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adde Add Extended page 284

adde. Add Extended and Record

addeo Add Extended with Overflow Enabled

addeo. Add Extended with Overflow Enabled and Record

addi Add Immediate page 285

addic Add Immediate Carrying page 286

addic. Add Immediate Carrying and Record page 287

addis Add Immediate Shifted page 288

addme Add to Minus One Extended page 289

addme. Add to Minus One Extended and Record

addmeo Add to Minus One Extended with Overflow Enabled

addmeo. Add to Minus One Extended with Overflow Enabled and Record

addo Add with Overflow Enabled page 282

addo. Add with Overflow Enabled and Record

addze Add to Zero Extended page 290

addze. Add to Zero Extended and Record

addzeo Add to Zero Extended with Overflow Enabled

addzeo. Add to Zero Extended with Overflow Enabled and Record

and AND page 291

and. AND and Record

andc AND with Complement page 292

andc. AND with Complement and Record

andi. AND Immediate and Record page 293

andis. AND Immediate Shifted and Record page 294

b Branch page 295

ba Branch Absolute

bc Branch Conditional page 296

bca Branch Conditional Absolute

bcctr Branch Conditional to Count Register page 298

bcctrl Branch Conditional to Count Register and Link

bcl Branch Conditional and Link page 296

bcla Branch Conditional Absolute and Link

bclr Branch Conditional to Link Register page 300

bclrl Branch Conditional to Link Register and Link

Table B-33: Complete List of Instruction Mnemonics (Continued)
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bctr Branch to Count Register bcctr page 545

bctrl Branch to Count Register and Link bcctrl page 546

bdnz Branch if Decremented CTR Not Zero bc page 544

bdnza Branch if Decremented CTR Not Zero Absolute bca page 544

bdnzf Branch if Decremented CTR Not Zero and Condition False bc page 544

bdnzfa Branch if Decremented CTR Not Zero and Condition False Absolute bca page 544

bdnzfl Branch if Decremented CTR Not Zero and Condition False and Link bcl page 545

bdnzfla Branch if Decremented CTR Not Zero and Condition False Absolute and Link bcla page 545

bdnzflr Branch if Decremented CTR Not Zero and Condition False to Link Register bclr page 545

bdnzflrl Branch if Decremented CTR Not Zero and Condition False to Link Register and Link bclrl page 546

bdnzl Branch if Decremented CTR Not Zero and Link bcl page 545

bdnzla Branch if Decremented CTR Not Zero Absolute and Link bcla page 545

bdnzlr Branch if Decremented CTR Not Zero to Link Register bclr page 545

bdnzlrl Branch if Decremented CTR Not Zero to Link Register and Link bclrl page 546

bdnzt Branch if Decremented CTR Not Zero and Condition True bc page 544

bdnzta Branch if Decremented CTR Not Zero and Condition True Absolute bca page 544

bdnztl Branch if Decremented CTR Not Zero and Condition True and Link bcl page 545

bdnztla Branch if Decremented CTR Not Zero and Condition True Absolute and Link bcla page 545

bdnztlr Branch if Decremented CTR Not Zero and Condition True to Link Register bclr page 545

bdnztlrl Branch if Decremented CTR Not Zero and Condition True to Link Register and Link bclrl page 546

bdz Branch if Decremented CTR Zero bc page 544

bdza Branch if Decremented CTR Zero Absolute bca page 544

bdzf Branch if Decremented CTR Zero and Condition False bc page 544

bdzfa Branch if Decremented CTR Zero and Condition False Absolute bca page 544

bdzfl Branch if Decremented CTR Zero and Condition False and Link bcl page 545

bdzfla Branch if Decremented CTR Zero and Condition False Absolute and Link bcla page 545

bdzflr Branch if Decremented CTR Zero and Condition False to Link Register bclr page 545

bdzflrl Branch if Decremented CTR Zero and Condition False to Link Register and Link bclrl page 546

bdzl Branch if Decremented CTR Zero and Link bcl page 545

bdzla Branch if Decremented CTR Zero Absolute and Link bcla page 545

bdzlr Branch if Decremented CTR Zero to Link Register bclr page 545

bdzlrl Branch if Decremented CTR Zero to Link Register and Link bclrl page 546

bdzt Branch if Decremented CTR Zero and Condition True bc page 544

bdzta Branch if Decremented CTR Zero and Condition True Absolute bca page 544

Table B-33: Complete List of Instruction Mnemonics (Continued)
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bdztl Branch if Decremented CTR Zero and Condition True and Link bcl page 545

bdztla Branch if Decremented CTR Zero and Condition True Absolute and Link bcla page 545

bdztlr Branch if Decremented CTR Zero and Condition True to Link Register bclr page 545

bdztlrl Branch if Decremented CTR Zero and Condition True to Link Register and Link bclrl page 546

beq Branch if Equal bc page 548

beqa Branch if Equal Absolute bca page 548

beqctr Branch if Equal to Count Register bcctr page 548

beqctrl Branch if Equal to Count Register and Link bcctrl page 549

beql Branch if Equal and Link bcl page 549

beqla Branch if Equal Absolute and Link bcla page 549

beqlr Branch if Equal to Link Register bclr page 548

beqlrl Branch if Equal to Link Register and Link bclrl page 549

bf Branch if Condition False bc page 544

bfa Branch if Condition False Absolute bca page 544

bfctr Branch if Condition False to Count Register bcctr page 545

bfctrl Branch if Condition False to Count Register and Link bcctrl page 546

bfl Branch if Condition False and Link bcl page 545

bfla Branch if Condition False Absolute and Link bcla page 545

bflr Branch if Condition False to Link Register bclr page 545

bflrl Branch if Condition False to Link Register and Link bclrl page 546

bge Branch if Greater Than or Equal bc page 548

bgea Branch if Greater Than or Equal Absolute bca page 548

bgectr Branch if Greater Than or Equal to Count Register bcctr page 548

bgectrl Branch if Greater Than or Equal to Count Register and Link bcctrl page 549

bgel Branch if Greater Than or Equal and Link bcl page 549

bgela Branch if Greater Than or Equal Absolute and Link bcla page 549

bgelr Branch if Greater Than or Equal to Link Register bclr page 548

bgelrl Branch if Greater Than or Equal to Link Register and Link bclrl page 549

bgt Branch if Greater Than bc page 548

bgta Branch if Greater Than Absolute bca page 548

bgtctr Branch if Greater Than to Count Register bcctr page 548

bgtctrl Branch if Greater Than to Count Register and Link bcctrl page 549

bgtl Branch if Greater Than and Link bcl page 549

bgtla Branch if Greater Than Absolute and Link bcla page 549

Table B-33: Complete List of Instruction Mnemonics (Continued)
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bgtlr Branch if Greater Than to Link Register bclr page 548

bgtlrl Branch if Greater Than to Link Register and Link bclrl page 549

bl Branch and Link page 295

bla Branch Absolute and Link

ble Branch if Less Than or Equal bc page 548

blea Branch if Less Than or Equal Absolute bca page 548

blectr Branch if Less Than or Equal to Count Register bcctr page 548

blectrl Branch if Less Than or Equal to Count Register and Link bcctrl page 549

blel Branch if Less Than or Equal and Link bcl page 549

blela Branch if Less Than or Equal Absolute and Link bcla page 549

blelr Branch if Less Than or Equal to Link Register bclr page 548

blelrl Branch if Less Than or Equal to Link Register and Link bclrl page 549

blr Branch to Link Register bclr page 545

blrl Branch to Link Register and Link bclrl page 546

blt Branch if Less Than bc page 548

blta Branch if Less Than Absolute bca page 548

bltctr Branch if Less Than to Count Register bcctr page 548

bltctrl Branch if Less Than to Count Register and Link bcctrl page 549

bltl Branch if Less Than and Link bcl page 549

bltla Branch if Less Than Absolute and Link bcla page 549

bltlr Branch if Less Than to Link Register bclr page 548

bltlrl Branch if Less Than to Link Register and Link bclrl page 549

bne Branch if Not Equal bc page 548

bnea Branch if Not Equal Absolute bca page 548

bnectr Branch if Not Equal to Count Register bcctr page 548

bnectrl Branch if Not Equal to Count Register and Link bcctrl page 549

bnel Branch if Not Equal and Link bcl page 549

bnela Branch if Not Equal Absolute and Link bcla page 549

bnelr Branch if Not Equal to Link Register bclr page 548

bnelrl Branch if Not Equal to Link Register and Link bclrl page 549

bng Branch if Not Greater Than bc page 548

bnga Branch if Not Greater Than Absolute bca page 548

bngctr Branch if Not Greater Than to Count Register bcctr page 548

bngctrl Branch if Not Greater Than to Count Register and Link bcctrl page 549

Table B-33: Complete List of Instruction Mnemonics (Continued)
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bngl Branch if Not Greater Than and Link bcl page 549

bngla Branch if Not Greater Than Absolute and Link bcla page 549

bnglr Branch if Not Greater Than to Link Register bclr page 548

bnglrl Branch if Not Greater Than to Link Register and Link bclrl page 549

bnl Branch if Not Less Than bc page 548

bnla Branch if Not Less Than Absolute bca page 548

bnlctr Branch if Not Less Than to Count Register bcctr page 548

bnlctrl Branch if Not Less Than to Count Register and Link bcctrl page 549

bnll Branch if Not Less Than and Link bcl page 549

bnlla Branch if Not Less Than Absolute and Link bcla page 549

bnllr Branch if Not Less Than to Link Register bclr page 548

bnllrl Branch if Not Less Than to Link Register and Link bclrl page 549

bns Branch if Not Summary Overflow bc page 548

bnsa Branch if Not Summary Overflow Absolute bca page 548

bnsctr Branch if Not Summary Overflow to Count Register bcctr page 548

bnsctrl Branch if Not Summary Overflow to Count Register and Link bcctrl page 549

bnsl Branch if Not Summary Overflow and Link bcl page 549

bnsla Branch if Not Summary Overflow Absolute and Link bcla page 549

bnslr Branch if Not Summary Overflow to Link Register bclr page 548

bnslrl Branch if Not Summary Overflow to Link Register and Link bclrl page 549

bso Branch if Summary Overflow bc page 548

bsoa Branch if Summary Overflow Absolute bca page 548

bsoctr Branch if Summary Overflow to Count Register bcctr page 548

bsoctrl Branch if Summary Overflow to Count Register and Link bcctrl page 549

bsol Branch if Summary Overflow and Link bcl page 549

bsola Branch if Summary Overflow Absolute and Link bcla page 549

bsolr Branch if Summary Overflow to Link Register bclr page 548

bsolrl Branch if Summary Overflow to Link Register and Link bclrl page 549

bt Branch if Condition True bc page 544

bta Branch if Condition True Absolute bca page 544

btctr Branch if Condition True to Count Register bcctr page 545

btctrl Branch if Condition True to Count Register and Link bcctrl page 546

btl Branch if Condition True and Link bcl page 545

btla Branch if Condition True Absolute and Link bcla page 545

Table B-33: Complete List of Instruction Mnemonics (Continued)

Mnemonic
or

Simplified
Mnemonic

Instruction Name
Equivalent
Mnemonic

Reference

http://www.xilinx.com


PowerPC Processor Reference Guide www.xilinx.com 529
UG011 (v1.2) January 19, 2007

Appendix B: Instruction Summary
R

btlr Branch if Condition True to Link Register bclr page 545

btlrl Branch if Condition True to Link Register and Link bclrl page 546

clrlslwi Clear Left and Shift Left Immediate rlwinm page 551

clrlslwi. Clear Left and Shift Left Immediate and Record rlwinm.

clrlwi Clear Left Immediate rlwinm

clrlwi. Clear Left Immediate and Record rlwinm.

clrrwi Clear Right Immediate rlwinm

clrrwi. Clear Right Immediate and Record rlwinm.

cmp Compare page 302

cmpi Compare Immediate page 303

cmpl Compare Logical page 304

cmpli Compare Logical Immediate page 305

cmplw Compare Logical Word cmpl page 550

cmplwi Compare Logical Word Immediate cmpli

cmpw Compare Word cmp

cmpwi Compare Word Immediate cmpi

cntlzw Count Leading Zeros Word page 306

cntlzw. Count Leading Zeros Word and Record

crand Condition Register AND page 307

crandc Condition Register AND with Complement page 308

crclr Condition Register Clear crxor page 551

creqv Condition Register Equivalent page 309

crmove Condition Register Move cror page 551

crnand Condition Register NAND page 310

crnor Condition Register NOR page 311

crnot Condition Register Not crnor page 551

cror Condition Register OR page 312

crorc Condition Register OR with Complement page 313

crset Condition Register Set creqv page 551

crxor Condition Register XOR page 314

dcba Data Cache Block Allocate page 315

dcbf Data Cache Block Flush page 317

dcbi Data Cache Block Invalidate page 319

dcbst Data Cache Block Store page 321
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dcbt Data Cache Block Touch page 323

dcbtst Data Cache Block Touch for Store page 325

dcbz Data Cache Block Clear to Zero page 327

dccci Data Cache Congruence Class Invalidate page 329

dcread Data Cache Read page 331

divw Divide Word page 334

divw. Divide Word and Record

divwo Divide Word with Overflow Enabled

divwo. Divide Word with Overflow Enabled and Record

divwu Divide Word Unsigned page 336

divwu. Divide Word Unsigned and Record

divwuo Divide Word Unsigned with Overflow Enabled

divwuo. Divide Word Unsigned with Overflow Enabled and Record

eieio Enforce In-Order Execution of I/O page 338

eqv Equivalent page 340

eqv. Equivalent and Record

extlwi Extract and Left Justify Immediate rlwinm page 551

extlwi. Extract and Left Justify Immediate and Record rlwinm.

extrwi Extract and Right Justify Immediate rlwinm

extrwi. Extract and Right Justify Immediate and Record rlwinm.

extsb Extend Sign Byte page 341

extsb. Extend Sign Byte and Record

extsh Extend Sign Halfword page 342

extsh. Extend Sign Halfword and Record

icbi Instruction Cache Block Invalidate page 343

icbt Instruction Cache Block Touch page 345

iccci Instruction Cache Congruence Class Invalidate page 347

icread Instruction Cache Read page 348

inslwi Insert from Left Immediate rlwimi page 551

inslwi. Insert from Left Immediate and Record rlwimi.

insrwi Insert from Right Immediate rlwimi

insrwi. Insert from Right Immediate and Record rlwimi.

isync Instruction Synchronize page 351

la Load Address addi page 556
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lbz Load Byte and Zero page 352

lbzu Load Byte and Zero with Update page 353

lbzux Load Byte and Zero with Update Indexed page 354

lbzx Load Byte and Zero Indexed page 355

lha Load Halfword Algebraic page 356

lhau Load Halfword Algebraic with Update page 357

lhaux Load Halfword Algebraic with Update Indexed page 358

lhax Load Halfword Algebraic Indexed page 359

lhbrx Load Halfword Byte-Reverse Indexed page 360

lhz Load Halfword and Zero page 362

lhzu Load Halfword and Zero with Update page 363

lhzux Load Halfword and Zero with Update Indexed page 364

lhzx Load Halfword and Zero Indexed page 365

li Load Immediate addi page 556

lis Load Immediate Shifted addis page 556

lmw Load Multiple Word page 366

lswi Load String Word Immediate page 368

lswx Load String Word Indexed page 370

lwarx Load Word and Reserve Indexed page 372

lwbrx Load Word Byte-Reverse Indexed page 374

lwz Load Word and Zero page 376

lwzu Load Word and Zero with Update page 377

lwzux Load Word and Zero with Update Indexed page 378

lwzx Load Word and Zero Indexed page 379

macchw Multiply Accumulate Cross Halfword to Word Modulo Signed page 380

macchw. Multiply Accumulate Cross Halfword to Word Modulo Signed and Record

macchwo Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow Enabled

macchwo. Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow Enabled and 
Record

macchws Multiply Accumulate Cross Halfword to Word Saturate Signed page 381

macchws. Multiply Accumulate Cross Halfword to Word Saturate Signed and Record

macchwso Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow Enabled

macchwso. Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow Enabled and 
Record
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macchwsu Multiply Accumulate Cross Halfword to Word Saturate Unsigned page 382

macchwsu. Multiply Accumulate Cross Halfword to Word Saturate Unsigned and Record

macchwsuo Multiply Accumulate Cross Halfword to Word Saturate Unsigned with Overflow Enabled

macchwsuo. Multiply Accumulate Cross Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

macchwu Multiply Accumulate Cross Halfword to Word Modulo Unsigned page 383

macchwu. Multiply Accumulate Cross Halfword to Word Modulo Unsigned and Record

macchwuo Multiply Accumulate Cross Halfword to Word Modulo Unsigned with Overflow Enabled

macchwuo. Multiply Accumulate Cross Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record

machhw Multiply Accumulate High Halfword to Word Modulo Signed page 384

machhw. Multiply Accumulate High Halfword to Word Modulo Signed and Record

machhwo Multiply Accumulate High Halfword to Word Modulo Signed with Overflow Enabled

machhwo. Multiply Accumulate High Halfword to Word Modulo Signed with Overflow Enabled and 
Record

machhws Multiply Accumulate High Halfword to Word Saturate Signed page 385

machhws. Multiply Accumulate High Halfword to Word Saturate Signed and Record

machhwso Multiply Accumulate High Halfword to Word Saturate Signed with Overflow Enabled

machhwso. Multiply Accumulate High Halfword to Word Saturate Signed with Overflow Enabled and 
Record

machhwsu Multiply Accumulate High Halfword to Word Saturate Unsigned page 386

machhwsu. Multiply Accumulate High Halfword to Word Saturate Unsigned and Record

machhwsuo Multiply Accumulate High Halfword to Word Saturate Unsigned with Overflow Enabled

machhwsuo. Multiply Accumulate High Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

machhwu Multiply Accumulate High Halfword to Word Modulo Unsigned page 387

machhwu. Multiply Accumulate High Halfword to Word Modulo Unsigned and Record

machhwuo Multiply Accumulate High Halfword to Word Modulo Unsigned with Overflow Enabled

machhwuo. Multiply Accumulate High Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record

maclhw Multiply Accumulate Low Halfword to Word Modulo Signed page 388

maclhw. Multiply Accumulate Low Halfword to Word Modulo Signed and Record

maclhwo Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow Enabled

maclhwo. Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow Enabled and 
Record
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maclhws Multiply Accumulate Low Halfword to Word Saturate Signed page 389

maclhws. Multiply Accumulate Low Halfword to Word Saturate Signed and Record

maclhwso Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow Enabled

maclhwso. Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow Enabled and 
Record

maclhwsu Multiply Accumulate Low Halfword to Word Saturate Unsigned page 390

maclhwsu. Multiply Accumulate Low Halfword to Word Saturate Unsigned and Record

maclhwsuo Multiply Accumulate Low Halfword to Word Saturate Unsigned with Overflow Enabled

maclhwsuo. Multiply Accumulate Low Halfword to Word Saturate Unsigned with Overflow Enabled and 
Record

maclhwu Multiply Accumulate Low Halfword to Word Modulo Unsigned page 391

maclhwu. Multiply Accumulate Low Halfword to Word Modulo Unsigned and Record

maclhwuo Multiply Accumulate Low Halfword to Word Modulo Unsigned with Overflow Enabled

maclhwuo. Multiply Accumulate Low Halfword to Word Modulo Unsigned with Overflow Enabled and 
Record

mcrf Move Condition Register Field page 392

mcrxr Move to Condition Register from XER page 393

mfccr0 Move From Core-Configuration Register 0 mfspr page 552

mfcr Move from Condition Register page 394

mfctr Move From Count Register mfspr page 552

mfdac1 Move From Data Address-Compare 1

mfdac2 Move From Data Address-Compare 2

mfdbcr0 Move From Debug-Control Register 0

mfdbcr1 Move From Debug-Control Register 1

mfdbsr Move From Debug-Status Register

mfdccr Move From Data-Cache Cachability Register

mfdcr Move from Device Control Register page 395
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mfdcwr Move From Data-Cache Write-Through Register mfspr page 552

mfdear Move From Data-Error Address Register

mfdvc1 Move From Data Value-Compare 1

mfdvc2 Move From Data Value-Compare 2

mfesr Move From Exception-Syndrome Register

mfevpr Move From Exception-Vector Prefix Register

mfiac1 Move From Instruction Address-Compare 1

mfiac2 Move From Instruction Address-Compare 2

mfiac3 Move From Instruction Address-Compare 3

mfiac4 Move From Instruction Address-Compare 4

mficcr Move From Instruction-Cache Cachability Register

mficdbdr Move From Instruction-Cache Debug-Data Register

mflr Move From Link Register

mfmsr Move from Machine State Register page 396

mfpid Move From Process ID Register mfspr page 552

mfpit Move From Programmable-Interval Timer

mfpvr Move From Processor-Version Register

mfsgr Move From Storage Guarded Register

mfsler Move From Storage Little-Endian Register

mfspr Move from Special Purpose Register page 397

mfsprg0 Move From SPR General-Purpose Register 0 mfspr page 552

mfsprg1 Move From SPR General-Purpose Register 1

mfsprg2 Move From SPR General-Purpose Register 2

mfsprg3 Move From SPR General-Purpose Register 3

mfsprg4 Move From SPR General-Purpose Register 4

mfsprg5 Move From SPR General-Purpose Register 5

mfsprg6 Move From SPR General-Purpose Register 6

mfsprg7 Move From SPR General-Purpose Register 7

mfsrr0 Move From Save/Restore Register 0

mfsrr1 Move From Save/Restore Register 1

mfsrr2 Move From Save/Restore Register 2

mfsrr3 Move From Save/Restore Register 3

mfsu0r Move From Storage User-Defined 0 Register

mftb Move from Time Base Register page 398
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mftbl Move From Time-Base Lower mfspr page 552

mftbu Move From Time-Base Upper

mftcr Move From Timer-Control Register

mftsr Move From Timer-Status Register

mfusprg0 Move From User SPR General-Purpose Register 0

mfxer Move From Fixed-Point Exception Register

mfzpr Move From Zone-Protection Register

mr Move Register or

or.

page 556

mr. Move Register and Record

mtccr0 Move to Core-Configuration Register 0 mtspr page 552

mtcr Move to Condition Register mtcrf page 557

mtcrf Move to Condition Register Fields page 399

mtctr Move to Count Register mtspr page 552

mtdac1 Move to Data Address-Compare 1

mtdac2 Move to Data Address-Compare 2

mtdbcr0 Move to Debug-Control Register 0

mtdbcr1 Move to Debug-Control Register 1

mtdbsr Move to Debug-Status Register

mtdccr Move to Data-Cache Cachability Register

mtdcr Move to Device Control Register page 401

mtdcwr Move to Data-Cache Write-Through Register mtspr page 552

mtdear Move to Data-Error Address Register

mtdvc1 Move to Data Value-Compare 1

mtdvc2 Move to Data Value-Compare 2

mtesr Move to Exception-Syndrome Register

mtevpr Move to Exception-Vector Prefix Register

mtiac1 Move to Instruction Address-Compare 1

mtiac2 Move to Instruction Address-Compare 2

mtiac3 Move to Instruction Address-Compare 3

mtiac4 Move to Instruction Address-Compare 4

mticcr Move to Instruction-Cache Cachability Register

mtlr Move to Link Register

mtmsr Move to Machine State Register page 402
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mtpid Move to Process ID Register mtspr page 552

mtpit Move to Programmable-Interval Timer

mtsgr Move to Storage Guarded Register

mtsler Move to Storage Little-Endian Register

mtspr Move to Special Purpose Register page 403

mtsprg0 Move to SPR General-Purpose Register 0 mtspr page 552

mtsprg1 Move to SPR General-Purpose Register 1

mtsprg2 Move to SPR General-Purpose Register 2

mtsprg3 Move to SPR General-Purpose Register 3

mtsprg4 Move to SPR General-Purpose Register 4

mtsprg5 Move to SPR General-Purpose Register 5

mtsprg6 Move to SPR General-Purpose Register 6

mtsprg7 Move to SPR General-Purpose Register 7

mtsrr0 Move to Save/Restore Register 0

mtsrr1 Move to Save/Restore Register 1

mtsrr2 Move to Save/Restore Register 2

mtsrr3 Move to Save/Restore Register 3

mtsu0r Move to Storage User-Defined 0 Register

mttbl Move to Time-Base Lower mtspr page 552

mttbu Move to Time-Base Upper

mttcr Move to Timer-Control Register mtspr page 552

mttsr Move to Timer-Status Register

mtusprg0 Move to User SPR General-Purpose Register 0

mtxer Move to Fixed-Point Exception Register

mtzpr Move to Zone-Protection Register

mulchw Multiply Cross Halfword to Word Signed page 404

mulchw. Multiply Cross Halfword to Word Signed and Record

mulchwu Multiply Cross Halfword to Word Unsigned page 405

mulchwu. Multiply Cross Halfword to Word Unsigned and Record

mulhhw Multiply High Halfword to Word Signed page 406

mulhhw. Multiply High Halfword to Word Signed and Record

mulhhwu Multiply High Halfword to Word Unsigned page 407

mulhhwu. Multiply High Halfword to Word Unsigned and Record
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mulhw Multiply High Word page 408

mulhw. Multiply High Word and Record

mulhwu Multiply High Word Unsigned page 409

mulhwu. Multiply High Word Unsigned and Record

mullhw Multiply Low Halfword to Word Signed page 410

mullhw. Multiply Low Halfword to Word Signed and Record

mullhwu Multiply Low Halfword to Word Unsigned page 411

mullhwu. Multiply Low Halfword to Word Unsigned and Record

mulli Multiply Low Immediate page 412

mullw Multiply Low Word page 413

mullw. Multiply Low Word and Record

mullwo Multiply Low Word with Overflow Enabled page 413

mullwo. Multiply Low Word with Overflow Enabled and Record

nand NAND page 414

nand. NAND and Record

neg Negate page 415

neg. Negate and Record

nego Negate with Overflow Enabled

nego. Negate with Overflow Enabled and Record

nmacchw Negative Multiply Accumulate Cross Halfword to Word Modulo Signed page 416

nmacchw. Negative Multiply Accumulate Cross Halfword to Word Modulo Signed and Record

nmacchwo Negative Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow 
Enabled

nmacchwo. Negative Multiply Accumulate Cross Halfword to Word Modulo Signed with Overflow 
Enabled and Record

nmacchws Negative Multiply Accumulate Cross Halfword to Word Saturate Signed page 417

nmacchws. Negative Multiply Accumulate Cross Halfword to Word Saturate Signed and Record

nmacchwso Negative Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow 
Enabled

nmacchwso. Negative Multiply Accumulate Cross Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nmachhw Negative Multiply Accumulate High Halfword to Word Modulo Signed page 418

nmachhw. Negative Multiply Accumulate High Halfword to Word Modulo Signed and Record

nmachhwo Negative Multiply Accumulate High Halfword to Word Modulo Signed with Overflow 
Enabled

nmachhwo. Negative Multiply Accumulate High Halfword to Word Modulo Signed with Overflow 
Enabled and Record
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nmachhws Negative Multiply Accumulate High Halfword to Word Saturate Signed page 419

nmachhws. Negative Multiply Accumulate High Halfword to Word Saturate Signed and Record

nmachhwso Negative Multiply Accumulate High Halfword to Word Saturate Signed with Overflow 
Enabled

nmachhwso. Negative Multiply Accumulate High Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nmaclhw Negative Multiply Accumulate Low Halfword to Word Modulo Signed page 420

nmaclhw. Negative Multiply Accumulate Low Halfword to Word Modulo Signed and Record

nmaclhwo Negative Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow 
Enabled

nmaclhwo. Negative Multiply Accumulate Low Halfword to Word Modulo Signed with Overflow 
Enabled and Record

nmaclhws Negative Multiply Accumulate Low Halfword to Word Saturate Signed page 421

nmaclhws. Negative Multiply Accumulate Low Halfword to Word Saturate Signed and Record

nmaclhwso Negative Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow 
Enabled

nmaclhwso. Negative Multiply Accumulate Low Halfword to Word Saturate Signed with Overflow 
Enabled and Record

nop No operation ori page 556

nor NOR page 422

nor. NOR and Record

not Complement (Not) Register nor page 557

not. Complement (Not) Register and Record nor.

or OR page 423

or. OR and Record

orc OR with Complement page 424

orc. OR with Complement and Record

ori OR Immediate page 425

oris OR Immediate Shifted page 426

rfci Return from Critical Interrupt page 427

rfi Return from Interrupt page 428

rlwimi Rotate Left Word Immediate then Mask Insert page 429

rlwimi. Rotate Left Word Immediate then Mask Insert and Record

rlwinm Rotate Left Word Immediate then AND with Mask page 430

rlwinm. Rotate Left Word Immediate then AND with Mask and Record

rlwnm Rotate Left Word then AND with Mask page 431

rlwnm. Rotate Left Word then AND with Mask and Record
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rotlw Rotate Left rlwinm page 551

rotlw. Rotate Left and Record rlwinm.

rotlwi Rotate Left Immediate rlwinm

rotlwi. Rotate Left Immediate and Record rlwinm.

rotrwi Rotate Right Immediate rlwinm

rotrwi. Rotate Right Immediate and Record rlwinm.

sc System Call page 432

slw Shift Left Word page 434

slw. Shift Left Word and Record

slwi Shift Left Immediate rlwinm page 551

slwi. Shift Left Immediate and Record rlwinm.

sraw Shift Right Algebraic Word page 435

sraw. Shift Right Algebraic Word and Record

srawi Shift Right Algebraic Word Immediate page 436

srawi. Shift Right Algebraic Word Immediate and Record

srw Shift Right Word page 437

srw. Shift Right Word and Record

srwi Shift Right Immediate rlwinm page 551

srwi. Shift Right Immediate and Record rlwinm.

stb Store Byte page 438

stbu Store Byte with Update page 439

stbux Store Byte with Update Indexed page 440

stbx Store Byte Indexed page 441

sth Store Halfword page 442

sthbrx Store Halfword Byte-Reverse Indexed page 443

sthu Store Halfword with Update page 445

sthux Store Halfword with Update Indexed page 446

sthx Store Halfword Indexed page 447

stmw Store Multiple Word page 448

stswi Store String Word Immediate page 450

stswx Store String Word Indexed page 452

stw Store Word page 454

stwbrx Store Word Byte-Reverse Indexed page 455

stwcx. Store Word Conditional Indexed page 457
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stwu Store Word with Update page 459

stwux Store Word with Update Indexed page 460

stwx Store Word Indexed page 461

sub Subtract subf page 554

sub. Subtract and Record subf.

subc Subtract Carrying subfc page 554

subc. Subtract Carrying and Record subfc.

subco Subtract Carrying with Overflow Enabled subfco page 554

subco. Subtract Carrying with Overflow Enabled and Record subfco.

subf Subtract from page 462

subf. Subtract from and Record

subfc Subtract from Carrying page 463

subfc. Subtract from Carrying and Record

subfco Subtract from Carrying with Overflow Enabled

subfco. Subtract from Carrying with Overflow Enabled and Record

subfe Subtract from Extended page 464

subfe. Subtract from Extended and Record

subfeo Subtract from Extended with Overflow Enabled

subfeo. Subtract from Extended with Overflow Enabled and Record

subfic Subtract from Immediate Carrying page 465

subfme Subtract from Minus One Extended page 466

subfme. Subtract from Minus One Extended and Record

subfmeo Subtract from Minus One Extended with Overflow Enabled

subfmeo. Subtract from Minus One Extended with Overflow Enabled and Record

subfo Subtract from with Overflow Enabled page 462

subfo. Subtract from with Overflow Enabled and Record

subfze Subtract from Zero Extended page 467

subfze. Subtract from Zero Extended and Record

subfzeo Subtract from Zero Extended with Overflow Enabled

subfzeo. Subtract from Zero Extended with Overflow Enabled and Record
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subi Subtract Immediate addi page 554

subic Subtract Immediate Carrying addic

subic. Subtract Immediate Carrying and Record addic.

subis Subtract Immediate Shifted addis

subo Subtract with Overflow Enabled subfo

subo. Subtract with Overflow Enabled and Record subfo.

sync Synchronize page 468

tlbia TLB Invalidate All page 469

tlbre TLB Read Entry page 470

tlbrehi Read TLBHI Portion of TLB Entry tlbre page 554

tlbrelo Read TLBLO Portion of TLB Entry

tlbsx TLB Search Indexed page 472

tlbsx. TLB Search Indexed and Record

tlbsync TLB Synchronize page 474

tlbwe TLB Write Entry page 475

tlbwehi Write TLBHI Portion of TLB Entry tlbwe page 554

tlbwelo Write TLBLO Portion of TLB Entry

trap Trap if Unconditional tw page 555

tw Trap Word page 477

tweq Trap if Equal tw page 555

tweqi Trap if Equal Immediate twi

twge Trap if Greater Than or Equal tw

twgei Trap if Greater Than or Equal Immediate twi

twgt Trap if Greater Than tw

twgti Trap if Greater Than Immediate twi

twi Trap Word Immediate page 479
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twle Trap if Less Than or Equal tw page 555

twlei Trap if Less Than or Equal Immediate twi

twlge Trap if Logically Greater Than or Equal tw

twlgei Trap if Logically Greater Than or Equal Immediate twi

twlgt Trap if Logically Greater Than tw

twlgti Trap if Logically Greater Than Immediate twi

twlle Trap if Logically Less Than or Equal tw

twllei Trap if Logically Less Than or Equal Immediate twi

twllt Trap if Logically Less Than tw

twllti Trap if Logically Less Than Immediate twi

twlng Trap if Logically Not Greater Than tw

twlngi Trap if Logically Not Greater Than Immediate twi

twlnl Trap if Logically Not Less Than tw

twlnli Trap if Logically Not Less Than Immediate twi

twlt Trap if Less Than tw

twlti Trap if Less Than Immediate twi

twne Trap if Not Equal tw

twnei Trap if Not Equal Immediate twi

twng Trap if Not Greater Than tw

twngi Trap if Not Greater Than Immediate twi

twnl Trap if Not Less Than tw

twnli Trap if Not Less Than Immediate twi

wrtee Write External Enable page 481

wrteei Write External Enable Immediate page 482

xor XOR page 483

xor. XOR and Record

xori XOR Immediate page 484

xoris XOR Immediate Shifted page 485
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Appendix C

Simplified Mnemonics

Simplified mnemonics (sometimes referred to as extended mnemonics) define a shorthand 
used by assemblers for the most-frequently used forms of several instructions.

Branch Instructions
Two classes of simplified branch mnemonics are provided. Table C-2, page 544 
summarizes the simplified branch-conditional mnemonics that test if a condition is true or 
false. The condition tested can include a specific bit (b) in the CR, whether or not the 
contents of the CTR are zero, or both. Table C-8, page 547 summarizes the simplified 
branch-conditional mnemonics that test a comparison condition. Instructions in that table 
specify a CRn field (n) that is checked for a particular comparison result.

True/False Conditional Branches
True/false conditional branches test a condition and branch if the condition is met. The 
condition tested can include a specific bit (b) in the CR, whether or not the contents of the 
CTR are zero, or both. The simplified mnemonics in Table C-2 through Table C-6 are 
formed using the following syntax (angle brackets denote an optional field):

b<CTR decrement><CTR test><CR test><LR target><CTR target><LR update><absolute target>

Table C-1 shows the abbreviations used in the formation of the simplified branch 
mnemonics.

The detailed instruction syntax for the simplified mnemonics listed in Table C-2 are shown 
in Table C-3 through Table C-6. A cross-reference to the appropriate table is shown in the 
column heading of Table C-2.

Table C-1: Abbreviations for True/False Conditional Branches

Abbreviation Description Mnemonic Field

d Decrement CTR CTR decrement

nz Branch if CTR ≠ 0 CTR test

z Branch if CTR = 0 CTR test

f Branch if condition false (CRb=0) CR test

t Branch if condition true (CRb=1) CR test

lr Branch to target address in LR LR target

ctr Branch to target address in CTR CTR target

l Update LR with return address (LK opcode field = 1) LR update

a Branch to absolute address (AA opcode field = 1) absolute target
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Table C-3 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (true/false conditions) that do not 
update the LR. In the following table, target represents the target address of the branch.

Table C-2: Simplified Branch-Conditional Mnemonics, True/False Conditions

Operation

LR not Updated LR Updated

Relative Absolute to LR to CTR Relative Absolute to LR to CTR

Table C-3 Table C-4 Table C-5 Table C-6

Branch Unconditionally — — blr bctr — — blrl bctrl

Branch if Condition True (CRb=1) bt bta btlr btctr btl btla btlrl btctrl

Branch if Condition False (CRb=0) bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
Branch if CTR ≠ 0

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
Branch if CTR = 0

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

Table C-3: Branch (True/False) to Relative/Absolute (LK=0)

Operation

LR not Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally — — — —

Branch if Condition True (CRb=1) bt b, target bc 12, b, target bta b, target bca 12, b, target

Branch if Condition False (CRb=0) bf b, target bc 4, b, target bfa b, target bca 4, b, target

Decrement CTR,
Branch if CTR ≠ 0

bdnz target bc 16, 0, target bdnza target bca 16, 0, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnzt b, target bc 8, b, target bdnzta b, target bca 8, b, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzf b, target bc 0, b, target bdnzfa b, target bca 0, b, target

Decrement CTR,
Branch if CTR = 0

bdz target bc 18, 0, target bdza target bca 18, 0, target

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdzt b, target bc 10, b, target bdzta b, target bca 10, b, target

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzf b, target bc 2, b, target bdzfa b, target bca 2, b, target
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Table C-4 lists the simplified-mnemonic assembler syntax for the branch-conditional to LR 
and branch-conditional to CTR instructions (true/false conditions) that do not update the 
LR.

Table C-5 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (true/false conditions) that update 
the LR. In the following table, target represents the target address of the branch.

Table C-4: Branch (True/False) to LR/CTR (LK=0)

Operation

LR not Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally blr bclr 20, 0 bctr bcctr 20, 0

Branch if Condition True (CRb=1) btlr b bclr 12, b btctr b bcctr 12, b

Branch if Condition False (CRb=0) bflr b bclr 4, b bfctr b bcctr 4, b

Decrement CTR,
Branch if CTR ≠ 0

bdnzlr bclr 16, 0 — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztlr b bclr 8, b — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzflr b bclr 0, b — —

Decrement CTR,
Branch if CTR = 0

bdzlr bclr 18, 0 — —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztlr b bclr 10, b — —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzflr b bclr 2, b — —

Table C-5: Branch (True/False) to Relative/Absolute (LK=1)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally — — — —

Branch if Condition True (CRb=1) btl b, target bcl 12, b, target btla b, target bcla 12, b, target

Branch if Condition False (CRb=0) bfl b, target bcl 4, b, target bfla b, target bcla 4, b, target

Decrement CTR,
Branch if CTR ≠ 0

bdnzl target bcl 16, 0, target bdnzla target bcla 16, 0, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztl b, target bcl 8, b, target bdnztla b, target bcla 8, b, target

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzfl b, target bcl 0, b, target bdnzfla b, target bcla 0, b, target

Decrement CTR,
Branch if CTR = 0

bdzl target bcl 18, 0, target bdzla target bcla 18, 0, target

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztl b, target bcl 10, b, target bdztla b, target bcla 10, b, target

http://www.xilinx.com


546 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Branch Instructions
R

Table C-6 lists the simplified-mnemonic assembler syntax for the branch-conditional to LR 
and branch-conditional to CTR instructions (true/false conditions) that update the LR.

Comparison Conditional Branches
Comparison conditional branches examine the specified field in the CR register and 
branch if the comparison outcome is met. The CR field can be omitted from the assembler 
syntax if the CR0 field is used. The simplified mnemonics in Table C-8 through Table C-12 
are formed using the following syntax (angle brackets denote an optional field):

b<comparison><LR target><CTR target><LR update><absolute target>

Table C-7 shows the abbreviations for the comparison operations used in the formation of 
the simplified branch mnemonics. The remaining fields are abbreviated as shown in 
Table C-1, page 543.

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzfl b, target bcl 2, b, target bdzfla b, target bcla 2, b, target

Table C-5: Branch (True/False) to Relative/Absolute (LK=1) (Continued)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Table C-6: Branch (True/False) to LR/CTR (LK=1)

Operation

LR Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch Unconditionally blrl bclrl 20, 0 bctrl bcctrl 20, 0

Branch if Condition True (CRb=1) btlrl b bclrl 12, b btctrl b bcctrl 12, b

Branch if Condition False (CRb=0) bflrl b bclrl 4, b bfctrl b bcctrl 4, b

Decrement CTR,
Branch if CTR ≠ 0

bdnzlrl bclrl 16, 0 — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition True (CRb=1)

bdnztlrl b bclrl 8, b — —

Decrement CTR,
Branch if CTR ≠ 0 and Condition False (CRb=0)

bdnzflrl b bclrl 0, b — —

Decrement CTR,
Branch if CTR = 0

bdzlrl bclrl 18, 0 — —

Decrement CTR,
Branch if CTR = 0 and Condition True (CRb=1)

bdztlrl b bclrl 10, b — —

Decrement CTR,
Branch if CTR = 0 and Condition False (CRb=0)

bdzflrl b bclrl 2, b — —
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Table C-8 summarizes the simplified branch-conditional mnemonics that test a 
comparison condition. Instructions in that table specify a CRn field (n) that is checked for 
a particular comparison result. The CR field defaults to CR0 if omitted. The detailed 
instruction syntax for the simplified mnemonics listed in Table C-8 are shown in Table C-9 
through Table C-12. A cross-reference to the appropriate table is shown in the column 
heading of Table C-8.

Table C-9 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (comparison conditions) that do not 
update the LR. In the following table, target represents the target address of the branch.

Table C-7: Abbreviations for Comparison Conditional Branches

Abbreviation Description

lt Less than

le Less than or equal

e Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

Table C-8: Simplified Branch-Conditional Mnemonics, Comparison Conditions

Operation

LR not Updated LR Updated

Relative Absolute to LR to CTR Relative Absolute to LR to CTR

Table C-9 Table C-10 Table C-11 Table C-12

Branch if Less Than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if Less Than or Equal ble blea blelr blectr blel blela blelrl blectrl

Branch if Equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if Greater Than or Equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if Greater Than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if Not Less Than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if Not Equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if Not Greater Than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if Summary Overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if Not Summary Overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl
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Table C-10 lists the simplified-mnemonic assembler syntax for the branch-conditional to 
LR and branch-conditional to CTR instructions (comparison conditions) that do not 
update the LR.

Table C-11 lists the simplified-mnemonic assembler syntax for the branch-conditional 
relative and branch-conditional absolute instructions (comparison conditions) that update 
the LR. In the following table, target represents the target address of the branch.

Table C-9: Branch (Comparison) to Relative/Absolute (LK=0)

Operation

LR not Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than blt n, target bc 12, 4×n+0, target blta n, target bca 12, 4×n+0, target

Branch if Less Than or Equal ble n, target bc 4, 4×n+1, target blea n, target bca 4, 4×n+1, target

Branch if Equal beq n, target bc 12, 4×n+2, target beqa n, target bca 12, 4×n+2, target

Branch if Greater Than or Equal bge n, target bc 4, 4×n+0, target bgea n, target bca 4, 4×n+0, target

Branch if Greater Than bgt n, target bc 12, 4×n+1, target bgta n, target bca 12, 4×n+1, target

Branch if Not Less Than bnl n, target bc 4, 4×n+0, target bnla n, target bca 4, 4×n+0, target

Branch if Not Equal bne n, target bc 4, 4×n+2, target bnea n, target bca 4, 4×n+2, target

Branch if Not Greater Than bng n, target bc 4, 4×n+1, target bnga n, target bca 4, 4×n+1, target

Branch if Summary Overflow bso n, target bc 12, 4×n+3, target bsoa n, target bca 12, 4×n+3, target

Branch if Not Summary Overflow bns n, target bc 4, 4×n+3, target bnsa n, target bca 4, 4×n+3, target

Table C-10: Branch (Comparison) to LR/CTR (LK=0)

Operation

LR not Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltlr n bclr 12, 4×n+0 bltctr n bcctr 12, 4×n+0

Branch if Less Than or Equal blelr n bclr 4, 4×n+1 blectr n bcctr 4, 4×n+1

Branch if Equal beqlr n bclr 12, 4×n+2 beqctr n bcctr 12, 4×n+2

Branch if Greater Than or Equal bgelr n bclr 4, 4×n+0 bgectr n bcctr 4, 4×n+0

Branch if Greater Than bgtlr n bclr 12, 4×n+1 bgtctr n bcctr 12, 4×n+1

Branch if Not Less Than bnllr n bclr 4, 4×n+0 bnlctr n bcctr 4, 4×n+0

Branch if Not Equal bnelr n bclr 4, 4×n+2 bnectr n bcctr 4, 4×n+2

Branch if Not Greater Than bnglr n bclr 4, 4×n+1 bngctr n bcctr 4, 4×n+1

Branch if Summary Overflow bsolr n bclr 12, 4×n+3 bsoctr n bcctr 12, 4×n+3

Branch if Not Summary Overflow bnslr n bclr 4, 4×n+3 bnsctr n bcctr 4, 4×n+3
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Table C-12 lists the simplified-mnemonic assembler syntax for the branch-conditional to 
LR and branch-conditional to CTR instructions (comparison conditions) that update the 
LR.

Branch Prediction
The low-order bit (y bit) of the BO field in branch-conditional instructions provides a hint 
to the processor about whether the branch is likely to be taken. See Specifying Branch-
Prediction Behavior, page 72 for more information on the y bit. Assemblers should clear 
this bit to 0 unless otherwise directed. Clearing the y bit specifies the following default 
action:

Table C-11: Branch (Comparison) to Relative/Absolute (LK=1)

Operation

LR Updated

Branch Relative Branch Absolute

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltl n, target bcl 12, 4×n+0, target bltla n, target bcla 12, 4×n+0, target

Branch if Less Than or Equal blel n, target bcl 4, 4×n+1, target blela n, target bcla 4, 4×n+1, target

Branch if Equal beql n, target bcl 12, 4×n+2, target beqla n, target bcla 12, 4×n+2, target

Branch if Greater Than or Equal bgel n, target bcl 4, 4×n+0, target bgela n, target bcla 4, 4×n+0, target

Branch if Greater Than bgtl n, target bcl 12, 4×n+1, target bgtla n, target bcla 12, 4×n+1, target

Branch if Not Less Than bnll n, target bcl 4, 4×n+0, target bnlla n, target bcla 4, 4×n+0, target

Branch if Not Equal bnel n, target bcl 4, 4×n+2, target bnela n, target bcla 4, 4×n+2, target

Branch if Not Greater Than bngl n, target bcl 4, 4×n+1, target bngla n, target bcla 4, 4×n+1, target

Branch if Summary Overflow bsol n, target bcl 12, 4×n+3, target bsola n, target bcla 12, 4×n+3, target

Branch if Not Summary Overflow bnsl n, target bcl 4, 4×n+3, target bnsla n, target bcla 4, 4×n+3, target

Table C-12: Branch (Comparison) to LR/CTR (LK=1)

Operation

LR Updated

Branch to LR Branch to CTR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Branch if Less Than bltlrl n bclrl 12, 4×n+0 bltctrl n bcctrl 12, 4×n+0

Branch if Less Than or Equal blelrl n bclrl 4, 4×n+1 blectrl n bcctrl 4, 4×n+1

Branch if Equal beqlrl n bclrl 12, 4×n+2 beqctrl n bcctrl 12, 4×n+2

Branch if Greater Than or Equal bgelrl n bclrl 4, 4×n+0 bgectrl n bcctrl 4, 4×n+0

Branch if Greater Than bgtlrl n bclrl 12, 4×n+1 bgtctrl n bcctrl 12, 4×n+1

Branch if Not Less Than bnllrl n bclrl 4, 4×n+0 bnlctrl n bcctrl 4, 4×n+0

Branch if Not Equal bnelrl n bclrl 4, 4×n+2 bnectrl n bcctrl 4, 4×n+2

Branch if Not Greater Than bnglrl n bclrl 4, 4×n+1 bngctrl n bcctrl 4, 4×n+1

Branch if Summary Overflow bsolrl n bclrl 12, 4×n+3 bsoctrl n bcctrl 12, 4×n+3

Branch if Not Summary Overflow bnslrl n bclrl 4, 4×n+3 bnsctrl n bcctrl 4, 4×n+3
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• A conditional branch with a negative displacement field is predicted taken.
• A conditional branch with a non-negative displacement field is predicted not taken 

(fall through).
• A conditional branch to an address in the LR or CTR is predicted not taken (fall 

through).

If the likely outcome (branch or fall through) of a conditional-branch instruction is known, 
a suffix can be added to the mnemonic that tells the assembler how to set the y bit, as 
follows:

• + indicates that the branch should be predicted taken.
• − indicates that the branch should be predicted not taken. 

The suffix can be added to any branch-conditional mnemonic, including simplified 
mnemonics. For example, “blt+ target” indicates the branch to target if CR0 is less than 
instruction should be predicted taken.

For relative and absolute branches, the default value of the y bit depends on whether the 
displacement field is negative or non-negative. With these instructions, the prediction 
override has the following effect: 

• For negative displacement fields:
- A “+” suffix clears the y bit to 0.
- A “−” suffix sets the y bit to 1.

• For non-negative displacement fields:
- A “+” suffix sets the y bit to 1.
- A “−” suffix clears the y bit to 0.

For branches to an address in the LR or CTR, the prediction override has the following 
effect: 

• A “+” suffix sets the y bit to 1.
• A “−” suffix clears the y bit to 0.

Compare Instructions
The PowerPC compare instructions include an L opcode field that specifies whether the 
comparison is performed on a word or doubleword operand. In 32-bit implementations 
like the PPC405, only word comparisons are supported. Simplified mnemonics are shown 
in Table C-13 that dispense with the need to encode the L field in the instruction syntax.

The crfD field can be omitted if the comparison result is placed into the CR0 field. 
Otherwise, the target CR field must be specified as the first operand.

Table C-13: Simplified Mnemonics for Compare Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Compare Word Immediate cmpwi crfD, rA, SIMM cmpi crfD, 0, rA, SIMM

Compare Word cmpw crfD, rA, rB cmp crfD, 0, rA, rB

Compare Logical Word Immediate cmplwi crfD, rA, UIMM cmpli crfD, 0, rA, UIMM

Compare Logical Word cmplw crfD, rA, rB cmpl crfD, 0, rA, rB
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CR-Logical Instructions
The condition register logical instructions, are used to set, clear, copy, or invert a specific 
condition register bit. The simplified mnemonics in Table C-14 provide a shorthand for 
several common operations. The variables bx and by are used to specify individual CR bits.

Rotate and Shift Instructions
Although the rotate and shift instructions provide powerful and general ways to 
manipulate register contents, they can be difficult to understand. The simplified 
mnemonics in Table C-15 are provided for the following types of operations:

• Extract—Select a field of n bits starting at bit position b from the source register. Left or 
right justify this field in the target register. Clear all other bits of the target register.

• Insert—Select a left-justified or right-justified field of n bits from the source register. 
Insert this field in the target register starting at bit position b, leaving all other bits in 
the target register unchanged.

• Rotate—Rotate the contents of a register right or left by n bits without masking.
• Shift—Shift the contents of a register right or left by n bits, clearing vacated bits 

(logical shift).
• Clear—Clear the left-most or right-most n bits of a register.
• Clear left and shift left—Clear the left-most b bits of a register and shift the register left 

by n bits. This operation can be used to scale a known non-negative array index by the 
width of an element.

Table C-14: Simplified Mnemonics for CR-Logical Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Condition Register Set crset bx creqv bx, bx, bx

Condition Register Clear crclr bx crxor bx, bx, bx

Condition Register Move crmove bx, by cror bx, by, by

Condition Register Not crnot bx, by crnor bx, by, by

Table C-15: Simplified Mnemonics for Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Extract and Left Justify Immediate extlwi rA, rS, n, b (n > 0) rlwinm rA, rS, b, 0, n−1

extlwi. rA, rS, n, b (n > 0) rlwinm. rA, rS, b, 0, n−1

Extract and Right Justify Immediate extrwi rA, rS, n, b (n > 0) rlwinm rA, rS, b+n, 32−n, 31

extrwi. rA, rS, n, b (n > 0) rlwinm. rA, rS, b+n, 32−n, 31

Insert from Left Immediate inslwi rA, rS, n, b (n > 0) rlwimi rA, rS, 32−b, b, (b+n)−1

inslwi. rA, rS, n, b (n > 0) rlwimi. rA, rS, 32−b, b, (b+n)−1

Insert from Right Immediate insrwi rA, rS, n, b (n > 0) rlwimi rA, rS, 32−(b+n), b, (b+n)−1

insrwi. rA, rS, n, b (n > 0) rlwimi. rA, rS, 32−(b+n), b, (b+n)−1

Rotate Left Immediate rotlwi rA, rS, n rlwinm rA, rS, n, 0, 31

rotlwi. rA, rS, n rlwinm. rA, rS, n, 0, 31

Rotate Right Immediate rotrwi rA, rS, n rlwinm rA, rS, 32−n, 0, 31

rotrwi. rA, rS, n rlwinm. rA, rS, 32−n, 0, 31
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Special-Purpose Registers
Special-purpose register instructions use the SPR number (SPRN) to specify the register 
being read or written. The simplified mnemonics in Table C-16 encode the SPR name as 
part of the mnemonic rather than requiring a numeric SPRN operand.

Rotate Left rotlw rA, rS, rB rlwnm rA, rS, rB, 0, 31

rotlw. rA, rS, rB rlwnm. rA, rS, rB, 0, 31

Shift Left Immediate slwi rA, rS, n (n < 32) rlwinm rA, rS, n, 0, 31−n

slwi. rA, rS, n (n < 32) rlwinm. rA, rS, n, 0, 31−n

Shift Right Immediate srwi rA, rS, n (n < 32) rlwinm rA, rS, 32−n, n, 31

srwi. rA, rS, n (n < 32) rlwinm. rA, rS, 32−n, n, 31

Clear Left Immediate clrlwi rA, rS, n (n < 32) rlwinm rA, rS, 0, n, 31

clrlwi. rA, rS, n (n < 32) rlwinm. rA, rS, 0, n, 31

Clear Right Immediate clrrwi rA, rS, n (n < 32) rlwinm rA, rS, 0, 0, 31−n

clrrwi. rA, rS, n (n < 32) rlwinm. rA, rS, 0, 0, 31−n

Clear Left and Shift Left Immediate clrlslwi rA, rS, b, n (n ≤ b ≤ 31) rlwinm rA, rS, b−n, 31−n

clrlslwi. rA, rS, b, n (n ≤ b ≤ 31) rlwinm. rA, rS, b−n, 31−n

Table C-15: Simplified Mnemonics for Rotate and Shift Instructions (Continued)

Operation Simplified Mnemonic Equivalent Mnemonic

Table C-16: Simplified Mnemonics for Special-Purpose Register Instructions

Special-Purpose Register

Move to SPR Move from SPR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Core-Configuration Register 0 mtccr0 rS mtspr 947, rS mfccr0 rD mfspr rD, 947

Count Register mtctr rS mtspr 9, rS mfctr rD mfspr rD, 9

Data Address-Compare 1 mtdac1 rS mtspr 1014, rS mfdac1 rD mfspr rD, 1014

Data Address-Compare 2 mtdac2 rS mtspr 1015, rS mfdac2 rD mfspr rD, 1015

Debug-Control Register 0 mtdbcr0 rS mtspr 1010, rS mfdbcr0 rD mfspr rD, 1010

Debug-Control Register 1 mtdbcr1 rS mtspr 957, rS mfdbcr1 rD mfspr rD, 957

Debug-Status Register mtdbsr rS 1 mtspr 1008, rS 1 mfdbsr rD mfspr rD, 1008

Data-Cache Cachability Register mtdccr rS mtspr 1018, rS mfdccr rD mfspr rD, 1018

Data-Cache Write-Through Register mtdcwr rS mtspr 954, rS mfdcwr rD mfspr rD, 954

Data-Error Address Register mtdear rS mtspr 981, rS mfdear rD mfspr rD, 981

Data Value-Compare 1 mtdvc1 rS mtspr 950, rS mfdvc1 rD mfspr rD, 950

Data Value-Compare 2 mtdvc2 rS mtspr 951, rS mfdvc2 rD mfspr rD, 951

Exception-Syndrome Register mtesr rS mtspr 980, rS mfesr rD mfspr rD, 980

Exception-Vector Prefix Register mtevpr rS mtspr 982, rS mfevpr rD mfspr rD, 982

Instruction Address-Compare 1 mtiac1 rS mtspr 1012, rS mfiac1 rD mfspr rD, 1012

Notes: 
1. Performs a clear to zero operation.
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Instruction Address-Compare 2 mtiac2 rS mtspr 1013, rS mfiac2 rD mfspr rD, 1013

Instruction Address-Compare 3 mtiac3 rS mtspr 948, rS mfiac3 rD mfspr rD, 948

Instruction Address-Compare 4 mtiac4 rS mtspr 949, rS mfiac4 rD mfspr rD, 949

Instruction-Cache Cachability Register mticcr rS mtspr 1019, rS mficcr rD mfspr rD, 1019

Instruction-Cache Debug-Data Register — — mficdbdr rD mfspr rD, 979

Link Register mtlr rS mtspr 8, rS mflr rD mfspr rD, 8

Process ID Register mtpid rS mtspr 945, rS mfpid rD mfspr rD, 945

Programmable-Interval Timer mtpit rS mtspr 987, rS mfpit rD mfspr rD, 987

Processor-Version Register — — mfpvr rD mfspr rD, 287

Storage Guarded Register mtsgr rS mtspr 953, rS mfsgr rD mfspr rD, 953

Storage Little-Endian Register mtsler rS mtspr 955, rS mfsler rD mfspr rD, 955

SPR General-Purpose Register 0 mtsprg0 rS mtspr 272, rS mfsprg0 rD mfspr rD, 272

SPR General-Purpose Register 1 mtsprg1 rS mtspr 273, rS mfsprg1 rD mfspr rD, 273

SPR General-Purpose Register 2 mtsprg2 rS mtspr 274, rS mfsprg2 rD mfspr rD, 274

SPR General-Purpose Register 3 mtsprg3 rS mtspr 275, rS mfsprg3 rD mfspr rD, 275

SPR General-Purpose Register 4 — — mfsprg4 rD mfspr rD, 260

SPR General-Purpose Register 4 mtsprg4 rS mtspr 276, rS — —

SPR General-Purpose Register 5 — — mfsprg5 rD mfspr rD, 261

SPR General-Purpose Register 5 mtsprg5 rS mtspr 277, rS — —

SPR General-Purpose Register 6 — — mfsprg6 rD mfspr rD, 262

SPR General-Purpose Register 6 mtsprg6 rS mtspr 278, rS — —

SPR General-Purpose Register 7 — — mfsprg7 rD mfspr rD, 263

SPR General-Purpose Register 7 mtsprg7 rS mtspr 279, rS — —

Save/Restore Register 0 mtsrr0 rS mtspr 26, rS mfsrr0 rD mfspr rD, 26

Save/Restore Register 1 mtsrr1 rS mtspr 27, rS mfsrr1 rD mfspr rD, 27

Save/Restore Register 2 mtsrr2 rS mtspr 990, rS mfsrr2 rD mfspr rD, 990

Save/Restore Register 3 mtsrr3 rS mtspr 991, rS mfsrr3 rD mfspr rD, 991

Storage User-Defined 0 Register mtsu0r rS mtspr 956, rS mfsu0r rD mfspr rD, 956

Time-Base Lower mttbl rS mtspr 284, rS mftbl rD mftb rD, 268

Time-Base Upper mttbu rS mtspr 285, rS mftbu rD mftb rD, 269

Timer-Control Register mttcr rS mtspr 986, rS mftcr rD mfspr rD, 986

Timer-Status Register mttsr rS 1 mtspr 984, rS 1 mftsr rD mfspr rD, 984

User SPR General-Purpose Register 0 mtusprg0 rS mtspr 256, rS mfusprg0 rD mfspr rD, 256

Fixed-Point Exception Register mtxer rS mtspr 1, rS mfxer rD mfspr rD, 1

Zone-Protection Register mtzpr rS mtspr 944, rS mfzpr rD mfspr rD, 944

Table C-16: Simplified Mnemonics for Special-Purpose Register Instructions (Continued)

Special-Purpose Register

Move to SPR Move from SPR

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Notes: 
1. Performs a clear to zero operation.
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Subtract Instructions
The subtract-from instructions subtract the second operand (rA) from the third operand 
(rB). The simplified mnemonics in Table C-17 use the order in which the third operand is 
subtracted from the second operand.

The effect of a subtract-immediate instruction can be achieved by using an add-immediate 
instruction with a negative immediate operand. In the following table, value represents a 
signed immediate operand.

TLB-Management Instructions
The simplified mnemonics for TLB-management instructions are listed in Table C-18.

Trap Instructions
System-trap instructions use the TO opcode field to specify the trap condition. Simplified 
trap mnemonics are provided for the most common encodings of TO. These mnemonics 
encode the trap condition as part of the mnemonic rather than as a numeric operand. 
Table C-19 shows the abbreviations for the comparison operations used in the formation of 
the simplified trap mnemonics. In this table, the column headed “<U” indicates an 
unsigned less-than comparison and the column headed “>U” indicates an unsigned 
greater-than comparison

Table C-17: Simplified Mnemonics for Subtract Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Subtract (rA − rB) sub rD, rA, rB subf rD, rB, rA

sub. rD, rA, rB subf. rD, rB, rA

subo rD, rA, rB subfo rD, rB, rA

subo. rD, rA, rB subfo. rD, rB, rA

Subtract Carrying (rA − rB) subc rD, rA, rB subfc rD, rB, rA

subc. rD, rA, rB subfc. rD, rB, rA

subco rD, rA, rB subfco rD, rB, rA

subco. rD, rA, rB subfco. rD, rB, rA

Subtract Immediate (rA − value) subi rD, rA, value addi rD, rA, −value

Subtract Immediate Shifted (rA − value || 160) subis rD, rA, value addis rD, rA, −value

Subtract Immediate Carrying (rA − value) subic rD, rA, value addic rD, rA, −value

Subtract Immediate Carrying and Record (rA − value) subic. rD, rA, value addic. rD, rA, −value

Table C-18: Simplified Mnemonics for TLB-Management Instructions

Operation Simplified Mnemonic Equivalent Mnemonic

Read TLBHI Portion of TLB Entry tlbrehi rD, rA tlbre rD, rA, 0

Read TLBLO Portion of TLB Entry tlbrelo rD, rA tlbre rD, rA, 1

Write TLBHI Portion of TLB Entry tlbwehi rD, rA tlbwe rD, rA, 0

Write TLBLO Portion of TLB Entry tlbwelo rD, rA tlbwe rD, rA, 1
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Table C-20 lists the simplified mnemonics for the system-trap instructions.

Table C-19: Abbreviations for Trap Comparison Conditions

Abbreviation Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Table C-20: Simplified Mnemonics for Trap Instructions

Operation

Trap Word Trap Word Immediate

Simplified 
Mnemonic

Equivalent
Mnemonic

Simplified 
Mnemonic

Equivalent
Mnemonic

Trap if less than twlt rA, rB tw 16, rA, rB twlti rA, SIMM twi 16, rA, SIMM

Trap if less than or equal twle rA, rB tw 20, rA, rB twlei rA, SIMM twi 20, rA, SIMM

Trap if equal tweq rA, rB tw 4, rA, rB tweqi rA, SIMM twi 4, rA, SIMM

Trap if greater than or equal twge rA, rB tw 12, rA, rB twgei rA, SIMM twi 12, rA, SIMM

Trap if greater than twgt rA, rB tw 8, rA, rB twgti rA, SIMM twi 8, rA, SIMM

Trap if not less than twnl rA, rB tw 12, rA, rB twnli rA, SIMM twi 12, rA, SIMM

Trap if not equal twne rA, rB tw 24, rA, rB twnei rA, SIMM twi 24, rA, SIMM

Trap if not greater than twng rA, rB tw 20, rA, rB twngi rA, SIMM twi 20, rA, SIMM

Trap if logically less than twllt rA, rB tw 2, rA, rB twllti rA, SIMM twi 2, rA, SIMM

Trap if logically less than or equal twlle rA, rB tw 6, rA, rB twllei rA, SIMM twi 6, rA, SIMM

Trap if logically greater than or equal twlge rA, rB tw 5, rA, rB twlgei rA, SIMM twi 5, rA, SIMM

Trap if logically greater than twlgt rA, rB tw 1, rA, rB twlgti rA, SIMM twi 1, rA, SIMM

Trap if logically not less than twlnl rA, rB tw 5, rA, rB twlnli rA, SIMM twi 5, rA, SIMM

Trap if logically not greater than twlng rA, rB tw 6, rA, rB twlngi rA, SIMM twi 6, rA, SIMM

Trap if unconditional trap tw 31, rA, rB — twi 31, rA, SIMM
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Other Simplified Mnemonics

No Operation
The preferred form of the no-operation instruction (no-op) is shown in Table C-21.

Load Immediate
The simplified mnemonics in Table C-22 provide a shorthand for loading an immediate 
signed value into a register.

Load Address
The load-address simplified mnemonic in Table C-23 computes the value of a base-
displacement operand (register-indirect with immediate index addressing). This 
mnemonic is useful for obtaining the address of a variable specified by name. The 
assembler substitutes the name variable with the appropriate values of rA and d in the 
address syntax d(rA).

Move Register
The simplified mnemonics in Table C-24 provide a shorthand for moving the contents of a 
GPR to another GPR.

Table C-21: Simplified Mnemonic for No-op

Operation Simplified Mnemonic Equivalent Mnemonic

No operation nop ori 0, 0, 0

Table C-22: Simplified Mnemonics for Load Immediate

Operation Simplified Mnemonic Equivalent Mnemonic

Load Immediate li rD, SIMM addi rD, 0, SIMM

Load Immediate Shifted lis rD, SIMM addis rD, 0, SIMM

Table C-23: Simplified Mnemonic for Load Address

Operation Simplified Mnemonic Equivalent Mnemonic

Load Address la rD, d(rA) addi rD, rA, d

la rD, variable addi rD, rA, d
(rA, d substitution by assembler) 

Table C-24: Simplified Mnemonics for Move Register

Operation Simplified Mnemonic Equivalent Mnemonic

Move Register mr rA, rS or rA, rS, rS

mr. rA, rS or. rA, rS, rS
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Complement Register
The simplified mnemonics in Table C-25 provide a shorthand for complementing the 
contents of a GPR.

Move to Condition Register
The simplified mnemonic in Table C-26 provides a shorthand for copying the contents of a 
GPR into the CR.

Table C-25: Simplified Mnemonics for Complement Register

Operation Simplified Mnemonic Equivalent Mnemonic

Complement (Not) Register not rA, rS nor rA, rS, rS

not. rA, rS nor. rA, rS, rS

Table C-26: Simplified Mnemonic for Move to Condition Register

Operation Simplified Mnemonic Equivalent Mnemonic

Move to Condition Register mtcr rS mtcrf 0xFF, rS
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Appendix D

Programming Considerations

This appendix provides programming examples that can be useful in embedded 
applications.

Synchronization Examples
The following provides general guidelines for using the lwarx and stwcx. instructions:

• The lwarx and stwcx. instructions should be paired and use the same effective 
address (EA). 

• An unpaired stwcx. instruction to an arbitrary EA (scratch address) can be used to 
clear any reservation held by the processor.

• An lwarx instruction can be left unpaired when executing certain synchronization 
primitives if the value loaded by the lwarx is not zero. Test and Set, page 561 provides 
such an example. 

• Minimizing the looping on an lwarx/stwcx. pair increases the likelihood that forward 
progress is made. The sequence shown in Test and Set, page 561 provides such an 
example. This example tests the old value before attempting the store. If the order is 
reversed (store before load), more stwcx. instructions are executed and reservations 
are more likely to be lost between the lwarx and the stwcx. instructions.

• Performance can be improved by minimizing looping on an lwarx instruction that 
fails to return a desired value. Performance can also be improved by using an 
ordinary load instruction to do the initial value check, as follows:
loop: lwz r5,0(r3) #load the word

cmpwi r5,0 #compare word to 0
bne- loop #loop back if word not equal to 0
lwarx r5,0,r3 #try reserving again
cmpwi r5,0 #compare likely to succeed
bne loop
stwcx. r4,0,r3 #try to store nonzero
bne- loop #loop if reservation lost

• Livelock is a state where no progress is made in a multiprocessor environment due to 
the interaction of the processors. Livelock is possible if a loop containing an 
lwarx/stwcx. pair also contains an ordinary store instruction that affects one or more 
bytes in the reservation granule. For example, the first code sequence shown in List 
Insertion, page 562 can cause livelock if two list elements have next element pointers 
in the same reservation granule.

The examples in this appendix show how synchronization instructions are used to emulate 
various synchronization primitives and how more complex forms of synchronization can 
be implemented. Each example assumes that a similar instruction sequence is used by all 
processes requiring synchronization of the accessed data. The examples show a 

http://www.xilinx.com


560 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Synchronization Examples
R

conditional sequence that begins with an lwarx instruction. This can be followed by 
memory accesses and/or computations on the loaded value. The sequence ends with a 
stwcx. instruction. In most of the examples, failure of the stwcx. instruction causes a branch 
back to the lwarx for a repeated attempt. The examples are optimized for the case where 
the stwcx. instruction succeeds by having the conditional-branch prediction bit set 
appropriately.

Fetch and No-Op
The fetch and no-op primitive atomically loads the current value in a memory word. This 
example assumes that the address of the memory word is in r3 and the data is loaded into 
r4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bne- loop #loop if reservation lost

If the stwcx. succeeds, the destination location is updated with the same value that was 
loaded by the preceding lwarx. Although this store is unnecessary with respect to the 
value in the memory location, its success ensures that the value loaded by the lwarx was 
the most current value.

Fetch and Store
The fetch and store primitive atomically loads and replaces a memory word. This example 
assumes that the address of the memory word is in r3, the new data is stored from r4, and 
the old data is loaded into r5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

Fetch and Add
The fetch and add primitive atomically increments a memory word. This example assumes 
that the incremented (new) data is stored from r0, the address of the memory word to be 
incremented is in r3, the increment value is contained in r4, and the data to be incremented 
is loaded into r5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

Fetch and AND
The fetch and AND primitive atomically ANDs a value into a memory word. This example 
assumes that the ANDed (new) data is stored from r0, the address of the memory word to 
be ANDed is in r3, the AND value is contained in r4, and the data to be ANDed is loaded 
into r5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if still reserved
bne- loop #loop if reservation lost

The above sequence can be changed to perform any atomic boolean operation on a 
memory word.
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Test and Set
This version of the test and set primitive atomically loads a word from memory, ensures 
that the memory word is a nonzero value, and updates CR0[EQ] according to whether the 
value loaded is zero. This example assumes that the address of the memory word is in r3, 
the new (nonzero) data is stored from r4, and the old data is loaded into r5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5, 0 #compare with 0
bne $+12 #branch if not equal to 0
stwcx. r4,0,r3 #try to store non-zero
bne- loop #loop if reservation lost

Compare and Swap
The compare and swap primitive atomically compares a value in a first register with a 
memory word. If they are equal, it stores a value from a second register into the memory 
word. If they are unequal, it moves the word from memory into the first register and 
updates CR0[EQ] to reflect the comparison result. This example assumes that the address 
of the memory word is in r3, the compare value is contained in r4, the new data is stored 
from r5, and the old data is loaded into r6.

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #compare load value with first register
bne- exit #skip if not equal
stwcx. r5,0,r3 #store second register if still reserved
bne- loop #loop if reservation lost

exit: mr r4,r6 #move load value into first register

The following applies to the above example:

• The semantics are based on the IBM System/370™ compare and swap instruction. Some 
architectures define this primitive differently.

• A compare and swap instruction is useful on machines that lack the synchronization 
capability provided by the lwarx and stwcx. instructions. Although such an 
instruction is atomic, it checks only whether the current value matches the old value. 
An error can occur if the value is changed and restored before being tested.

• In some applications, the second bne− instruction and/or the mr instruction can be 
omitted. The second bne- is used only to indicate that the original values in r4 and r6 
were not equal by exiting the primitive with CR0[EQ]=0. If this indication is not 
required by the application, the second bne- can be omitted. The mr is used only 
when the application requires that the memory word be loaded into the compare 
register (rather than into a third register) if the compared values are not equal. The 
resulting compare and swap primitive does not obey the IBM System/370 semantics 
if either or both of these instructions are omitted.

Lock Acquisition and Release
This example provides a locking algorithm that demonstrates the use of an atomic 
read/modify/write synchronization operation. The argument of the lock and unlock 
procedures is the address of a shared memory location (stored in r3). This argument points 
to a lock that controls access to some shared resource, such as a data structure. The lock is 
open when its value is zero and it is locked when its value is one. Before accessing the 
shared resource, the processor sets the lock by having the lock procedure call test_and_set 
(the procedure executes the code sequence in Test and Set, page 561). This atomically 
updates the old value of the lock with the new value (1) contained in r4. The old value is 
returned in r5 (not shown in the following example). CR0[EQ] is updated by test_and_set 
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to indicate whether the value returned in r5 is zero. The lock procedure repeats the 
test_and_set procedure until it successfully changes the lock value from zero to one. 

The processor does not access the shared resource until it sets the lock. After the bne 
instruction checks for the successful test and set operation, the processor executes the isync 
instruction. This synchronizes program context. The sync instruction could be used but 
performance would be degraded because the sync instruction waits for all outstanding 
memory accesses to complete with respect to other processors. This is not required by the 
procedure.

lock: li r4,1 #obtain new lock
loop: bl test_and_set #test and set

bne- loop #retry until old lock = 0
isync #synchronize context
blr #return

The unlock procedure writes a zero to the lock location. If access to the shared resource 
includes write operations, most applications require a sync instruction to make the shared 
resource modifications visible to all processors before releasing the lock.

unlock:sync #delay until prior stores finish
li r1,0
stw r1,0(r3) #store zero to lock location
blr #return

List Insertion
The following example shows how the lwarx and stwcx. instructions are used to 
implement simple LIFO (last-in-first-out) insertion into a singly linked list. If multiple 
values must be changed atomically or the correct order of insertion depends on the 
element contents, insertion cannot be implemented as shown below and instead requires a 
more complicated strategy (such as lock synchronization).

In this example, list elements are data structures that contain pointers to the next element 
in the list. A new element is inserted after an existing (parent) element. The next element 
pointer in the parent element is copied (stored) unconditionally into the new element. A 
pointer to the new element is stored conditionally into the parent element. 

In this example, it is assumed that the parent element address is in r3, the new element 
address is in r4, and the next element pointers are at offset zero in the respective element 
data structure. It is also assumed that the next element pointer of each list element is in a 
reservation granule separate from that of the next element pointer of all other list elements.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
sync #synchronize memory (can omit if not MP)
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if reservation lost

In the preceding example, livelock can occur in a multiprocessor system if two list 
elements have next element pointers within the same reservation granule. If it is not 
possible to allocate list elements such that next element pointers are in different reservation 
granules, livelock can be avoided by using the following sequence:

lwz r2,0(r3) #get next pointer
loopl: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #synchronize memory

loop2: lwarx r2,0,r3 #get next pointer again
cmpw r2,r5 #loop if changed
bne- loopl #(updated by another processor)
stwcx. r4,0,r3 #add new element to list
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bne- loop2 #loop if reservation lost

Multiple-Precision Shifts
Following are programming examples for multiple-precision shifts. A multiple-precision 
shift is a shift of an n-word quantity, where n > 1. The quantity to be shifted is contained in 
n registers. The shift amount is specified either by an immediate value in the instruction or 
by bits 27:31 of a register.

The following examples distinguish between the cases n = 2 and n > 2. If n > 2, the examples 
yield the desired result only when the shift amount is restricted to the range 0–31. When 
n > 2, the number of instructions required is 2n − 1 (immediate shifts) or 3n − 1 (non-
immediate shifts). The examples shown for n > 2 use n = 3. Extending those examples to 
larger values of n or reducing them to the case n = 2 is straightforward when the shift 
amount restriction is met. This restriction is always met for shifts with immediate shift 
amounts.

The examples assume GPRs r2 and r3 (and r4 if n = 3) contain the quantity to be shifted and 
that the result is placed into the same registers. For non-immediate shifts, the shift amount 
is contained in bits 27:31 of GPR r6. For immediate shifts, the shift amount is assumed to be 
greater than zero. GPRs r0 and r31 are used as scratch registers. The variable sh represents 
the shift amount.

• Shift-left immediate, n = 3 (shift amount < 32)
rlwinm r2, r2, sh, 0, 31−sh
rlwimi r2, r3, sh, 32−sh, 31
rlwinm r3, r3, sh, 0, 31−sh
rlwimi r3, r4, sh, 32−sh, 31
rlwinm r4, r4, sh, 0, 31−sh

• Shift-left, n = 2 (shift amount < 64)
subfic r31, r6, 32
slw r2, r2, r6
srw r0, r3, r31
or r2, r2, r0
addi r31, r6, −32
slw r0, r3, r31
or r2, r2, r0
slw r3, r3, r6

• Shift-left, n = 3 (shift amount < 32)
subfic r31, r6, 32
slw r2, r2, r6
srw r0, r3, r31
or r2, r2, r0
slw r3, r3, r6
srw r0, r4, r31
or r3, r3, r0
slw r4, r4, r6

• Shift-right immediate, n = 3 (shift amount < 32)
rlwinm r4, r4, 32−sh, sh, 31
rlwimi r4, r3, 32−sh, 0, sh−1
rlwinm r3, r3, 32−sh, sh, 31
rlwimi r3, r2, 32−sh, 0, sh−1
rlwinm r2, r2, 32−sh, sh, 31

• Shift-right, n = 2 (shift amount < 64)
subfic r31, r6, 32
srw r3, r3, r6
slw r0, r2, r31
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or r3, r3, r0
addi r31, r6, −32
srw r0, r2, r31
or r3, r3, r0
srw r2, r2, r6

• Shift-right, n = 3 (shift amount < 32)
subfic r31, r6, −32
srw r4, r4, r6
slw r0, r3, r31
or r4, r4, r0
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
srw r2, r2, r6

• Shift-right algebraic immediate, n = 3 (shift amount < 32)
rlwinm r4, r4, 32−sh, sh, 31
rlwimi r4, r3, 32−sh, 0, sh−1
rlwinm r3, r3, 32−sh, sh, 31
rlwimi r3, r2, 32−sh, 0, sh−1
srawi r2, r2, sh

• Shift-right algebraic, n = 2 (shift amount < 64)
subfic r31, r6, 32
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
addic. r31, r6, −32
sraw r0, r2, r31
ble $+8
ori r3, r0, 0
sraw r2, r2, r6

• Shift-right algebraic, n = 3 (shift amount < 32)
subfic r31, r6, 32
srw r4, r4, r6
slw r0, r3, r31
or r4, r4, r0
srw r3, r3, r6
slw r0, r2, r31
or r3, r3, r0
sraw r2, r2, r6

Code Optimization Guidelines
The following guidelines can help reduce program execution time in the PPC405. 
Additional information on PowerPC code optimization can be found in The PowerPC 
Compiler Writer’s Guide.

Conditional Branches
Multi-way branches and compound branches can be implemented in several ways. The 
implementation choice depends on problem specifics, including the number and 
distribution of test conditions and the instruction timings and latencies. Usually, the 
implementation involves a combination of conditional branches and unconditional 
branches.

Conditional branches require the evaluation of conditional expressions. In evaluating 
these expressions, performance can be improved by using instructions that update the CR 
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to reflect their results. These results are represented in the CR as boolean variables that can 
be operated on using the CR-logical instructions. This usually yields better performance 
than using other instructions to evaluate conditional expressions solely in the GPRs.

The following pseudocode provides a simple example of how the CR register and CR-
logical instructions can be used to improve the performance of conditional expressions by 
eliminating branches. In this example, Var28–Var31 are boolean variables maintained as 
bits in the CR[CR7] field (CR28:31). These variables represent a true condition by using the 
binary value 0b1 and a false condition by using the binary value 0b0.

if (Var28 || Var29 || Var30 || Var 31) branch to target

The above pseudocode can be implemented in assembler using branches as follows:

bt 28, target
bt 29, target
bt 30, target
bt 31, target

The following assembler sequence is functionally equivalent but replaces three of the 
branches with CR-logical instructions. The processor can usually execute these 
instructions faster than branches.

cror 2, 28, 29
cror 2, 2, 30
cror 2, 2, 31
bt 2, target

Branch Prediction
If the outcome of a conditional branch is likely to contradict the default prediction used by 
the processor, software can override the default prediction by setting the y bit in the 
branch-instruction BO opcode field (see Branch Prediction, page 71 for more information 
on the y bit). Overriding this default prediction is useful in the following situations:

• If an unlikely call to an error handler lies in the fall-through path.
• If program profiling determines that the default branch prediction is likely to be 

incorrect.
• If a conditional subroutine return is likely to be taken. Subroutine returns are 

normally programmed using branch to link register instructions which are predicted 
not taken by default.

CR Dependencies
If an instruction updates the CR register and the result is used by a conditional branch, two 
instructions should be placed between the CR-update instruction and conditional branch. 
This gives the processor sufficient time to resolve the branch without stalling instruction 
execution due to a possibly incorrect branch prediction. The CR-update instructions that 
can benefit from this action are:

• Integer-arithmetic, compare, and logical instructions that have the Rc opcode field set.
• The addic., andi., and andis. instructions.
• CR-logical instructions.
• The mcrf, mcrxr, and mtcrf instructions.

Floating-Point Emulation
The PPC405 is an integer processor and does not support the execution of floating-point 
instructions in hardware. System software can provide floating-point emulation support 
using one of two methods.
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The preferred method is to supply a call interface to subroutines within a floating-point 
run-time library. The individual subroutines can emulate the operation of floating-point 
instructions. This method requires the recompilation of floating-point software in order to 
add the call interface and link in the library routines

Alternatively, system software can use the program interrupt. Attempted execution of 
floating-point instructions on the PPC405 causes a program interrupt to occur due to an 
illegal instruction. The interrupt handler must be able to decode the illegal instruction and 
call the appropriate library routines to emulate the floating-point instruction using integer 
instructions. This method is not preferred due to the overhead associated with executing 
the interrupt handler. However, this method supports software containing PowerPC 
floating-point instructions without requiring recompilation. See Program Interrupt 
(0x0700), page 223, for more information.

Cache Usage
Code and data can be accessed much faster if it is located in the processor caches instead of 
external memory. Code and data can be organized to minimize cache misses, reducing the 
need for external memory accesses.

Any two memory addresses are considered congruent if address bits 19:26 (the cache 
index) are the same but address bits 0:18 (the cache tag) are different. Address bits 27:31 
define the 32-byte cacheline, which is the smallest object that can be brought into the cache. 
Only two congruent cachelines can be in the cache simultaneously. Accessing a third 
congruent line causes one of the two lines already in the cache to be removed.

Software can minimize the number of congruent addresses by organizing used addresses 
such that they are uniformly distributed across address bits 19:26.

Alignment
Misaligned memory accesses are usually handled by the processor and do not cause an 
alignment exception. However, the fastest possible memory-access performance is 
obtained when operands are properly aligned. If an unaligned load or store operand 
crosses a word boundary, the processor accesses that operand using two memory 
references.

Branch targets should be aligned on a cache-line boundary if that target is unlikely to be 
accessed due to a default prediction or a prediction override. This helps minimize the 
number of unused instructions present in the instruction cache.

Instruction Performance
The following performance descriptions consider only the “first order” effects of cache 
misses. The performance penalty associated with a cache miss involves a number of 
second-order effects. This includes PLB contention between the instruction and data 
caches and the time associated with performing cache-line fills and flushes. Unless stated 
otherwise, the number of cycles described applies to systems having zero-wait-state 
memory access.

General Rules
The following rules apply to instruction execution in the PPC405:

• Instructions execute in order.
• Assuming cache hits, all instructions execute in one cycle except the following:

- Divide instructions execute in 35 clock cycles.
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- Branches execute in one to three clock cycles as described in Branches below.
- Multiply-accumulate and multiply instructions execute in one to five cycles as 

described in Multiplies below.
- Aligned load/store instructions that hit in the data cache execute in one clock 

cycle. See Alignment above for information on the access penalty associated with 
unaligned load/stores.

• A data cache-control instruction requires two cycles to execute. However, subsequent 
data-cache accesses stall until the cache-control instruction finishes accessing the data 
cache. Those accesses do not remain stalled when transfers associated with previous 
data cache-control instructions continue on the PLB.

Branches
The performance of a branch instruction depends on how quickly it is resolved. A branch 
is resolved when all conditions it depends on are known and the branch target is known. 
Generally, the greater the separation (in instructions) between a branch and the last 
instruction it depends on, the earlier the branch is resolved. If the branch is resolved early, 
it can be executed in fewer cycles.

The execution time of branches on the PPC405 can be determined as follows:

• A known not taken branch does not have condition dependencies (they are resolved) or 
address dependencies (the next instruction is executed). These instructions execute in 
one clock cycle.

• A known taken branch does not have condition dependencies (they are resolved) but 
can have address dependencies. These instructions execute as follows:
- When address dependencies are resolved, the instruction executes in one or two 

cycles depending on where the branch instruction is in the pipeline when the 
address is resolved. If the address is resolved early (at or before prefetch) it 
executes in one cycle. If the address is resolved during decode, it executes in two 
cycles.

- When address dependencies are not resolved, the instruction executes in two or 
three cycles. This depends on the separation between the branch and the address-
calculation instructions. If the separation is one instruction, the branch executes in 
two cycles. If there is no separation, the branch executes in three cycles.

• A predicted not taken branch has condition dependencies. These instructions execute as 
follows:
- If the prediction is correct, the branch executes in one cycle.
- If the prediction is incorrect, the instruction executes in two or three cycles. This 

depends on the separation between the branch and conditional instructions. If the 
separation is one instruction, the branch executes in two cycles. If there is no 
separation, the branch executes in three cycles.

• A predicted taken branch has condition dependencies. These instructions execute as 
follows:
- If the prediction is correct, the branch executes in one or two cycles, depending on 

where the branch instruction is in the pipeline when the prediction occurs. If the 
instruction is predicted early (at or before prefetch) it executes in one cycle. If the 
instruction is predicted during decode, it executes in two cycles.

- If the prediction is incorrect, the instruction executes in two or three cycles. This 
depends on the separation between the branch and the condition-setting 
instructions. If the separation is one instruction, the branch executes in two cycles. 
If there is no separation, the branch executes in three cycles.
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Multiplies
The PPC405 supports word multiplication and halfword multiplication. Multiply-
accumulate (MAC) instructions are also supported. All of these instructions use the same 
multiplication hardware and are pipelined by the processor in the execution unit.

The time required by the processor to multiply two words depends on whether the first 
operand is larger than the second. The processor reduces the number of cycles required to 
perform a multiplication by automatically detecting which operand is smaller and 
internally ordering them appropriately. The operand size is determined by examining the 
number of bits involved in the sign-extension.

Issue-rate cycles and latency cycles are associated with the pipelining of multiply and 
MAC instructions, as shown in Table D-1. Issue-rate cycles describe the number of cycles 
required between operations before the multiplication hardware can accept a new 
operation. Latency cycles describe the total number of cycles for the multiplication 
hardware to perform the operation.

Under the conditions described below, a second multiply or MAC instruction can begin 
execution before the first multiply or MAC instruction completes. When these conditions 
are met, the issue-rate cycle numbers apply. Otherwise, the latency cycle numbers apply. A 
multiply or MAC instruction can follow another multiply or MAC and still meet the 
conditions that support the use of the issue-rate cycle numbers.

Referring to Table D-1, issue-rate cycle numbers are used in the following cases:

• No operand dependency exists on a previous multiply or MAC instruction in the 
multiply hardware.

• The result of a MAC instruction is used as the accumulate operand of a subsequent 
MAC instruction in the multiply hardware. In this case, the processor is capable of 
forwarding the required result within the time imposed by the issue-rate.

Latency cycle numbers are used in the following cases:

• No multiply or MAC instruction is present in the multiply hardware when the current 
instruction is executed.

• An operand of a multiply or MAC instruction depends on the result of a previous 
multiply or MAC instruction in the multiply hardware. An exception to this rule is 
described in the issue-rate rules described above.

Operations
Issue-Rate

Cycles
Latency
Cycles

MAC and Negative MAC 1 2

Halfword × Halfword (32-bit result) 1 2

Halfword × Word (48-bit result) 2 3

Word × Word (64-bit result) 4 5

Notes: 
For the purposes of this table, words are treated as halfwords if the upper 16 bits of the operand 
contain a sign extension of the lower 16 bits. For example, if the upper 16 bits of a word operand 
are zero, the operand is considered a halfword when calculating execution time.

Table D-1: Multiply and MAC Instruction Timing
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Scalar Load Instructions
Cacheable load instructions that hit in the data cache usually execute in one cycle. 
Cacheable and non-cacheable load instructions that hit in the data fill buffer also execute 
(usually) in one cycle. 

The pipelining of load instructions by the processor can cause loads that hit in the cache or 
fill buffer to take extra cycles. If a load instruction is followed by an instruction that uses 
the loaded data, a load-use dependency exists. When the loaded data is available, it is 
forwarded to the operand register of the dependent instruction. This prevents a processor 
stall from occurring due to missing operand data. This data forwarding adds an extra 
latency cycle when updating the appropriate GPR. In this case, the load appears to execute 
in two cycles.

Load Misses and Uncacheable Loads
Cacheable load misses and non-cacheable loads incur penalty cycles for accessing memory 
over the PLB. These penalty cycles depend on the speed of the PLB and when the address 
acknowledge is returned over the PLB. Assuming the PLB operates at the same frequency 
as the processor and that the address acknowledge is returned in the same cycle the data-
cache unit asserts the PLB request, the number of penalty cycles are as follows:

• Six cycles if operand forwarding is enabled.
• Seven cycles if operand forwarding is not enabled.

Additional cycles are required if the system performance does not match the above 
assumptions.

The PPC405 can execute instructions following a load miss or non-cacheable load if those 
subsequent instructions do not have a load-use dependency on the load data. When 
possible, the instruction using the load data should be separated from the load instruction 
by as many non-use instructions as possible. This enables the processor to continue 
executing instructions with minimal delay while the load data is accessed.

Scalar Store Instructions
Cacheable store instructions that miss in the data cache are queued by the data-cache unit 
so that they appear to execute in a single cycle (if the store is aligned properly). Non-
cacheable store instructions are handled in the same way. Under certain conditions, the 
data-cache unit can queue up to three store instructions (see Pipeline Stalls, page 149 for 
more information.)

All aligned stwcx. instructions execute in two cycles.

String and Multiple Instructions
The access time for load/store string and load/store multiple instructions depends on the 
alignment of the data being accessed. 

String instructions are decomposed by the processor into multiple word-aligned accesses. 
The execution time for string instructions is calculated as follows (assuming data-cache 
hits):

• Access to leading bytes consume one cycle. Unused bytes are discarded if the leading 
bytes are not aligned on a word boundary.

• Access to intermediate bytes consume one cycle for each word accessed.
• Access to trailing bytes consume one cycle. Unused bytes are discarded if the trailing 

bytes are not aligned on a word boundary.
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Figure D-1 shows an example of a 21-byte string with unaligned leading and trailing bytes. 
Shaded boxes represent bytes outside the string that are discarded by the processor.

In the above example, access to the string requires six cycles, assuming data-cache hits. 
This is calculated as follows:

• One cycle is required to access the bytes at addresses 1, 2, and 3. The byte at address 0 
is also accessed but discarded.

• Four cycles are required to access the four words at addresses 4, 8, 12, and 16 (one 
cycle for each word). 

• One cycle is required to access the bytes at addresses 20 and 21. The bytes at addresses 
22 and 23 are also accessed but discarded.

Load/store multiple instructions are also decomposed by the processor into multiple 
word-aligned accesses. Unaligned words are assembled (loads) or disassembled (stores) 
by the processor during the access. The execution time for these instructions is calculated 
as follows (assuming data-cache hits):

• Access to the leading word consumes one cycle. Unused bytes are discarded if the 
leading word is not aligned on a word boundary. 

• Access to intermediate words consume one cycle for each word accessed.
• Access to the trailing word consumes one cycle. Unused bytes are discarded if the 

trailing word is not aligned on a word boundary.

Figure D-2 shows an example of a 5-word unaligned operand. Shaded boxes represent 
bytes outside the operand that are discarded by the processor.

In the above example, access to the multiple-word operand requires six cycles, assuming 
data-cache hits. This is calculated as follows:

• One cycle is required to access the first three bytes of word 0. The byte at address 0 is 
also accessed but discarded.

• Four cycles are required to access the remaining byte of word 0, all bytes in words 1, 2, 
and 3, and the first three bytes of word 4.

• One cycle is required to access the last byte in word 4. The bytes at addresses 21, 22, 
and 23 are also accessed but discarded.

Instruction Cache Misses
Cacheable instruction-fetch misses and non-cacheable instruction-fetches incur penalty 
cycles for accessing memory over the PLB. These penalty cycles depend on the speed of the 
PLB and when the address acknowledge is returned over the PLB. The number of penalty 
cycles are as follows:

• Three cycles if the access is a sequential instruction fetch.
• Four cycles if the access is due to a taken branch recognized by the instruction 

prefetch buffer.

Address 0 4 8 12 16 20

Data 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure D-1: String Access Example

Address 0 4 8 12 16 20

Data 0 1 2 3 4

Figure D-2: Multiple-Word Access Example
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• Five cycles if the access is due to a taken branch recognized by the instruction decode 
unit.

The above penalty cycle numbers assume the following:

• The PLB operates at the same frequency as the processor.
• The address acknowledge is returned in the same cycle the data-cache unit asserts the 

PLB request.
• The target instruction is returned in the cycle following the address acknowledge.

Additional cycles are required if the system performance does not match the above 
assumptions.
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Appendix E

PowerPC 6xx/7xx Compatibility

This appendix outlines the programming model differences between the 40x family and 
the 6xx/7xx family of PowerPC® processors. The PowerPC 6xx/7xx family complies with 
the original PowerPC architecture designed for desktop applications. The PowerPC 40x 
family complies with the PowerPC embedded-environment architecture designed for 
embedded applications. The information contained in this appendix is useful to system 
programmers porting software from one family to another.

The two architectures are compatible at the user instruction-set architecture (UISA) level 
but differ at the level of the virtual-environment architecture (VEA) and operating-
environment architecture (OEA). The PowerPC embedded-environment architecture 
optimizes the VEA and OEA to meet the unique requirements of embedded applications. 
These optimizations include changes in memory management, cache management, 
exceptions, timer resources, and others. Many of these optimizations are reflected by the 
different special-purpose registers (SPRs) supported by the families.

Porting software between implementations is usually limited to the operating-system 
kernel and other privileged-mode software. Applications usually require no modification. 
Software porting can be simplified through the use of structured programming methods 
that localize program modules requiring modification. For example, if all access to the time 
base are performed using a single function, only that function needs to be modified when 
porting software to another PowerPC processor.

More information on the PowerPC architecture can be found in the PowerPC™ 
Microprocessor Family: The Programming Environments. Refer to implementation-specific 
documentation for more information on initialization and configuration, performance 
considerations, special-purpose registers, and other software-visible details that can vary 
from processor to processor.

Registers
Table E-1 summarizes the registers supported by the PowerPC 40x family that are not 
supported by the PowerPC 6xx/7xx family. Table E-2 summarizes the registers supported 
by the PowerPC 6xx/7xx family that are not supported by the PowerPC 40x family. Not all 
registers shown for a particular family are supported by all members within that family.

Table E-1:  40x Registers Not Supported by 6xx/7xx Processors

Name Description Purpose

SPRG4–7 SPR general-purpose registers 4–7 Software defined

USPRG0 User SPR general-purpose register 0

CCR0, 
CCR1

Core-configuration registers Processor configuration
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DCCR Data-cache cacheability register Storage control

DCWR Data-cache write-through register

ICCR Instruction-cache cacheability register

SGR Storage Guarded Register

SLER Storage Little-Endian Register

SU0R Storage User-Defined 0 Register

ZPR Zone-Protection Register

DCRs Device control registers External device control

DEAR Data-error address register Exception and interrupt processing

ESR Exception-syndrome register

EVPR Exception-vector prefix register

SRR2 Save/restore register 2

SRR3 Save/restore register 3

PIT Programmable-Interval Timer Timer resources

TCR Timer-Control Register

TSR Timer-Status Register

DACn Data address-compare registers Debugging

DBCRn Debug-control registers

DBSR Debug-status register

DVCn Data value-compare registers

IACn Instruction address-compare registers

ICDBDR Instruction-cache debug-data register

Table E-2:  6xx/7xx Registers Not Supported by 40x Processors

Name Description Purpose

HIDn Hardware implementation registers Processor configuration

DBATn Data BATs Memory management

IBATn Instruction BATs

SDR1 Page table base address

SRn Segment registers

EAR External address register External device control

DAR Data address register Exception and interrupt processing

DSISR Data storage interrupt status register

DEC Decrementer Timer resources

DABR Data-address breakpoint register Exception and interrupt processing

IABR Instruction-address breakpoint register

Table E-1:  40x Registers Not Supported by 6xx/7xx Processors (Continued)

Name Description Purpose
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Machine-State Register
Several bits within the machine-state register are supported by either PowerPC 40x 
processors or PowerPC 6xx/7xx processors, but not both. Others have different meanings 
depending on the processor family. Table E-3 compares these differences.

MMCRn Monitor control registers Performance monitoring

PMCn Performance counters

SIA Sampled instruction address

UMMCRn Monitor control registers (user mode)

UPMCn Performance counters (user mode)

USIA Sampled instruction address (user mode)

ICTC Instruction cache throttling control register Cache control

L2CR L2 cache control register

THRMn Thermal assist unit registers Thermal management

Table E-2:  6xx/7xx Registers Not Supported by 40x Processors (Continued)

Name Description Purpose

Table E-3: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC 6xx/7xx Family

0:5 Reserved Reserved

6 AP—Auxiliary Processor Available

7:11 Reserved

12 APE—APU Exception Enable

13 WE—Wait State Enable POW—Power Management Enable

14 CE—Critical Interrupt Enable Reserved

15 Reserved ILE—Interrupt Little Endian

16 EE—External Interrupt Enable

17 PR—Privilege Level

18 FP—Floating-Point Available

19 ME—Machine-Check Enable

20 FE0—Floating-Point Exception-Mode 0

21 DWE—Debug Wait Enable SE—Single-Step Trace Enable

22 DE—Debug Interrupt Enable BE—Branch Trace Enable

23 FE1—Floating-Point Exception-Mode 1

24 Reserved

25 Reserved IP—Exception Prefix

26 IR—Instruction Relocate

27 DR—Data Relocate

28 Reserved
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Processor-Version Register
The contents of the processor-version register (PVR) are implementation dependent. 

Memory Management
The primary function of memory management is the translation of effective addresses to 
physical addresses for instruction memory and data memory accesses. The secondary 
function of memory management is to provide memory-access protection and memory-
attribute control. Memory management is handled by the memory-management unit 
(MMU) in the processor.

Memory Translation
The PowerPC 6xx/7xx family manages memory translation by dividing the address space 
into blocks, segments, and pages. The address-space divisions are characterized as follows:

• Blocks specify large, contiguous memory regions (from 128KB to 256MB) with 
common access protection and memory attributes. Blocks are defined using SPRs 
called block address-translation (BAT) registers. The BAT registers are used by the 
MMU to translate a 32-bit effective address within a BAT to a 32-bit physical address.

• Segments are contiguous 256MB memory regions. Segment registers are used by the 
MMU to translate a 32-bit effective address within a segment to a 52-bit virtual 
address. 16 segment registers are available and they are accessed using move-to and 
move-from segment register instructions.

• Pages are contiguous 4KB memory regions. The MMU uses page-translation tables to 
translate a 52-bit virtual address within a page to a 32-bit physical address. The page-
translation tables are created by software and stored in system memory. The processor 
uses a translation look-aside buffer (TLB) to cache the most frequently used 
translations. The processor manages many TLB functions in hardware, including 
page-table walking and TLB entry replacement. TLB instructions are provided for 
some software management, such as TLB invalidation.

If an effective address is not part of a memory region defined by a BAT, translation of that 
address to a physical address is handled by the combined segment and page translation 
mechanism. The effective address is translated first into a virtual address using the 
segment registers. The resulting virtual address is translated to a physical address using 
the page tables.

The PowerPC 40x family manages memory translation by dividing the address space into 
pages. BAT and segment translation are not supported. Page translation in the PowerPC 
40x family has the following characteristics:

• Pages are contiguous, variable-sized memory regions. Page sizes can vary from 1KB 
to 16MB.

• Page-translation tables are created by software and stored in system memory. The 
most frequently used translations are cached in the TLB. TLB management is the 
responsibility of software, not hardware.

29 Reserved PM—Performance Monitor Marked Mode

30 RI—Recoverable Exception

31 LE—Little-Endian Mode Enable

Table E-3: Comparison of MSR Bit Definitions (Continued)

MSR Bit PowerPC 40x Family PowerPC 6xx/7xx Family
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• The MMU uses the page-translation tables to translate a 40-bit virtual address to a 32-
bit physical address. The 40-bit virtual address is the combination of the 32-bit 
effective address appended to the 8-bit PID.

Table E-4 summarizes the memory-translation differences between PowerPC 40x 
processors and PowerPC 6xx/7xx processors. Gray-shaded cells represent unsupported 
features.

Memory Protection
Both the PowerPC 6xx/7xx and PowerPC 40x processors support no-access, read-only, and 
read/write memory protection. However, the methods used to specify protection differ in 
the two processor families:

• PowerPC 6xx/7xx processors:
- Protection is specified during segment and page translation using a combination 

of protection keys stored in the segment registers and page-protection bits stored 
in the page-table entries.

- Protection is specified during BAT translation using protection bits stored in the 
BAT registers.

• PowerPC 40x processors:
- Protection is specified during page translation using page-protection bits stored 

in the TLB entries.
- Zone protection can be used to override the access protection specified in a TLB 

entry. Fields within the zone-protection register (ZPR) define the protection level 
of a page or set of pages.

Table E-4: Summary of Memory Translation Differences

Memory-Translation Feature PowerPC 40x Family PowerPC 6xx/7xx Family

Block address translation (BAT) Supported using separate instruction and 
data BAT registers (SPRs)

Segment translation Supported using 16 segment registers and 
special instructions to access those registers

Page translation Supported Supported

Virtual-address width 40 bits (8-bit PID and 32-bit effective address) 52 bits

Page size 1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 
and 16MB

4KB

Page table entry Flexible - software defined Defined by PowerPC architecture

Page table organization Flexible - software defined Hashed

Page history recording (reference and 
change)

Software Hardware

TLB-entry replacement Software Hardware

TLB instructions tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

tlbia
tlbie
tlbsync

TLB-miss exceptions Supported
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Memory Attributes
Both the PowerPC 6xx/7xx and PowerPC 40x processors support the following memory 
attributes:

• Write through (W).
• Caching inhibited (I).
• Memory coherence (M). This attribute is not supported by the PPC405 and is ignored.
• Guarded (G).

PowerPC 40x processors also support the following additional memory attributes:

• User-defined (U0).
• Endian (E).

All memory attributes supported by PowerPC 40x processors can be applied in real mode 
(address translation disabled) using storage-attribute control registers. These registers are 
not supported by PowerPC 6xx/7xx processors.

Cache Management
The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. To maximize portability, software that operates on 
multiple PowerPC implementations should always assume a Harvard cache model is 
implemented.

Table E-5 summarizes the PowerPC 40x cache-management instructions not supported by 
the PowerPC 6xx/7xx family. Implementations within the PowerPC 40x family can vary in 
the detailed operation of these instructions.

Some PowerPC processors also support cache locking. Cache locking prevents the 
replacement of a cacheline regardless of the frequency of its use. Cache locking is 
supported as follows:

• PowerPC 401 processors—cachelines can be individually locked.
• PowerPC 403 processors—not supported.
• PowerPC 405 processors—not supported.
• PowerPC 6xx/7xx processors—the instruction and data caches can be locked in their 

entirety.

Table E-5: 40x Cache-Management Instructions

Instruction 405 401 and 403

dccci Invalidates individual data-cache congruence classes.

dcread Data-cache debug function controlled by CCR0 register. Data-cache debug function controlled by CDBCR register.

icbt Instruction-cache block touch, executable from user mode. Instruction-cache block touch, executable from privileged 
mode only.

iccci Invalidates the entire instruction cache. Invalidates individual instruction-cache congruence 
classes.

icread Function controlled by CCR0 register. Function controlled by CDBCR register.
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Exceptions
The PowerPC 40x family implements several extensions to the exception and interrupt 
mechanism supported by PowerPC 6xx/7xx processors. The extensions supported by 
PowerPC 40x processors are:

• A dual-level interrupt structure defining critical and noncritical interrupts. PowerPC 
6xx/7xx processors implement a single-level interrupt structure that does not 
distinguish between critical and noncritical interrupts.

• New save/restore registers (SRR2/SRR3) that support critical interrupts. The 
PowerPC 40x family uses the SRR0/SRR1 save/restore registers for noncritical 
interrupts, which are used for all interrupts in the PowerPC 6xx/7xx family.

• Differences in exception-related bits in the machine-state register (MSR). See 
Table E-3, page 575 for a summary.

• A new interrupt-return instruction (rfci) that supports critical interrupts. The 
PowerPC 40x family uses the rfi instruction to return from noncritical interrupts, 
which is used to return from all interrupts in the PowerPC 6xx/7xx family.

• New special-purpose registers for recording exception information. The PowerPC 40x 
family defines two registers:
- The exception-syndrome register (ESR) used to identify the cause of an exception.
- The data exception-address register (DEAR) used to record the memory-operand 

effective address of a data-access instruction that causes certain exceptions. The 
data-address register (DAR) performs a similar function in PowerPC 6xx/7xx 
processors.

• Greater flexibility in relocating the interrupt-handler table. The exception-vector 
prefix register (EVPR) supports relocating the interrupt-handler table anywhere in 
physical-address space, with a base address that falls on a 64KB-aligned boundary. 
The PowerPC 6xx/7xx family supports two locations for the interrupt-handler table: 
0x000n_nnnn or 0xFFFn_nnnn, selected by using the MSR[IP] bit.

• New exceptions and interrupts are defined. Some exceptions and interrupts 
supported by the PowerPC 6xx/7xx family are not supported by PowerPC 40x 
processors. Table E-6 summarizes the differences between the exception and interrupt 
vectors defined by the two families. Gray-shaded cells represent unsupported 
interrupt vectors. Not all processors within a family support all of the exceptions and 
interrupts defined by the family.

Table E-6: Summary of Exception and Interrupt Vector Differences

Vector Offset PowerPC 40x Family PowerPC 6xx/7xx Family

0x0100 Critical-Input System Reset

0x0900 Decrementer

0x0D00 Trace

0x0F00 Performance Monitor

0x0F20 APU Unavailable

0x1000 Programmable-Interval Timer Instruction-Translation Miss

0x1010 Fixed-Interval Timer

0x1020 Watchdog Timer

0x1100 Data-TLB Miss Data-Translation Miss (loads)

0x1200 Instruction-TLB Miss Data-Translation Miss (stores)
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Timer Resources
The PowerPC 40x family implements new timer features. These are:

• The programmable-interval timer (PIT) register. This register decrements at the same 
clock rate as the time base. Its function replaces that of the decrementer in the 
PowerPC 6xx/7xx family.

• The programmable-interval timer (PIT) interrupt. This interrupt is triggered by a 
time-out on the PIT registers. Its function replaces that of the decrementer interrupt in 
the PowerPC 6xx/7xx family.

• The fixed-interval timer (FIT) interrupt. This interrupt is triggered by a pre-
determined bit transition in the time base. This feature is not supported by the 
PowerPC 6xx/7xx family.

• The watchdog timer (WDT) interrupt. This critical interrupt is triggered by a pre-
determined bit transition in the time base. This feature is not supported by the 
PowerPC 6xx/7xx family.

• The timer-control register (TCR). This register controls the PowerPC 40x timer 
resources. It is not supported by the PowerPC 6xx/7xx family.

• The timer-status register (TSR). This register is used by the PowerPC 40x timer 
resources to report status. It is not supported by the PowerPC 6xx/7xx family.

Other Differences

Instructions
PowerPC 40x processors can support implementation-specific instructions that are not 
supported in PowerPC 6xx/7xx processors. For example, the multiply-accumulate (MAC) 
instructions are not supported by PowerPC 6xx/7xx processors. Refer to Table B-32, 
page 518, for a list of implementation dependent PPC405 instructions. This table also 
shows which PPC405 instructions are not supported by the PowerPC architecture.

Endian Support
The default memory-access order for all PowerPC processors is big-endian. The PowerPC 
embedded-environment architecture defines a true little-endian memory-access capability 
that is implemented using the endian storage attribute (E). The PPC405 supports this 
capability. The PowerPC architecture supports a little-endian mode that is implemented by 
PowerPC 6xx/7xx processors. This mode is not supported by the PPC405.

Debug Resources
Debug resources are implementation dependent. In general, all PowerPC 40x processors 
support debug events on both instruction addresses and data addresses. Debug events are 

0x1300 Instruction-Address Breakpoint

0x1400 System Management

0x1700 Thermal Management

0x2000 Debug

Table E-6: Summary of Exception and Interrupt Vector Differences (Continued)

Vector Offset PowerPC 40x Family PowerPC 6xx/7xx Family
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controlled using the DBCR0 and DBCR1 registers. Debug status is reported by the DBSR 
register. PowerPC 6xx/7xx processors support debug resources to varying degrees, but the 
capabilities are often less comprehensive than those supported by PowerPC 40x 
processors.

Power Management
The PowerPC 40x family implements power management using the MSR[WE] bit. Setting 
this bit places the processor in the wait state. Power management is disabled when an 
interrupt occurs.

The PowerPC 6xx/7xx family similarly implements power management using the 
MSR[POW] bit. PowerPC 7xx processors support four different power states, programmed 
using the HID0 register. Power management is disabled when an interrupt occurs.
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Appendix F

PowerPC Book-E Compatibility

This appendix outlines the programming model differences between the PowerPC® 
embedded-environment architecture (40x family of processors) and the PowerPC Book-E 
architecture. In general, the PowerPC Book-E architecture extends the embedded-system 
features introduced by the PowerPC embedded-environment architecture. The PowerPC 
Book-E architecture also introduces 64-bit instructions and addressing, although the scope 
of this appendix is restricted to 32-bit operations. The information contained in this 
appendix is useful as a guide to system programmers porting 32-bit software from one 
family to another.

At the 32-bit user instruction-set architecture (UISA) level, the PowerPC Book-E 
architecture is compatible with the PowerPC embedded-environment architecture. 
However, there are differences between the architectures at the virtual-environment 
architecture (VEA) and operating-environment architecture (OEA) levels. These 
differences include changes in memory management, cache management, memory 
synchronization, exceptions, timer resources, and others. Many of the differences are 
reflected the deletion, modification, and introduction of special-purpose registers.

Porting software between implementations is usually limited to the operating-system 
kernel and other privileged-mode software. 32-bit applications typically require no 
modification. Software porting can be simplified through the use of structured 
programming methods that localize program modules requiring modification. For 
example, if all access to the time base are performed using a single function, only that 
function needs to be modified when porting software to another PowerPC processor.

More information on the PowerPC Book-E architecture can be found in the Book E: 
Enhanced PowerPC™ Architecture. Refer to implementation-specific documentation for 
more information on initialization and configuration, performance considerations, special-
purpose registers, and other software-visible details that can vary from processor to 
processor.

Registers
Table F-1 summarizes the registers supported by PowerPC 40x family that are not defined 
by the PowerPC Book-E architecture. This table indicates whether or not a similar register 
with a different name and SPR number is defined by the PowerPC Book-E architecture.
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Table F-2 summarizes the registers supported by the PowerPC 40x processors that have a 
different SPR number or a different name defined by the PowerPC Book-E architecture.

Table F-3 summarizes the new registers defined by the PowerPC Book-E architecture or 
present in the PowerPC 440 processor.

Table F-1: Registers Not Defined in PowerPC Book-E Architecture

Name Description PowerPC Book-E Architecture Equivalent

DCCR Data-cache cacheability register None

DCWR Data-cache write-through register

ICCR Instruction-cache cacheability register

SGR Storage Guarded Register

SLER Storage Little-Endian Register

SU0R Storage User-Defined 0 Register

ZPR Zone-Protection Register

EVPR Exception-vector prefix register IVPR

SRR2 Save/restore register 2 CSRR0

SRR3 Save/restore register 3 CSRR1

PIT Programmable-Interval Timer DEC

Table F-2: Renumbered/Renamed Registers in the PowerPC Book-E Architecture

PowerPC 40x Family PowerPC Book-E Architecture

Name SPRN Name SPRN

DAC1 1014 DAC1 316

DAC2 1015 DAC2 317

DBCR0 1010 DBCR0 308

DBCR1 957 DBCR1 309

DBSR 1008 DBSR 304

DEAR 981 DEAR 61

DVC1 950 DVC1 318

DVC2 951 DVC2 319

ESR 980 ESR 62

IAC1 1012 IAC1 312

IAC2 1013 IAC2 313

IAC3 948 IAC3 314

IAC4 949 IAC4 315

PID 945 PID 48

TCR 986 TCR 340

TSR 984 TSR 336

USPRG0 256 SPRG8 256
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Machine-State Register
The PowerPC Book-E architecture redefines some of the bits in the machine-state register 
(MSR). Table F-4 compares the MSR bit definitions used by PowerPC 40x processors and 
PowerPC Book-E processors.

Table F-3: New Registers in the PowerPC Book-E Architecture

Name Description Purpose

MMUCR Memory-management unit control register Memory management

PIR Processor ID Register Multiprocessing

CSRR0 Critical save/restore register 0 Exception and interrupt processing

CSRR1 Critical save/restore register 1

IVOR0–
IVOR15

Interrupt-vector offset registers

IVPR Interrupt-vector prefix register

DEC Decrementer Timer resources

DECAR Decrementer Auto Reload

DNVn1 Data-cache normal victim register Cache control

DTVn1 Data-cache transient victim register

DVLIM1 Data-cache victim limit

INVn1 Instruction-cache normal victim register

ITVn1 Instruction-cache transient victim register

IVLIM1 Instruction-cache victim limit

DBCR2 Debug-control register 2 Debugging

DCDBTRH1

DCDBTRL1
Data-cache debug tag registers

ICDBTRH1

ICDBTRL1
Instruction-cache debug tag registers

Notes: 
1. Implemented in the 440 processor, but not defined by the PowerPC Book-E architecture.

Table F-4: Comparison of MSR Bit Definitions

MSR Bit PowerPC 40x Family PowerPC Book-E Architecture

0:5 Reserved

6 AP—Auxiliary Processor Available Implementation dependent

7:11 Reserved Reserved

12 APE—APU Exception Enable

13 WE—Wait State Enable

14 CE—Critical Interrupt Enable

15 Reserved Reserved: ILE—Interrupt Little Endian

16 EE—External Interrupt Enable

17 PR—Privilege Level
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Processor-Version Register
The contents of the processor-version register (PVR) are implementation dependent. 

Memory Management
The primary function of memory management is the translation of effective addresses to 
physical addresses for instruction memory and data memory accesses. The secondary 
function of memory management is to provide memory-access protection and memory-
attribute control. Memory management is handled by the memory-management unit 
(MMU) in the processor.

Memory Translation
The PowerPC Book-E architecture extends the page translation capabilities supported by 
PowerPC 40x processors. These extensions are summarized in Table F-5. Real mode is not 
supported by PowerPC Book-E implementations. Address translation is always enabled, 
and one or more TLB entries are initialized by the processor during reset so that 
instructions can be fetched and data accessed following reset.

The TLB invalidate all (tlbia) instruction is not supported by PowerPC Book-E processors 
because translation is always enabled. At least one valid TLB entry must exist—the entry 
that maps the TLB-miss interrupt handler.

18 FP—Floating-Point Available

19 ME—Machine-Check Enable

20 FE0—Floating-Point Exception-Mode 0

21 DWE—Debug Wait Enable Implementation dependent

22 DE—Debug Interrupt Enable

23 FE1—Floating-Point Exception-Mode 1

24 Reserved

25 Reserved Reserved: IP—Interrupt Prefix

26 IR—Instruction Relocate IS—Instruction Address Space

27 DR—Data Relocate DS—Data Address Space

28:29 Reserved

30 Reserved Reserved: RI—Recoverable Interrupt

31 Reserved: LE—Little-Endian Mode Enable

Table F-4: Comparison of MSR Bit Definitions (Continued)

MSR Bit PowerPC 40x Family PowerPC Book-E Architecture
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Memory Protection
The TLB entries defined by the PowerPC Book-E architecture support the following access 
controls, which can be independently configured for privileged mode and user mode 
accesses:

• Execute
• Read
• Write

Software can use any combination of the access controls to manage memory protection. 
For example, read/write access is specified by enabling both the read and write access 
controls. No-access is specified by disabling both controls.

PowerPC 40x implementations control memory protection using a combination of fields in 
the TLB entry and the zone-protection register (ZPR). These controls support many of the 
same protection characteristics available in PowerPC Book-E processors, but not all of 
them. For example, write-only protection cannot be specified.

Zone protection is not supported by the PowerPC Book-E architecture.

Memory Attributes
The PowerPC 40x family and PowerPC Book-E processors support the following memory 
attributes:

• Write through (W).
• Caching inhibited (I).
• Memory coherence (M). This attribute is not supported by the PPC405 and is ignored.
• Guarded (G).
• Endian (E).
• User-defined. The PowerPC 40x family supports a single user-defined attribute (U0). 

The PowerPC Book-E architecture supports up to four user-defined attributes (U0, 
U1, U2, and U3).

All memory attributes supported by PowerPC 40x processors can be used in real mode 
(address translation disabled) using storage-attribute control registers. These registers are 
not supported by PowerPC Book-E processors.

Table F-5: Summary of Memory Translation Extensions

Memory-Translation Feature PowerPC 40x Family 6xx/7xx Family

Real mode Supported Unsupported

Virtual-address width 40 bits:
• 8-bit PID
• 32-bit effective address

97 bits:
• 1-bit instruction or data address-space 

(from the MSR)
• 32-bit PID
• 64-bit effective address

Page size 1KB to 16MB 1KB to 1TB (terabyte)

TLB instructions tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

tlbivax
tlbre
tlbsx[.]
tlbsync
tlbwe

http://www.xilinx.com


588 www.xilinx.com PowerPC Processor Reference Guide
UG011 (v1.2) January 19, 2007

Caches
R

Caches
The PowerPC architecture does not define the type, organization, implementation, or 
existence of internal or external caches. To maximize portability, software that operates on 
multiple PowerPC implementations should always assume a Harvard cache model is 
implemented.

Table F-6 summarizes the cache-management instructions supported by PowerPC 40x 
processors that are changed in the PowerPC Book-E architecture.

Some PowerPC processors also support cache locking. Cache locking prevents the 
replacement of a cacheline regardless of the frequency of its use. Cache locking is 
supported as follows:

• PowerPC 401 processors—cachelines can be individually locked.
• PowerPC 403 processors—not supported.
• PowerPC 405 processors—not supported.
• PowerPC 440 processors—cachelines can be individually locked.

Memory Synchronization
The memory barrier (mbar) instruction replaces the eieio instruction, which uses the same 
opcode. An MO (memory order) operand can be specified with the mbar instruction. This 
operand is used to specify ordering across a subset of memory-access instructions (for 
example, order loads but not stores). If the MO operand is zero or not specified, the mbar 
instruction behaves like the eieio instruction (orders all memory accesses). This guarantees 
that existing software that uses eieio works properly in PowerPC Book-E 
implementations.

The memory synchronize (msync) instruction replaces the sync instruction, which uses the 
same opcode. The msync instruction behaves identically to the sync instruction. This 
guarantees that existing software that uses sync works properly in PowerPC Book-E 
implementations.

Exceptions
Within implementations of the PowerPC Book-E architecture, the effect of invalid 
instruction forms or other exception-causing events can differ from that of PowerPC 40x 
processors. In the PowerPC 440 for example, an stwcx. to an unaligned memory operand 
yields a boundedly undefined result. In the PPC405, this operation causes an alignment 
exception.

Table F-6: PowerPC 40x Cache-Management Instructions

Instruction PowerPC Book-E Architecture Change

dccci This instruction is implementation dependent. On some PowerPC Book-E processors, this 
instruction invalidates the entire data cache.

dcread This instruction is implementation dependent. On some PowerPC Book-E processors, the 
format of data returned by this instruction is different.

icbt The opcode differs from the opcode recognized by PowerPC 40x processors.

iccci This instruction is implementation dependent. On some PowerPC Book-E processors, this 
instruction invalidates the entire instruction cache.

icread This instruction is implementation dependent. On some PowerPC Book-E processors, the 
format of data returned by this instruction is different.
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The PowerPC Book-E architecture replaces the exception-vector prefix register (EVPR) 
with the interrupt-vector prefix register (IVPR). The IVPR contains the high-order 16 bits of 
the exception-vector effective address, which is the same function performed by the EVPR.

The PowerPC Book-E architecture also defines 16 interrupt-vector offset registers (IVOR0–
IVOR15) that replace the function of the predefined vector offsets assigned to each 
exception. Any arbitrary word-aligned vector offset can be loaded into these registers, 
which are assigned to a specific exception.

When an exception occurs, the processor calculates the interrupt-handler effective address 
by adding the contents of the IVPR to the contents of the appropriate IVORn. System 
software can emulate the operation of the PowerPC 40x interrupt mechanism by 
preloading the IVORn registers with the appropriate vector offsets, as shown in Table F-7.

Some bits in the exception-syndrome register (ESR) are redefined to support different 
exception conditions. These changes are shown in Table F-8.

Table F-7: Exceptions and Associated IVORn Registers

IVOR Exception PowerPC 40x Offset

IVOR0 Critical Input 0x0100

IVOR1 Machine Check 0x0200

IVOR2 Data Storage 0x0300

IVOR3 Instruction Storage 0x0400

IVOR4 External 0x0500

IVOR5 Alignment 0x0600

IVOR6 Program 0x0700

IVOR7 FPU Unavailable 0x0800

IVOR8 System Call 0x0C00

IVOR9 APU Unavailable 0x0F20

IVOR10 Decrementer (Programmable-Interval Timer) 0x1000

IVOR11 Fixed-Interval Timer 0x1010

IVOR12 Watchdog Timer 0x1020

IVOR13 Data TLB Miss 0x1100

IVOR14 Instruction TLB Miss 0x1200

IVOR15 Debug 0x2000

Table F-8: Comparison of ESR Bit Definitions

Bit PowerPC 40x Function PowerPC Book-E Function

0  MCI—Instruction Machine Check Implementation dependent

1:3 Reserved

4 PIL—Program, Illegal Instruction

5 PPR—Program, Privileged Instruction

6 PTR—Program, Trap Instruction

7 PEU—Program, Unimplemented 
Instruction

FP—Floating-Point Instruction
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Timer Resources
The PowerPC Book-E architecture modifies some aspects of the timer resources, as follows:

• The architecture does not define a move-from time base (mftb) instruction. Software that 
reads the time base must use a move-from SPR (mfspr) instruction with an SPR 
number corresponding to the appropriate time-base register.

• The programmable-interval timer (PIT) register is replaced by the decrementer (DEC). 
These registers have different SPR addresses.

• A DEC auto-reload mechanism is provided. This mechanism is more flexible than the 
similar PIT auto-reload mechanism supported by the PowerPC 40x family.

• The programmable-interval timer (PIT) interrupt is replaced by the decrementer 
interrupt.

• The timer-control register (TCR) controls different FIT and watchdog time-out 
intervals, and it controls the decrementer instead of the PIT.

• The timer-status register (TSR) describes decrementer status instead of PIT status.

Other Differences

Instructions
PowerPC 40x processors and PowerPC Book-E processors can support implementation-
specific instructions. For example, the multiply-accumulate (MAC) instructions are 
considered implementation dependent and are not guaranteed to be supported by other 
processors. Also, the PowerPC 440 processor supports the implementation-specific 
determine left-most zero byte (dlmzb) instruction. Refer to Table B-32, page 518, for a list of 
implementation dependent PPC405 instructions. This table also shows which PPC405 
instructions are not supported by the PowerPC Book-E architecture.

8 DST—Data Storage, Store Instruction ST—Store

9 DIZ—Data and Instruction Storage, Zone 
Protection

Reserved

10:11 Reserved Implementation dependent

12 Program—Floating-Point Instruction AP—Auxiliary-Processor Instruction

13 Program—Auxiliary-Processor Instruction PUO—Unimplemented Operation

14 Reserved BO—Byte Ordering

15 Reserved Reserved

16 Data Storage—U0 Protection

17:23 Reserved

24:31 Reserved Implementation dependent

Table F-8: Comparison of ESR Bit Definitions (Continued)

Bit PowerPC 40x Function PowerPC Book-E Function
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Debug Resources
Debug resources are implementation dependent. In general, all PowerPC 40x processors 
and PowerPC Book-E processors support a common set of debug events on both 
instruction addresses and data addresses. Debug events are controlled using the DBCRn 
registers. Debug status is reported by the DBSR register.
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A
addition instructions 91 to 93
addressing

See also page translation.
effective address 44
register indirect 81
register-indirect immediate-index 80
register-indirect index 80

algebraic-compare instructions 100
algebraic-shift instructions 106
alignment

See operand alignment.
alignment exception 222

partial instruction execution 201
APU-unavailable exception 227
atomic memory access 128, 151

B
big endian 49
boundary-scan description 

language 271
boundedly undefined 55
branch instructions 68

See also conditional branch.
AA opcode field 73, 74, 75
BD opcode field 74, 75
branch to CTR 71, 76
branch to LR 70, 76
branch-conditional absolute 70, 75
branch-conditional relative 70, 74
branch-unconditional absolute 70, 75
branch-unconditional relative 70, 73
LI opcode field 73, 75
LK opcode field 73, 74, 75, 76
target address calculation 73

branch prediction 71 to 73
default prediction 72
link register stack 72
overriding default prediction 72
simplified mnemonics 549
y bit 72

branch taken (BT)
See debug events.

byte, definition 47
byte-reverse instructions

See load instructions.
See store instructions.

C
cache

access example 142 to 143
congruence class 141
debug control 165, 213
debug instructions 174 to ??
dirty 141
flush 147, 172 to 173
hit 143, 144, 146
line 141
losing coherency 169 to 171
LRU 141
miss 143, 144, 146
physical index 142
physical tag 142
self-modifying code 174
software enforced coherency 171 to 

173
virtual index 142, 145

cache block
See cache, line.

cache-control instructions 160 to 
163

DAC debug events 264
effect of access protection 193 to 194

chip reset
See reset.

clear register instructions 551
compare instructions 99, 550
complement register 

instruction 557
condition register 61

CR mask (CRM) 124
CR0 61
CR1 62
CR-logical instructions 77, 551
effect of Rc opcode field 61
equal (EQ) 62
greater than (GT) 62
integer instruction update 90
less than (LT) 62
move instructions 124
negative (LT) 62
positive (GT) 62
summary overflow (SO) 62
zero (EQ) 62

conditional branch
BI opcode field 69
BO opcode field 68, 69
simplified mnemonics 543 to 549
specifying conditions 68
specifying CR bits 69

congruence class
See cache, congruence class.

context synchronization
See synchronization, context.

core-configuration register 164, 167
programming guidelines 168

count leading-zeros instructions 99
count register 64

branching to 71, 76
CR

See condition register.
critical exception 202
critical-input exception 215
CTR

See count register.

D
DACn

See data address-compare registers.
data address-compare (DAC)

See debug events.
data address-compare registers 255
data cache

See also cache.
control instructions 161 to 163
fill buffer 147
hint instructions 150
line buffer 146
load without allocate 148, 164
load word as line 148, 164
operation 146 to 147
pipeline stall 149
PLB priority 149, 164, 167, 213
store without allocate 148, 164, 167

data exception-address register 212
data relocate

See virtual mode.
data TLB-miss exception 190, 231
data value-compare (DVC)

See debug events.
data value-compare registers 255
data-cache cacheability register 157
data-cache write-through 

register 157
data-storage exception 190, 218

partial instruction execution 201
U0 exception 165

DBCRn
See debug-control registers.

DBSR
See debug-status register.

DCR
See device control register.

DCU
See data cache.

DEAR
See data exception-address register.

Index
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debug
cache 174 to ??

debug events
branch taken (BT) 258
cache-control instructions 264
DAC address-range match 263
DAC exact-address match 262
DAC exact-match granularity 262
DAC inclusive/exclusive ranges 264
data address-compare (DAC) 261
data value-compare (DVC) 265
DVC compare modes 266
DVC read/write events 267
exception taken (EDE) 258
IAC address-range match 260
IAC exact-address match 259
IAC inclusive/exclusive ranges 260
IAC range toggling 261
imprecise (IDE) 267
instruction address-compare 

(IAC) 259
instruction complete (IC) 257
resources used by 256
trap instruction (TDE) 258
unconditional (UDE) 259

debug exception 233, 255
disabled (pending) 267
trap instruction 78

debug modes
debug-wait mode 249, 256
external-debug mode 248, 256
internal-debug mode 248, 255
real-time trace mode 249, 256

debug-control registers 250 to 253
debug-status register 253 to 254
debug-wait mode

See debug modes.
defined instruction class 55
device control register 135

move instructions 138
dirty

See cache, dirty.
divide instructions 96
DTLB

See TLB, data shadow TLB.
DVCn

See data value-compare registers.
dynamic branch prediction 71

E
effective address

See addressing, effective address.
effective page number 181
ESR

See exception-syndrome register.
EVPR

See exception-vector prefix register.
exception

See also interrupt.

alignment 222
APU unavailable 227
asynchronous 200
critical input 215
data storage 218
data TLB miss 231
debug 233
definition of 199
external 221
fixed-interval timer 229
FPU unavailable 225
identifying cause of 211 to 212
instruction storage 220
instruction TLB miss 232
machine check 216
partial instruction execution 201
persistent 207
program 223
programmable-interval timer 228
simultaneous 205
synchronous 200
system call 226
watchdog timer 230

exception taken (EDE)
See debug events.

exceptions
listing 201

exception-syndrome register 211 to 
212

data TLB-miss exception 231
data-storage exception 219
instruction-storage exception 220
machine-check exception 216
program exception 224

exception-vector prefix register 210
execution model

See also synchronization.
sequential 41
speculative execution 41
weakly consistent 41

execution synchronization
See synchronization, execution.

extended arithmetic
addition 91
subtraction 93

extended mnemonics 543
external exception 221
external-debug mode

See debug modes.
extract instructions 551

F
FIT exception 229
fixed-interval timer 229, 245

See also FIT exception.
disabling 246
enabling 246
FIT period 246

fixed-point exception register 63

carry (CA) 63
integer instruction update 90
overflow (OV) 63
summary overflow (SO) 63
transfer-byte count (TBC) 63, 89

floating-point emulation 123, 223
flow-control instructions 68
FPU-unavailable exception 225

G
G storage attribute

See storage attribute, guarded.
general-purpose register 60
GPR

See general-purpose register.
guarded storage 220

H
halfword, definition 47
Harvard cache model 139

I
I storage attribute

See storage attribute, caching 
inhibited.

IACn
See instruction address-compare 

registers.
ICU

See instruction cache.
illegal instructions 56, 223
imprecise (IDE)

See debug events.
initialization requirements 275
insert instructions 551
instruction address-compare (IAC)

See debug events.
instruction address-compare 

registers 254
instruction cache

See also cache.
cacheable prefetch 165
control instructions 160
fetch without allocate 165
fill buffer 144
hint instruction 145
line buffer 144
non-cacheable prefetch 165
non-cacheable request size 165
operation 143 to 144
PLB priority 164, 167
self-modifying code 174
synonym 145
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instruction complete (IC)
See debug events.

instruction forms 280
instruction relocate

See virtual mode.
instruction TLB-miss 

exception 191, 232
instruction-cache cacheability 

register 158
instruction-cache debug-data 

register 175
instruction-storage exception 190, 

220
internal-debug mode

See debug modes.
interrupt

See also exception.
definition of 199
imprecise 200
masking 207
precise 200
priority 205

interrupt handler 199
base address 210
returning from 205
transferring control to 203 to 204

invalid instruction form 56
ITLB

See TLB, instruction shadow TLB.

J
JTAG connector 269
JTAG debug port 269

L
link register 63

branch update 73, 74, 75, 76
branching to 70, 76
LK opcode field 73, 74, 75, 76
stack 72

little endian 49
See also storage attribute, endian
byte-reverse instructions 52
data access 52
instruction fetch 51
operand alignment 53
PPC405 support 50 to 53

load address instruction 556
load immediate instruction 556
load instructions 82

byte reverse 86
load and reserve 127
load byte and zero 82
load halfword algebraic 83
load halfword and zero 82
load multiple word 88, 201

load string 89, 201
load word and zero 83
partially executed 201

load multiple instructions
See load instructions.

load word and reserve 127
logical address

See addressing, effective address.
logical instructions 96 to 98
logical-comparison 

instructions 100
logical-shift instructions 105
LR

See link register.
LRU

See cache, LRU.

M
M storage attribute

See storage attribute, memory 
coherency.

MAC instructions 106
cross halfword to word 107 to 109
high halfword to word 109 to 112
low halfword to word 112 to 114
negative cross halfword to word 115 

to 116
negative high halfword to word 116 

to 118
negative low halfword to word 118 to 

120
machine-check exception 216
machine-state register 132

after an interrupt 208
APU-unavailable 227
critical-interrupt enable 215, 230
data relocate 180, 231
debug-interrupt enable 233
external-interrupt enable 221, 228, 

229
FPU-unavailable 225
instruction relocate 180, 232
instructions 137
machine-check enable 216
reset state 274
wait-state enable 138

masking interrupts 207
memory coherency 151
memory management 45
memory synchronization

See synchronization, storage.
memory-control instructions 128
modulo arithmetic 107
most-recent reset 273
move register instruction 556
move to CR instruction 557
MSR

See machine-state register.

multiply instructions
cross halfword to word 120
high halfword to word 121
low halfword to word 122
word to word 95

N
negation instructions 95
negative MAC instructions

See MAC instructions.
noncritical exception 202
no-operation instruction 556

O
OEA

See PowerPC.
operand alignment

alignment exception 54, 222
definition 53
performance effects 53

optional instructions 56

P
page translation

page number 181
page-translation table 183 to 184
process ID 181

paging
See also TLB.
and cache synonyms 146
executable pages 186, 191
no-access-allowed pages 191, 218, 

220
non-executable pages 191, 220
page locking 183
page replacement 183
page size 186, 187
process protection 191
read-only pages 191, 218
recording accesses 196
recording changes 196
table walking 183
writable pages 186, 191

persistent exceptions 207
physical memory 45
physical-page number 186
PID

See process ID register.
pipeline stall 149
PIT

See programmable-interval timer.
PIT exception 228
PLB-request priority 167
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PowerPC
architecture components 23 to 24
Book-E architecture 29
embedded-environment 

architecture 26 to 28
features not in architecture 25
latitude within the architecture 25
OEA 24, 28
UISA 24
VEA 24, 27

PPC405 34 to 39
caches 37, 141 to 143
central-processing unit 35
debug resources 38
exception-handling logic 36
external interfaces 38
memory system 139 to 141
memory-management unit 36, 179
timers 38

preferred instruction form 55
privileged instructions 136, 223
privileged mode 43
privileged registers 129
problem state

See user mode.
process ID 181, 188
process ID register 182
process tag 186, 188
processor reset

See reset.
processor version register 134
processor-control instructions 124
program exception 223

system trap 78
programmable-interval timer 228, 

245
See also PIT exception.
auto-reload mode 245
disabling 245
enabling 245
PIT register 239

PVR
See processor version register.

R
Rc opcode field

See record bit.
real mode 47, 179

storage attribute control 156 to 159
real-time trace mode

See debug modes.
record bit 61, 91
registers

privileged registers 129
supported by PPC405 32
user registers 59

reservation 127
reserved instructions 56

reset 273
due to debug control 250
due to watchdog time-out 243
first instruction executed 275
processor state 274 to 275

return from interrupt 205
right rotation 100
rotate instructions 100, 551

AND mask instructions 101
mask generation 101
mask insert instructions 103

RPN
See physical-page number.

S
saturating arithmetic 107
save/restore registers

SRR0 209
SRR1 209
SRR2 210
SRR3 210

sequential execution
See execution model.

shadow TLB
See TLB.

shift instructions 104, 551
sign-extension instructions 98
simplified mnemonics 543
single stepping

branches 258
exceptions 258
sequential 257

special-purpose register
CCR0 164
CCR1 167
CTR 64
DACn 255
DBCR0 250
DBCR1 251
DCCR 157
DCWR 157
DEAR 212
DVCn 255
ESR 211 to 212
EVPR 210
IACn 254
ICCR 158
ICDBDR 175
LR 63
move instructions 125, 137
PID 182
PIT 239
privileged mode 132
PVR 134
SGR 158
SLER 159
SPRGn 65, 133
SRR0 209
SRR1 209
SRR2 210

SRR3 210
SU0R 159
TCR 240
TSR 241
user mode 60
USPRG0 65
XER 63
ZPR 192

speculative execution
See execution model.

split-field notation 281
SPR

See special-purpose register.
SPR general-purpose register

privileged mode 133
user mode 65

SPRGn
See SPR general-purpose register.

SRRn
See save/restore registers.

static branch prediction 71
storage attribute 154 to 156

caching inhibited 155, 187
endian 51, 156, 187
guarded 155, 187
in TLB entry 187
memory coherency 155, 187
real mode control 156 to 159
U0 exception 165, 218
user defined 155, 187
write through 154, 187

storage guarded register 158
storage little-endian register 159
storage synchronization

See synchronization, storage.
storage user-defined 0 register 159
store instructions 85

byte reverse 86
partially executed 201
store byte 85
store conditional 127
store halfword 85
store multiple word 88, 201
store string 89, 201
store word 86

store multiple instructions
See store instructions.

store word conditional 127
string instructions

See load instructions.
See store instructions.

subtraction instructions 93 to 94
supervisor state

See privileged mode.
synchronization

context 42, 126
effect of instructions 126
execution 42, 126
semaphore 127
storage 43, 126, 151

synchronization instructions 125
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eieio and sync implementation 126
synonym

See instruction cache, synonym.
system linkage instructions 136
system reset

See reset.
system-call exception 77, 226
system-call instruction 77, 226
system-trap instruction 78, 223

See also debug events.
TO opcode field 78

T
tag

cache 141
TLB 186

TBH
See time base register.

TBL
See time base register.

TCR
See timer-control register.

TID
See process tag.

time base register 236 to 237
reading 237
user mode 65
writing 237

time-of-day computation 238
timer events 242
timer-control register 240

FIT-interrupt enable 229
PIT-interrupt enable 228
watchdog-interrupt enable 230

timer-status register 241
TLB 184 to 191

See also paging.
access 188 to 189
access failure 189 to 191
data shadow TLB 184
hit 188
instruction shadow TLB 184
maintaining shadow TLBs 197
miss 189
TLB-miss exceptions 190
unified TLB 184

TLB entry 185 to 187
access control 186, 191 to 192
executable 186
page size 187
physical page number 186
physical-page identification 186
storage attributes 187
TLBHI 186
TLBLO 186
valid 186
virtual-page identification 186
writable 186
zone selection 186

TLB-management instructions 194 
to 195

trap instruction
causing debug event 258

trigger event 256
TSR

See timer-status register.

U
U0 storage attribute

See storage attribute, user defined.
UISA

See PowerPC.
unconditional (UDE)

See debug events.
user mode 44
user registers 59
user-SPR general-purpose 

register 65
USPRG0

See user-SPR general-purpose register.
UTLB

See TLB, unified TLB.

V
VEA

See PowerPC.
virtual memory 45
virtual mode 47, 179
virtual page number 181

W
W storage attribute

See storage attribute, write through.
wait state 138
watchdog timer 242 to 245

disabling 245
enable next watchdog 243
enabling 242
interrupt status 243
reset control 243
state machine 244
using 244
watchdog period 242

watchdog-timer exception 230
weakly consistent

See execution model.
word, definition 47

X
XER

See fixed-point exception register.

Y
y bit

See branch prediction.

Z
zone protection 192

data-storage exception 218
instruction-storage exception 220
TLB entry 186

zone-protection register 192
ZPR

See zone-protection register.
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