
QNX® Neutrino® Realtime Operating System
Photon® microGUI
Programmer’s Guide

For QNX® Neutrino® 6.5.0

© 2010, QNX Software Systems GmbH & Co. KG.

© 1995 – 2010, QNX Software Systems GmbH & Co. KG. All rights reserved.
Published under license by:

QNX Software Systems Co.
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published 2010.

QNX, Neutrino, Photon, Photon microGUI, Momentics, Aviage, and related marks, names, and logos are trademarks, registered in certain jurisdictions, of QNX Software
Systems GmbH & Co. KG. and are used under license by QNX Software Systems Co. All other trademarks belong to their respective owners.

Contents

About This Guide xxv
What you’ll find in this guide xxvii

Typographical conventions xxviii

Note to Windows users xxix

Technical support xxx

Introduction 11
Overview of the Photon architecture 3

Photon Application Builder (PhAB) 5

Widget concepts 6

Widget life cycle 9

Widget geometry 11

Programming paradigm 13

Text-mode application 13

Non-PhAB application 14

PhAB application 15

Photon libraries 16

API categories and libraries 16

Versions and platforms 18

Building applications with PhAB—an overview 18

Step 1: Create modules 18

Step 2: Add widgets 19

Step 3: Attach callbacks 19

Step 4: Generate code 20

Step 5: Run your application 20

Step 6: Repeat any previous step 20

Writing applications without PhAB 21

Tutorials 232
Before you start... 25

Creating a Photon project and starting PhAB 25

PhAB’s Interface 26

Tutorial 1 — Hello, world 27

May 13, 2010 Contents iii

© 2010, QNX Software Systems GmbH & Co. KG.

Creating the application 27

Generating code 28

Want more info? 30

Tutorial 2 — editing resources 30

Adding a button widget 31

Changing the bevel width 31

Changing the font 32

Changing the text alignment 32

Setting flags 33

Changing the fill color 34

Editing a pixmap 35

Editing multiline text 36

Editing a list of text items 37

Creating a template 39

Want more info? 41

Tutorial 3 — creating menus and menubars 42

About link callbacks 42

About instance names 42

Creating a menubar 43

Creating the File menu module 44

Adding menu items 44

Creating the Help menu module 46

Attaching link callbacks 46

Setting up the code 48

Want more info? 49

Tutorial 4 — creating dialogs 49

About dialogs 50

More on instance names 50

Attaching a dialog module 50

Adding widgets to the dialog 51

Adding a callback to the Done button 53

Modifying a generated code function 54

Compiling and Running 55

Want more info? 55

Tutorial 5 — creating windows 56

Creating a window 56

Attaching callbacks 57

Adding widgets 57

Generating and modifying the code 59

Compiling and running 63

Want more info? 63

iv Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

PhAB’s Environment 653
Menus 67

File menu 67

Edit menu 68

Project menu 69

Build menu 70

Widget menu 71

View menu 72

Window menu 72

Help menu 73

Toolbars 73

Control panels 76

Widget palette 77

Modes (create vs select) 79

Resources panel 80

Callbacks panel 81

Module Tree panel 82

Module Links panel 84

Browse Files panel 85

Search dialog 86

Customizing your PhAB environment 87

General preferences 88

Color preferences 89

Dragging preferences 90

Grid preferences 90

Working with Applications 934
Creating an application 95

Opening an application 96

Saving an application 98

From the IDE 98

From standalone PhAB 98

Closing an application 100

Specifying project properties 100

Startup Windows tab 101

Generate Options tab 104

Run options 107

Build and Debug options 108

Importing files 109

Importing PhAB modules from other applications 110

Importing XBM images 110

May 13, 2010 Contents v

© 2010, QNX Software Systems GmbH & Co. KG.

Importing graphics images 110

Exporting files 111

Working with Modules 1135
Module types 115

Anatomy of a module 115

Selecting a module 117

How modules are saved 117

Changing module resources 117

Creating a new module 118

Deleting a module 118

Iconifying modules 118

Displaying modules at run time 119

Positioning a module 119

Finding lost modules and icons 121

Window modules 121

Resizing a window module 122

Dialog modules 122

Resizing a dialog module 122

Predefined dialogs 122

Menu modules 123

Opening the menu editor 123

Specifying instance names 125

Creating hotkeys and shortcuts 125

Resizing a menu module 126

Creating command items 126

Creating submenu items 127

Creating separator items 127

Creating toggle items 127

Creating function items 128

Moving menu items 129

Using a menu module 129

Picture modules 129

Displaying a picture 130

Using pictures as widget databases 130

Resizing a picture module 130

Creating Widgets in PhAB 1316
Types of widgets 133

Instance names 133

Default instance name 134

vi Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

When to assign a unique name 134

Instance names and translations 135

Duplicate names 135

Creating a widget 135

Creating several widgets 136

Canceling create mode 136

Selecting widgets 136

A single widget 137

Multiple widgets 138

Widgets within a group 139

Hidden widgets 140

Aligning widgets 140

To another widget 141

To a parent container 141

Distributing widgets 141

Common User Access (CUA) and handling focus 142

Changing focus with the keyboard 142

Controlling focus 142

Focus callbacks 143

Focus-handling functions 143

Ordering widgets 144

Dragging widgets 145

Setting a widget’s x and y coordinates 147

Transferring widgets between containers 147

Resizing widgets and modules 147

Clipboard 148

Cutting and copying 148

Pasting 149

Duplicating widgets and containers 150

Deleting widgets or modules 150

Matching widget resources and callbacks 151

Importing graphic files 152

Changing a widget’s class 152

Templates 153

Creating templates 153

Adding a widget class 155

Editing templates 156

Deleting templates 157

Editing Resources and Callbacks in PhAB 1597
Editing widget resources 161

May 13, 2010 Contents vii

© 2010, QNX Software Systems GmbH & Co. KG.

Pixmap editor 162

Setting the pixmap’s size 163

How to draw and erase 164

Choosing colors 164

Drawing freehand 164

Drawing lines, rectangles, and circles 165

Filling an enclosed area 165

Selecting an area 165

Nudging an area 165

Using the Pixmap toolbar 166

Other pixmap controls 166

Color editor 167

Full color editor 167

Quick color editor 168

Flag/choice editor 168

Flag resources 169

Option list resources 169

Font editor 170

List editor 171

Editing existing list items 172

Deleting list items 172

Number editor 172

Text editors 173

Code editor 175

Layout editors 176

Fill layout info editor 176

Row layout info editor 177

Grid layout info editor: 178

Row layout data editor 179

Grid layout data editor 180

Callbacks 181

Editing callbacks 182

Module callbacks 184

Prerealize setup function 185

Postrealize setup function 185

Setup functions are stored in stub files 185

Code callbacks 185

Callback functions are stored in stub files 186

Hotkey callbacks 186

Hotkeys — the basics 186

Specifying the hotkey label 187

viii Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Specifying the callback 187

Processing hotkeys 189

Disabling hotkeys 189

Event handlers — raw and filter callbacks 190

Geometry Management 1938
Container widgets 195

Geometry negotiation 195

Resize policy 196

Absolute positioning 199

Aligning widgets using groups 200

Joining widgets into a group 200

Accessing widgets in a group 200

Aligning widgets horizontally or vertically 201

Aligning widgets in rows and columns 201

Using the Group flags 202

Splitting apart a group 203

Constraint management using anchors 204

Anchor resources 206

Using layouts 208

PtFillLayout 210

PtRowLayout 212

PtGridLayout 216

Using hints 226

Enforcing position or size constraints without anchors or layouts 229

Generating, Compiling, and Running Code 2319
Using the Build menu 233

Building your application 234

Generating application code 235

What PhAB generates 236

Version control 237

Function prototypes 238

How application files are organized 239

Multiplatform applications 240

Single-platform applications 241

Converting to Eclipse 242

Editing source 242

Choosing an editor or browser 243

Creating a source module 244

Changing the file display 244

May 13, 2010 Contents ix

© 2010, QNX Software Systems GmbH & Co. KG.

Compiling and linking 244

Specifying additional libraries 244

Running make 245

Customizing the build process 246

Running the application 246

Debugging 247

Managing targets 248

The Build menu 249

Including non-PhAB files in your application 249

Eclipse Project applications 250

Multiplatform applications 250

Single-platform applications 250

Adding libraries 251

Making a DLL out of a PhAB application 251

Compiling and linking 251

Initializing your DLL 251

Unloading your DLL 252

Working with Code 25510
Variables and manifests 257

Widget variables and manifests 257

Using the global variable and widget manifest 258

Handling multiple instances of a window 258

Internal link manifests 260

Global header file 260

Function names and filenames 261

Initialization function 262

Processing command-line options 263

Module setup functions 264

Code-callback functions 266

Geometry data types 267

Timers 267

Using PtTimer 268

RtTimer* functions 268

Initializing menus 269

Enabling, disabling, or toggling menu items 269

Changing menu-item text 270

Generating menu items 270

Delaying and forcing updates to the display 275

Globally 275

For a specific container 275

x Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Forcing updates 276

Manipulating Resources in Application Code 27711
Argument lists 279

Setting resources 280

Argument lists for setting resources 280

Calling PtSetResources() 284

Setting one resource 285

Getting resources 285

Not using pointers 286

Using pointers 287

Calling PtGetResources() 291

Getting one resource 291

Application-level resources 292

Setting resources 293

Removing callbacks 293

Getting callbacks 294

Managing Widgets in Application Code 29512
Creating widgets 297

Ordering widgets 298

Working in the widget family 298

Callbacks 299

Adding callbacks 299

Callback invocation 300

Removing callbacks 301

Examining callbacks 302

Event handlers 302

Adding event handlers 303

Removing event handlers 304

Event handler invocation 305

Widget styles 305

Photon hook 309

Control Surfaces 31313
What’s a control surface? 315

Limitations 315

Binding actions to control surfaces 315

Referring to control surfaces 316

Control-surface API 316

Creating and destroying control surfaces 317

May 13, 2010 Contents xi

© 2010, QNX Software Systems GmbH & Co. KG.

Finding IDs for control surfaces 317

Calculating geometry for control surfaces 317

Drawing control surfaces 318

Activating control surfaces 318

Enabling and disabling control surfaces 319

Finding control surfaces 319

Hiding and showing control surfaces 319

Ordering control surfaces 320

Storing user data with control surfaces 320

Example 321

Accessing PhAB Modules from Code 32514
Creating internal links 327

Using internal links in your code 329

Manifests 329

Internal-link functions 329

Example — displaying a menu 330

Using widget databases 330

Creating a database 331

Preattaching callbacks 331

Assigning unique instance names 332

Creating a dynamic database 332

Widget-database functions 332

International Language Support 33515
Application design considerations 337

Size of text-based widgets 337

Justification 338

Font height 339

Hard-coded strings 339

Use of @ in instance names 340

Bilingual applications 341

Common strings 341

Generating a language database 342

Message databases 342

Language editor 343

Starting the Language Editor within PhAB 343

Starting the Language Editor as a stand-alone application 344

Creating a new translation file 344

Editing an existing translation file 345

Translating the text 345

xii Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Hotkeys 346

Help resources 347

Translation functions 347

Running your application 347

Distributing your application 349

Context-Sensitive Help 35116
Referring to help topics 353

Universal Resource Locator (URL) 353

Topic path 353

Connecting help to widgets 353

Displaying help in the Helpviewer 354

Displaying help in a balloon 354

Help without the ? icon 355

Accessing help from your code 355

Interprocess Communication 35717
Connections 360

Naming conventions 360

Typical scenario 360

Local connections 362

Example 362

Sending QNX messages 365

Receiving QNX messages 366

Adding an input handler 367

Removing an input handler 369

Message buffer size 369

Example — logging error messages 370

Photon pulses 371

Photon application that receives a pulse 372

Photon application that delivers a pulse 375

Processing signals 376

Adding a signal-processing function 376

Removing a signal-processing function 377

Other I/O mechanisms 377

Parallel Operations 37918
Overview 381

Background processing 381

Work procedures 382

Threads 387

May 13, 2010 Contents xiii

© 2010, QNX Software Systems GmbH & Co. KG.

Locking the Photon library 387

Multiple event-processing threads 388

Realtime threads 389

Non-Photon and Photon threads 389

Modal operations and threads 390

Exiting a multithreaded program 391

Threads and work procedures 392

Raw Drawing and Animation 39319
PtRaw widget 395

Raw drawing function 396

Color 401

Drawing attributes 402

General attributes 403

Text attributes 403

Fill attributes 403

Stroke (line) attributes 404

Arcs, ellipses, polygons, and rectangles 405

Rectangles 406

Rounded rectangles 406

Beveled boxes, rectangles, and arrows 407

Polygons 408

Arcs, circles, chords, and pies 410

Spans — complex shapes 412

Lines, pixels, and pixel arrays 412

Text 413

Bitmaps 415

Images 416

Palette-based images 416

Direct-color images 417

Gradient-color images 417

Creating images 417

Caching images 418

Transparency in images 418

Displaying images 419

Manipulating images 420

Releasing images 420

Animation 422

Creating a series of snapshots 422

Cycling through the snapshots 423

Flickerless animation 424

xiv Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Direct mode 425

Example 427

Video memory offscreen 428

Offscreen locks 431

Alpha blending support 432

Chroma key support 433

Extended raster operations 434

Video modes 435

Gradients 436

Driver-level gradients 436

Application-level gradients 437

Video overlay 437

Example 438

Layers 441

Surfaces 441

Viewports 442

Layer API 442

Using layers 443

Example 444

Understanding Encodings, Fonts, Languages and Code20
Tables 449
Terminology Definitions 451

Unicode encoding in Photon 452

Advanced Graphics 454

General Notes 454

Language Notes 455

Fonts 45721
Symbol metrics 459

Font function libraries 460

Font names 462

Querying available fonts 462

FontDetails structure 463

Generating font names 463

Example 464

Writing text in a rectangular area 466

Repairing damage to proportional text 470

Printing 47522
Print contexts 477

May 13, 2010 Contents xv

© 2010, QNX Software Systems GmbH & Co. KG.

Creating a print context 478

Modifying a print context 478

Starting a print job 478

Printing the desired widgets 481

Printing a new page 481

Printing widgets that scroll 481

Suspending and resuming a print job 483

Ending a print job 483

Freeing the print context 483

Example 484

Drag and Drop 48723
Transport mechanism 489

Using drag and drop 490

Starting drag and drop 490

Receiving drag-and-drop events 493

Canceling drag and drop 497

Registering new transport types 497

A simple data structure 497

A more complicated structure 499

Transport functions 504

Regions 50724
Photon coordinate space 509

Region coordinates 509

Region origins 509

Initial dimensions and location 510

About child regions 512

Regions and event clipping 512

Placement and hierarchy 513

Region hierarchy 513

Parent region 514

Brother regions 514

Default placement 515

Specific placement 517

Using regions 517

Opening a region 517

Placing regions 517

System information 519

Events 52125

xvi Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Pointer events 523

Emitting events 525

Targeting specific regions 526

Targeting specific widgets 527

Emitting key events 527

Event coordinates 528

Event handlers — raw and filter callbacks 528

Collecting events 531

Event compression 531

Dragging 531

Initiating dragging 532

Handling drag events 534

Window Management 53726
Window-management flags 539

Window-rendering flags 539

Window-managed flags 540

Window-notify flags 541

Notification callback 542

Example: verifying window closure 543

Getting and setting the window state 544

Managing multiple windows 546

Window-manager functions 546

Running a standalone application 547

Modal dialogs 547

Programming Photon without PhAB 55327
Basic steps 555

Compiling and linking a non-PhAB application 555

Sample application 556

What’s going on 556

Connecting application code to widgets 558

Callbacks 559

Event handling 559

Complete sample application 559

Photon Architecture 561A
Event space 563

Regions and events 563

Events 564

Initial rectangle set 564

May 13, 2010 Contents xvii

© 2010, QNX Software Systems GmbH & Co. KG.

Collected rectangle set 564

Regions 565

Sensitivity 566

Opacity 566

Attribute summary 566

Event logging 567

Event modification 567

Parent/child relationships 567

Photon coordinate space 567

Root region 567

Event types 568

How region owners are notified of events 568

Polling 568

Synchronous notification 569

Asynchronous notification 569

Device region 569

Pointer focus 569

Keyboard focus 570

Drag events 570

Drag-and-drop events 570

Photon drivers 570

Input drivers 570

Output drivers 571

Photon window manager 572

Window-frame regions 572

Focus region 573

Workspace region 573

Backdrop region 573

Widgets at a Glance 575B

Unicode Multilingual Support 581C
Wide and multibyte characters 583

Unicode 583

UTF-8 encoding 584

Conversion functions 585

Other encodings 586

Keyboard drivers 587

Example: text widgets 587

Dead keys and compose sequences 587

Photon compose sequences 588

xviii Contents May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Photon in Embedded Systems 593D
Assumptions 595

Introduction 595

QNX Graphics framework server 595

Photon Server 595

Graphics subsystem 595

Font support 596

Input support 596

User applications 596

Steps to boot into Photon 596

The basics 597

Files needed 598

Files needed 601

Files needed 601

Files needed 602

Caveats 602

Flash filesystems 602

Graphics 603

Miscellaneous 603

Example 603

Required binaries 604

Required libraries 604

Required fonts 605

Putting it all together 606

Troubleshooting 611

Example: Using the IDE’s System Builder 611

Advanced topics 614

Configuring fonts 614

Using PhAB under Microsoft Windows 619E
Photon in a single window 621

Exiting PhAB 621

Advanced options 621

PHINDOWSOPTS 622

Using the clipboard 622

Transferring PhAB projects 622

Debugger launch line 623

Custom widget development and PhAB 623

Using custom TrueType fonts and PhAB 625

Photon Hook DLLs 625

Running multiple copies of PhAB 626

May 13, 2010 Contents xix

© 2010, QNX Software Systems GmbH & Co. KG.

PhAB Keyboard Shortcuts 627F
Project management shortcuts 629

Editing shortcuts 629

Adding items shortcuts 630

Building shortcuts 630

Widget management shortcuts 630

View and window shortcuts 631

Other shortcuts 632

What’s New 633G
What’s new in Photon for QNX Neutrino 6.5.0 635

New content 635

What’s new in Photon for QNX Neutrino 6.4.1 635

New content 635

What’s new in Photon for QNX Neutrino 6.4 635

New content 635

What’s new in Photon for QNX Neutrino 6.3 635

New content 636

What’s new in Photon for QNX Neutrino 6.2.1 636

New content 636

Errata 636

What’s new in Photon for QNX Neutrino 6.2.0 637

New content 637

What’s new in Photon for QNX Neutrino 6.0 637

Glossary 641

Index 657

xx Contents May 13, 2010

List of Figures
Photon’s event space from the user’s perspective. 3

The Photon widget hierarchy. 8

Life cycle of a widget. 10

Anatomy of a PtBasic widget. 11

Widget position and dimensions. 12

Origin of a widget and the position of its children. 12

Structure of a text-mode application. 14

Structure of a Photon application written without PhAB. 15

Structure of a Photon application written with PhAB. 16

Overview of PhAB’s user interface. 26

PhAB’s menubar. 67

PhAB’s toolbars. 74

The nudge tool’s components. 76

PhAB’s widget palette. 78

The Resources panel. 80

The Callbacks panel. 82

The Module Tree panel. 83

The menu for the Module Tree panel. 84

The Module Links panel. 85

The Browse Files panel. 86

The Search dialog. 87

Setting PhAB preferences. 88

Grid Preferences. 90

Choosing the style of the base window. 96

The Open button on PhAB’s toolbar. 97

Application Selector dialog. 97

The Save button on PhAB’s toolbar. 99

The Project Properties dialog. 101

The Project Properties dialog—Startup Windows tab. 102

Build and Debug Options tab of the Project Properties dialog. 105

Run Options tab on the Project Properties dialog. 107

Build and Debug Options tab of the Project Properties dialog. 108

Anatomy of a typical PhAB module. 116

The Work menu for a module. 116

May 13, 2010 List of Figures xxi

© 2010, QNX Software Systems GmbH & Co. KG.

Location dialog. 120

The icon for a Window module. 121

The icon for a Dialog module. 122

The icon for a Menu module. 123

PhAB’s Menu editor. 124

The icon for a Picture module. 130

Editing a widget’s instance name. 134

Multiple selected widgets. 138

Distributed widgets. 142

Match resources and callbacks dialog. 152

The dialog for creating new templates. 154

Common buttons for resource editors. 161

Sample pixmap editor session. 163

The Pixmap Editor’s toolbar. 166

Full color editor. 167

Quick color editor. 168

Flag/Choice editor. 169

Font editor. 170

List editor. 171

Number editor. 172

Text editor. 173

Multiline text editor. 174

Code editor. 175

Fill layout info editor. 176

Row layout info editor. 177

Grid layout info editor. 178

Row layout data editor. 179

Grid layout data editor. 180

Callback editor. 183

Callback editor fields for module-type link callbacks. 184

Hotkey field in the callback editor. 188

Event Mask field in the callback editor. 191

Event selector. 191

Example of anchoring. 205

Fill layout initial. 211

Fill layout after resizing. 211

Vertical fill layout. 212

Vertical fill layout after resizing. 212

Initial row layout. 213

Row layout after resizing. 214

Initial window without Pt_ROW_WRAP set. 214

xxii List of Figures May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

After shrinking without Pt_ROW_WRAP set. 214

Initial window without Pt_ROW_PACK set. 214

After resizing without Pt_ROW_PACK set. 214

Initial window with Pt_ROW_JUSTIFY set. 215

After resizing with Pt_ROW_JUSTIFY set. 215

Initial window with Pt_LAYOUT_VERTICAL set. 215

After resizing with Pt_LAYOUT_VERTICAL set. 215

Initial window. 216

After stretching. 216

After shrinking. 216

One column (n_cols=1). 218

Two columns (n_cols=2). 218

Three columns (n_cols=3). 218

Sketch of grid layout. 221

Complex grid layout — initial. 225

Complex grid layout — resize. 226

Initial Hints example. 229

Hints example after resizing. 229

Directories for a PhAB application. 240

Browse Files palette. 243

Manage Targets dialog. 248

A sample search window. 259

Internal Module Links dialog. 328

Widget database used for PhAB’s interface. 331

PhAB Language Editor. 343

Language Selection dialog. 345

Filled and stroked rectangles. 406

A beveled box. 407

Beveled rectangles and arrows. 408

Filling a simple polygon. 409

Filling an overlapping polygon. 410

Filled and stroked arcs. 411

Lines created by the drawing primitives. 413

Text created by the drawing primitives. 415

A bitmap with a transparent background. 415

A backfilled bitmap. 416

Communication in normal (nondirect) mode. 426

Communication in direct mode. 426

Source and destination viewports. 442

Symbol metrics. 459

May 13, 2010 List of Figures xxiii

© 2010, QNX Software Systems GmbH & Co. KG.

Font architecture using io-graphics with a resource manager font instance
460

Every application with its own private font server. 461

Applications sharing a common font server. 461

Packed data and headers. 490

Photon coordinate space. 509

Regions and event clipping. 513

Hierarchy of regions for a typical Photon system. 513

An event’s rectangle set. 564

Exploded view of Photon’s regions. 565

xxiv List of Figures May 13, 2010

About This Guide

May 13, 2010 About This Guide xxv

© 2010, QNX Software Systems GmbH & Co. KG. What you’ll find in this guide

What you’ll find in this guide
The Photon Programmer’s Guide is intended for developers of Photon applications. It
describes how to create applications and the widgets that make up their user interfaces,
with and without using the Photon Application Builder (PhAB).

If you’re familiar with earlier versions of Photon, you should read the What’s New
appendix. to find out how Photon and its widgets have changed in this release.

This table may help you find what you need in this book:

For information about: See:

Photon, widgets, and PhAB Introduction

Getting started with PhAB Tutorials

PhAB’s user interface PhAB’s Environment

Creating, opening, and saving
applications in PhAB

Working with Applications

PhAB modules, such as windows,
dialogs, and menus

Working with Modules

Adding, deleting, and modifying
widgets in PhAB

Creating Widgets in PhAB

Initializing a widget’s resources and
callbacks

Editing Resources and Callbacks in
PhAB

Setting the sizes of a widget and its
children

Geometry Management

Getting PhAB to generate code Generating, Compiling, and Running
Code

Editing code generated by PhAB Working with Code

Getting and setting widget resources Manipulating Resources in Application
Code

Adding or modifying widgets “on the
fly” at runtime

Managing Widgets in Application Code

Building special areas into a widget Control Surfaces

Using internal links to refer to PhAB
modules

Accessing PhAB Modules from Code

Developing a multilingual application International Language Support

continued. . .

May 13, 2010 About This Guide xxvii

Typographical conventions © 2010, QNX Software Systems GmbH & Co. KG.

For information about: See:

Adding help information to your
application

Context-Sensitive Help

Communicating with a Photon
application

Interprocess Communication

Threads, work procedures, and
background processing

Parallel Operations

Using PtRaw and Photon’s low-level
drawing routines

Raw Drawing and Animation

Encodings, fonts, languages and code
tables

Understanding Encodings, Fonts,
Languages and Code Tables

Photon’s fonts Fonts

Printing in a Photon application Printing

Transferring data from one widget or
application to another

Drag and Drop

Photon’s regions Regions

Interaction between applications, users,
and the Photon server

Events

Working with windows and modal
dialogs

Window Management

Developing applications “by hand”
without PhAB

Programming Photon without PhAB

Photon’s implementation Photon Architecture

PhAB’s widget icons Widgets at a Glance

Handling international characters Unicode Multilingual Support

Building an embedded system Photon in Embedded Systems

Differences between the Windows and
native QNX Neutrino versions of PhAB

Using PhAB under Microsoft Windows

Photon terminology Glossary

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

xxviii About This Guide May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Typographical conventions

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

May 13, 2010 About This Guide xxix

Technical support © 2010, QNX Software Systems GmbH & Co. KG.

Technical support
To obtain technical support for any QNX product, visit the Support area on our
website (www.qnx.com). You’ll find a wide range of support options, including
community forums.

xxx About This Guide May 13, 2010

Chapter 1

Introduction

In this chapter. . .
Overview of the Photon architecture 3
Photon Application Builder (PhAB) 5
Widget concepts 6
Programming paradigm 13
Photon libraries 16
Building applications with PhAB—an overview 18
Writing applications without PhAB 21

May 13, 2010 Chapter 1 • Introduction 1

© 2010, QNX Software Systems GmbH & Co. KG. Overview of the Photon architecture

By now, you’ve probably seen and tried various Photon applications—the window
manager, Helpviewer, games, and so on—and you’re ready to develop your own. This
chapter introduces you to the basic terms and concepts you’ll use when developing a
Photon application.

Overview of the Photon architecture
The Photon manager runs as a small server process, implementing only a few
fundamental primitives. It creates a three-dimensional event space populated by
regions and events. This manager can’t draw anything or manage a mouse, keyboard,
or pen.

External, optional processes — including device drivers and window and other
managers — implement the higher-level functionality of the windowing system. They
communicate by emitting events through the Photon event space.

A Photon application consists of one or more flat, rectangular regions that act as its
“agents” in the event space. The application draws inside the regions. Regions are
stacked on top of each other in the Photon event space. A region can have a parent
region as well as siblings.

The user sits outside the event space, looking in from the front. The very back of the
event space is a special region called the root region.

Event space

Root region

Application region

Child application region

Photon’s event space from the user’s perspective.

May 13, 2010 Chapter 1 • Introduction 3

Overview of the Photon architecture © 2010, QNX Software Systems GmbH & Co. KG.

When you run the application, you interact with it, and it interacts with other
applications and Photon, in many ways: you press keys and mouse buttons, the
application performs graphical operations, and so on.

These interactions are called events; they travel between regions in the event space like
photons or particles of light. For example:

• When you press a mouse button, the device driver emits an event and sends it back
through the event space (toward the root region). A region that’s interested in the
event can catch it and process it, activating a push button or other UI element.

• When your application wants to draw something, it emits an event and sends it
toward the front of the event space (toward the user). A driver can catch the event
and render the drawing on the screen.

Each region can determine which events it’s interested in by setting its sensitivity and
opacity:

• A region that’s sensitive to a type of event notifies the application whenever such an
event intersects it.

• A region that’s opaque to a type of event blocks it by clipping its own area out of
the event’s area.

For more information, see the Photon Architecture appendix in this guide.

Photon uses a draw buffer to queue a series of draw commands (called the draw
stream) for the application. Once the buffer is full or the application calls PgFlush(),
the list of commands is sent to the Photon server. After that it’s typically sent to
io-graphics (see the Utilities Reference), which then interprets and renders the
draw stream.

You can change the size of the draw buffer by calling PgSetDrawBufferSize(). The
optimal size depends on what you’re drawing and how often you flush the buffer.

Your application can work in normal or direct mode; buffering works in both modes.

Normal mode The application sends the draw stream to the Photon server, which
then does some work on it, such as adding clipping to represent the
regions or windows above the application and sending the draw
stream to the regions that are sensitive to draw events (e.g.
io-graphics, phrelay).

Direct mode The draw stream is sent directly to io-graphics. The Photon
server doesn’t see it or process it, so there are fewer context
switches (switching from one process to another) and fewer
operations done on the stream, which results in a significantly faster
way of drawing.

For more information, see “Direct mode” in the Raw Drawing and
Animation chapter.

4 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon Application Builder (PhAB)

Photon Application Builder (PhAB)
The Photon microGUI includes a very powerful development tool called the Photon
Application Builder (PhAB). It’s a visual design tool that generates the underlying C
and/or C++ code to implement your application’s user interface. With PhAB, you can
dramatically reduce the amount of programming required to build an application. You
can save time not only in writing the user interface portion of your code, but also in
debugging and testing. PhAB helps you get your applications to market sooner and
with more professional results.

If you’re using the Windows-hosted version of PhAB, you should read the appendix,
Using PhAB under Microsoft Windows.

PhAB takes care of designing and creating modules (e.g. windows, menus, dialogs,
and icons), and widgets (e.g. buttons and labels). It also helps you create widget
callbacks, special resources that connect a widget to your application’s code or link a
widget to a PhAB module. For more information, see “Widget concepts” later in this
chapter.

PhAB lets you access and create PhAB modules within your own code. It also
provides a number of utility functions to set up databases of widgets that you can reuse
as many times as you need, rather than create widgets from scratch.

Get immediate results

PhAB lets you bypass the trial-and-error process of creating a user interface by hand.
Instead of having to write code for every button, window, or other widget, you just
“point and click” to create the widgets you want.

As soon as you create a widget, PhAB displays it on the screen, along with all the
resources that control how the widget looks and behaves. Changing any widget
resource is easy—just click on the resource, choose a new value, and you’re done. It’s
just as easy to move or resize a widget—simply click and drag the widget.

Concentrate on functionality

Like other GUI development environments, PhAB lets you attach code functions to a
widget’s callbacks so you can implement your application’s main functionality. For
example, you can attach a code function to a button so that the function is invoked
whenever the user clicks the button.

In addition, PhAB doesn’t force you to write and attach the code needed to “glue” the
different parts of your interface together. Instead, you can attach a widget’s callbacks
directly to any window, dialog, or menu. The only code you have to worry about is the
code specific to your application.

Create prototypes without writing code

Once you’ve completed any part of a user interface, you can have PhAB generate all
the C and/or C++ code required to bring the interface to life. Which means you can
create a complete prototype without having to write a single line of code.

May 13, 2010 Chapter 1 • Introduction 5

Widget concepts © 2010, QNX Software Systems GmbH & Co. KG.

After you’ve generated and compiled the code, you can run the prototype to see how
the interface works. For example, if you link a button to a dialog, clicking on the
button causes the dialog to pop up. You immediately get a sense of how the interface
will “feel” to the user. In fact, PhAB makes the process of building and testing so
efficient that you can even sit down with your users and design prototypes together.

After you’ve finished a prototype, you can build it into your working application. Or
you can stop prototyping at any point, write some callback functions, experiment with
your application to see how it works, and then return to prototyping. You’re always
free to fine-tune all aspects of your application until it looks and works just the way
you want.

Cut code size

Your application may need to use the same widgets in several parts of its interface.
With PhAB, you don’t have to set up these widgets every time they’re needed. Instead,
you define the widgets just once, place them in a widget database, and then, using C
functions provided by PhAB, reuse the widgets as often as you want. By taking this
approach, you can reduce the code required to create a widget to a single line.

Create consistent applications

With PhAB, you rarely have to build an application from scratch. For example, if
you’ve already created windows and dialogs for an existing application, you’re free to
drop these into a new application. You can also create a central database of widgets
that you import into all your applications to create a consistent look and feel.

Create all kinds of applications

With PhAB, you can speed up development without compromising functionality, so
you’re free to create all kinds of applications. For example, we used PhAB to build
almost all the applications that ship with Photon, including the Helpviewer, Terminal
application, Desktop Manager, Snapshot, all games and demos—even PhAB itself!

The best introduction to PhAB is using it, so start by working through the tutorials.
Within a very short time, you’ll be able to put together very detailed prototypes. When
you’re ready to start programming your application, you can then read the sections
pertaining to the widgets you’re trying to use.

Widget concepts
When creating a new user interface (UI), you’ll find it much simpler to compose the
interface from a set of standard components, such as sliders, lists, menus, and buttons,
than to implement each UI element from scratch. Each standard component included
in the UI is an object called a widget.

Photon widgets implement a set of UI components that are more or less consistent
with other windowing systems you may have seen.

6 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget concepts

The widget set is built on an object-oriented framework loosely based on the X Toolkit
Intrinsics library (Xt). If you’re already familiar with Xt, you’ll see that many of the
same concepts apply here.

A widget combines the data and operations required to implement a particular UI
element. Grouping data and operations into an object like this is called encapsulation.
A widget encapsulates the knowledge of how to:

• draw itself

• respond to user events (e.g. pressing a pointer button)

• repair itself by redrawing when it’s damaged (for example, when a window that
obscures it closes).

In addition, there are some widgets called containers that hold other widgets and
manage their layout.

A widget also hides the details of how it performs these responsibilities from the
outside world. This principle, known as information hiding, separates the widget’s
internal implementation from its public interface.

The public interface consists of all the attributes visible to other objects as well as the
operations other objects may perform on the widget. The attributes in the widget’s
public interface are called resources.

The advantage to you as a programmer is that you don’t have to know the
implementation details of a widget to use it—you just need to know the public
interface for the widget, how to create and destroy the widget, and how to manipulate
its resources.

Not every object is unique. Objects that perform the same function and provide the
same public interface belong to the same class. Widgets that provide the same UI
component belong to the same widget class. The window’s class methods implement
the common functionality by the class.

Several widget classes may have attributes and operations in common. In such cases,
these widget classes may be categorized as subclasses of the same superclass or
parent class. The attributes and operations are encapsulated in the superclass; the
subclasses inherit them from the parent class. The subclasses themselves are said to be
inherited from the superclass.

The Photon library allows a widget class to be inherited from only one widget class.
This relationship is known as single inheritance. The relationships between all of the
widget classes can be drawn as a tree known as the class hierarchy.

May 13, 2010 Chapter 1 • Introduction 7

Widget concepts © 2010, QNX Software Systems GmbH & Co. KG.

PtWidget

PtBasic

PtTimer

PtContainer

PtGauge

PtGraphic

PtLabel

PtRaw

PtSeparator

PtTrend

PtButton
PtMenuLabel
PtTab

PtCalendar

PtClock

PtToggleButton

PtOnOffButton

PtBezier

PtEllipse
PtGrid

PtLine

PtPixel

PtPolygon
PtRect

PtArc

PtMeter

PtScrollbar

PtSlider

PtProgress

PtText

PtCompound

PtGroup

PtMenuBar

PtBkgd

PtScrollArea

PtTerminal PtTty

PtFontSel

PtPrintSel

PtOSContainer

PtPanelGroup

PtDisjoint

PtClient PtWebClient

PtToolbar

PtToolbarGroup

PtMenu

PtRegion

PtWindow

PtServer

PtFlash

PtPane

PtComboBox

PtDivider

PtGenList

PtMenuButton

PtMultiText
PtNumericFloat

PtNumericInteger
PtNumeric

PtColorSel
PtColorSelGroup

PtColorPanel

PtColorPatch

PtColorWell

PtTree

PtFileSel
PtRawTree

PtList

PtGenTree

PtRawList

PtScrollContainer

PtBarGraph

PtMTrend

PtUpDown

PtImageArea

The Photon widget hierarchy.

The nesting of widget instances in your application’s GUI produces another widget
hierarchy, called the widget family to distinguish it from the widget class hierarchy.

The Photon widget library acts like a widget factory. It provides a set of functions that
let you to create a new widget of a particular widget class and then manipulate that

8 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget concepts

widget. Once created, the widget has all the characteristics of the widget class.
Because of inheritance, it also has all the characteristics of the superclasses of its
widget class.

The new widget is an instance of the widget class. Creating a new widget of a
particular class is thus also called instantiating the widget. This term isn’t entirely
accurate, however, because you’re really instantiating the widget class. This reflects a
tendency found throughout this guide to refer to both widgets and widget classes
simply as “widgets.”

The widget’s resources are used to configure its appearance or behavior. You can edit
resources in PhAB, and after the widget has been created you can change many of
them with a call to PtSetResource() or PtSetResources(). Resources are used
extensively to control the data displayed by a widget and to customize how it’s
displayed. For example:

• The Pt_ARG_TEXT_STRING resource for a PtLabel widget is the string that it
displays.

• the resources for a PtButton widget specify whether the button displays a string
and/or an image, its text, image, color, and what happens when the user selects the
button.

How you get and set widget resources in your application code depends on the type of
resource. For more information, see the Manipulating Resources in Application Code
chapter.

An important type of resource provided by widgets is the callback list, which is a list
of functions that the widget invokes in response to some significant user event. For
example, a text field widget calls the functions in one of its callback lists whenever the
user enters a new value and presses Enter. When you develop an application, you can
add callbacks to a widget’s callback list in order to perform the appropriate action in
response to a user event.

For more information about adding callbacks, see:

• “Callbacks” in the Editing Resources and Callbacks in PhAB chapter

• “Callbacks” in the Managing Widgets in Application Code chapter.

Widget life cycle
A widget has an inherent life cycle, as shown below.

May 13, 2010 Chapter 1 • Introduction 9

Widget concepts © 2010, QNX Software Systems GmbH & Co. KG.

Create

Realize

Unrealize

Destroy

Life cycle of a widget.

1 When the widget is required, it’s created or instantiated. After being created, its
attributes may be manipulated, or operations may be performed on it.

2 After a widget has been created, it’s not immediately visible in the UI. It must
be realized. If you’re using PhAB, your widgets are realized automatically; if
you’re not using PhAB, you must realize them using PtRealizeWidget().

Realizing a widget automatically realizes all its descendants. Photon guarantees
that all the descendants are realized before the widget itself, so the widget can
calculate its initial size based on the sizes of its children. To have the application
notified that the widget has been realized, you can register a callback on the
Pt_CB_REALIZED callback list.

3 You can temporarily hide a widget from the UI by unrealizing it using
PtUnrealizeWidget(). As with realization, you can notify the application, using
the Pt_CB_UNREALIZED callback resource.

4 When the widget is no longer required, you can destroy it.

You can destroy a widget by calling PtDestroyWidget(). The call doesn’t
actually destroy the widget immediately—it’s marked to be deleted by the
toolkit at an appropriate time and added to a list of widgets to be destroyed.
These widgets are normally destroyed within the main loop of the application,
after all the callbacks associated with an event have been invoked.

Your application can define Pt_CB_DESTROYED callbacks for any widget.
These callbacks are invoked when the widgets are marked for destruction.

To have the application notified when the widget is actually destroyed, you can
register a function with the destroy callback list (Pt_CB_IS_DESTROYED) for
the widget. This is especially useful for cleaning up data structures associated
with the widget.

10 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget concepts

Widget geometry
You can think of a widget as a painting or mounted photograph. The widget is held by
a frame called a border. For a widget, the border is the set of outlines as well as the
beveled edge that may be drawn around the outside.

The part of a widget that’s used for drawing is called the canvas. For PtWidget, this
is the area inside the widget’s borders. For PtBasic and its descendants, the canvas is
the area inside the widget’s border and margins. Other widgets, such as PtLabel,
define other margins. The margins form a matt and obscure any part of the canvas
extending beyond the cut-out area. This cut-out region is sometimes referred to as the
clipping area.

Container widget

Border

Margin

Canvas (or clipping area)

Clipped child

Anatomy of a PtBasic widget.

The canvas and margins are shown in different colors in the above diagram for the
sake of clarity. In an actual widget, they’re the same color.

For a widget, the border is optional. It’s drawn only if the widget is highlighted (i.e.
has Pt_HIGHLIGHTED set in its Pt_ARG_FLAGS resource). The border consists of
various optional components, depending on the settings of the widget’s
Pt_ARG_BASIC_FLAGS resource. The components, from the outside in, are:

• a one-pixel etching line

• a one-pixel outline

• a bevel whose width is set by Pt_ARG_BEVEL_WIDTH

• a one-pixel inline.

A widget has several important attributes that define the geometry of these elements.
The dimension of the widget, Pt_ARG_DIM, is the overall size of the widget,
including its borders:

May 13, 2010 Chapter 1 • Introduction 11

Widget concepts © 2010, QNX Software Systems GmbH & Co. KG.

POS (x, y)

Origin of parent

x

y

Margin
width

Margin height

Margin height

DIM (width)

Bevel width

DIM
(height)

Widget position and dimensions.

Pt_ARG_MARGIN_WIDTH defines the width of the margins on the left and right of
the canvas; Pt_ARG_MARGIN_HEIGHT defines the height of the margins above and
below the canvas. These resources are defined by PtBasic.

Other widget classes define their own margin resources, which may be added to the
basic margin width or height. For example, the label widget provides separate margins
for the left, right, top, and bottom of the widget. These are added to the basic margin
width and height to determine the amount of space to leave on each side of the canvas.

The origin of the widget (for the purposes of any drawing it performs or positioning of
any children) is the upper left corner of the canvas. All coordinates specified for the
widget are relative to this location, as are the coordinates of all events that the widget
receives. For example, if the widget is a container, the positions of all the children are
relative to this point:

POS (x, y)

POS (x, y)

Origin of container

Container widget

Child widget

Origin of a widget and the position of its children.

12 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Programming paradigm

For positioning children, containers are concerned with only the outside edges of the
widget’s border. The position of the widget is maintained by the Pt_ARG_POS
resource. This position is the point at the upper left corner of the outside of the
widget’s border. A container positions its children by adjusting this resource.

The position and dimensions of the widget can be accessed or modified
simultaneously using the Pt_ARG_AREA resource provided by the widget.

The extent of a widget is a rectangle defined by the widget’s position and dimensions.
It isn’t normally calculated until the widget is realized; you can force the widget to
calculate its extent by calling PtExtentWidget(); to force a widget and its children to
calculate their extents, call PtExtentWidgetFamily(). Once the extent is calculated, you
can find out what it is by getting the Pt_ARG_EXTENT resource or by calling
PtWidgetExtent().

Programming paradigm
Let’s compare how you write a text-mode application, a non-PhAB (Photon)
application, and a PhAB application.

Text-mode application
When you write a non-Photon (text-mode) application, you generally concentrate on
the main program, from which you do such things as:

• initialize the application

• set up signal handlers

• send and receive messages

• iterate

• call subroutines, as required

• communicate with the console

• and eventually exit.

May 13, 2010 Chapter 1 • Introduction 13

Programming paradigm © 2010, QNX Software Systems GmbH & Co. KG.

Main program

Signals

Messages

Console

Signal

handlers

exit()

Message

handler

functions

Message

handler

Structure of a text-mode application.

Non-PhAB application
A Photon application written without PhAB is similar to a text-mode application,
except that you also:

• instantiate, initialize, and realize the application’s widgets

• set the widget’s resources, including those for:

- size and position

- anchoring

- text

- callback lists

- etc.

• write callback routines to handle widget events. In these you may need to:

- create windows and their widgets, set their resources, and realize them

- create menus out of PtMenuButton widgets, set resources and callbacks, and
realize the menus

- destroy widgets

- etc.

• call PtMainLoop() in your main program to handle events.

Usually one of your callbacks exits the application. Writing an application without
PhAB means you’ll be working directly with the widgets— a lot.

14 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Programming paradigm

Main program

Signals

Messages
PtMainLoop()

exit()

Photon events

Graphics

driver

Callbacks

- Create, realize,

destroy other

windows

- Handle interrupts

manually

- Create menus

- Create widgets

- Create dialogs

- Create widget

callbacks

- ...

Signal

functions

Message

handler

functions

Initialize application

Create top-level window

and icon

Attach callbacks

Attach handlers

Structure of a Photon application written without PhAB.

PhAB application
When you develop a PhAB application, the main program is provided for you. Instead
of worrying about the main program, you:

• provide a function that initializes the application

• set up signal handlers, which process the signals as they arrive and call
signal-processing functions that you write

• set up input functions for messages

• write callbacks to handle events from the widgets.

The main program loops forever, processing events as they occur. Usually one of your
callbacks ends the application. PhAB handles a lot of the details for you—you’ll
concentrate on your application’s functionality, not the widgets’.

May 13, 2010 Chapter 1 • Introduction 15

Photon libraries © 2010, QNX Software Systems GmbH & Co. KG.

Main programSignals

Messages

exit()

Initialization
function

Photon events

Graphics

driver

Signal

functions

Callbacks

Message

handler

functions

(generated by PhAB)

Structure of a Photon application written with PhAB.

In addition, you don’t have to size and position widgets from your code; you do it
visually in PhAB. PhAB also looks after instantiating, realizing, unrealizing, and
destroying your widgets. PhAB even provides a menu module to make creating menus
easy. You can see why we recommend using PhAB!

Photon libraries
API categories and libraries

The Photon application programming interface (API) is arranged into sets of
functions, each distinguished by a two-character prefix:

Al PhAB Translation functions that let you manipulate translation files (for
PhAB applications or message databases) without using the translation
editor. These routines aren’t in the shared library; to use them, you’ll need
to link your application with the phexlib library.

Ap PhAB functions that work with modules, widget databases, translation, and
so on. These routines aren’t in the shared library; to use them, you’ll need to
link your application with the Ap library.

Pd Functions that manipulate the draw context.

Pf Font services, including text metrics, and the generation of bitmaps of
character strings. For more information, see the Fonts chapter.

16 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon libraries

Pg Low-level graphics functions that access a rich set of primitives in the
graphics drivers. These functions are used by the widget libraries and can
also be called directly when using the PtRaw widget. See the Raw Drawing
and Animation chapter or Building Custom Widgets.

Ph Photon primitives that package up the draw requests and forward them to the
Photon microkernel for steering and clipping until they arrive at the graphics
driver ready to be rendered on screen. Although not commonly used by
application programmers, these routines are heavily used by the graphics
and widget libraries.

Pi Image-manipulation functions. See “Manipulating images” in the Raw
Drawing and Animation chapter.

Pm Memory-context functions that can be used to reduce flickering. See
“Animation” in the Raw Drawing and Animation chapter.

Pp Printing functions that set up and control printing. See the Printing chapter.

Pt Widget toolkit functions for creating, realizing, and destroying widgets,
getting and setting resources, and so on. Besides using the widgets in the
Photon widget library, you can use third-party widgets or your own custom
widgets.

Px Extended functions that deal with loading images, working with
configuration files, and other useful routines. These routines aren’t in the
shared library; to use them, you’ll need to link your application with the
phexlib library.

Rt Realtime timer functions. See “Timers” in the Working with Code chapter.

utf8 UTF-8 character string functions. See the appendix on Unicode multilingual
support.

wc Wide-character string functions. See the appendix on Unicode multilingual
support.

The functions and data structures in these libraries are described in the Photon Library
Reference.

The Pd, Pf, Pg, Ph, Pi, Pm, Pp, Pt, Rt, utf8, and wc routines are in Photon’s main
library, ph. Routines that are used to rasterize the Photon draw stream are in the
phrender library. The ph, phrender, and Ap libraries are available in shared and
static forms.

You may want to link your applications with the shared libraries; doing so makes your
application much smaller. For more information, see “Choosing the libraries” in the
Generating, Compiling, and Running Code chapter.

The Al and Px routines are included in the extended library, phexlib, which is
available only in static form.

May 13, 2010 Chapter 1 • Introduction 17

Building applications with PhAB—an overview © 2010, QNX Software Systems GmbH & Co. KG.

Versions and platforms
The Photon libraries currently support the following platforms:

• ARM little endian

• MIPS little endian

• PowerPC big endian

• SH-4 little endian

• x86 little endian

CAUTION:

The libphoton.so.1 library is for applications created with version 1.14 of the
Photon microGUI only. Don’t combine this library with the current libraries or header
files, or your application won’t run properly.

The libraries in /usr/photon/lib are provided for runtime compatibility with
Photon for QNX Neutrino 6.0 (x86 only). The current libraries are in /usr/lib.

!

If you need to determine the version number of the libraries, you can use:

• Ph_LIB_VERSION (defined in <PhT.h>) when you compile or run your application

• PhLibVersion() at runtime.

Both of these express the version number as:

major version * 100 + minor version

Building applications with PhAB—an overview
Step 1: Create modules

To construct an application UI in PhAB, you start with primary building blocks called
modules. Modules look and work a lot like the windows you see in most Photon
applications.

You could design a UI with just one module. But for most applications, you’ll
probably use several modules and assign each a different role. As a rule, each module
groups together related information and lets the user interact with that information in a
specific way. To help you handle the requirements of virtually any application, PhAB
provides several module types:

• window—normally used for the application’s major activities. A typical application
has one main window that opens when the application starts up.

• dialog—allows the application to exchange information with the user

18 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Building applications with PhAB—an overview

• menu—presents commands to the user

• picture—can be used in different ways. For example, you can use a picture to
provide a convenient database of widgets or to change the contents of an existing
module

For more information, see the Working with Modules chapter.

Step 2: Add widgets
Once you’ve created a module, you’re ready to place widgets into it. To add a widget,
just click on the appropriate icon in PhAB’s widget palette, then click where you’d
like the widget to go. PhAB lets you add any widget that comes with the Photon
development environment. You can choose from widgets that:

• display or edit values (e.g. labels, text, and multiline text)

• present choices (e.g. lists, comboboxes, and groups)

• display graphics (e.g. bitmaps, images, lines, rectangles, ellipses, and polygons)

• display scrolling areas (e.g. scrollbars and scrolling containers)

• initiate actions (e.g. buttons that contain text or images)

To customize how a widget looks and works, you set its attributes or resources.
PhAB’s Control panels and Resource editors make it easy to do this. Just click on the
resource you want to change, then select or enter a new value.

You can even customize a widget and then save it as a template to use to create similar
widgets.

For more information, see the Editing Resources and Callbacks in PhAB chapter.

Step 3: Attach callbacks
You’ve created your modules and placed widgets into them. Now you’re ready to
define how the application works. To do this, you use callbacks.

Every Photon widget supports several callback types. To attach code functions to a
callback, you set a resource or use a provided convenience function. The widget
invokes the code function whenever the callback’s conditions are met.

With PhAB, you’re free to concentrate on writing application-specific code in your
callbacks—you don’t have to create code to “glue” interface components together.
That’s because PhAB provides link callbacks. Using link callbacks, you can attach a
widget’s callback resource directly to windows, dialogs, menus, and many other things
besides application code.

Link callbacks also let you add functionality that isn’t available when you attach
callbacks “by hand.” For example, if you link a dialog to a button widget, you can
specify where the dialog is to appear. You can also specify a setup function that’s
automatically called before the dialog is realized, after the dialog is realized, or both.

May 13, 2010 Chapter 1 • Introduction 19

Building applications with PhAB—an overview © 2010, QNX Software Systems GmbH & Co. KG.

The extended functionality provided by link callbacks makes it much easier to design
a user interface. In fact, you can prototype an entire application without having to
write any code.

For more information, see the Editing Resources and Callbacks in PhAB chapter.

Step 4: Generate code
You’ve created your application’s modules and created the link callbacks to glue the
various components together. Now you’re ready to generate and compile code to turn
your application design into a working executable.

The way you generate the code depends on whether you’re using PhAB standalone, or
through the IDE, and is described in the Generating, Compiling, and Running Code
chapter.

When using PhAB from the IDE, you generate the application’s user interface in
PhAB, and then build the project from the IDE. In PhAB, select Build→Generate UI.
If the application is new and no targets are added, the Select New Platform dialog is
displayed and you’re asked to add a target for your application. Then you switch to the
IDE, and build the application. See Building projects in the Developing C/C++
Programs chapter of the IDE User’s Guide for more information.

Using standalone PhAB, you use the Build menu. Select Build→Build. If the
application is new and no targets are added, the Select New Platform dialog is
displayed and you are asked to add a target for your application. Your application is
then generated and built. A file manager is included in one of PhAB’s palettes (under
Window→Show Project) so you can edit the source code and manipulate files —
without having to leave the PhAB environment.

For more information, see the Generating, Compiling, and Running Code chapter.

Step 5: Run your application
After you’ve generated, compiled, and linked your application, you can execute it.
Again, how you do this depends on whether you’re running PhAB standalone or from
the IDE.

If you’re running PhAB from the IDE, follow the instructions in Running projects in
the Developing C/C++ Programs chapter of the IDE User’s Guide.

If you’re using PhAB standalone, run the application from the Build & Run dialog.
Using this same dialog, you can even launch your application under a debugger for
seamless debugging.

For more information, see the Generating, Compiling, and Running Code chapter.

Step 6: Repeat any previous step
After you’ve generated and compiled your application, you’re free to change the
interface, attach callbacks, and regenerate the code as often as you like.

20 Chapter 1 • Introduction May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Writing applications without PhAB

Writing applications without PhAB
We recommend that you use PhAB to develop your application. However, even if you
don’t plan to use PhAB, you should read through this guide completely (especially the
Programming Photon without PhAB chapter) in order to familiarize yourself with all
the Photon fundamentals before you can start creating applications. You should then
refer to the Widget Reference.

May 13, 2010 Chapter 1 • Introduction 21

Chapter 2

Tutorials

In this chapter. . .
Before you start... 25
PhAB’s Interface 26
Tutorial 1 — Hello, world 27
Tutorial 2 — editing resources 30
Tutorial 3 — creating menus and menubars 42
Tutorial 4 — creating dialogs 49
Tutorial 5 — creating windows 56

May 13, 2010 Chapter 2 • Tutorials 23

© 2010, QNX Software Systems GmbH & Co. KG. Before you start...

The best way to get to know PhAB is to use it. This chapter provides hands-on
sessions to give you a jump start on creating applications. We’ll take a closer look at
using PhAB in the chapters that follow.

The first two tutorials cover the basics: creating widgets, changing how widgets look
and behave, generating code, running your application, and so on.

The remaining tutorials go beyond the basics to show you how to create working
menus, dialogs, and windows. When you’ve completed these tutorials, you’ll be ready
to start building almost any Photon application.

Before you start...
If you’re developing Photon applications in the IDE, the way you use PhAB there is
slightly different than from standalone PhAB. The differences are:

• New projects — When using the IDE, you create a QNX Photon Appbuilder
project in the IDE, and then use PhAB to create the user interface. Using
standalone PhAB, you create the project from within PhAB.

• Editing code — The IDE allows you to edit your project’s code, and take advantage
of features like syntax highlighting. When you use standalone PhAB, you use an
external editor, such as vi, to edit code.

• Building and compiling — The IDE manages building and running your
application, and you have to set up a target to run and debug the application on.
Using standalone PhAB, you can build and run your application from within
PhAB. Note that in both cases you need to configure targets within PhAB.

Creating a Photon project and starting PhAB
From the IDE:

To create a new PhAB project, see “Creating a QNX Photon Appbuilder project” in
the Developing Photon Applications chapter of the IDE User’s Guide. When you
create a new project, the IDE opens PhAB, and you see the New Window Style dialog
from which you can select the type of base window for your application.

From standalone PhAB:

You can start PhAB from the Launch menu in the lower-left corner of the screen;
choose the Development submenu, and then choose Builder.

You can also start PhAB from a pterm window by typing:

appbuilder

For information about command-line options, see appbuilder in the QNX Neutrino
Utilities Reference.

May 13, 2010 Chapter 2 • Tutorials 25

PhAB’s Interface © 2010, QNX Software Systems GmbH & Co. KG.

PhAB’s Interface
Before you start the tutorials, take a moment to make yourself familiar with PhAB’s
user interface:

Toolbars Menubar Instance name Control panel

Work area Widget palette

Overview of PhAB’s user interface.

Menubar Import graphics, create windows and dialogs, generate C and/or
C++ code to implement your entire user interface, and more.

Toolbars Save time with the toolbars—with a couple of mouse clicks you
can duplicate, move, align, group, or resize any number of widgets.

26 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 1 — Hello, world

Work area Provides a flexible area where you can work on several application
modules all at once.

Widget palette Makes it easy to add widgets to your application. Just click the
widget you want, then click where you want it.

Control panels Let you fully customize your application’s widgets. You can
choose text fonts, modify colors, customize bitmaps, and attach
callbacks that will pop up dialogs or invoke C and/or C++ code
you’ve supplied.

The widget palette and control panels are initially in the same window, but you can
drag any of them into a different window. To switch between panels in a window, click
the tab at the top and choose a panel from the menu.

If you close a control panel, you can redisplay it by selecting the appropriate item
from the View menu.

Tutorial 1 — Hello, world
In this tutorial you learn how to use PhAB to create and compile a simple application.

Creating the application
1 Create a new project. See “Creating a Photon project and starting PhAB” above.

2 PhAB displays a dialog to let you choose the style for the new application’s
default base window:

May 13, 2010 Chapter 2 • Tutorials 27

Tutorial 1 — Hello, world © 2010, QNX Software Systems GmbH & Co. KG.

3 Choose a style and click Done; PhAB creates the base window and displays it.

4 Whenever you create a new application within standalone PhAB, it’s a good
idea to save the application and give it a name. (If you’re running PhAB from
the IDE, you’ve already saved the application when you created the project).

From the File menu, choose Save As to open the Application Selector dialog.
Click the Application Name field, type tut1, then press Enter or click Save
Application.

5 Look at PhAB’s titlebar. It now indicates that the current application is named
tut1.

6 If the widget palette isn’t displayed, click the tab at the top of the current control
panel and choose Widgets from the menu that appears.

7 Drag the widget palette away from the other control panels by pointing to the
left of its tab, holding down the mouse button, and pointing to PhAB’s work
area.

8 If you wish, resize the widget palette and control panels.

9 Go to the widget palette and click the PtLabel widget icon:

10 Move the pointer into the application’s base window (the pointer changes to a
crosshair) and click anywhere near the center of the window.

PhAB automatically:

• creates a new PtLabel widget

• selects the widget so you can edit its resources

• places resize handles around the widget

• displays the widget’s resources in the Resources and Callbacks control
panels.

11 Go to the Resources control panel and highlight the text Label beside the
Label Text resource.

12 Change the text to Hello World. As you type, the text in the widget changes:

Generating code
Now you’re ready to generate, compile, and execute the application. How you perform
this step depends on whether you’re using PhAB from the IDE or standalone.

28 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 1 — Hello, world

From the IDE

When running PhAB from the IDE, PhAB generates the code for your application’s
user interface, and the IDE compiles and executes the application. You’ll notice that
only the Generate UI item is available in PhAB’s Build menu.

1 In PhAB, chose Generate UI from the Build menu to generate the user
interface code.

2 Switch to the IDE.

3 To build the application, follow the instructions in Building projects in the
Developing C/C++ Programs chapter of the IDE User’s Guide.

4 To run the application, follow the instructions in Running projects in the
Developing C/C++ Programs chapter of the IDE User’s Guide.

From standalone PhAB
1 From the Build menu, choose Build & Run. PhAB displays a dialog for

selecting a platform, which is a combination of the operating system, computer,
compiler, and endian format. Choose the appropriate platform for your
application. For example, if you’re using the Neutrino OS on an Intel x86
machine and the gcc compiler, choose X86 (Little Endian).

2 Click Done once you’ve made your platform selection. Your application will be
generated, compiled and linked. PhAB displays a dialog for entering run
arguments. Click OK. Your application runs.

The application will appear in its own window, with the text “Hello World” in the
center and the default title “My Application” in the title bar:

May 13, 2010 Chapter 2 • Tutorials 29

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

Congratulations! You’ve just created your first Photon application using PhAB.

To quit the application, click the window menu button in its top-left corner, then
choose the Close item.

Want more info?
For more info on compiling, running, and debugging an application, see the
Generating, Compiling, and Running Code chapter.

Tutorial 2 — editing resources
This tutorial introduces you to PhAB’s resource editors, which let you change how
widgets look and behave. You’ll find out how to edit virtually any kind of resource a
widget may have, including:

• numerical resources (e.g. border width)

• text fonts

• text strings

• flags

• colors

• pixmaps

30 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

You’ll also learn how to create a template so you can create other instances of an
existing widget.

Adding a button widget
1 Create a new application called tut2. Choose the Plain window style.

2 Click PtButton in the widget palette:

3 Click near the center of the application’s window. You’ll see a button widget.

4 Drag any of the button’s resize handles until the button matches the following
picture:

Changing the bevel width
Let’s now edit a numerical resource—the button’s bevel width.

1 Click the Bevel Width resource in the Control Panel. You’ll see the number
editor:

This editor lets you change the value of any numerical widget resource.

2 Change the value to 6. To do this, you can:

• type in the new value

or:

• click the increment/decrement buttons.

3 To apply the new value and close the editor, press Enter or click Done.

May 13, 2010 Chapter 2 • Tutorials 31

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

You can also edit this resource (and most resources) right in the Resources control
panel. Choose whichever method you like.

Changing the font
Let’s change the font of the button’s text:

1 Click the Font resource. You’ll see the font editor, which displays the button’s
current font:

This editor lets you change the text font of any widget that has text.

2 Click the Font box or the Size box, select a typeface or size from the displayed
list, and click Apply. The button displays the new font.

3 Click Default. The editor displays the widget’s default font, but doesn’t apply
the font to the widget.

4 If you want to keep the new font that you selected, click Cancel to ignore the
default. If you want to apply the default, click Done. Either way, the editor
closes.

Changing the text alignment
Now let’s change the button’s horizontal text alignment:

32 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

1 Scroll through the Resources control panel to find the Horz Alignment
resource, then click it. You’ll see the flag/option editor, which displays the
widget’s current text alignment:

This editor serves a dual purpose in PhAB:

• It modifies any resource—such as text alignment—that can have one of
several preset values.

• It selects one or more flags in any flag resource

2 Click Pt_LEFT or Pt_RIGHT, then click Apply. You’ll see the button text move
to the left or right edge of the button.

3 Click Done.

You can also set this resource right in the Resources control panel.

Setting flags
Let’s now use the flag/option editor to set one of the widget’s flags:

1 Scroll through the Resources control panel to find the Basic Flags resource,
then click it. The flag/option editor reopens, but this time it shows the widget’s
current PtBasic flag settings:

May 13, 2010 Chapter 2 • Tutorials 33

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

The bits in this flag resource aren’t mutually exclusive, so this time you can use
the editor to select multiple options, if desired.

2 Set the Pt_TOP_INLINE, Pt_BOTTOM_INLINE, Pt_LEFT_INLINE, and
Pt_RIGHT_INLINE flags, then click Done. PhAB draws the button with an inner
border:

Changing the fill color
Let’s change a color resource—the button’s fill color.

1 Click the button’s Color: Fill resource. You’ll see the color editor, which
displays the current fill color:

34 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

This editor lets you edit any color resource. It provides several preset base
colors, which should work well with all graphic drivers, and 48 customizable
colors for drivers that support 256 or more colors.

2 Click any color in the Base Colors set, then click on Apply. The button is filled
with the color you selected.

3 Select a color from the Custom Colors set. The sliders will display the color’s
Red/Green/Blue (RGB) values. Change these values till you get a color you
want, then apply your changes.

If you’d like to experiment with the Hue/Saturation/Brightness (HSB) color
model, click the HSB Model button.

4 Click Done when you’ve finished experimenting with the editor.

Your button should now look something like this:

Don’t delete this widget; we’ll use it to create a template later on, so that you can
create other widgets like it.

Editing a pixmap
Let’s now use the pixmap editor to edit a PtLabel widget. This editor is called
“pixmap” instead of “bitmap” since it lets you edit many types of image resources
besides bitmaps.

A PtLabel widget display text and/or an image.

May 13, 2010 Chapter 2 • Tutorials 35

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

1 Click PtLabel in the widget palette:

2 Move the pointer into the main window and click below the button widget you
created. You’ll see a PtLabel widget.

3 Click the Label Type resource in the Resources control panel, and set it to
Pt_IMAGE.

4 Click the Label Image resource in the Resources control panel to bring up the
pixmap editor.

5 Next, bring up the color editor to select a draw color. Just click the following
button:

6 Select a color from the pixmap palette. You’ll see that the draw color in the
pixmap editor changes immediately.

If you click Edit Color, you’ll see the Color Editor, as described earlier.

7 To draw a simple image, you can:

• click the left mouse button to fill a cell with the draw color

• click the right mouse button to fill a cell with the background color

• hold down a mouse button and drag the pointer to draw freehand

Feel free to try the other drawing tools.

8 When you’re done, click the pixmap editor’s Done button to apply your changes
and close the editor.

Editing multiline text
Next, we’ll edit a multiline text resource—the text of a PtMultiText widget.

1 Click PtMultiText in the widget palette:

2 Move the pointer below the label widget you’ve just created, and drag until the
new PtMultiText widget appears big enough to hold a few lines of text.

3 Click the Text String resource in the Resources control panel to bring up the
multiline text editor:

36 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

4 Type a few lines of text. To create a new line, press Enter. For example:

Mary hadEnter
aEnter
little lamb.Enter

5 Click Done. Your text should appear exactly as you typed it. If it doesn’t, try
resizing the widget—the widget might not be wide enough or tall enough.

6 For a different effect, look for the Horz Alignment resource, click the arrow,
and change the text alignment to Pt_CENTER. As you can see, each line is now
centered individually.

7 If you haven’t already, resize the widget by dragging on one of its resize handles.
You’ll see the text update automatically to adjust to the new size. For example:

You can edit the text right in the control panel, but it displays only the current line of
text.

Editing a list of text items
Let’s now create a PtList widget and add text to the widget using the list editor. This
editor lets you add and edit text for any widget that provides a list of text items.

1 Click PtList in the widget palette:

May 13, 2010 Chapter 2 • Tutorials 37

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

2 Move the pointer into the application’s base window, and drag the pointer until
the new PtList widget appears big enough to hold a few lines of text.

3 Click the List of Items resource to bring up the list editor:

4 Click the text box at the bottom of the editor. You’ll see the text-input cursor.

5 Type some text, then click Add After to place the first item in the list.

6 Now let’s create the second item. Click in the text box, and type Ctrl-U to erase
the text in the text box, then type some new text.

Click Add After to place this new item after the previous item.

7 Repeat the above step as often as you’d like.

8 Click Apply. The PtList widget should now display the list you’ve created.

9 Now try editing the list:

• To modify an existing item, click the item, edit the item’s text, then click
Edit.

• To delete an item, click the item, then click Remove.

10 When you’re finished experimenting, click on Done to apply your changes and
close the editor.

38 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

Creating a template
At times, you might want to create many widgets that look and behave alike. You can
do this by creating a widget, editing its resources, and then copying and pasting it, but
this isn’t always very convenient, and doesn’t copy certain important elements like
callbacks.

PhAB makes it simpler by letting you create a template from an existing widget or
widgets. PhAB creates a palette, similar to the widget palette, for your templates.

Let’s create a template from the button that you created earlier in this tutorial.

1 Start by selecting the button.

2 Click the Widget menu, and then choose Define Template. The Define Template
dialog appears.

3 You need to create a folder in which to store the template, so click on Add
Folder. This dialog is displayed:

4 The new folder can be a user folder or a PhAB folder. A user folder is personal
and can’t be viewed by any other PhAB users logged on to the system. If you
choose PhAB folder, the new folder can be shared between users; you must
have the necessary permissions to create a PhAB folder.

May 13, 2010 Chapter 2 • Tutorials 39

Tutorial 2 — editing resources © 2010, QNX Software Systems GmbH & Co. KG.

Choose User Folder, type My_templates as the folder’s name, and click Add.
The dialog closes, and the folder’s name is displayed in the Define template
dialog.

5 Give the template a name, such as Big green button. This is the name that
PhAB uses in the palette.

6 You can create an icon for the palette entry for the template. If you do not create
an icon for the template entry, a default icon is used for it. To create the icon,
click the icon Edit button, and then follow the instructions given earlier for
editing pixmaps. You should make the icon look something like the widget:

7 Optionally, choose the background color for the palette entry by clicking on the
Color box. You can use different background colors in a palette to distinguish
widgets that are used for different purposes (e.g. buttons and text widgets).

8 Choose a resize method. This determines whether you drag or just click when
you create instances of your template. For this button, choose the dragging
method.

9 The dialog should now look something like this:

Click Done.

You’ve just created a template! Now, let’s see how to use it.

1 Select Window→Show Templates. On the list of items, select Show My
Templates. If the menu item is Hide My Templates, it means that My
Templates is already displayed and visible on the screen.

2 Go to the control panels, and click the top tab. The popup menu now includes
My_templates; choose it to display the palette.

40 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 2 — editing resources

3 Click the icon for your customized button, create an instance of it, and edit it as
you wish:

If you wish, you can save, generate, make, and run the application.

Whenever you start PhAB, it automatically loads the palette for My_templates.

Want more info?
You now know the basics of editing any widget resource in PhAB. For more
information, see the following sections in the Editing Resources and Callbacks in
PhAB chapter:

To edit: See this section:

Bitmaps or images Pixmap editor

Colors Color editor

Flags Flag/option editor

Fonts Font editor

Lists of text items List editor

Numbers Number editor or Flag/option editor

Single-line or multiline text strings Text editors

For more information on templates, see “Templates” in the Creating Widgets in PhAB
chapter.

May 13, 2010 Chapter 2 • Tutorials 41

Tutorial 3 — creating menus and menubars © 2010, QNX Software Systems GmbH & Co. KG.

Tutorial 3 — creating menus and menubars
This tutorial takes you through the steps required to create menus and menubars.

About link callbacks
In this tutorial, you’ll learn how to set up a link callback, one of the key components of
PhAB. To understand what a link callback is, let’s start with some background info on
widget callbacks.

Almost all widgets support a variety of callbacks. These callbacks enable your
application’s interface to interact with your application code. For example, let’s say
you want your application to perform an action when the user clicks on a button. In
that case, you would attach a callback function to the button’s “Activate” callback.

In some windowing environments, you can attach only code functions to widget
callbacks. But whenever you use PhAB to create a callback, you can go one step
further and attach entire windows, dialogs, menus, and much more. It’s this extended
functionality that we call a link callback.

PhAB provides two basic types of link callbacks:

Module-type link callback

Attaches an application module (such as a window, dialog, or menu) to any
widget callback. The module opens whenever the callback’s conditions are met.
In this tutorial, you’ll link a menu module to a button’s “Arm” callback.

Code-type link callback

Attaches a code function to any widget callback. The widget invokes the
function whenever the callback’s conditions are met. Note that some code-type
link callbacks let you close the parent module automatically. In this tutorial,
you’ll link a code function to a menu item’s callback.

About instance names
To access a widget from your application code, you must first give the widget an
instance name. Since all widget instance names reside in the same global namespace,
no two widgets within an application can have the same instance name.

We recommend that you start every instance name with a module prefix. For example,
if your base window has a PtButton widget that contains the label text “Blue,” you
could give this widget an instance name of base_blue.

Adopting a naming convention for your widgets will make it easier for you to work
with large applications.

42 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 3 — creating menus and menubars

Creating a menubar
To learn about using link callbacks, let’s create two functioning menus—File and
Help—that you can later incorporate into your own applications.

In PhAB, menus are built in two pieces:

• a menu button, which you’ll click to display the menu

• a menu module, which contains the menu items.

Using link callbacks, you’ll link the menu modules to the File and Help buttons in a
menubar. You’ll also link a code-type callback to the Quit menu item in the File menu
module. This callback will enable the Quit item to close the application.

1 Create a new application named tut3. Choose the Plain window style.

2 Select the PtMenuBar widget from the widget palette, point at the top left
cornet of the main window’s canvas, and drag until the menu bar is the width of
the window.

The menubar grows and shrinks as you change the width of the window, and it
always stays at the top of the window. You can see this by clicking in the titlebar
of the window, then resizing the window by dragging on one of its resize
handles.

If you accidentally click the Test button, the window won’t resize or accept new
widgets. If this happens, you just switched into Test Mode. To go back to Edit Mode,
select Project→Edit mode.

By the time you’re finished the following steps, the menubar will look like this:

3 Place a PtMenuButtonwidget in the menubar you just created. The menu
button is automatically centered vertically in the menubar.

4 Go to the Resources control panel and click the widget instance name just below
the class name. Change the button’s instance name to base_file:

5 Change the button’s Label Text resource to File.

May 13, 2010 Chapter 2 • Tutorials 43

Tutorial 3 — creating menus and menubars © 2010, QNX Software Systems GmbH & Co. KG.

6 Place another PtMenuButton widget next to the first. Change its instance name
to base_help and its text to Help.

Creating the File menu module
Now that you have menu buttons, you need to create your menu modules. Let’s start
with the File menu.

1 Select Project→Add Menu. A new menu module appears.

2 Change the name of the menu from Menu0 to filemenu:

Adding menu items
Let’s now add some menu items to the File menu.

If you click another module, the menu module becomes deselected, which means you
can’t work on it. To reselect the menu module, click its titlebar.

1 Click the Menu Items resource in the Resources control panel. You’ll see the
menu editor:

44 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 3 — creating menus and menubars

If you look at the Menu Items list, you’ll see that the <New> item is selected.
This special item lets you add menu items to the menu.

2 To add your first menu item—which also happens to be called “New”—click the
Item Text field, then type New.

3 Now give the item an instance name. In the Inst Name field, type file_new.

4 Click Apply to add the item to the menu. You’ll see the item’s name in Menu
Items list, prefixed by CMD. The CMD means this is a Command item; that is, an
item that invokes a PhAB callback.

5 Repeat the above steps to create the two menu items labeled Save and Save As.
Give these items the instance names file_save and file_as.

6 Up to now, you’ve added Command-type menu items. You’ll now add a
Separator item. Just click on the Separator button near the upper-right corner

7 Click Apply to get the default separator style, which is Etched - in.

8 Now let’s add the Quit item. Click the Command button, then specify Quit as
the item text and file_quit as the instance name.

9 You’re finished with this menu module for now, so click Done. The module
displays the items you just created:

May 13, 2010 Chapter 2 • Tutorials 45

Tutorial 3 — creating menus and menubars © 2010, QNX Software Systems GmbH & Co. KG.

10 You’ll want to keep this module neatly out of the way while you work on your
next task. So click the module’s minimize button (the left button at the right side
of the title bar), or select the Work menu button (upper-left corner) and choose
Minimize.

Creating the Help menu module
Using what you just learned about creating a menu module, do the following:

1 Create your Help menu module and give it a name of helpmenu.

2 In this module, place a single command item called About Demo and give the
item an instance name of help_about. When you’re finished, minimize the
module.

If one of your menu modules seems to “disappear” (you may have accidentally closed
it or placed it behind another module), it’s easy to bring the module back into view.
See the “Finding lost modules and icons” in the Working with Modules chapter.

Attaching link callbacks
Let’s return to the menu buttons you created earlier and attach link callbacks so that
the buttons can pop up your menu modules.

Attaching a module-type link callback
1 Select the File menu button, then switch to the Callbacks control panel You’ll

see the File button’s callback list:

46 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 3 — creating menus and menubars

2 To have the File menu module pop up when you press the File button, you need
to attach an Arm callback to the button. By attaching an Arm callback, you can
open the menu using either click-move-click or press-drag-release.

Click Arm to bring up the callback editor.

3 The Module Types area of the editor let you choose the type of module you wish
to link to. Because you want to link the File button to a menu module, click
Menu.

4 Click the Name list and type filemenu (or select filemenu from the list) which
is the name you gave your File menu module. This links the menu button to that
module.

You can also select filemenu from a popup list of available modules. To bring
up the list, click the icon to the right of the Name field.

May 13, 2010 Chapter 2 • Tutorials 47

Tutorial 3 — creating menus and menubars © 2010, QNX Software Systems GmbH & Co. KG.

5 Click Apply to add the link callback, then click Done to close the callback
editor.

6 Repeat the above steps to link the Help menu button to the Help menu module.

Attaching a code-type link callback

Let’s now attach a code-type link callback to the File menu’s Quit item so that it can
terminate the application.

1 Double-click the iconified filemenu module. This opens and selects the
module.

2 Switch to the Resources control panel, then click the Menu Items resource.

3 Select the Quit item in the Menu Items list.

4 Click the icon next to the Callback field to open the callback editor:

5 When the editor opens, the default callback type is Code. Since this is the type
you want, all you have to do is specify the name of the function you want to call.

The function should have a meaningful name. So type quit in the Function
field.

6 Click Apply to update the Callbacks list, then click Done to close the editor.

7 Click Done again to close the menu editor.

Setting up the code
You’ll now generate the code for your application and edit a generated code stub so
that the Quit item will cause your application to exit.

1 Select Build→Generate UI. This generates the necessary application files.

2 After the generation process is complete, open the Browse Files palette window
by selection Window→Show Project.

Scroll through the list until you see the quit.c file. This is the generic code
template that PhAB generated for your quit() function.

3 You need to make the function exit the program. To do this, select quit.c from
the file list, click the Edit button, or double-click quit.c, then change the quit()
function to the following:

int
quit(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

/* eliminate ’unreferenced’ warnings */
widget = widget,
apinfo = apinfo,

48 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 4 — creating dialogs

cbinfo = cbinfo;

PtExit(EXIT_SUCCESS);

/* This statement won’t be reached, but it
will keep the compiler happy. */

return(Pt_CONTINUE);
}
PtExit() is a function that cleans up the Photon environment and then exits the
application. It’s described in the Photon Library Reference.

If you are using the IDE, you can also edit quit.c, or any other source code file, from
the IDE editor by double-clicking the file in the project navigator tree.

4 After you’ve edited the code, saved your changes, and closed the editor, build
and run your application.

5 Once your application is running, try clicking on the File button to bring up the
File menu. Then choose Quit. Your application will immediately terminate and
close.

Want more info?
For more info on: See the section: In the chapter:

Widget callbacks Callbacks Editing Resources and
Callbacks in PhAB

Editing callbacks Editing Resources and
Callbacks in PhAB

Instance names Instance names Creating Widgets in PhAB

Menu modules Menu modules Working with Modules

Tutorial 4 — creating dialogs
This tutorial describes how to create a dialog. It also provides a good example of how
you can use setup code to modify a widget’s resources before the widget appears
onscreen.

This tutorial uses the application you created in Tutorial 3.

In this tutorial, you’ll:

• link the About Demo item in the Help menu to a dialog

• add labels and a Done button to the new dialog

• define a setup function that changes the text of one of the labels to display a version
number when the dialog is realized.

May 13, 2010 Chapter 2 • Tutorials 49

Tutorial 4 — creating dialogs © 2010, QNX Software Systems GmbH & Co. KG.

About dialogs
Dialog modules are designed to let you obtain additional information from the user.
Typically, you use this information to carry out a particular command or task.

Since you don’t usually need to get the same information twice, dialogs are
single-instance modules. That is, you can’t realize the same dialog more than once at
the same time. If you try create a second instance of a dialog, PhAB simply brings the
existing dialog to the front and gives it focus.

If you need to create a window that supports multiple instances, use a window module.
You’ll learn about window modules in the next tutorial.

More on instance names
To make it easier for you to access widgets from within your application code, PhAB
generates a constant and a manifest. Both of these are based on the widget’s instance
name.

The constant, which has the prefix ABN_, represents the widget’s name. The manifest,
which has the prefix ABW_, represents the widget’s instance pointer.

For example, let’s say you have a widget named about_version. PhAB uses this
name to generate a constant named ABN_about_version and a manifest named
ABW_about_version.

In this tutorial you’ll learn how to use these generated names.

The value of a widget’s ABN_... constant is unique in the entire application.

Attaching a dialog module
1 Make a copy of the tut3 application you created and name it tut4:

• From the IDE — select the project, select Edit→Copy, and then select
Edit→Paste. You can enter the new name for the project in the dialog that
appears.

• From standalone PhAB — open the tut3 application and use the File
menu’s Save As item to save the application as tut4.

2 Open the Help menu module you created (it may still be iconified).

3 Click the Menu Items resource in the Resources control panel to open the menu
editor.

4 Select the About Demo item, then click the icon next to the Callback field to
open the callback editor:

5 When the editor opens, the default callback type is Code. Go to the Module
Types group and change the callback type to Dialog.

50 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 4 — creating dialogs

6 In the Name field, type aboutdlg as the name of the dialog module you want to
link to. (This dialog doesn’t exist yet, but PhAB will ask you later to create it.)

7 In the Setup Function field, type aboutdlg_setup. This is the name we’re
giving to the setup function that will be called before the dialog is realized.

Using this function, we’ll change the content of a label widget within the dialog
to display a version number.

8 Since you want the aboutdlg_setup function to be called before the dialog is
realized, make sure the Prerealize button is enabled.

9 Click the Location icon to specify where you want the dialog to appear when it
gets realized. (The Center Screen location is a good choice.) Click Done.

Your callback information should now look something like this (depending on
the location you chose):

10 Click on Apply in the Actions group to add the link callback. Since the dialog
module you want to link to doesn’t exist yet, PhAB asks you to choose a style;
select Plain and click Done.

You’ll see the new dialog in the work area. You’ll also see the new callback in
the Callbacks list in the callback editor.

11 Click Done to close the callback editor, then click Done again to close the menu
editor.

Adding widgets to the dialog
1 Open the aboutdlg dialog module.

2 Place two PtLabel widgets in the top half of the dialog, and a PtButton near
the bottom:

May 13, 2010 Chapter 2 • Tutorials 51

Tutorial 4 — creating dialogs © 2010, QNX Software Systems GmbH & Co. KG.

3 Select the top PtLabel widget and change its label text resource to About

this Demo. Then change its horizontal alignment to Pt_CENTER.

4 Select the other PtLabel widget and change its label text to a blank string.
Then change its horizontal alignment to Pt_CENTER.

Later, you’ll fill in the aboutdlg_setup() function so that it changes the blank
text of this label to display a version number.

5 You must give this blank PtLabel widget an instance name since you’ll be
referring to it in code. So change its instance name to about_version.

6 Select the PtButton widget and change its button text resource to Done. Then
change its instance name to about_done.

7 Let’s center the widgets horizontally in the dialog. Select both PtLabel widgets
and the PtButton widget, choose Align from the Widget menu, and then
choose Alignment Tool from the submenu. You’ll see the Align Widgets dialog:

52 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 4 — creating dialogs

8 In the Horizontal column, click Align Centers and on Align to Container. Then
click the Align button.

The two labels and the button should now be centered horizontally within your
dialog. Your aboutdlg module should now look like this:

Adding a callback to the Done button
Now let’s add a callback to the Done button so that the dialog closes when the user
clicks on the button.

1 Select the Done button, then switch to the Callbacks control panel.

2 Click Activate to add an activate callback. You’ll see the callback editor.

May 13, 2010 Chapter 2 • Tutorials 53

Tutorial 4 — creating dialogs © 2010, QNX Software Systems GmbH & Co. KG.

3 Select the Done code type, then click Apply. Don’t enter anything in the
Function field.

Selecting the Done code type tells the widget to perform a “Done” operation
when the widget is activated. That is, the widget calls the function specified in
the Function field (if one is specified) and then closes the dialog module.

4 Close the editor. The callback list now indicates that you’ve added an Activate
callback called Done:

Modifying a generated code function
You’ll now modify the generated aboutdlg_setup() function so that it changes the text
of the about_version label to show a version number.

1 Select Build→Generate UI. This save yours application and generates the
necessary files.

2 When code generation is complete, choose Window→Show Project to bring
the Browse Files palette window to front. Select aboutdlg_setup.c from the
file list, and click Edit, or double-click the filename. If you are using PhAB
from the IDE, you can open and edit this file in the IDE.

Change the code from:

int
aboutdlg_setup(PtWidget_t *link_instance,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate ’unreferenced’ warnings */
link_instance = link_instance,

apinfo = apinfo,
cbinfo = cbinfo;

return(Pt_CONTINUE);
}
to the following:

int
aboutdlg_setup(PtWidget_t *link_instance,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate ’unreferenced’ warnings */

54 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 4 — creating dialogs

link_instance = link_instance, apinfo = apinfo,
cbinfo = cbinfo;

PtSetResource(ABW_about_version, Pt_ARG_TEXT_STRING,
"1.00", 0);

return(Pt_CONTINUE);

}
The code is placing the version number (1.00) into the text string resource for
the about_versionwidget. To do this, the code calls PtSetResource() to set
the resource for the about_versionwidget. The code uses the
PhAB-generated manifest ABW_about_version, which provides access to the
widget’s instance pointer.

We can use this manifest safely since we’re dealing with a dialog
module—PhAB ensures that only one instance of the dialog will exist at any
given time.

3 Save your changes and exit the text editor.

Compiling and Running
You’re now ready to compile and run the program:

1 Build and run your application. If your program compiles and links without
errors (which it should if you edited the function correctly), it will run.

2 From the running application, open the Help menu and choose About Demo.
The dialog will open, and you’ll see the version number (1.00) under the label
About this Demo. Note that the dialog appears in the location you specified.

3 Now try to bring up a second instance of the dialog. As you see, it won’t work.
PhAB always ensures that there is only one instance of a Dialog widget.

4 Click Done to close the dialog, then quit the application by choosing Quit from
its File menu.

Want more info?

For more info on: See the section: In the chapter:

Using dialogs Dialog modules Working with Modules

Instance names Instance names Creating Widgets in PhAB

Variables and manifests Working with Code

Callbacks Callbacks Editing Resources and Callbacks in PhAB

continued. . .

May 13, 2010 Chapter 2 • Tutorials 55

Tutorial 5 — creating windows © 2010, QNX Software Systems GmbH & Co. KG.

For more info on: See the section: In the chapter:

Code-callback functions Working with Code

Generating code Generating application code Generating, Compiling, and Running Code

Tutorial 5 — creating windows
In the previous tutorial, you learned how to handle dialog modules, which support just
one instance. In this tutorial you’ll learn how to handle window modules, which
support multiple instances.

This tutorial uses the application you created in Tutorial 4.

By supporting multiple instances, window modules provide more flexibility than
dialogs. But to take advantage of this flexibility, you must keep track of each
window’s instance pointer. Doing so ensures that you correctly reference the widgets
within each instance of a window. You can’t safely use the generated global ABW_xxx
manifest since it refers only to the last instance created.

To simplify the task of working with multiple instances, PhAB provides API library
functions that let you access any widget by means of its generated constant name
(ABN_xxx).

Creating a window
To start, let’s create a window module and attach it to the New menu item in the File
menu in tut4. This window will contain buttons that change the color of another
widget.

In the previous tutorial, you created a dialog module from within the callback editor.
But this time you’ll add the window from the Project menu. In the future, use
whatever method you prefer.

1 Make a copy of the tut4 application and call it tut5.

2 Iconify the aboutdlg dialog module.

3 From the Project menu, select Add Window. When PhAB prompts you for a
window style, choose the Plain style.

4 Change the new window’s instance name from Window0 to newwin, by typing
the new name in the instance name field in the control Panel.

5 The window module should now be the currently selected item.

56 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 5 — creating windows

Attaching callbacks
Because a window module supports multiple instances, you have to create code
functions that will be called whenever the window opens or closes (i.e. whenever the
window is created or destroyed). So let’s first set up a callback to detect when the
window closes:

1 Switch to the Callbacks control panel, if necessary.

2 From the list of callbacks, choose Window Manager. You want to use the
Window Manager callback since it’s invoked when the Photon Window
Manager closes the window.

3 In the Function field, type newwin_close. You don’t have to choose a callback
type since the default, Code, is the one you want.

Click Apply, then Done.

4 Switch to the Resources control panel and select the Flags: Notify resource.
Make sure that the Ph_WM_CLOSE flag is set (i.e. highlighted), then click
Done. This flag tells the Window Manager to notify your application when the
window is closed.

5 Now let’s set up a function that’s invoked when the window opens.

Open the filemenu menu module, then select the Menu Items resource in the
Resources control panel. You’ll see the menu editor.

6 Make sure the menu’s New item is currently selected in the Menu Items list,
then click the Callback icon to open the callback editor.

7 Choose the Window module type, then click the arrow next to the Name field.
You’ll see the list of existing window modules.

8 Choose newwin, which is the window you just created.

9 In the Setup Function field, enter newwin_setup as the name of the setup
function. Later, you’ll modify newwin_setup() to handle the window’s multiple
instances.

10 Click Apply, then on Done. Click Done again to close the menu editor.

Adding widgets
Let’s now add some widgets to the newwin window module. Using these widgets,
you’ll learn how to update information in the current or other instances of a window
module.

1 Add a PtRect widget and four PtButton widgets as follows:

May 13, 2010 Chapter 2 • Tutorials 57

Tutorial 5 — creating windows © 2010, QNX Software Systems GmbH & Co. KG.

2 Now modify the left button:

• Change the button’s label text to Red.

• Give the button an instance name of btn_red.

• Attach an Activate callback, specifying a “Code” code type and a function
name of color_change.

3 Modify the middle button:

• Change the label text to Green.

• Specify an instance name of btn_green.

• Attach an Activate/Code callback to the same function as above,
color_change.

4 Modify the right button:

• Change the label text to Blue.

• Specify an instance name of btn_blue.

• Attach an Activate/Code callback to the same function as above.

5 Modify the large button:

• Change the label text to Change previous window’s color.

• Specify an instance name of btn_prev.

58 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 5 — creating windows

• Attach an Activate/Code callback to the same function as above.

6 Last of all, give the rectangle an instance name of color_rect. You need to
specify this name so that the color_change() function can change the color of
the rectangle.

Your window should now look something like this:

Generating and modifying the code
In the last tutorial, you used the generated ABW_xxx manifest to access a dialog’s
instance pointer. You can’t use this manifest when dealing with multiple instances of a
window module since it refers only to the last window created. Instead, you have to
add code to the generated window-setup function so that it stores a copy of each
window-instance pointer in a global widget array. In this tutorial, you’ll need these
pointers for the Change Previous Window Color button to work.

Generating the code

Open the Build menu and select Generate UI.

Modifying the setup function

Now let’s modify the newwin_setup() function so that it:

• limits the number of possible instances to five

May 13, 2010 Chapter 2 • Tutorials 59

Tutorial 5 — creating windows © 2010, QNX Software Systems GmbH & Co. KG.

• stores a copy of each window pointer

• displays a window’s instance number in that window’s titlebar

Edit the newwin_setup.c file as follows:

int win_ctr = 0;
PtWidget_t *win[5];

int
newwin_setup(PtWidget_t *link_instance,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
char buffer[40];

/* eliminate ’unreferenced’ warnings */
link_instance = link_instance, apinfo = apinfo;
cbinfo = cbinfo;

/* Note: Returning Pt_END in a prerealize setup
function tells PhAB to destroy the module
without realizing it */

/* allow only 5 windows max */
if (win_ctr == 5) {

return(Pt_END);
}

/* save window-module instance pointer */
win[win_ctr] = link_instance;

sprintf(buffer, "Window %d", win_ctr + 1);
PtSetResource(win[win_ctr], Pt_ARG_WINDOW_TITLE,

buffer, 0);
win_ctr++;

return(Pt_CONTINUE);

}

Modifying the color-change function

Now let’s modify the color_change() function so that:

• pressing a Red, Green, or Blue button changes the rectangle color to the button
color

• pressing the Change Previous Window Color button changes the background of the
previous window to a color from an array.

If this were a dialog module you could use the ABW_color_rectmanifest to update
the color of the rectangle. However, because these are window modules, you must use
the instance pointer for the window in which the button is being pressed.

To get the instance pointer of a widget in the current window, you need to call:

60 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 5 — creating windows

• ApGetInstance() to get a pointer to the window that contains the widget that
invoked the callback

• ApGetWidgetPtr() to get a pointer to the widget with a given ABN_... manifest.

If only one instance of the window were guaranteed, the following would work:

PtSetResource(ABW_color_rect, Pt_ARG_FILL_COLOR,
buffer, 0);

But in this case color_change() has to use:

PtSetResource(ApGetWidgetPtr(ApGetInstance(widget),
ABN_color_rect), Pt_ARG_FILL_COLOR,
buffer, 0);

So you need to change color_change.c to look like:

PgColor_t colors[5] = {Pg_BLACK, Pg_YELLOW,
Pg_MAGENTA, Pg_CYAN,
Pg_GREEN};

int base_clr = -1;
extern int win_ctr;
extern PtWidget_t *win[5];

int
color_change(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

int i, prev;
PtWidget_t *this_window;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

/* Get a pointer to the current window. */
this_window = ApGetInstance(widget);

if (ApName(widget) == ABN_btn_red) {
PtSetResource(

ApGetWidgetPtr(this_window, ABN_color_rect),
Pt_ARG_FILL_COLOR, Pg_RED, 0);

} else if (ApName(widget) == ABN_btn_green) {
PtSetResource(

ApGetWidgetPtr(this_window, ABN_color_rect),
Pt_ARG_FILL_COLOR, Pg_GREEN, 0);

} else if (ApName(widget) == ABN_btn_blue) {
PtSetResource(

ApGetWidgetPtr(this_window, ABN_color_rect),
Pt_ARG_FILL_COLOR, Pg_BLUE, 0);

} else if (ApName(widget) == ABN_btn_prev) {

/* Note: Here we use the window-module instance
pointers saved in newwin_setup to update
the window previous to the current window
provided it hasn’t been closed.

Determine which window is previous to this window. */

May 13, 2010 Chapter 2 • Tutorials 61

Tutorial 5 — creating windows © 2010, QNX Software Systems GmbH & Co. KG.

prev = -1;
for (i = 0; i < win_ctr; i++) {

if (win[i] == this_window) {
prev = i - 1;
break;

}
}

/* If the window still exists, update its background
color. */

if (prev != -1 && win[prev]) {
base_clr++;
if (base_clr >= 5) {

base_clr = 0;
}
PtSetResource(win[prev], Pt_ARG_FILL_COLOR,

colors[base_clr], 0);
}

}

return(Pt_CONTINUE);
}

Modifying the window-close function

Last of all, you need to modify newwin_close() so that it sets the win array of instance
pointers to NULL for a window when it’s closed. That way, you can check for NULL in
the win array to determine whether the window still exists.

Modify newwin_close.c as follows:

extern int win_ctr;
extern PtWidget_t *win[5];

int
newwin_close(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

PhWindowEvent_t *we = cbinfo->cbdata;
int i;

/* eliminate ’unreferenced’ warnings */
apinfo = apinfo;

/* only process WM close events */
if (we->event_f != Ph_WM_CLOSE) {

return(Pt_CONTINUE);
}

/* okay it’s a close so who is it? */
for (i = 0; i < win_ctr; i++) {

if (win[i] == widget) {
win[i] = NULL;
break;

}
}

return(Pt_CONTINUE);
}

62 Chapter 2 • Tutorials May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Tutorial 5 — creating windows

Compiling and running

1 Make and run the application.

2 From the application’s File menu, choose New several times to create multiple
windows. You’ll see each window’s relative number in its titlebar.

3 Click a color button to make the rectangle change color. Then click the Change
Previous Window Color button in any window to change the background color
of the previous window.

Want more info?

For more info on: See the section: In the chapter:

Using windows Window modules Working with Modules

Instance names Instance names Creating Widgets in PhAB

Variables and manifests Working with Code chapter

Callbacks Callbacks Editing Resources and Callbacks in PhAB

Code-callback functions Working with Code

Generating code Generating application code Generating, Compiling, and Running Code

Window events Window-management flags Window Management

May 13, 2010 Chapter 2 • Tutorials 63

Chapter 3

PhAB’s Environment

In this chapter. . .
Menus 67
Toolbars 73
Control panels 76
Widget palette 77
Resources panel 80
Callbacks panel 81
Module Tree panel 82
Module Links panel 84
Browse Files panel 85
Search dialog 86
Customizing your PhAB environment 87

May 13, 2010 Chapter 3 • PhAB’s Environment 65

© 2010, QNX Software Systems GmbH & Co. KG. Menus

This chapter describes PhAB’s environment in more detail, and how you can
customize it.

Menus
Across the top of PhAB’s workspace you’ll see the following menubar:

PhAB’s menubar.

File menu
Commands that deal with your application and its files:

New Standalone PhAB only*. Create a new application; see “Creating an
application” in the Working with Applications chapter.

Open Standalone PhAB only*. Open an existing application; see “Opening an
application” in the Working with Applications chapter. This command is
also available through PhAB’s toolbars.

Close Standalone PhAB only*. Close the current application; see “Closing an
application” in the Working with Applications chapter.

Revert Discard any changes and re-load the project from the last saved version.

Save
Save As Save the current application, under the same or a different name; see

“Saving an application” in the Working with Applications chapter. The
Save command is also available through PhAB’s toolbars. Save As is
available in Standalone PhAB only*.

Import Import files created by other applications; see “Importing PhAB modules
from other applications” in the Working with Applications chapter.

Export Export the code used to create a module in a file called module.code;
see “Export files” in the Working with Applications chapter.

Exit End your current PhAB session. PhAB prompts you if there are any
changes that you haven’t yet saved.

This menu also lists the last few applications that you edited.

*When using PhAB in the IDE, projects are managed from the IDE, so these menu
items are disabled. For more information see “Creating a QNX Photon Appbuilder
Project”, in the Developing Photon Applications chapter of the IDE User’s Guide.

May 13, 2010 Chapter 3 • PhAB’s Environment 67

Menus © 2010, QNX Software Systems GmbH & Co. KG.

Edit menu
Commands for editing widgets:

Undo
Redo Undo and redo an operation, including:

• creating, deleting, moving, resizing, aligning, and selecting a
widget

• changing the order of widgets

• changing a callback resource — PhAB can’t undo/redo any
changes you make to a callback function’s code

• pasting

• joining and splitting a group

• editing a resource

• importing images, XBMs, and modules.

• changing a widget’s class, matching widget resources and
callbacks, and transferring widgets

The text Undo and Redo menu items changes depending on the
current operation.

Cut
Copy
Paste

Cut and copy widgets to the clipboard, and paste them from it; see
“Clipboard” in the Creating Widgets in PhAB chapter. These
operations also apply to module links.

Move Into Move a widget from one container to another; see “Transferring
widgets between containers” in the Creating Widgets in PhAB
chapter.

Delete Delete a widget without saving it on the clipboard; see “Deleting
widgets” in the Creating Widgets in PhAB chapter.

Select All Select all the widgets in the current module

Select All Children

Select all the children widgets in the current selected widget or
module.

Deselect Deselect the current widget or widgets. This option also selects the
current module.

Find... Display the Find dialog, which allows you to do find widgets in the
current application by name, type, contained text, called function, or
link.

68 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Menus

Add Widget Class...

Add a brand new widget class to the application

Templates... Customize PhAB’s widget palettes. You can create new palette
folders, add widgets to a folder, delete widgets, and change icons,
colors and other properties.

Preferences PhAB preferences, such as colors, editing commands, and styles of
resource names.

Many of these commands also appear in PhAB’s toolbars.

Project menu
Commands for building and configuring a project:

Add Window Open the New Window Style dialog to add a new window to
your project.

Add Dialog Open the New Dialog Style dialog to add a new dialog to your
project.

Add Menu Add a new menu module to your project.

Add Picture Module

Add a new picture module to your project.

Edit Mode Switch to edit mode, which means you can add widgets and
modules to your projects, add callbacks, and so on. When PhAB
is launched, it starts in this mode.

Test Mode Switch to test mode, which means you can test the appearance of
your GUI.

Zoom Mode Allows you to zoom in, zoom out or move around, by using the
mouse and keyboard. After zooming in or out on the desired
area, you must return to Edit Mode or Test Mode to continue
editing or testing.

Internal Links An internal link is a PhAB mechanism that lets you access a
PhAB module directly from your application’s code; see the
Accessing PhAB Modules from Code chapter.

Generate Report Generate a report on the application’s widgets and modules.

Language editor A menu of commands used to create multilingual versions of
your application; see the International Language Support
chapter.

May 13, 2010 Chapter 3 • PhAB’s Environment 69

Menus © 2010, QNX Software Systems GmbH & Co. KG.

Properties Information used for the application as a whole, including global
headers, initialization function, and which modules to display at
startup. For more information, see “Specifying your project
properties” in the Working with Applications chapter.

Convert to Eclipse Project

Standalone PhAB only. Explicitly converts your project to the
Eclipse PhAB Project format, if it hasn’t already been converted.
A project must be in this format to be opened by PhAB from the
IDE. New projects are created in Eclipse PhAB project format
by default, but you must explicitly convert multiplatform
projects created in a previous version of PhAB.

Build menu
Commands for compiling and running an application:

Build & Run Standalone PhAB only*. Builds the current project, and then runs
it. If required, this command will save open files, generate
support files, compile, and link the application. See the
Generating, Compiling, and Running Code chapter.

Build & Debug Standalone PhAB only*. Builds the current project, then launches
it inside the preferred debugger. You can set breakpoints, step
instruction by instruction, etc. See the Generating, Compiling,
and Running Code chapter.

Rebuild All Standalone PhAB only*. Rebuilds the current application by
compiling all the files (equivalent to a “Make Clean” and then a
“Build”). See the Generating, Compiling, and Running Code
chapter.

Build Standalone PhAB only*. Builds the current application. If
required, this command will save open files, generate support
files, compile, and link the application. See the Generating,
Compiling, and Running Code chapter.

Make Clean Standalone PhAB only*. Runs a “make clean” for all the current
target platforms.

Generate UI Generates just the supporting files for the current application. See
the Generating, Compiling, and Running Code chapter.

Run Standalone PhAB only*. Runs the last compiled version of the
current application. See the Generating, Compiling, and Running
Code chapter.

Targets Standalone PhAB only*. Opens the Manage Targets dialog,
which allows you to add and delete target platforms for the

70 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Menus

current application. See the Generating, Compiling, and Running
Code chapter.

*When using PhAB in the IDE, projects are built and run from the IDE, so these menu
items are disabled. For more information see “Building a QNX Photon Appbuilder
Project”, in the Developing Photon Applications chapter of the IDE User’s Guide.

Widget menu
Commands for manipulating widgets:

Arrange Contains commands that let you change the order of selected
widgets relative to one another. You can Raise, Lower, Move
To Front, Move To Back.

Align Contains commands for aligning the selected widgets; see
“Aligning widgets” in the Creating Widgets in PhAB chapter.

Distribute Contains commands to evenly distribute selected widgets
horizontally or vertically, taking into account the size of each
widget.

Match Height
MatchWidth
Match Resources
Match Callbacks These commands match the respective resources or callbacks of

the selected widgets. The widget selected first is used as the
source and subsequently selected widgets are modified. The
source and destination widgets are highlighted with different
colors (provided you have Show Selection set in the View
menu).

Match Advanced Opens the Match resources and callbacks dialog, which lets
you match multiple resources and callbacks. The widget
selected first is used as the source and subsequently selected
widgets are modified. If the destination widget has the selected
resource, then its value is set to the same value as the source
widget’s corresponding resource.

Group
Ungroup Combine selected widgets into a group, or split up a selected

group; see “Aligning widgets using groups” in the Geometry
Management chapter.

Lock Contains commands to lock the position or size of the selected
widget.

Change Class Change the class of the selected widgets; see “Changing a
widget’s class” in the Creating Widgets in PhAB chapter.

May 13, 2010 Chapter 3 • PhAB’s Environment 71

Menus © 2010, QNX Software Systems GmbH & Co. KG.

Define Template A template is a customized widget that you want to use as the
basis for other widgets. This command opens the Define
template dialog, which lets you create or edit a template; see
“Templates” in the Creating Widgets in PhAB chapter.

View menu
Commands that change the way the modules in the work area are displayed:

Zoom In
Zoom Out Zoom the display in or out. Use these commands for doing

precise alignments of your widgets. For example, if you zoom
out so that the zoom factor is less than 100%, your workspace is
larger, helping you work on a 1280x1024 application even if your
display is set to 800x600.

Fit in Window Fits the current selection to the window by adjusting the zoom
factor.

Actual Size Returns to 100% zoom, the default screen size.

Show Grid Toggles the grid display. The settings for the grid can be adjusted
on the Grid tab of the AppBuilder Preference Settings dialog.
See the Preferences option of the Edit menu.

Snap to Grid Toggles the snap to grid option. When this option is on, new or
moved widgets are “snapped” to the grid—that is, they are
aligned with the closest vertical and horizontal grid lines. The
grid does not have to be visible for this option to work.

Show Selection Toggles the widget selection option. When this option is on,
selected widgets are highlighted with colored rectangles. When
multiple widgets are selected, the first widget has a different
selection color than subsequently selected widgets. This makes it
easier to align or match widgets, where the first selected widget is
the source. It also makes it easier to see what’s exactly selected
when widgets overlap.

Window menu
Commands that manipulate PhAB’s windows:

Cascade Arranges the currently open modules so that they’re stacked from
the upper left to lower right in PhAB’s workspace.

Arrange Icons Arranges iconified modules in PhAB’s workspace in a grid along
the bottom of the workspace.

72 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Toolbars

Send To Back Sends the currently selected module to the back of the workspace.
Note that a module will always appear in front of the iconified
modules.

Close Iconifies the currently selected module. A closed module appears
as an icon at the bottom of the workspace.

Close All Iconifies all the application’s modules.

Show Templates
Show Resources
Show Callbacks
Show Module Links
Show Module Tree
Show Project

These commands show or hide control panels for defined
templates, resources, callbacks, module links, module trees, and
project files. If a control panel is shown, the corresponding menu
command changes to Hide.

Help menu
Get online help information:

Welcome to PhAB
Tutorials
PhAB Concepts
Tools + Techniques Links to the appropriate section of this programmer’s guide.

PhAB Library API A link to the Photon Library Reference.

About PhAB The version number and copyright information for PhAB.

There are other forms of help available in PhAB:

• Context-sensitive help — To get help on a part of PhAB’s user interface, click on
the question mark button, then click on the item in question. The Helpviewer
displays the information on the selected item.

• Balloon help — To find out what a button in the widget palette or toolbars is for,
pause the pointer over it. A descriptive balloon appears.

Toolbars
The toolbars give you quick access to frequently used commands from the menu bar:

May 13, 2010 Chapter 3 • PhAB’s Environment 73

Toolbars © 2010, QNX Software Systems GmbH & Co. KG.

PhAB’s toolbars.

Open Standalone PhAB only*. Open an existing application; see
“Opening an application” in the Working with Applications
chapter. This command is also available through the File menu.

Save Save the current application; see “Saving an application” in the
Working with Applications chapter. The Save command is also
available through the File menu.

Print Not implemented.

Cut
Copy
Paste

Delete and copy widgets to the clipboard, and paste them from
it; see “Clipboard” in the Creating Widgets in PhAB chapter.
These commands are also available through the Edit menu.

Move Into Move a widget from one container to another; see “Transferring
widgets between containers” in the Creating Widgets in PhAB
chapter. This command corresponds to the Move Into command
in the Edit menu.

74 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Toolbars

Anchoring on/off Turn the anchor flags for widgets on or off in the design
workspace. This setting does not affect run-time anchoring in
your application. For more information on anchoring widgets,
see “Constraint management using anchors” in the Geometry
Management chapter.

Edit Mode Switch to edit mode, where you can add widgets and modules to
your project, add callbacks, and so on. This is the default mode
when PhAB is launched. This command corresponds to the Edit
Mode command in the Project menu.

Test Mode Switch to test mode, where you can test the appearance of your
GUI. This command corresponds to the Test Mode command in
the Project menu.

Zoom Mode Switch to zoom mode, where you can increase or decrease the
zoom by using the mouse and keyboard. After changing the
zoom, you must return to edit or test mode to continue editing or
testing. This command corresponds to the Zoom Mode
command in the Project menu.

Raise
Lower
To Front
To Back Move the selected widgets forward or backward in, or to the

front or back of the widgets in the container; see “Ordering
widgets” in the Creating Widgets in PhAB chapter. The To
Front and To Back commands are also available through the
Arrange submenu of the Widget menu.

Align The most frequently used commands for aligning the selected
widgets; see “Aligning widgets” in the Creating Widgets in
PhAB chapter. For more choices of alignment, see the
Alignment item in the Widget menu.

Group
Ungroup Combine selected widgets into a group, or break up a selected

group; see “Aligning widgets using groups” in the Geometry
Management chapter. These commands are also available
through the Widget menu.

X
Y
W
H The coordinates and size of the currently selected widget. To

change them, type the new values and press Enter.

To avoid changing a coordinate or dimension for the current
widget, lock it by clicking on the padlock so that it closes. You
can’t change the field (either by typing or dragging) until you

May 13, 2010 Chapter 3 • PhAB’s Environment 75

Control panels © 2010, QNX Software Systems GmbH & Co. KG.

unlock it, although you can change its position using the nudge
tool. The locks are saved with your application.

Nudge tool This tool lets you move, expand, or shrink a widget. Click on
the button for the desired mode, and then click on the frame
buttons above:

Frame buttons

Move Shrink Expand

The nudge tool’s components.

Every click on the frame buttons nudges, stretches, or shrinks
the selected widget by one pixel. To nudge by multiple pixels,
hold down the mouse button.

You can also use the Ctrl key and the numeric keypad to nudge, stretch, or shrink a
widget. Each key corresponds to one of the nudge buttons. Pressing Ctrl-5 switches
between modes, and Ctrl-↑ works like the tool’s top frame button.

Control panels
PhAB includes a set of control panels (also referred to as “palette windows”) that
display information about the currently selected widget or widgets. They’re displayed
by default in PhAB, and you can move them anywhere you like. If you close a control
panel, you can reopen it by choosing the appropriate item from the View menu.

The control panels include:

• Widget palette

• Resources panel

• Callbacks panel

• Module Tree panel

• Module Links panel

• Browse Files panel

76 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget palette

They’re described in the sections that follow.

The control panels are originally displayed as a stack in a PtPanelGroup widget. If
you click on the panel tab, a menu of the panels appears. If you expand the window
enough, all the tabs are displayed in a line.

You can drag panels away from this group to customize the display. If you drop it on
the background of PhAB’s work area, it becomes a new panel group. If you drop it on
another panel group, the panel joins that group. You’re then free to resize the panel
groups are you see fit. Depending on your choices in the AppBuilder Preferences
Settings dialog, the arrangement of panels is saved with your application or for all
your PhAB sessions.

Widget palette
The widget palette lets you add widgets to your application.

May 13, 2010 Chapter 3 • PhAB’s Environment 77

Widget palette © 2010, QNX Software Systems GmbH & Co. KG.

PhAB’s widget palette.

If you close this panel, you can reopen it by choosing Show Templates from the
Window menu, then selecting a pallet.

The predefined Widget palette is a collection of templates grouped into a folder called
“Widgets”. You can create your own templates by selecting Widget→Define
Template. You can also customize the templates in the Widget palette by choosing
Templates from the Edit menu. If a template is permanently removed from the Widget
palette, you can always add it back by selecting Add Widget Class from the Edit
menu. For more information on templates, see Adding a widget class in the Creating
Widgets in PhAB chapter..

78 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget palette

The widgets are arranged and color-coded by type. The names are optional; to hide or
display them, right-click on the palette and choose the appropriate item from the
pop-up menu.

To find out what widget a button represents if the widget names aren’t displayed:

• Pause the pointer over it until a help balloon pops up.

Or

• See the Widgets at a Glance appendix.

For information on using specific widget classes, see the Photon Widget Reference.

Modes (create vs select)
The widget palette has two modes:

Select mode Lets you select existing widgets and modules in the work area.

Create mode Lets you create new widgets.

Determining the mode

To find out which mode you’re in:

• Look at the widget palette—If an icon button is pushed in, you’re in create mode.

• Look at the pointer—If the pointer is a single-headed arrow when you move it into
the work area, you’re in select mode. If the pointer is anything else, you’re in create
mode.

Switching to create mode

To switch to create mode, click on any widget icon in the widget palette. You can now
create one or more instances of that widget. For more information, see “Creating a
widget” in the Creating Widgets in PhAB chapter.

Switching to select mode

To switch from create mode to select mode, do one of the following:

• Click the right mouse button in a module or on the background of the PhAB work
area.

Or:

• Click on the background of the PhAB work area. Note that this might not work if
the selected template in the Widget palette creates a module. In this case, even if
you click on the background of PhAB, the module specified by the template is
created at the pointer position.

Or:

May 13, 2010 Chapter 3 • PhAB’s Environment 79

Resources panel © 2010, QNX Software Systems GmbH & Co. KG.

• Click on the selected widget in the widget palette.

For most widgets, PhAB returns to select mode as soon as you’ve created a widget, but
you can stay in create mode by pressing the Ctrl. This allows you to create multiple
instances of the widget, one after another. Note that PhAB stays in create mode when
you create some widgets (such as PtLine, PtPolygon, and PtPixel).

Resources panel
The Resources panel displays a list of resources for the selected widget or widgets. (If
more than one widget is selected, this panel displays only the resources they have in
common.) Here’s an example:

The Resources panel.

If you close this panel, you can reopen it by choosing Show Resources from the
Window menu.

It includes the following:

Widget class The class of the selected widget.

80 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Callbacks panel

Next and previous buttons

Let you navigate sequentially through widgets in the current
module. These buttons also let you select multiple widgets or
select widgets within a group. For more info, see the “Selecting
widgets” section in the Creating Widgets in PhAB chapter.

Instance name Lets you enter a unique instance name for the widget. For more
information, see “Instance names” in the Creating Widgets in
PhAB chapter.

You can change the value of a resource right in the control panel, or you can use the
full-featured editor by clicking on the resource name. For more information, see the
Editing Resources and Callbacks in PhAB chapter.

By default, the Resources and Callbacks control panels display resource labels
descriptively. If you pause the pointer over a resource, the header manifest is
displayed in a popup balloon.

To have the labels displayed as the actual header manifests (convenient when writing
code), open the Preferences dialog and change the setting in the Resource Names field.
To open this dialog, choose Preferences from the Edit menu.

Now if you pause the pointer over a resource, the popup balloon displays the
descriptive label. You can also copy a resource manifest or value by right clicking on
the left column of the resources or callback panel. Select Copy resource manifest to
ph clipboard to copy the resource manifest (for example,
Pt_ARG_WINDOW_RENDER_FLAGS). Select Copy resource value to ph
clipboard to copy the actual resource value.

The control panel doesn’t display all the resources for a widget. PhAB sets
Pt_ARG_AREA, Pt_ARG_DIM, Pt_ARG_EXTENT , and Pt_ARG_POS
automatically when you move or resize a widget. Some other resources are too
complex to edit in PhAB.

Callbacks panel
The Callbacks panel displays a list of callback resources for the selected widget. You
can use this panel only when you’ve selected a single widget. The widget must have a
unique instance name. Here’s an example:

May 13, 2010 Chapter 3 • PhAB’s Environment 81

Module Tree panel © 2010, QNX Software Systems GmbH & Co. KG.

The Callbacks panel.

If you close this panel, you can reopen it by choosing Show Callbacks from the
Window menu.

This panel, like the Resources panel, displays the widget class and instance names,
and the next and previous buttons.

The left side of the list indicates the callback type. The right side displays:

• “None” if there are no callbacks

• the callback type and name if there’s one callback

• the number of callbacks if there’s more than one.

You can right-click a callback name to copy its manifest or value. Pause the mouse
over a callback name to view its manifest and a short description in a pop-up balloon.

To create a callback or to edit an existing one, click on the appropriate resource (for
example, Pt_CB_ACTIVATE).

Module Tree panel
The Module Tree panel displays a hierarchical tree of the widgets in the current
module. Here’s an example:

82 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Module Tree panel

The Module Tree panel.

If you close this panel, you can reopen it by choosing Show Module Tree from the
Window menu.

This panel makes it easy to:

• See the parent/child relationships of the module’s widgets.

• Select a widget inside a group.

• Find a widget by name.

• Select a widget hidden underneath another widget.

To select a widget from the tree, click on the widget’s name.

If you right-click on this panel, a menu appears:

May 13, 2010 Chapter 3 • PhAB’s Environment 83

Module Links panel © 2010, QNX Software Systems GmbH & Co. KG.

The menu for the Module Tree panel.

Module Links panel
The Module Links panel displays a list of all link callbacks both to and from the
current module. As you can see from the following example, the callbacks are
displayed in a two-line format:

84 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Browse Files panel

The Module Links panel.

To do this: Click on the:

Select a widget Instance name (e.g. base_file) in line 1

Edit a widget callback Appropriate callback type (e.g. Arm) in line 2

If you close this panel, you can reopen it by choosing Module Links from the View
menu.

Browse Files panel
The Browse Files panel is a file browser that you can use to view, edit, delete, print,
create, and rename the files related to your application.

May 13, 2010 Chapter 3 • PhAB’s Environment 85

Search dialog © 2010, QNX Software Systems GmbH & Co. KG.

The Browse Files panel.

Use the Filter to select or enter a regular expression to filter the list of files. For
example, *.c displays only files with a .c extension.

Search dialog
The Search dialog lets you search your application for widgets of a specified type,
name, text resource, and so on.

86 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Customizing your PhAB environment

The Search dialog.

Open this dialog by choosing Find from the Edit menu.

Just choose the category you want to find from the combo box and specify the pattern
(which is case-sensitive) as appropriate:

Widget Name In the text field, type the exact name of the widget or a regular
expression. For example, a value of my_button* matches all the
widgets whose names begin with my_button.

Widget Type Type a class name or a regular expression (e.g. PtScroll*), or
use the combobox to select a widget class.

Widget Text Type specific text or a regular expression to look for in the widgets’
text resources.

Callback Type Search for the widgets that have attached a callback of the type
(Code, Done, and so on) selected from the pattern combo box.

Callback Function Name

Type a function name or a regular expression.

Callback Module Name

Type a module name or a regular expression. All the widgets that
have a callback pointing to a module whose name matches the
pattern are selected.

Next, press the Go button. The matching widgets are displayed in a list. Select entries
from the list to select the actual widgets; the PhAB modules they’re in are opened or
made visible.

Customizing your PhAB environment
To customize PhAB to your preferences:

May 13, 2010 Chapter 3 • PhAB’s Environment 87

Customizing your PhAB environment © 2010, QNX Software Systems GmbH & Co. KG.

1 Choose Preferences from the Edit menu. You’ll see the Preference Settings
dialog:

Setting PhAB preferences.

2 Click on the tab for the group of settings you wish to change: General, Colors,
Dragging, or Grid.

3 When you’re finished, click Done.

General preferences
You can set the following general preferences:

Workspace Lets you decide whether to save your preferences on a
per-application or per-user basis, or not at all.

Resource Names By default, the Resources and Callbacks panels display resource
labels descriptively. This field lets you display the labels as the

88 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Customizing your PhAB environment

actual header manifests, which you may find helpful when
writing code. Note, however, that manifests are long and take up
more screen space.

If you pause the pointer over a resource, the label not displayed
in the control panel is displayed in a popup balloon.

Edit Command Lets you specify an external editor to edit source files.

View Command Lets you specify the file viewer to use to view source files.

Print Command Lets you specify the print command used to print a selected file
(in the Project tab, for example).

Debug Command Lets you specify the command used to debug your application.

Automatically save Whether or not to save the application automatically, and how
often.

Warnings on exiting Whether or not to warn you when you exit PhAB without
generating or saving your application.

Clipboard Operations

Lets you specify if callbacks should be saved along with
widgets when copying from or cutting to the clipboard.

When created widgets contain callbacks

Lets you specify whether you’re prompted to add callbacks
when newly created widgets contain callbacks.

Ask for run arguments

Lets you specify whether PhAB prompts you to enter runtime
arguments when you run an application from the Build menu.

Color preferences
You can set the following color preferences:

Resize Handle
Non-Resizable Handle

If you choose a window background that makes it difficult to see
resize handles, use these options to customize the color. (If you
select a widget and the resize handles appear in the nonresize
color, the widget can’t be resized.)

Selection Color - First Item

The color for the first widget selected. Turn this feature on by
selecting View→Show Selection.

Selection Color The color for widgets selected after the first widget. Turn this
feature on by selecting View→Show Selection.

May 13, 2010 Chapter 3 • PhAB’s Environment 89

Customizing your PhAB environment © 2010, QNX Software Systems GmbH & Co. KG.

Dragging preferences
You can set the following dragging preferences:

Widget
Module Drag widgets and modules as outlines rather than as full objects.

Drag Damping Factor

The amount you must drag a widget or module before it moves. This
factor helps avoid the annoyance of moving a widget when you really
mean to select it.

Grid preferences
You can use a grid to position and size widgets.

Grid Preferences.

90 Chapter 3 • PhAB’s Environment May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Customizing your PhAB environment

You can:

• Choose the color of the grid.

• Specify the origin and spacing of the grid.

May 13, 2010 Chapter 3 • PhAB’s Environment 91

Chapter 4

Working with Applications

In this chapter. . .
Creating an application 95
Opening an application 96
Saving an application 98
Closing an application 100
Specifying project properties 100
Importing files 109
Exporting files 111

May 13, 2010 Chapter 4 • Working with Applications 93

© 2010, QNX Software Systems GmbH & Co. KG. Creating an application

This chapter describes working with an application as a whole in PhAB.

For information on running an application, see the Generating, Compiling, and
Running Code chapter.

Creating an application
The way you create a new application depends on whether you’re using PhAB from
the IDE or standalone.

From the IDE:

To create a new PhAB project, see “Creating a QNX Photon Appbuilder project” in
the Developing Photon Applications chapter of the IDE User’s Guide. When you
create a new project, the IDE opens PhAB, and you see the New Window Style dialog
where you can select the type of base window for your application.

Standalone PhAB:

To create a new application, choose New from the File menu or press Ctrl-N. If you’re
already working on an application, PhAB asks if you want to save any changes to that
application before closing it.

Choosing a main window style

PhAB creates a new unnamed application that consists of a single main window named
base. PhAB displays a dialog where you must choose the style of the base window:

May 13, 2010 Chapter 4 • Working with Applications 95

Opening an application © 2010, QNX Software Systems GmbH & Co. KG.

Choosing the style of the base window.

After creating an application, you should:

• if you’re using standalone PhAB, save it, giving it a name

• use the Project Properties dialog to:

- specify a global header file

- specify an initialization function

- enable or disable command-line options

- specify an icon for your application

- specify your startup window, and other startup options

You should develop a naming convention for all the widgets, modules, functions, and
so on. This will make managing your application easier.

Opening an application
The way you open an existing application depends on whether you’re using PhAB in
the IDE or standalone.

96 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Opening an application

From the IDE

To open an existing PhAB project, see “Reopening PhAB” in the Developing Photon
Applications chapter of the IDE User’s Guide.

Standalone PhAB

To open an existing application, choose Open from the File menu, press Ctrl-O, or
choose Open from PhAB’s toolbar:

The Open button on PhAB’s toolbar.

You’ll see the application selector:

Application Selector dialog.

If the application you want is in another directory, type the directory name in the
Application Directory field, then press Enter, or browse to the directory. To enter a
directory, double-click it. To go one level up in the directory structure, click the up

May 13, 2010 Chapter 4 • Working with Applications 97

Saving an application © 2010, QNX Software Systems GmbH & Co. KG.

arrow directory in the top-right corner of the dialog, or double-click the .. folder in the
file list.

To choose the application, do one of the following:

• Double-click the application.

Or:

• Click the application, then press Enter or click Open Application.

Or:

• Type the application’s name, then press Enter or click Open Application.

If someone already has the application open, PhAB won’t open it unless you started
PhAB with the -n option.

If you’re using NFS or SMB, you should start PhAB with the -n option because you
can’t lock files with either. For more information, see appbuilder in the QNX
Neutrino Utilities Reference.

Saving an application
You can save your application in several ways, as described in the sections below.

To ensure the latest changes to your application are in effect, PhAB automatically
saves your application whenever you regenerate or make your application code.

For information on using version-control software with PhAB applications, see
“Version control” in the Generating, Compiling, and Running Code chapter.

How you save your application depends on whether you’re running PhAB from the
IDE or standalone.

From the IDE
When you run PhAB from the IDE, all file management is handled by the IDE.
However, you can save the PhAB portion of the project by choosing Save from the
File menu in PhAB. For information on managing projects in the IDE, see Developing
C/C++ Programs in the IDE User’s Guide.

From standalone PhAB
Naming or renaming an application

To save a new unnamed application or to save an application under another name or in
a different directory:

1 Choose Save As from the File menu. You’ll see the application selector dialog.

98 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Saving an application

2 The dialog lists the contents of a directory. If you want to save your application
in another directory, browse to the desired directory, or type the directory name
in the Application Directory field and press Enter.

If you type a new directory name, it’s saved. The next time you want to look in that
directory, click the button to the right of the directory field and select the directory
from the list.

3 Type the name of the application in the Application Name field.

4 Press Enter or click Save Application.

If you rename an application, you’ll find that the name of the executable is also
renamed if the project is an Eclipse-style project. However, if it’s an older-style
project, the application name isn’t changed. This is because PhAB doesn’t change the
Makefile. In this case, to change the name of the executable:

• Edit the Makefile manually and change every occurrence of the executable’s
name.

Or:

• If you haven’t changed the Makefile since it was first generated, delete it and
regenerate the application. See the Generating, Compiling, and Running Code
chapter.

Saving an existing application

To save an existing application, choose Save from the File menu, press Ctrl-S, or select
the Save button on PhAB’s toolbar:

The Save button on PhAB’s toolbar.

Overwriting an existing application

To overwrite an existing application:

1 Choose Save As from the File menu.

2 Do one of the following:

• Double-click the existing application.

Or:

• Click the existing application, then press Enter or click Save Application.

May 13, 2010 Chapter 4 • Working with Applications 99

Closing an application © 2010, QNX Software Systems GmbH & Co. KG.

Closing an application
When using PhAB from the IDE:

1 Close PhAB first using Exit from the File menu.

2 Close the project in the IDE.

To close an application in standalone PhAB, choose Close from the File menu. If
you’ve made any changes but haven’t saved your application, PhAB asks if you want
to save it.

Specifying project properties
The Project Properties dialog lets you set up the typical operations that are performed
when an application starts. You can:

• define startup windows and other initialization features

• set various project generation options

• define run options, such as command line arguments and language

• define build and debug options

To open this dialog:

• Choose Project Properties from the Project menu.

Or

• Press F2.

Here’s the dialog, with some sample information filled in:

100 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Specifying project properties

The Project Properties dialog.

Once you’ve made your changes, click Done.

Startup Windows tab
Here’s the Startup Windows tab, with some sample information filled in:

May 13, 2010 Chapter 4 • Working with Applications 101

Specifying project properties © 2010, QNX Software Systems GmbH & Co. KG.

The Project Properties dialog—Startup Windows tab.

You can use this tab to define:

• a startup window

• a global header

• an initialization function.

Define a startup window

When you first create an application, the mandatory base window is preset as the
initial and only startup window. Using the Application Startup Information dialog, you
can tell your application to:

• use another window as the initial startup window

• display several windows at startup

• use no startup windows.

The window that appears first in the Windows Opened/Startup list is the initial startup
window:

• It’s the first window to be displayed.

102 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Specifying project properties

• It acts as the default parent window for all other windows and dialogs.

• Closing it causes the application to end.

Typically, the application’s main window is the first created.

For each window in the startup list, you can specify information that’s identical to the
information used to create a module-type link callback, as described in the Editing
Resources and Callbacks in PhAB chapter.

The information for each window includes:

Window Name The name of the window module. To select from a list of
existing windows, click the icon next to this field. If you specify
the name of a module that doesn’t exist, PhAB asks whether it
should create that module.

Window Location Where the window will appear; see “Positioning a module” in
the Working with Modules chapter.

Setup Function The function that’s called when the window is realized
(optional). To edit the function, click the icon next to this field.

The buttons below the function name determine whether the
setup function is called before the window is realized, after the
window is realized, or both.

Apply Applies any changes.

Revert Restores the window information to its original state.

Remove Deletes the selected window from the startup list.

Adding a startup window

To add a new window to the startup window list, click <NEW>, fill in the window
information, and click Apply.

Modifying a startup window

To modify an existing startup window, select the window from the “Windows
Opened/Startup” list, enter whatever changes are needed in the window information
fields, and then click Apply.

Deleting a startup window

To delete an existing startup window, select the window from the “Windows
Opened/Startup” list and click Remove.

May 13, 2010 Chapter 4 • Working with Applications 103

Specifying project properties © 2010, QNX Software Systems GmbH & Co. KG.

Specifying a global header file

Most applications have a global header that’s included in all source code files. If you
plan to use a global header in your application, you should set up the header before
PhAB generates any code. This lets PhAB automatically include the header in each
file it generates.

To set up a global header:

1 Press F2 or choose Properties from the Project menu. You’ll see the Project
Properties dialog.

2 In the Global Header field, type the name of the header file you plan to use. You
don’t have to include the .h extension.

For example, to set up a globals.h header file, you can simply enter: globals

3 To edit the header immediately, click the icon next to the Global Header field.
You can edit the header only if you’ve named the application by saving it. The
format of the header file is discussed in the Working with Code chapter.

If you specify the header after some code has been generated, you’ll have to go back
and manually add the header to the stub files that were previously generated.

Initialization function

Your application can include an initialization function that’s called before any modules
or widgets are created. In it you can initialize data, open widget databases, set up
signal handlers, and so on. To set up an initialization function:

1 Press F2 or choose Properties from the Project menu. You’ll see the Project
Properties dialog.

2 In the Initialization Function field, type the name of the initialization function.

When you specify a setup function, PhAB generates a stub function; for
information on specifying the language (C or C++) and the filename, see
“Function names and filenames” in the Working with Code chapter.

3 To edit the function immediately, click the icon next to the Initialization
Function field. You can edit the function only if you’ve named the application
by saving it. The prototype of this function is discussed in the Working with
Code chapter.

Generate Options tab
The Generate Options tab lets you:

• set window arguments

• include instance names.

104 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Specifying project properties

Here’s an example of this tab:

Build and Debug Options tab of the Project Properties dialog.

By default, all PhAB-generated applications have the following command-line
options:

-h height[%] The height of the window, in pixels, or as a percentage of the
screen height if % is specified.

-s server_name The name of the Photon server:

If server_name is: This server is used:

node_path node_path/dev/photon

fullpath fullpath

relative_path /dev/relative_path

-w width[%] The width of the window, in pixels, or as a percentage of the
screen width if % is specified.

May 13, 2010 Chapter 4 • Working with Applications 105

Specifying project properties © 2010, QNX Software Systems GmbH & Co. KG.

-x position[%][r] The x coordinate of the upper-left corner of the window, in
pixels, or as a percentage of screen width if % is specified. If r
is specified, the coordinate is relative to the current console.

-y position[%][r] The y coordinate of the upper-left corner of the window, in
pixels, or as a percentage of screen height if % is specified. If r
is specified, the coordinate is relative to the current console.

-Si|m|n The initial state of the main window (iconified, maximized, or
normal).

By default, all these options are enabled so that users can dynamically move or resize
the application, or specify its initial state. For example, to start an application in
console 4 (the center of the workspace), specify the command-line options:

-x100% -y100%

The PhAB API processes these options before it calls the initialization function; if you
plan to add your own command-line options to an application, make sure you pick
options that don’t conflict with these. You should also code your option processing to
handle and ignore these options. If you don’t, you’ll see errors on the console when
you run the application. See the discussion on the initialization function in the
Working with Code chapter.

If you don’t want users to move or resize the application:

1 Press F2 or from the Project menu, choose Properties to open the Project
Properties dialog.

2 Select the Generate Options tab.

3 Unset the toggle buttons for these options as required:

• Enable Window State Arguments

• Enable Window Dimension Arguments

• Enable Window Position Arguments.

Other Generate options

You can set project-generation options for storing widget instance names, generating
proto.h, and generating release-quality code.

Store Names for ApInstanceName()

PhAB converts your widgets’ instance names into ABN_... manifests that you
can use in your code to refer to your widgets by name. Check this option to
include the instance-name text string in the widgets’ memory.

106 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Specifying project properties

Including instance names increases the amount of memory required to run your
application.

Use ApInstanceName() to find this string for a widget—see the Photon Library
Reference for more information.

Scan source files for prototypes

Indicates whether or not proto.h is to be generated — see “Generating
function prototypes” in the Generating, Compiling, and Running Code chapter.

Generate release quality code

When your application has passed the development/debuging cycle and is ready
for release, you can turn on this option and rebuild your executable. This will
build an executable that requires less memory to run. The memory savings
depend on the number of named widgets you have in your application, as PhAB
optimizes the compiled code by turning ABN_ constants into macros.

Run options
Here’s an example of the Run Options tab:

Run Options tab on the Project Properties dialog.

Use the Run Options tab to specify:

Run Arguments Command line arguments used when PhAB runs your application

Language The language PhAB uses when it runs your application

May 13, 2010 Chapter 4 • Working with Applications 107

Specifying project properties © 2010, QNX Software Systems GmbH & Co. KG.

Project Large Icon
Project Small Icon

The large and small icons used for your project. Click the icon or
the edit button to edit the icon in the pixmap editor. See the
pixmap editor,as described in the Editing Resources and
Callbacks in PhAB chapter.

Build and Debug options
This tab of the Project Properties dialog lets you specify options related to the build
and debug process. Here is an example of this tab:

Build and Debug Options tab of the Project Properties dialog.

Build version Set to Release to generate the executable without debug
information, or Debug if you plan to debug your application.

Link Libraries Use to specify additional libraries to be used when your
application is linked. The -l is optional.

You can’t specify link options in this field, except for the -B
option, which specifies static or dynamic linking. For example,
you could enter: -Bstatic -lphexlib -Bdynamic.

108 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Importing files

An exception to this rule is pre-6.3 projects which are not yet
converted using Project→Convert to Eclipse Project. Those
projects require the -l option, and take any linker command in
this field.

The content of Link Libraries is saved in the indLfiles file and is included in the
Makefile in the target directory.

Make command Use to specify the command to build your application. The
default is “make”.

Debug Command Use to specify the command to debug your application. The
default is “pterm gdb”, which launches a gdb session inside a
new terminal window.

Targets Use to select one or more targets for the current application.
When you select Build or Rebuild All from the Build menu,
only the selected targets are built. To add or delete targets, click
Manage Targets.

Importing files
PhAB lets you import several types of files by using the Import Files item in the file
menu:

• PhAB modules

• XBM Header File

• Graphics image files

The steps are the same for all types:

1 Choose Import Files from the File menu, then choose the appropriate type from
the Import Files submenu. You’ll see a file selector.

2 The file selector displays the available files of the specified type in the current
directory.

3 To select a file, do one of the following:

• double-click the file

• click the file, then press Enter or click Open

• type the file’s name, then press Enter or click Open

May 13, 2010 Chapter 4 • Working with Applications 109

Importing files © 2010, QNX Software Systems GmbH & Co. KG.

Importing PhAB modules from other applications
When importing a PhAB module from another application, the file selector may
display several modules. Each type of module has a different file extension; see
“Module types” in the Working with Modules chapter.

Callbacks aren’t imported, only the module and the widgets themselves. After
importing the module, you can attach new application-specific callbacks.

You can copy and paste widgets or modules between two phab sessions in order to
preserve the callbacks (you have to make sure the Clipboard Operations: Save/Restore
callbacks option is set in the Preferences dialog). Or you can save the modules or
widgets as templates, and choose to save the callbacks with the templates.

Normally, PhAB retains the instance name of each imported widget. However, if it
detects a duplicate name, it changes that name to the widget-class name to avoid
code-generation errors.

Importing XBM images
You can import X bitmap (XBM) files using the Import menu item. XBM image data
is mostly found in header files (with a .h file extension) and in separate XBM bitmap
files (with no file extension). To import an XBM image, use the Import menu item to
open the header file containing the image data.

Importing graphics images
When importing graphics images, the file selector displays all files with the following
extensions:

• .bmp

• .tga

• .sgi

• .rgb

• .rgba

• .bw

• .png

• .gif

• .jpg

• .jpeg

• .pcx

110 Chapter 4 • Working with Applications May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Exporting files

PhAB imports the graphic as a PtLabel into the currently selected module, and sets
the widget’s Pt_ARG_LABEL_TYPE resource to Pt_IMAGE. If you wish to edit the
imported image, use the pixmap editor, as described in the Editing Resources and
Callbacks in PhAB chapter.

The pixmap editor does not support 24-bit per pixel format JPEG images. If you wish
to edit a JPEG using PhAB, you must first convert it to a palettized image (such as a
.gif). You can do this by using an external image editing utility.

Exporting files
You can export the code used to create a module. To do this, select File→Export. A
fragment of C code that creates the widgets in the currently selected module is written
to the home directory in a file called module.code.

May 13, 2010 Chapter 4 • Working with Applications 111

Chapter 5

Working with Modules

In this chapter. . .
Module types 115
Anatomy of a module 115
Selecting a module 117
How modules are saved 117
Changing module resources 117
Creating a new module 118
Deleting a module 118
Iconifying modules 118
Displaying modules at run time 119
Finding lost modules and icons 121
Window modules 121
Dialog modules 122
Menu modules 123
Picture modules 129

May 13, 2010 Chapter 5 • Working with Modules 113

© 2010, QNX Software Systems GmbH & Co. KG. Anatomy of a module

Modules serve as containers to hold your application’s widgets. Some modules, such
as windows and dialogs, are actually Photon container-class widgets and let you place
widgets directly inside them. Others, such as icons and menus, have either predefined
widgets or a specialized editor for creating the widgets that they contain.

Module types
PhAB provides a number of types of modules, each with a specific usage. The module
type is identified by:

• the control panels if the module is selected

• the icon if the module is minimized

• the extension of the file that PhAB creates for the module when you generate your
application’s code.

CAUTION: Module files are binary; don’t edit them with a text editor or you could
damage them.!

Module Usage Extension

Window Major application activities .wgtw

Dialog Obtain additional information from the user .wgtd

Menu Multilevel text-only menus .wgtm

Picture Change the contents of an existing module, or create a
widget database

.wgtp

Anatomy of a module
PhAB displays each module as a window in its work area. Like windows, modules
have a set of controls in their frames.

May 13, 2010 Chapter 5 • Working with Modules 115

Anatomy of a module © 2010, QNX Software Systems GmbH & Co. KG.

Anatomy of a typical PhAB module.

Most modules include these elements:

Work menu button Brings up the module’s Work menu:

The Work menu for a module.

The Work menu includes:

• Close — iconify the module.

• Print — print the module.

• Write Code — generate the code for the module.

• To Back — put this module behind all other modules in
PhAB’s work area.

Title bar Displays the module’s instance name. To move a module, point
to this bar and drag the pointer.

Collapse button
Minimize button
Close button These buttons iconify the module.

116 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Selecting a module

Test button (some modules only)

Like the Test item in the Work menu, this lets you switch the
module into test mode.

When the render flags for a module’s title bar are off, PhAB displays an area around
the module that you can use to manipulate the module. This is useful if you are
designing embedded applications, which usually have windows with no title bar and
no decorations.

Selecting a module
To select a module that’s in the PhAB work area:

• Click on the module’s titlebar.

Or

• If the module is iconified, double-click on its icon.

Or

• Select the module in the Module Tree panel (this works for both iconified and
noniconified modules).

Whichever method you choose, you’ll see resize handles that indicate the module is
selected.

How modules are saved
When you save your application, PhAB stores all the application’s modules as files
within the application’s wgt directory. Each module is saved in its own file with a file
extension based on the module’s type. Later, when you “make” your application,
PhAB binds all the modules into the binary executable. This makes the application a
single free-standing program that you can distribute easily.

For more info, see “How application files are organized” in the Generating,
Compiling, and Running Code chapter.

Changing module resources
When you select a module within PhAB, the Resources control panel changes to
display the list of widget resources available for that module’s class. Depending on
which resources you change, you may see no immediate effect. All changes will take
effect, however, when you run the application.

Because PhAB displays all modules as child windows within its work area, you can
work with any number of modules at the same time.

May 13, 2010 Chapter 5 • Working with Modules 117

Creating a new module © 2010, QNX Software Systems GmbH & Co. KG.

Creating a new module
To create any new module, follow these simple steps:

1 From the Project menu, choose a command for the module type you want to
create, which is one of:

• Add Window

• Add Dialog

• Add Menu

• Add Picture Module

2 For window and dialog modules, PhAB asks you to choose the style from a
dialog that displays the available choices.

For other types of modules, PhAB simply asks whether or not it should create
the new module. Press Enter or click on Yes. You’ll see the new module in
PhAB’s work area.

3 Click on Done.

PhAB creates the module for you. You can change the default instance name on the
Resources control panel.

For more info on creating specific types of modules, see the sections on each type of
module in this chapter.

You can also import modules from other PhAB applications. For more information,
see “Importing files” in the Working with Applications chapter.

Deleting a module
To delete a module:

1 Select the module you want to delete.

2 Press the Delete key, or select Edit→Delete.

Deleting a module doesn’t delete the module’s file; it just removes the name from the
list. Any callbacks belonging to the module or its children are deleted.

Iconifying modules
PhAB’s work area lets you work on several application modules at once. You can
iconify modules to organize your work area. To reduce any module in the work area to
an icon:

• Double-click on the module’s Work menu button (upper-left corner of the module).

Or:

118 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Displaying modules at run time

• Click on the Work menu button and choose Close.

Or:

• Click on the Minimize button in the module’s titlebar.

Once it’s iconified, the module positions itself at the bottom of the work area. You can
drag it anywhere in the work area, so (for example) you can group commonly used or
related icons.

Displaying modules at run time
Your application needs a way to make modules appear when you run it. You can:

• Create a widget that uses a callback to display the module. For example, you can
create a PtButton with a module-type link callback that displays the module. For
more information, see “Editing callbacks” in the Editing Resources and Callbacks
in PhAB chapter.

• Use an internal link to create the module in your application’s code. See the
Accessing PhAB Modules from Code chapter.

Positioning a module
You can specify where a module will display when you create a link callback from a
widget to that module. To do this, you use the location dialog.

To open the Location dialog and select a module’s location:

1 When creating or editing a link callback to a module, click on the Location field
or on the icon to the right of the field. You’ll see a list of locations:

May 13, 2010 Chapter 5 • Working with Modules 119

Displaying modules at run time © 2010, QNX Software Systems GmbH & Co. KG.

Location dialog.

For windows and dialogs, the default location is Default (0,0), which places the
window at the next available position defined by the Window Manager. The
default location for a menu module is Below Widget.

2 Click on the location you want.

3 You can also specify x and y offsets. For example, if you set the location to the
bottom-right corner and set the x offset to -100, the window will be displayed so
that its bottom-right corner is 100 pixels to the left of the bottom-right corner of
the screen.

If you choose Default as the location, the offsets are ignored.

4 Click on Done.

120 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Window modules

Finding lost modules and icons
To find a lost module or icon:
• Choose Cascade from the Window menu. PhAB cascades all open modules in the

PhAB work area.

• Choose Arrange Icons from the Window menu. PhAB rearranges all existing icons
along the bottom of the work area.

Window modules

Widget class File extension Widget creation

PtWindow .wgtw Directly from the widget palette

Typically, you use window modules for your application’s major activities. Since most
applications use a window module for their main window, PhAB automatically
generates a window module named base when you first create any application. It also
presets the application’s startup information to make the base window open when the
application starts up. (See “Specifying your project properties” in the Working with
Applications chapter.)

The icon for a Window module.

Window modules can support multiple instances. That is, two or more copies of the
same window module can be displayed at the same time. As a result, you should keep
track of each window’s instance pointer, which is generated when you create the
window. That way, you’ll always know which window you’re dealing with when you
process callbacks. For more information, see “Handling multiple instances of a
window” in the Working with Code chapter.

Even though your application’s base window is a window module, you usually display
it only once, at startup. So unless your application needs to display more than one
copy of the base window at the same time, you don’t have to keep track of the base
window’s instance pointer.

For an example of code for handling multiple instances of window modules, see
“Creating Windows” in the Tutorials chapter.

May 13, 2010 Chapter 5 • Working with Modules 121

Dialog modules © 2010, QNX Software Systems GmbH & Co. KG.

Resizing a window module
When you set a window module’s size in PhAB, that’s the size it will be when you run
the application.

Dialog modules

Widget class File extension Widget creation

PtWindow .wgtd Directly from the widget palette

Dialog modules let you obtain additional information from the user. Typically, you use
this information to carry out a particular command or task.

The icon for a Dialog module.

Most dialog modules include the following buttons:

• Done—allows users to indicate that they’ve finished entering information

• Cancel or Close—allows users to close the dialog without responding

From PhAB’s perspective, dialog modules are almost identical to window modules,
with one important difference—a dialog module can have only one active instance. So
if you invoke a dialog that’s already open, the PhAB API simply brings the existing
instance of the dialog to the front of the screen. This behavior fits with the nature of a
dialog—you rarely want to get the same information twice. If for any reason you need
a dialog that can support multiple instances, use a window module.

Limiting a dialog to a single instance makes callback handling simpler since you can
use the widget manifests that PhAB generates to access the widgets within the dialog.
For more info, see the discussion on instance names in the Creating Widgets in PhAB
chapter.

Resizing a dialog module
When you set a dialog module’s size in PhAB, that’s the size it will be when you run
the application.

Predefined dialogs
The Photon libraries include convenience functions that define various handy dialogs:

ApError() Display an error message dialog

122 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Menu modules

PtAlert() Display a message and request a response
PtFileSelection() Create a file-selection dialog

PtFontSelection() Create a font-selection dialog

PtMessageBox() Pop up a message box

PtNotice() Display a message and wait for acknowledgment

PtPassword() Prompt for a password

PtPrintPropSelect() Change the printing options for a selected printer via a modal
dialog

PtPrintSelect() Display a custom modal dialog for selecting print options

PtPrintSelection() Display a modal dialog for selecting print options

PtPrompt() Display a message and get textual input from the user

Menu modules

Widget class File extension Widget creation

PtMenu .wgtm Special editor

A menu module provides a multilevel text-only menu. Unlike most other modules, a
menu module doesn’t let you create widgets directly inside it. Instead, you use
PhAB’s menu editor to create the menu’s items.

The icon for a Menu module.

Opening the menu editor
To open the menu editor:

1 Select a menu module.

2 Click on Menu Items in the Resources control panel. PhAB displays the menu
editor:

May 13, 2010 Chapter 5 • Working with Modules 123

Menu modules © 2010, QNX Software Systems GmbH & Co. KG.

PhAB’s Menu editor.

In the upper-right corner you’ll see buttons that represent the types of menu
items you can create:

• Command—invokes a PhAB callback.

• Submenu—displays a child menu.

• Separator—provides a line between other menu items.

• Toggle or “ExclTogg” (exclusive toggle) —changes or displays an
application state.

• Function—specifies an application function that can dynamically add menu
items to the menu.

These buttons are at the bottom of the dialog:

When you want to: Use this button:

Apply any changes and close the editor Done

Apply any changes and continue editing the menu Apply

Cancel any changes made since you opened the editor Cancel

124 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Menu modules

Specifying instance names
To create any command or toggle menu item (that is, any item that can invoke a
callback), you must enter a unique instance name—PhAB enforces this. The instance
name lets you access the menu item from within your application code.

When PhAB generates the code for your application, it generates an ABN_... constant
for each menu item that requires it. You use this constant with the menu-item related
API functions, ApModifyItemAccel(), ApModifyItemState(), and ApModifyItemText().

For example, let’s say a menu item isn’t available when the user clicks on the widget
that brings up the menu. Using the instance name, you can dim that item before
displaying the menu. For more information, see “Initializing menus” in the Working
with Code chapter.

Creating hotkeys and shortcuts
To help the user select a menu item more quickly, you can:

• provide a keyboard shortcut that selects the item

• provide a hotkey that directly invokes the command that the item represents, even
when the menu isn’t visible

A keyboard shortcut works only when the menu is currently visible. A hotkey, on the
other hand, should work whether the menu is visible or not.

Creating a keyboard shortcut is easy. When you’re entering the Item Text, simply
place “&” in front of the character that will act as the shortcut. For example, let’s say
you’re creating a “Save As” item. You could enter Save &As, which will underline
the “A.” When the menu opens, the user can press either A or a to invoke the callback
associated with “Save As”.

Creating a hotkey takes a bit more work, but it’s still easy to do. First, you want to
make sure that the hotkey accelerator appears next to the menu item when the menu is
displayed. To do this, use the Accel Text field. For example, let’s say the hotkey
accelerator for a “Save” menu item will be Ctrl-S. In that case, you would type S in the
Accel Text field and check the Ctrl toggle button.

Next, you need to create a hotkey callback for Ctrl-S. Since the menu might not be
created when the user presses Ctrl-S, you can’t attach the hotkey callback to the menu
or to the menu item. Rather, you must attach the callback to the application’s main
module, which is usually the base window module. When you specify the hotkey
callback’s function, use the same function you defined for the menu item’s callback.

If for some reason you need to differentiate between the two methods of invoking the
callback, look at the callback’s reason code. Hotkeys always have a reason code of
Pt_CB_HOTKEY.

For more info on creating hotkey callbacks, see “Hotkey callbacks” in the Editing
Resources and Callbacks in PhAB chapter.

May 13, 2010 Chapter 5 • Working with Modules 125

Menu modules © 2010, QNX Software Systems GmbH & Co. KG.

Resizing a menu module
Feel free to resize a menu module to make it more readable or take up less space.
When you run the application, the actual size of the PtMenu widget will be
determined by the menu items.

Creating command items
A command item lets you invoke application code or display a module.

Field Description

Item Text The text that will be displayed

Accel Text The hotkey to invoke the command

Inst Name The name used within the application code

Callback The function that will be called when the item is selected

Image The icon to use for the menu item

To create a command item:

1 Click on <NEW>.

2 Click on the Command button in the upper-right corner.

3 In the Item Text field, enter the item’s text. To create a shortcut key, place “&” in
front of the character that will act as the shortcut.

For example, let’s say you enter &File. In that case, the user can select the item
by pressing F.

4 In the Inst Name field, enter the instance name you’ll use.

5 If you plan to have a hotkey callback for this item, enter the hotkey string and
modifier key (for example, Ctrl-S) in the Accel Text field. The hotkey is
displayed in the menu as a reminder to the user.

6 Add a PhAB callback by clicking on the Callback icon:

For more info on creating a callback, see “Editing callbacks” in the Editing
Resources and Callbacks in PhAB chapter.

7 Add an image, if appropriate.

8 Click on Apply to add the item to the menu.

126 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Menu modules

Creating submenu items
A submenu item lets you create another menu level.

Field Description

Item Text The text that will be displayed

Inst Name The name used within the application code

To create a submenu item:

1 Click on <NEW>.

2 Click on the Submenu button in the upper-right corner.

3 In the Item Text field, type the name of the submenu. To create a keyboard
shortcut, place “&” in front of the character that will act as the shortcut (just like
command items, above).

4 Click on Apply.

5 The Menu Items list displays the submenu:

6 You can now add items to the submenu by selecting <NEW> in the submenu.

Creating separator items
A separator item lets you add a line between menu items. You’ll find this item type
handy for creating logical groupings of menu items.

To create a menu separator:

1 Click on <NEW>.

2 Click on the Separator button in the upper-right corner.

3 Click on Apply.

Creating toggle items
A toggle item lets you change or display an application state, which can be either on or
off.

May 13, 2010 Chapter 5 • Working with Modules 127

Menu modules © 2010, QNX Software Systems GmbH & Co. KG.

Field Description

Item Text The text that will be displayed

Accel Text The hotkey to invoke the command

Inst Name The name used within the application code

Callback The function that will be called when the item is selected

Image The icon to use for the menu item

To create a toggle item:

1 Click on <NEW>, then click on the Toggle button.

2 Follow the same procedure used to create command items.

Creating function items
A function item lets you specify an application function that dynamically adds menu
items to the menu at runtime. For example, you could use a function item in a File
menu to display the last three files the user worked on.

The PhAB library invokes the specified function as the menu is built. The dynamically
created menu items appear where you’ve positioned the function item in the menu.

Field Description

Function The function that will be called

To create a function item:

1 Click on <NEW>, then click on the Function button.

2 In the Function field, enter the name of the application function that will
dynamically add menu items to the menu.

If you specify this function name, PhAB will generate a stub function; for
information on specifying the language (C or C++) and the filename, see
“Function names and filenames” in the Working with Code chapter.

3 You can edit the function right away by clicking on the button to the right of the
function name.

4 Click on Apply.

For information on the application function, see “Generating menu items” in the
Working with Code chapter.

128 Chapter 5 • Working with Modules May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Picture modules

Moving menu items
The Menu Items scrolling list lets you move a menu item to a new position in the
menu.

Let’s say you want to move an item named Browse so it appears just before an item
named Edit. You would:

1 Drag the Browse item until its outline is directly over Edit.

2 Release the mouse button. The Browse item appears in its new position.

Using a menu module
Once you’ve created a menu module, you need a way to make your application display
it. Typically, you do the following:

1 Create a PtMenuBar at the top of a window.

2 Add a PtMenuButton to the menu bar, giving it an appropriate instance name
and text string.

3 Add a module-link callback to the menu button’s Pt_CB_ARM callback list.

You could add the callback to the Pt_CB_ACTIVATE list, but adding it to
Pt_CB_ARM allows the user to access it in two ways:

• by pressing the left mouse button on the menu button widget, dragging to
highlight a menu item, and releasing to select it. This is known as the
press-drag-release (PDR) method.

• by clicking on the menu, and then clicking on a menu item

If you use an Activate callback, the user can only use the second method.

4 Have the callback display the menu module. See “Module callbacks” in the
Editing Resources and Callbacks in PhAB chapter.

5 If you need to initialize the menu whenever it’s displayed, specify a setup
function for it. See “Initializing menus” in the Working with Code chapter.

If you want your menu to appear when you press the right mouse button while
pointing at a widget, you’ll need to use an internal link. For more information, see the
Accessing PhAB Modules from Code chapter — there’s even an example.

Picture modules

May 13, 2010 Chapter 5 • Working with Modules 129

Picture modules © 2010, QNX Software Systems GmbH & Co. KG.

Using a picture module, you can change the contents of an existing module or create a
convenient database of widgets. You always display a picture inside a container-class
widget or another module, such as a window or dialog.

The icon for a Picture module.

Like windows, picture modules support multiple instances. So you should keep track
of the instance pointer of the container that each picture is placed into. That way,
you’ll always know which picture you’re dealing with when you process callbacks.

If you’re sure that your application will use only one instance of the picture at any
given point, you don’t have to keep track of instance pointers. Instead, you can use
PhAB-generated manifests to access the picture’s widgets.

Displaying a picture
You always access picture modules from within your application code. To access a
picture, you must create an internal link to it. This tells PhAB to generate a manifest
that you can use with PhAB’s API functions, such as ApCreateModule(), to access the
picture.

For more information, see the Accessing PhAB Modules from Code chapter.

Using pictures as widget databases
You can use a picture module as a widget database. A widget database contains
predefined widgets that you can copy at any time into a window, dialog, or container.

When using a widget database, you don’t have worry about handling multiple
instances since the generated PhAB widget manifests don’t apply to widget databases:
each widget you create is a new instance. The instance pointer is returned to you when
you create the widget using ApCreateWidget(). You’ll need to keep track of this
pointer manually if you need to access the widget in the future.

For more info, see “Widget databases” in the Accessing PhAB Modules from Code
chapter.

Resizing a picture module
It doesn’t matter how large or small you make a picture module. That’s because it has
no associated widget class. Only the widgets inside the module are used.

130 Chapter 5 • Working with Modules May 13, 2010

Chapter 6

Creating Widgets in PhAB

In this chapter. . .
Types of widgets 133
Instance names 133
Creating a widget 135
Selecting widgets 136
Aligning widgets 140
Distributing widgets 141
Common User Access (CUA) and handling focus 142
Ordering widgets 144
Dragging widgets 145
Setting a widget’s x and y coordinates 147
Transferring widgets between containers 147
Resizing widgets and modules 147
Clipboard 148
Duplicating widgets and containers 150
Deleting widgets or modules 150
Matching widget resources and callbacks 151
Importing graphic files 152
Changing a widget’s class 152
Templates 153

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 131

© 2010, QNX Software Systems GmbH & Co. KG. Types of widgets

Once you’ve created or opened an application, you’ll probably want to add, delete, and
modify widgets. This chapter describes how to work with widgets.

For information on using specific widget classes, see:

• the Widgets at a Glance appendix in this guide

• the Photon Widget Reference

Since widgets inherit a lot of behavior from their parent classes, you should make
yourself familiar with the fundamental classes: PtWidget, PtBasic, PtContainer,
and so on.

Types of widgets
There are two major types of widgets:

• Container widgets, such as PtWindow and PtScrollContainer

• Noncontainer widgets, such as PtButton and PtText.

Container-class widgets can contain other widgets—including other containers.
Widgets placed inside a container are known as child widgets; the hierarchy resulting
from this nesting is called the widget family. Container widgets can look after sizing
and positioning their children, as described in the Geometry Management chapter.

When working with container-class widgets in PhAB, remember the following:

• If you move a container, all the container’s child widgets also move.

• If you position the pointer inside a container when creating a new widget, that
widget is placed hierarchically within the container.

• If you wish to use the bounding-box method to select widgets in a container, you
must:

- Press Alt before you start the bounding box.

- Start the bounding box within the container.

For more info, see “Selecting widgets” in this chapter.

Instance names
If your program has to interact with a widget, that widget must have a unique instance
name. Using this name, PhAB generates a global variable and a manifest that let you
easily access the widget from within your code.

To view or edit a widget’s instance name, use the Widget Instance Name field at the
top of the Resources or Callbacks control panel:

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 133

Instance names © 2010, QNX Software Systems GmbH & Co. KG.

Editing a widget’s instance name.

• A widget’s instance name is used to make several C variables, so it can include
only letters, digits and underscores. PhAB doesn’t let you use any other characters.
An instance name can be no longer than 64 characters.

• You should develop a naming convention for all the widgets in your application —
it will make large applications more manageable.

You can optionally include the instance name in the widget’s memory. See “Other
Generate options” in the Working with Applications chapter.

Default instance name
When you create a widget, PhAB automatically gives it a default instance name.
Typically, this default name is the widget’s class name. For example, if you create a
PtButton-class widget, the Resources and Callbacks control panels display
PtButton as the instance name.

If a widget simply serves as a label or window decoration, it doesn’t have to be
accessed from within your application code. So you should tell PhAB to ignore the
widget’s instance name during code generation. To do this:

• Leave the instance name equivalent to the class name (that is, leave the default
alone).

Or:

• Provide a blank instance name.

When to assign a unique name
You should give a widget a unique name if:

• the widget needs to have a callback attached

• the application needs to change the widget by setting a resource

• the application needs to extract information from the widget

134 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Creating a widget

To keep the number of global variables to a minimum, don’t give a widget a unique
name unless you really need to access the widget from within your application. If
you’ve given a widget a name and later decide you don’t need the name, just change it
back to the widget’s class name or blank it out.

Instance names and translations
As described in the chapter on International Language Support, you’ll need an
instance name for every text string in your application’s user interface. These instance
names aren’t needed in your code.

To indicate that an instance name isn’t required for code generation, start the name
with the @ character. PhAB recognizes such a name when generating the text language
database, but skips over it when generating code.

If you don’t want to create a unique instance name for a string that’s to be translated,
specify a single @ character for the instance name; PhAB appends an internal sequence
number to the end.

If you don’t want to create unique instance names, but you want to organize the text
for translation (say by modules), you can give the strings the same instance name, and
PhAB will append a sequence number to it. For example, if you assign an instance
name of @label to several strings, PhAB generates @label, @label0, @label1, ...
as instance names.

Duplicate names
PhAB resets the instance name of a widget back to the widget class name if it detects a
duplicate name when you:

• copy and paste a widget (see “Clipboard”)

• import a widget from another application (see “Importing PhAB modules from
other applications” in the Working with Applications chapter)

• duplicate a widget (see “Duplicating widgets and containers”).

Creating a widget
To create a widget:

1 Click on widget-palette icon for the type of widget you want to create (see the
Widgets at a Glance appendix to identify the widget-palette icons).

2 Move the pointer to where you want to create the widget. The pointer changes
to show you what to do next:

• If the pointer is a crosshair and you’re creating a PtPolygon or PtBezier
widget, hold down the mouse button and drag the pointer until the line goes

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 135

Selecting widgets © 2010, QNX Software Systems GmbH & Co. KG.

where you want it to go. To add points, you must start the next point on top
of the last. To close a polygon, place the last point on top of the first.

• If the pointer is a crosshair and you’re creating any other type of widget,
click the mouse button.

• If the pointer is a two-headed arrow, hold down the mouse button and drag
the pointer until the widget is the size you want.

Widgets snap to the grid if it’s enabled. See “Grid preferences” in the chapter on
PhAB’s environment.

To improve your application’s performance, avoid overlapping widgets that are
frequently updated.

You can also create a widget by dragging its icon from the widget palette to the
Module Tree control panel. Where you drop the icon determines the widget’s place in
the family hierarchy.

Creating several widgets
Once you’ve created a widget, you’re returned to select mode. To stay in create mode
so you can create several widgets of the same type:

1 Press and hold down Ctrl.

2 Create as many widgets as you want.

3 Release Ctrl.

Canceling create mode
To cancel create mode without creating a widget:

• Click anywhere outside a module.

Or:

• Click the right mouse button in a module.

Selecting widgets
When PhAB is in select mode, the pointer appears as an arrow. To put PhAB into
select mode:

• Click anywhere outside a module.

Or:

• Click the right mouse button in a module.

Or:

• Click on the selected widget in the widget palette.

136 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Selecting widgets

A single widget
To select a single widget, you can:
• Point and click

Or:

• Use the next and previous buttons in the Resources or Callbacks control panel.

• Use the Module Tree control panel.

These methods are described below.

Point-and-click method

To select a single widget using point and click:

1 Make sure you’re in select mode.

2 Click on the widget, using the left mouse button. Resize handles appear around
the widget.

To select the parent of a widget, hold down Shift-Alt and click on the widget. This is a
handy way to select a PtDivider or PtToolbar.

You must press Shift and then Alt for this method to work.

Control-panel methods

The Next and Previous buttons in the Resources and Callbacks control panels let you
select any widget in the current module.

To select the: Click on: Or press:

Previous widget in the current module F9

Next widget in the current module F10

The Module Tree control panel displays a tree of all the widgets in the module. Using
this tree, you can:

• select a widget inside a group

• find a widget by name

• select a widget hidden underneath another widget.

To select a widget from the tree, click on the widget’s name.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 137

Selecting widgets © 2010, QNX Software Systems GmbH & Co. KG.

Multiple widgets
To select multiple widgets, you can:

• Use a bounding box

Or:

• Use “Shift and click”

Or:

• Use the control panels.

When you select two or more widgets, the Resources control panel displays only the
resources that those widgets have in common. Editing any of these resources affects
all the selected widgets.

PhAB uses two colors to show selected items if the Show Selection option is selected
in the View menu. The colors can be customized in the Preferences dialog.

Multiple selected widgets.

In the example above, the toggle widget is not selected, it just happens to be in the
same area as the selected widgets. The widget highlighted by red is the first widget in
the selection. The widgets highlighted by blue are the rest of the widgets in the
selection. If you use an align or match command, the first selected widget is the source
widget.

Using a bounding box

A bounding box lets you select several widgets all at once:

1 Position the pointer above and to the left of the widgets you want to select.

2 If the widgets belong to a container such as PtBkgd, make sure the pointer is
within the container, then hold down the Alt key.

3 Hold down the left mouse button, then drag the pointer down to the right. You’ll
see an outline “grow” on the screen.

138 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Selecting widgets

4 When all the widgets are within the outline, release the mouse button. You’ll see
resize handles appear around the area defined by the selected widgets.

Using “Shift and click”

To add or remove a widget from the current list of selected widgets, hold down Shift
and click on the widget. This is also known as the extended selection method.

If the widget isn’t already selected, it’s added to the list. If the widget is already
selected, it’s removed from the list.

The above methods for selecting multiple widgets work only for widgets at the same
hierarchical level. For example, let’s say you’ve just selected two buttons inside a
window. You can’t extend that selection to include a button that’s inside a pane.

Using the control panels

To select multiple widgets, using the Resources or Callbacks control panel’s Next and
Previous buttons:

1 Hold down Shift.

2 Click on the Next button.

Every time you click, PhAB adds the next widget in the current module to your
selection.

To remove the last widget from the current list of selected widgets:

1 Hold down Shift.

2 Click on the Previous button.

Every time you click, PhAB removes another widget.

Widgets within a group
To select a widget inside a group, you can use the next and previous buttons in the
Resources or Callbacks control panel, or use the Module Tree control panel.

Using the Module Tree panel

To select a single widget within a group, using the Module Tree control panel:

1 Switch to the Module Tree control panel.

2 Find the group in the tree and click on the widget’s name.

3 Shift-click to select additional widgets, if you want.

4 To edit the widget, switch to the Resources or Callbacks control panel.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 139

Aligning widgets © 2010, QNX Software Systems GmbH & Co. KG.

Using the Next and Previous buttons

To select one or more widgets within a group, using the Next and Previous buttons:

1 Click on any widget within the group to select the entire group.

2 Click on the Resources or Callbacks control panel’s Next button (or press F10)
until the widget you want is selected.

3 To select additional widgets, press Shift, then click again on the Next button.

4 You can now edit the widgets’ resources or callbacks.

Hidden widgets
If you can’t find a widget (it may be hidden behind another widget or is outside the
boundaries of its container), do the following:

1 Use the Next and Previous buttons in the Resources or Callbacks control panel.

2 Select the widget from the Module Tree control panel.

3 Use the Search dialog. Select Edit→Find to open this dialog.

4 If the widget seems to be outside the current boundaries of its container, bring it
back into view by using the X and Y fields in PhAB’s toolbars.

For more information on the toolbars and control panels, see the chapter on PhAB’s
environment.

Aligning widgets
You can align several widgets to another widget or to their parent container.

For simple alignments, select the Align icon from PhAB’s toolbar:

and then choose the alignment from the pop-up menu.

For more complicated alignment options, bring up the Align Widgets dialog by:

• Choosing the Align icon from PhAB’s toolbar, and then choosing Alignment Tool
from the menu

Or:

• Choosing Align from the Widget menu, and then choosing Alignment Tool from
the submenu

Or:

• Pressing Ctrl-A.

140 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Distributing widgets

To another widget
When you use this method to align widgets, the widgets are aligned to the first widget
you select, which is highlighted differently from the other widgets in the selection if
the Show Selection option is set in the View menu. To align to another widget:

1 Select the first widget.

2 Using the “Shift and click” selection method, select the remaining widgets.
(This method is described in “Selecting widgets. ”)

3 For simple alignments, select the Align icon from PhAB’s toolbar and make a
choice from the menu.

4 For more complicated alignment options, bring up the Align Widgets dialog.
Choose one or more alignment options, then click on the Align button. Don’t
click on an Align to Container button.

To a parent container
To align widgets to their parent container:

1 Select one or more widgets in any order.

2 Bring up the Align Widgets dialog, choose your alignment options, then click
on the appropriate Align to Container button.

If you choose both vertical and horizontal options, be sure to click on both Align to
Container buttons.

3 Click on the Align button.

When aligning widgets to a container you may want the widgets to retain their relative
positions to each other. To do this:

1 Group the widgets together (see the section “Aligning widgets using groups” in
the Geometry Management chapter).

2 Align the widgets.

3 Optionally, break the group apart.

Distributing widgets
You can quickly and easily distribute widgets horizontally or vertically, to evenly
space them out on the GUI. To do this:

1 Select the widgets you want to distribute.

2 From the Widget menu, select Distribute→Horizontally or
Distribute→Vertically.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 141

Common User Access (CUA) and handling focus © 2010, QNX Software Systems GmbH & Co. KG.

In the following example, several buttons have been distributed horizontally and
aligned to the top edge:

Distributed widgets.

Common User Access (CUA) and handling focus
Common User Access (CUA) is a standard that defines how a user can change the
keyboard focus. A widget is focusable if it can be given focus by pressing CUA keys
or by calling a focus function.

Changing focus with the keyboard
The following keys move focus only to focusable widgets:

To go to the: Press:

Next widget Tab

Previous widget Shift-Tab

First widget in the next container Ctrl-Tab

Last widget in the previous container Ctrl-Shift-Tab

For information on specifying the order in which the widgets are traversed, see the
section “Ordering widgets” in this chapter.

Controlling focus
Use the following Pt_ARG_FLAGS flags to control focus for a widget:

Pt_GETS_FOCUS Make the widget focusable.

Pt_FOCUS_RENDER

Make the widget give a visual indication that it has focus.

In addition, use the following Pt_ARG_CONTAINER_FLAGS flags to control focus
for a container:

Pt_BLOCK_CUA_FOCUS

Prevent the CUA keys from being used to enter the container.
However, if the user clicks inside the container, or a focus
function gives it focus, the CUA keys can then be used.

142 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Common User Access (CUA) and handling focus

Pt_ENABLE_CUA Give the parent widget the chance to control whether or not a
child container handles the CUA keys:

• If this flag is set, the widget’s code handles the CUA keys.

• If it isn’t set, the CUA keys are passed up the widget family
until an ancestor is found with this flag set. This ancestor (if
found) handles the keys.

Pt_ENABLE_CUA_ARROWS

The same as Pt_ENABLE_CUA, but it applies only to the arrow
keys.

Focus callbacks
All descendants of the PtBasic widget have the following callback resources:

• Pt_CB_GOT_FOCUS —called when the widget gets focus

• Pt_CB_LOST_FOCUS —called when the widget loses focus. The widget can
even refuse to relinquish focus (for example, if you type invalid data in a text
widget).

PtMultiText and PtText have special versions of these callbacks.

For more information, see the Widget Reference.

Focus-handling functions
The functions listed below deal with focus. They’re described in the Photon Library
Reference.

These functions don’t actually change which widget has focus; they tell you where
focus can go:

PtFindFocusChild()

Find the closest focusable child widget

PtFindFocusNextFrom()

Find the next widget that can get focus

PtFindFocusPrevFrom()

Find the previous widget that can get focus

You can use these routines to determine which widget has focus:

PtContainerFindFocus()

Find the currently focused widget in the same family hierarchy as a
widget

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 143

Ordering widgets © 2010, QNX Software Systems GmbH & Co. KG.

PtIsFocused() Determine to what degree a widget is focused

You can use these routines to give focus to a widget:

PtContainerFocusNext()

Give focus to the next Pt_GETS_FOCUS widget

PtContainerFocusPrev()

Give focus to the previous Pt_GETS_FOCUS widget

PtContainerGiveFocus() or PtGiveFocus()

Give focus to a widget — these routines are identical.

PtContainerNullFocus()

Nullify the focus of a widget

PtGlobalFocusNext()

Give focus to next widget

PtGlobalFocusNextContainer()

Give focus to another container’s widget

PtGlobalFocusNextFrom()

Give focus to the next widget behind the specified widget

PtGlobalFocusPrev()

Give focus to the previous widget

PtGlobalFocusPrevContainer()

Give focus to a widget in the previous container

PtGlobalFocusPrevFrom()

Give focus to widget previous to the specified widget

Ordering widgets
In PhAB, each widget exists in front of or behind other widgets. This is known as the
widget order, and you can see it when you overlap several widgets. The order of the
widgets dictates how you can use the CUA keys to move between widgets.

If you’re not using PhAB, the widget order is the order in which the widgets are
created. To change the order, see “Ordering widgets” in the Managing Widgets in
Application Code chapter.

To view the widget order, do one of the following:

144 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Dragging widgets

• Use the Module Tree control panel. The widgets for each container are listed from
back to front.

Or:

• Use Test mode and press Tab repeatedly to check the focus order.

The easiest way to reorder the widgets is to use the Module Tree control panel — just
drag the widgets around until they’re in the order you want.

You can also use the Shift-select method to reorder the widgets:

1 Using the extended (“Shift and click”) selection method, select the widgets in
the order you want. (This selection method is described in “Selecting widgets.”)

2 Do one of the following:

• choose To Front or To Back from the Edit menu

• press Ctrl-F or Ctrl-B

• click on one of these icons:

PhAB places the widgets in the order you selected them.

You can also select one or more widgets and then use the Raise and Lower icons to
change the widget order:

Dragging widgets
Dragging a widget is the easiest way to move a widget in most situations since it’s
quick and fairly accurate:

1 Select the widgets.

2 Point to one of the selected widgets, press down the mouse button, then drag the
widgets to the new position.

If you want to drag the widgets horizontally, vertically, or diagonally, hold down
the Alt while dragging.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 145

Dragging widgets © 2010, QNX Software Systems GmbH & Co. KG.

To drag a container horizontally, vertically, or diagonally, press Alt after pressing the
mouse button. (Pressing Alt before the mouse button selects widgets within the
container.)

3 Release the mouse button. Widgets snap to the grid if it’s enabled — see “Grid
preferences ” in the chapter on PhAB’s environment.

To cancel a drag operation, press Esc before releasing the mouse button.

To move the parent container of a widget, hold down Shift-Alt and drag the child.

Another way to drag a widget is to hold down Shift while selecting and draging one of
the widget’s resize handles. This method may help when you’re moving smaller
widgets that are harder to select.

Widgets may “disappear” if you move them beyond the boundaries of their container.
If this happens, use the Previous and Next buttons in the Resources or Callbacks
control panel to select the widgets, then use the X and Y fields in PhAB’s toolbar to
bring the widgets back into view.

If you find that you’re unintentionally dragging widgets when you’re just trying to
select them, consider:

• Setting the damping factor, as described in “Dragging preferences,” below

• Locking the widgets’ coordinates and/or size in PhAB’s toolbar:

For more information, see “Toolbars” in the chapter on PhAB’s Environment.

Dragging preferences

There are several preferences that you can set for dragging (see the “Customizing your
PhAB environment” section in the chapter on PhAB’s environment):

• Dragging has a damping factor that determines how far you must drag before the
widget moves. The default is 4 pixels.

• You can drag widgets either as an outline or as full widgets.

• You can drag modules either as an outline or as full modules.

146 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Setting a widget’s x and y coordinates

Setting a widget’s x and y coordinates
To place one or more widgets at specific coordinates:

1 Select the widgets.

2 Type the coordinates in the x and y fields in PhAB’s toolbars, then press Enter.
For more information, see the chapter on PhAB’s environment.

Transferring widgets between containers
To move one or more widgets directly from one container or module to another:

1 Select the widgets.

2 Do one of the following:

• Choose Move Into from the Edit menu.

Or:

• Press Ctrl-T.

Or:

• Click on the Move Into icon in PhAB’s toolbar:

3 Move the pointer into the other container and click the mouse button.

Resizing widgets and modules
When you select a widget or module, you’ll see its height and width—including any
borders and margins—displayed in the toolbar’s H and W fields. (These values are
maintained by the Pt_ARG_DIM resource; see the description of PtWidget in the
Widget Reference.)

To resize a selected widget, do one of the following:

• Drag one of the widget’s resize handles.

Or:

• Click on the height or width field in PhAB’s toolbars, type in a new value, then
press Enter. For more information, see the chapter on PhAB’s environment.

Or:

• Use the nudge tool in the toolbar.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 147

Clipboard © 2010, QNX Software Systems GmbH & Co. KG.

If a module is in Test mode, you can’t resize it or its widgets.

If you have trouble seeing a widget’s resize handles because of the background color
you’ve chosen, you can change the resize-handle color. For more info, see
“Customizing your PhAB environment” in the PhAB Environment chapter.

Clipboard
PhAB’s clipboard lets you cut, copy, and paste widgets and modules between PhAB
instances. You can’t use this clipboard with other applications. To use the clipboard,
open two PhAB instances, copy or cut something into clipboard in one instance, and
then paste it into the other instance.

You’ll find the clipboard helpful for these reasons:

• It saves you from creating large numbers of widgets or modules from scratch.

• It helps you create applications whose widgets look and behave consistently with
each other.

• You can also copy callbacks associated with copied widgets, saving you time. To
include callbacks when you copy widgets, you need to set the Save/Restore
Callbacks option on the General tab of the Preferences dialog.

Cutting and copying
A cut operation removes the currently selected widgets from their module and places
them in the clipboard. A copy operation copies the currently selected widgets to the
clipboard without removing them from their module.

Whenever you cut or copy, PhAB deletes any widgets already in the clipboard.

To cut or copy one or more widgets:

1 Select the widgets.

2 To cut, do one of the following:

• Choose Cut from the Edit menu.

Or:

• Press Ctrl-X.

Or:

• Click on the Cut icon in PhAB’s toolbar:

3 To copy, do one of the following:

148 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Clipboard

• Choose Copy from the Edit menu.

Or:

• Press Ctrl-C.

Or:

• Click on the Copy icon in the toolbar:

• If you want to move a widget to another container but retain its callbacks, you need
to set the Save/Restore Callbacks option on the General tab of the Preferences
dialog. See “Transferring widgets between containers” in this chapter.

• The Edit menu also contains a Delete command. This command permanently
removes widgets without copying them to the clipboard.

Pasting
A paste operation copies widgets from the clipboard into a module.

To paste the contents of the clipboard:

1 Make sure you’re in Select mode.

2 Do one of the following:

• Choose Paste from the Edit menu.

Or:

• Press Ctrl-V.

Or:

• Click on the Paste icon in the toolbar:

3 Point to where you’d like the clipboard objects to appear, then click the mouse.

• Instance names are normally maintained when you paste. But if PhAB detects a
duplicate name, it ensures that the instance name is unique.

• Because the clipboard state is saved between PhAB applications, you can cut
widgets from one PhAB application and paste them into another.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 149

Duplicating widgets and containers © 2010, QNX Software Systems GmbH & Co. KG.

Duplicating widgets and containers
Here’s a quick and easy way to duplicate a widget or container (it’s much simpler than
using the clipboard):

1 Press and hold down Ctrl.

2 Point to the widget or container, hold down the left mouse button, then drag the
pointer to where you’d like the new widget to appear.

3 Release Ctrl and the mouse button.

If you want to duplicate many widgets at once:

1 Select the widgets you want to duplicate.

2 Press and hold down Ctrl.

3 Point to one of the widgets in the selection and drag to a new position.

4 Release Ctrl and the mouse button.

If you duplicate a container, all its children are duplicated as well.

Duplicating is achieved using a copy to clipboard operation and paste from clipboard,
that are done internally. Therefore the rules for clipboard operations about instance
names and callback are also valid for duplicating widgets.

• You can duplicate only one container or widget at a time. If you duplicate a
container, all its children are duplicated as well.

• The instance names of the new widgets are reset to be the widget class name.

• Callbacks aren’t duplicated.

Deleting widgets or modules
To permanently remove one or more selected widgets, or to delete a module:

1 Select the widgets or module.

2 Choose Delete from the Edit menu or press Delete.

If you want put the widgets or module somewhere else, you should cut them, not
delete them. For more information, see the section on the clipboard in this chapter.

150 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Matching widget resources and callbacks

Matching widget resources and callbacks
You can copy the resources or callbacks from one widget to one or more other widgets
by using the Matching feature. This features lets you quickly and easily create several
widgets with similar appearances and behavior.

To use the matching feature:

1 Select the widget that is the source for the resources or callbacks.

2 Select one or more destination widgets.

If you enable the Show Selection option in the View menu, the widget selected first
highlighted with a different color than other selected widgets.

3 Select a match command from the Widget menu:

• Match Height — sets the height of the destination widgets to the height of
the source widget.

• Match Width — sets the width of the destination widgets to the width of the
source widget.

• Match Resources — sets all the resources of the destination widgets to the
source widget’s. Only the resources that are common between the destination
and the source are changed; unique resources are unaffected.

Geometry related resources — Pt_ARG_POS, Pt_ARG_DIM, Pt_ARG_AREA —
are not copied.

• Match Callbacks — sets all the callbacks of the destination widgets to the
source widget’s. Only the callbacks that are common between the destination
and the source are changed; unique callbacks are unaffected

• Match Advanced — displays the Match resources and callbacks dialog,
which lets you choose exactly the resources and callbacks you want to copy
from the source widget to the destination widgets.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 151

Importing graphic files © 2010, QNX Software Systems GmbH & Co. KG.

Match resources and callbacks dialog.

Importing graphic files
PhAB lets you import several kinds of graphic files into your application. For more
information, see “Importing files” in the Working with Applications chapter.

PhAB doesn’t export graphic files directly. That’s because any imported file is saved
with the module in a PhAB-specific format.

The Pixmap editor (described in the Editing Resources and Callbacks in PhAB
chapter) also lets you import graphics: select the widget you want to add the image to,
edit its image, and choose the pixmap editor’s Import button.

Changing a widget’s class
You can change the class of a widget by selecting it and then choosing Change Class
from the Widget menu. Choose the new class from the pop-up list, and then click the
Change class button.

152 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Templates

The resources and callbacks that are compatible with the new widget class are kept,
along with their values. For example, if you decide that a PtMultitext better suits
your needs than a PtButton, you can select the button, open the Change class dialog
by right-clicking on the widget, or right-clicking in the Module tree or by choosing
Change Class from the Widget menu. The widget’s position, size,
Pt_ARG_TEXT_STRING, and all the other resources common to the old and new
classes are kept.

When you change a widget’s class, some resources and callbacks might be deleted.
Before proceeding, a dialog displays the number of resources and callbacks that will
be removed. You have a chance to cancel the operation.

A container that has children (such as a PtPanel with some widgets inside it) can be
converted this way, but the list of possible new classes you can choose from is
restricted to compatible container classes. For instance a PtPane with a button inside
can be changed into a PtBkgd, but not into a PtList or PtTree. An empty PtTree

or any other empty container can be changed into anything, including into
non-container widgets. A PtTree that has a child (a PtDivider) can be changed into
a container widget.

Templates
A template is a customized widget, group or hierarchy of widgets that you want to use
as the basis for other widgets. Templates are useful when you want to create many
widgets that look and behave alike. PhAB automatically loads your templates, so you
can easily create instances of your widgets in any application.

You can build and save your own collection of template widgets. Templates can be
customized buttons, labels, sliders, backgrounds, standard dialogs and windows. You
can include callbacks in templates.

Customized templates are not any different from the standard templates in the Widgets
palette. In fact, when you create a template, you save it as a personal template (visible
only to you) or as a global PhAB template (visible in all PhAB instances).

For an example of creating a template, see “Editing Resources” in the Tutorials
chapter.

Creating templates
To create a template:

1 Create and edit the widget or widgets as required.

2 With the widget(s) selected, choose Define Template from the Widget menu or
from the menu that appears when you right-click on the Module Tree control
panel or on the module.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 153

Templates © 2010, QNX Software Systems GmbH & Co. KG.

3 The Define template dialog appears.

The dialog for creating new templates.

4 Select the folder in which to place the new template. To replace an existing
template, select the template instead of a folder.

To create a new folder, click on Add Folder. The Setup folders dialog appears:

Enter a folder name and select its type: User folder or PhAB folder. A User
folder is visible only to you and cannot be shared with other PhAB users. A
PhAB folder can be shared by several PhAB users. The predefined Widgets
folder is a PhAB folder.

You need to have special permissions in order to create or to change a PhAB folder.

Each folder pops up as a palette, beside the widget palette. You can view or hide
them using Window→Show Templates; this menu contains a list of all defined
templates. When you launch PhAB, all the palettes pop up by default.

5 You must provide a name and an icon for the template.

154 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Templates

You can create an icon by clicking Icon Edit.

6 Optionally, set the background color for the icon in the widget palette, and the
resizing method (use original dimension or resize by dragging).

7 If the widgets that you’re saving as a template have callbacks attached, you can
click on the Edit Callbacks button and set the callbacks to be saved in the
template. By default, all the callbacks are saved. If the widgets you are saving
don’t have any callbacks attached, the Edit Callbacks button is disabled.

You can specify whether PhAB prompts you with a list of included callbacks
when you instantiate a template widget that contains callbacks. This setting is
set on the General tab of the Preferences dialog under the When created
widgets contain callbacks option. If you select Automatically add callbacks,
all callbacks are added. If you select Ask me, PhAB prompts you with a list of
callbacks that you can select from.

Adding a widget class
You can create a new widget template from scratch, without starting from an existing
template. If there is no template available for a widget class (for example, if you just
created a brand new widget class), then you must instantiate the widget, then create
the a template from the widget instance. See the Building Custom Widgets guide for
information about building a widget and creating a widget description table.

To instantiate a widget class and then create a template:

1 Select Edit→Add Widget Class. The following dialog appears:

2 Enter the name of the new widget class and click Continue.

PhAB scans the palette definition files for the widget’s description table. Palette
definition files (*.pal are listed in palette.def. If you have written a new
*.pal file containing your widget’s description table, you should add it to
palette.def.

If no widget definition is found, this dialog appears:

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 155

Templates © 2010, QNX Software Systems GmbH & Co. KG.

3 Once the new widget class’s description table is found in one of the palette files,
the following dialog is displayed:

4 Customize the newly created widget, customize it, and use the Save Template to
save the template.

Editing templates
You can change a template definition at any time by editing the templates. To edit an
existing template:

1 Choose Templates from the Edit menu.

2 The Edit Templates dialog appears.

3 Edit the template as desired and then save the results.

You can change the template’s name, the template’s folder name, and the
template’s icon. Using drag and drop, you can move the templates between
folders, and you can reorder the templates inside the same folder. Note that you

156 Chapter 6 • Creating Widgets in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Templates

can only move a template between folders of the same type (e.g. from a User
folder to a User folder).

Deleting templates
To delete a template:

1 Choose Edit Templates from the Edit menu.

2 A dialog similar to that used to create a template is displayed.

3 Choose the template folder, and click Delete.

May 13, 2010 Chapter 6 • Creating Widgets in PhAB 157

Chapter 7

Editing Resources and Callbacks in PhAB

In this chapter. . .
Editing widget resources 161
Pixmap editor 162
Color editor 167
Flag/choice editor 168
Font editor 170
List editor 171
Number editor 172
Text editors 173
Code editor 175
Layout editors 176
Callbacks 181
Editing callbacks 182
Module callbacks 184
Code callbacks 185
Hotkey callbacks 186
Event handlers — raw and filter callbacks 190

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 159

© 2010, QNX Software Systems GmbH & Co. KG. Editing widget resources

Editing widget resources
A widget typically has many resources that let you change its appearance and
behavior. Each type of resource has its own editor.
To open any resource editor:

1 Select one or more widgets.

When you select two or more widgets, the Resources control panel displays only the
resources that those widgets have in common. Editing any of these resources affects
all the selected widgets.

2 Switch to the Resource control panel, if necessary.

If a resource’s value has been changed from PhAB’s default value for it, the
resource’s label is displayed in bold.

PhAB’s default value for a resource isn’t necessarily the default value assigned by the
widget itself.

3 Click on a resource in the control panel. The appropriate resource editor pops
up.

Every resource editor provides the following buttons:

Common buttons for resource editors.

When you want to: Use this button:

Restore the resource to the default value (or values if more than
one widget is selected)

Default

Cancel any changes made since you opened the editor or last
clicked on Apply

Cancel

Apply any changes and continue editing Apply

Apply any changes and close the editor Done

The editors for different types of resources are described in the sections that follow.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 161

Pixmap editor © 2010, QNX Software Systems GmbH & Co. KG.

To edit: See this section:

Images Pixmap editor

Colors Color editor

Flags Flag/choice editor

Fonts Font editor

Lists of text items List editor

Numbers Number editor

Single-line or multiline text strings Text editors

Functions Code editor

Layouts Layout editors

Pixmap editor
The pixmap editor lets you customize a widget’s pixmap. The editor provides a
complete range of tools, so you can draw virtually any pixmap your application might
need.

✸ To open the pixmap editor for any widget that can contain an image (for
example, PtLabel, PtButton), click on the widget, then click on a Image
resource in the Resources control panel.

162 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Pixmap editor

Sample pixmap editor session.

The editor has several drawing modes and tools, which are described in the sections
that follow. The default is freehand mode—you simply drag the pointer across the
drawing grid.

The pixmap editor does not support 24-bit per pixel format JPEG images. If you wish
to edit a JPEG using PhAB, you must first convert it to a palettized image (such as a
.gif). You can do this by using an external image editing utility.

Setting the pixmap’s size
The editor contains fields for the pixmap’s height and width, both specified in pixels.
To change a dimension, edit the field and press Enter.

If you reduce the size of a pixmap, part of the image may be cut off.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 163

Pixmap editor © 2010, QNX Software Systems GmbH & Co. KG.

How to draw and erase
The following applies to all drawing tools:

In order to: Use the:

Draw in the current color Left mouse button

Erase a pixel or area (i.e. draw in the background color) Right mouse button

Choosing colors
To choose the draw color:

1 Click on the following color selector:

2 The palette color selector is displayed. Click on the color of your choice. All
drawing is done in that color until you select a new color.

Choosing a background color

The background (or erase) color is used when you draw with the right mouse button.
To choose the background color:

1 Click on the following color selector:

2 Click on the color of your choice.

For more info, see the Color editor section.

Drawing freehand
The freehand tool lets you draw freeform lines and erase single pixels for quick
fix-ups.

To draw in freehand mode:

1 Click on the freehand tool:

2 Point to where you’d like to start drawing.

3 Drag the pointer, moving it as if you were drawing with a pencil, then release
the mouse button when you’re done.

You can repeat this step as often you’d like.

✸ To erase the pixel under the pointer, click the right mouse button.

164 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Pixmap editor

Drawing lines, rectangles, and circles
To draw lines, rectangles, or circles, you use one standard method:

1 Click on the appropriate tool.

2 Point to where you’d like the object to begin.

3 Drag the pointer to where you’d like the object to end, then release the mouse
button.

You can repeat this step as often as you’d like.

Filling an enclosed area
To fill any enclosed area (i.e. any area made up of a single color):

1 Click on the fill tool:

2 Move the pointer inside the area you wish to fill, then click.

If an outline area has a break, the fill operation spills out of the hole and might fill the
entire pixmap display.

Selecting an area
To use some tools, you first select an area of the pixmap.

To select an area:

1 Click on the Select tool:

2 Point to where you’d like the selection to begin.

3 Drag the pointer to where you’d like the selection to end, then release the mouse
button.

You can now “nudge” the area or perform any of the operations described in
“Using the Pixmap toolbar,” below.

Nudging an area
To nudge a selected area one pixel at a time:

1 Select the area you wish to nudge.

2 Click a nudge arrow or press an arrow key:

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 165

Pixmap editor © 2010, QNX Software Systems GmbH & Co. KG.

Some things to note:

• PhAB overwrites any pixels in the direction of the nudge.

• A nudge can’t push an area out of the pixmap.

• PhAB introduces blank space into the pixmap to fill the space left by the area
you’ve nudged.

Using the Pixmap toolbar
The pixmap editor provides several other tools in its toolbar:

The Pixmap Editor’s toolbar.

You can select an area and then use these tools to rotate, flip, cut, copy, clear, or paste
the area.

Some things to note:

• If you rotate an area that isn’t perfectly square, the area may overwrite some pixels.

• If part of the rotated area falls out of the pixmap, that part may be deleted.

• By using the flip tools with the copy tool, you can create mirror images.

• When you paste, point to the new location, then click. This position is the top-left
corner of the pasted area.

• You can use the pixmap clipboard to copy images from one widget to another, or
copy an image to its “set” version to make minor modifications.

• You can quickly clear the whole image by clicking the Clear command when
nothing is selected.

Other pixmap controls
The pixmap editor also includes the following buttons:

When you want to: Use this control:

Toggle the grid on and off Show Grid

Examine smaller or larger areas of the pixmap Zoom

Delete the pixmap Delete

continued. . .

166 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Color editor

When you want to: Use this control:

Import an image (for image-type resources only) Import

Create a new, empty image New

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

Color editor
The color editor lets you modify any color resource. Where you click in the Resource
control panel determines which color editor you see:

To use the: Click on the color resource’s:

Full color editor Name or description

Quick color editor Current value

Full color editor
If you click on the resource name or description (i.e. the left side in the Resource
control panel), the full color editor is displayed:

Full color editor.

The full color editor gives you the choice of:

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 167

Flag/choice editor © 2010, QNX Software Systems GmbH & Co. KG.

• 16 base colors that you can’t change

• transparent

• 48 additional colors that you can customize using the sliders, in either the RGB
(red/green/blue) or the HSB (hue/saturation/brightness) color model. PhAB
maintains this custom palette between edits and sessions. Click Reset to return the
palette to its default state.

• Using a transparent fill might introduce flickering and worsen your application’s
performance, especially if your application modifies the display a lot.

• The custom palette information is stored in $HOME/.ph/phab/abcpal.cfg. You
can copy this file to other users’ home directories if you want to share a default
custom palette. If this file doesn’t exist, PhAB looks for abcpal.cfg in the same
directory the PhAB executable ab is running from.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

Quick color editor
If you click on the value of a color resource (i.e. the right side in the Resource control
panel), the quick color editor is displayed:

Quick color editor.

To change the value, move the slider on the left. To change the hue, click or drag in the
color patch on the right.

Flag/choice editor
Whenever you click on a flags resource or on a resource that lets you select only one
of several preset values, you’ll see the flag/choice editor. For example:

168 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Flag/choice editor

Flag/Choice editor.

Flag resources
If you click on a flag resource, this editor lets you make multiple selections from the
displayed list.

To edit a flag list:

1 Select (or deselect) the flags you want. Since each flag is a separate toggle, you
can select any number of flags or leave them all unselected. Some flags contain
groups of mutually exclusive flag bits. Selecting one of these bits de-selects any
corresponding mutually exclusive bits.

2 Apply your changes. The widget changes to reflect the new flags.

Option list resources
If you click on a resource that can have only one value, the flag/choice editor lets you
make only one selection from the displayed list.

To choose an option from a list:

1 Click on the option. The previously selected option is deselected.

2 Apply your changes. The widget changes to reflect the new option.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 169

Font editor © 2010, QNX Software Systems GmbH & Co. KG.

Font editor
Whenever you select any font resource in the Resources control panel you’ll see the
font editor:

Font editor.

The font editor includes these options:

Font The typeface of the widget. Choose from the list of typefaces.

Style The style, if applicable, of the font. Click a button to apply the style, or
several buttons to apply a combination of styles (if available).

Size The size of the font, in points.

If a typeface doesn’t support an applied style at a given type size, the corresponding
style becomes dimmed or unselectable.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

170 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. List editor

List editor
Widgets such as PtList provide a list of text-based items. To edit the list, you use
PhAB’s list editor.

To open the editor and add the first item:

1 Select the widget, then click on the appropriate resource in the Resources
control panel (usually “List of Items”). You’ll see the editor:

List editor.

2 Click on the text field near the bottom of the dialog, then type the text you want.

If you need to type characters that don’t appear on your keyboard, you can use the
compose sequences listed in “Photon compose sequences” in the Unicode
Multilingual Support appendix.

3 Press Enter or click on Insert After.

4 Click on Apply or Done.

To add more items to the list:

1 Click on an existing item, then click on Insert After or Insert Before. You’ll see
a new item added to the list.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 171

Number editor © 2010, QNX Software Systems GmbH & Co. KG.

2 Using the text field, edit the new item’s text.

3 Click on Edit, then click on Apply or Done.

You can’t create blank lines within the list of items.

Editing existing list items
To edit an existing item:

1 Click on the item.

2 Edit the item’s text.

3 Click on Edit, then click on Apply or Done.

For text-editing shortcuts, see “Text editors.”

Deleting list items
To delete an item:

1 Click on the item, then click on Remove.

2 Click on Apply or Done.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

Number editor
You can edit the value of a numeric resource right in the Resources control panel, or
you can click on the resource name to use the number editor:

Number editor.

To change the value that the editor displays, you can:

172 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Text editors

• Use the text-editing techniques described in “Text editors.”

Or:

• Click on the editor’s increase/decrease buttons.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

Text editors
You can edit a text resource right in the Resources control panel, or you can click on
the resource to display a text editor. There are two text editors: one for single-line text,
and one for multiline.

Whenever you click on a single-line text resource in the Resources control panel (e.g.
the Text String resource for PtText), you’ll see the text editor:

Text editor.

When you select any multiline text resource—such as the Text String resource of a
PtLabel or PtMultiText widget—you’ll see the multiline text editor:

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 173

Text editors © 2010, QNX Software Systems GmbH & Co. KG.

Multiline text editor.

The single-line and multiline editors are similar — here are the common operations:

In order to: Do this:

Delete the character before the text
cursor

Press Backspace

Delete the character after the cursor Press Del

Delete several characters all at once Drag the pointer across the characters,
then press Del

Delete the entire line Press Ctrl-U

“Jump” the cursor to any position in the
line

Click on that position

Move the cursor character by character Press ← or →

Move the cursor to the start or end of
the line

Press Home or End

For the single-line text editor:

In order to: Do this:

Process a text change Press Enter, or click on Done or Apply

For the multiline text editor:

174 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Code editor

In order to: Do this:

Enter a new line of text Press Enter

Move the cursor to the start or end of a line Press Home or End

Move the cursor to the start or end of the text string Press Ctrl-Home or Ctrl-End

Apply your changes and dismiss the editor Press Ctrl-Enter

If you need to type characters that don’t appear on your keyboard, you can use the
compose sequences listed in “Photon compose sequences” in the Unicode
Multilingual Support appendix.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

Code editor
When you select a function resource, such as the Draw Function
(Pt_ARG_RAW_DRAW_F) resource of a PtRaw widget, you’ll see the Code editor:

Code editor.

The widget must have a unique instance name before you can edit its function
resources.

Type the name of the function—see “Function names and filenames” in the Working
with Code chapter. If you’ve already given your application a name by saving it (see
“Saving an application” in the Working with Applications chapter), you can edit the
function by clicking the button to the right of the text field.

For a description of the standard editor buttons at the bottom of the editor, see the
“Editing widget resources” section.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 175

Layout editors © 2010, QNX Software Systems GmbH & Co. KG.

Layout editors
When you set the Layout Type resource Pt_ARG_LAYOUT_TYPE of a container
widget to something other than the default Pt_ANCHOR_LAYOUT , you can then set
the corresponding Layout Info resource. You can also set the corresponding Layout
Data resource for widgets within the container widget. Each kind of Layout Info and
Layout Data resource has an editor.

For more information about layouts, see Using layouts in the Geometry Management
chapter.

Fill layout info editor

Fill layout info editor.

When you set Pt_ARG_LAYOUT_TYPE to Pt_FILL_LAYOUT, you can open this
editor by clicking on the Fill Layout Info resource (Pt_ARG_FILL_LAYOUT_INFO).
Using this editor you can set the:

• type of fill layout

• spacing between widgets.

176 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layout editors

Row layout info editor

Row layout info editor.

When you set Pt_ARG_LAYOUT_TYPE to Pt_ROW_LAYOUT, you can open this
editor by clicking on the Row Layout Info resource (
Pt_ARG_ROW_LAYOUT_INFO. Using this editor you can set:

• the row layout type

• additional flags

• horizontal and vertical spacing between widgets

• the outside margin between widgets and the parent container.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 177

Layout editors © 2010, QNX Software Systems GmbH & Co. KG.

Grid layout info editor:

Grid layout info editor.

When you set Pt_ARG_LAYOUT_TYPE to Pt_GRID_LAYOUT, you can open this
editor by clicking on the Grid Layout Info resource
(Pt_ARG_GRID_LAYOUT_INFO. Using this editor you can set:

• the number of columns in the grid

• additional flags

• horizontal and vertical spacing between widgets

• the outside margin between widgets and the parent container.

178 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layout editors

Row layout data editor

Row layout data editor.

When you set Pt_ARG_LAYOUT_TYPE to Pt_ROW_LAYOUT of a container widget,
you can open this editor by clicking on the Row Layout Data resource
(Pt_ARG_Row_LAYOUT_DATA of any child widget. Using this editor you can set
the:

• width spacing hint

• height spacing hint.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 179

Layout editors © 2010, QNX Software Systems GmbH & Co. KG.

Grid layout data editor

Grid layout data editor.

When you set Pt_ARG_LAYOUT_TYPE to Pt_GRID_LAYOUT of a container widget,
you can open this editor by clicking on the Grid Layout Data resource
(Pt_ARG_GRID_LAYOUT_DATA of any child widget. Using this editor you can set
the:

• horizontal and vertical span

• width and height hints

• horizontal and vertical weights

• grid margins.

For a description of the standard editor buttons at the bottom of these editors, see the
“Editing widget resources” section.

180 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Callbacks

Callbacks
Callbacks form the link between your application interface and your application code.
For example, let’s say you want your application to perform an action when the user
selects a certain button. In that case, you would attach a callback function to that
button’s Activate callback. When the user selects the button, the widget invokes the
callback function, and your application takes the appropriate action in the callback
code.

Almost all widgets support several types of callbacks. These callbacks can be specific
to the widget or inherited from its parent classes. Some of these types (defined in the
PtBasic widget) are defined in the following table:

Type Resource Typically invoked when the user:

Activate Pt_CB_ACTIVATE Presses and releases the left mouse button

Arm Pt_CB_ARM Presses the left mouse button

Disarm Pt_CB_DISARM Releases the left mouse button

Repeat Pt_CB_REPEAT Holds down the left mouse button

Menu Pt_CB_MENU Presses the right mouse button

For more information about these callbacks, see the Widget Reference. If you’re
interested in using Pt_CB_MENU to display a menu module, see the Accessing PhAB
Modules from Code chapter.

All Photon widgets inherit two other types of callbacks:

Hotkey callbacks Attach callback code to a key or keychord. When the
application window gets focus, the hotkeys become active.
Pressing one invokes the appropriate hotkey link callback.

Event handlers (Raw or Filter callbacks)

Attach callbacks directly to Photon events

In the development environments for some windowing systems, you can attach only
callback code functions to a widget’s callbacks. But whenever you use PhAB to create
a callback, you can go one step further and attach windows, dialogs, menus, and much
more. As we mentioned earlier, this extended functionality is provided by PhAB’s
special form of callback, called the link callback.

Link callbacks also let you add functionality that isn’t available when you attach
callbacks “by hand.” For example, if you link a dialog to a button widget, you can
specify where the dialog appears. You can also specify a setup function that’s
automatically called before the dialog is realized, after the dialog is realized, or both.

PhAB provides two general categories of link callbacks:

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 181

Editing callbacks © 2010, QNX Software Systems GmbH & Co. KG.

module-type link callbacks

let you attach an application module to any widget callback. PhAB provides the
following categories of module-type link callbacks:

• Dialog

• Window

• Menu

• Picture

For more information, see “Module callbacks” later in this chapter.

code-type link callbacks

let you run a code function when the widget’s callback is invoked. PhAB
provides the following categories of code-type link callbacks:

• Code

• Done

• Cancel

The Done and Cancel types provide an additional feature: they’ll automatically
close or destroy the widget’s parent module after the callback function is called.
You’ll find these types useful for creating any button that closes a dialog
window.

A Done callback in the base window exits the application. A Cancel callback in the
base window closes the application’s windows but doesn’t exit the application.

For more information, see “Code callbacks” later in this chapter.

Editing callbacks
The callback editor lets you add, change, delete, or view a widget’s list of callbacks.

To add a callback to a command item or toggle item in a menu, see “Menu modules”
in the Working with Modules chapter.

If you’re adding a link callback to a widget, the widget’s instance name must be
unique. If PhAB tells you the name isn’t unique, use the Resources or Callbacks
control panel’s Widget Instance Name field to edit the name.

To open the callback editor and edit a widget’s list of callbacks:

1 Select the widget, then switch to the Callbacks control panel, if necessary.

2 Choose the callback type from the widget’s callback list. (For example, to add
an Pt_CB_ACTIVATE callback, click on Activate.)

182 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Editing callbacks

Here’s a sample callback-editor session:

Callback editor.

1 To add a new callback, click on <NEW>. To edit an existing callback, click on
that callback in the Callbacks list.

2 If you’re adding a new callback, choose the type of callback you want to add. To
do this, choose from either “Module Types” or “Code Types.”

3 Fill in the information in the “Link to Callback/Module Info” section. The fields
in this section depend on the type of callback chosen. For more information, see
the sections in this chapter on specifying:

• module callbacks

• code callbacks

• hotkey callbacks

• event handlers (raw and filter callbacks)

4 After you’ve added or edited any callback, click on the appropriate button:

• Apply—Apply any changes; be sure to do this before you start working on
other callbacks.

• Reset—Restore the callback information to the original values.

• Remove—Delete the callback from the callback list.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 183

Module callbacks © 2010, QNX Software Systems GmbH & Co. KG.

Module callbacks
A module-type link callback can be used to connect a widget to a module. For
example, selecting a button could create a module.

When you use a module-type link callback to create a module, the module becomes a
child of your application’s base window, not a child of the module that contains the
widget that the link callback is defined for.

If you want the new module’s parent to be something other than the base window, you
need to use an internal link to create the module in your application’s code. For more
information about internal links and other cases where you’d use them, see the
Accessing PhAB Modules from Code chapter.

Depending on the kind of module-type link callback you’re creating, PhAB’s callback
editor displays some or all of these fields:

Callback editor fields for module-type link callbacks.

Name The name of the module. If you click on the icon next to this field,
you’ll see a list of existing modules. Either choose from this list or
enter the name of a module that doesn’t exist (PhAB creates the
module for you when you add the callback).

Location Lets you specify where the module is displayed. By default, a
menu module is located below the widget that invokes it. For all
other modules, the default location is determined by the Window
Manager. For more information, see “Positioning a module” in the
Working with Modules chapter.

Setup Function Lets you specify a function that can be called at two different
times (as specified by the Called field):

• before the module is displayed (prerealize)

• after the module is displayed (postrealize)

You can specify only one setup function—the PhAB API calls the
same function for both pre- and postrealization of the module. To

184 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Code callbacks

distinguish which pass is being invoked, check the PhAB reason
code.

Click on the icons beside the Setup Function field to edit the
function or select from the existing callbacks.

Hotkey—(hotkey callbacks only)

The keyboard key and modifier (such as Alt or Ctrl) that trigger the
callback. See the section “ Specifying hotkey callbacks.”

Event Mask—(event handlers only)

Lets you specify which Photon events the widget is sensitive to.
See “Event handlers — raw and filter callbacks.”

Prerealize setup function
The prerealize setup function lets you preset a module. For example, let’s say your
application needs to “fill in the blanks” of a dialog before displaying that dialog. In the
setup function, you would use PhAB-generated manifest names to preset the resources
of the dialog’s various widgets.

After the setup function runs, it returns Pt_CONTINUE. The dialog is then realized and
displayed on the screen, using all the preset values.

Postrealize setup function
The postrealize function works much like the prerealize function, except that it’s called
after the dialog is displayed on the screen. You typically use this type of function when
you need to update the module after it’s become visible. PhAB’s code-generation
dialog provides a good example. It displays on the screen and then, using a postrealize
function, updates a progress bar continuously as the application code is generated.

The setup function for a menu module is called only before the menu is displayed. For
most applications, you would use this function to set the initial states of the menu
items. For example, you could use it to disable certain menu items before the menu is
displayed.

Setup functions are stored in stub files
When you specify a setup function, PhAB generates a stub function; for information
on specifying the language (C or C++) and the filename, see “Function names and
filenames” in the Working with Code chapter.

Code callbacks
This type of callback lets you run a code function when the widget’s callback is
invoked.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 185

Hotkey callbacks © 2010, QNX Software Systems GmbH & Co. KG.

You can add code callbacks from your application’s code, but it’s easier to do in
PhAB. For more information, see “Callbacks” in the Managing Widgets in
Application Code chapter.

When you’re creating a code-type link callback, the callback editor asks you to specify
the following:

Function This is the function that’s called when the widget invokes the callback.
For the Done and Cancel types, this function is optional, so you can
attach the callback just to close the module.

As described above, Done and Cancel are similar, except that a Done
callback in the base window exits the application, while a Cancel
callback closes the window but doesn’t exit the application. There’s no
real difference between the Done and Cancel callback functions — they
simply provide different reason codes in the callback.

For example, let’s say you have a dialog with a Done button and a
Cancel button. If you attach a Done-type callback to the Done button
and a Cancel-type callback to the Cancel button, you could use the same
code function in both and just look at the reason code to determine
which button the user selected.

Hotkey—(Hotkey callbacks only)

The keyboard key and modifier (such as Alt or Ctrl) that trigger the
callback. See the section “Hotkey callbacks.”

Event Mask—(event handlers only)

Lets you specify which Photon events the widget is sensitive to. See
“Event handlers — raw and filter callbacks.”

Callback functions are stored in stub files
When you specify a callback function, PhAB generates a stub function; for
information on specifying the language (C or C++) and the filename, see “Function
names and filenames” in the Working with Code chapter.

Hotkey callbacks
Widgets support hotkey callbacks. These callbacks let you attach keyboard keys to
specific callback functions. When the application window gets focus, the hotkeys
become active. Pressing one invokes the appropriate hotkey link callback.

Hotkeys — the basics
Here’s some basic information about hotkeys:

186 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Hotkey callbacks

• Hotkeys are a combination of a character key and a modifier key (Alt, Shift or Ctrl).
Most of the time, Alt is used for hotkeys.

• You can use a modifier on its own as a hotkey, but it’s probably not a good idea.

• A hotkey isn’t invoked if any ancestor of the widget that owns it is blocked.

• A hotkey is processed after the widgets have been given the key event. If a widget
consumes the event, no hotkey callback is called. So when a text field has focus,
the Enter key, arrow keys, Space, and all displayable characters won’t work as
hotkeys because the widget consumes those events. This is usually the desired
behavior (consider editing in an application which has hotkeys defined for all the
arrow keys).

You can force the hotkey processing to be done first by setting
Pt_HOTKEYS_FIRST in the Pt_ARG_CONTAINER_FLAGS resource of the
container widget (window, pane, . . .) that contains the widgets that would normally
consume your would-be hotkey events. Setting this flag on the window guarantees
all hotkey processing is done before any widgets get the key event. For more
information, see “Processing hotkeys,” below.

• Widgets must be selectable for their hotkeys to be active (with the exception of
disjoint widgets such as windows and menus). Make sure the widget’s
Pt_ARG_FLAGS has Pt_SELECTABLE and Pt_GETS_FOCUS set.

If the widget isn’t normally selectable and you don’t want its appearance to change
when selected, you’ll also want to set the Pt_SELECT_NOREDRAW widget flag.

• Often it doesn’t matter which widget a callback is connected to. In those cases, just
attach the hotkey to the window.

Specifying the hotkey label
Setting up a hotkey isn’t enough—you need to tell your user about it! You should
display a hotkey label in the widget invoked by the hotkey:

• For most widgets, edit the Accelerator Key (Pt_ARG_ACCEL_KEY) resource.
Specify the character in the widget’s label that you want underlined. You can’t
include any modifier keys in the label.

• For menu items, the underlined character is the shortcut that you can use to select
an item when the menu’s displayed. The hotkey label is displayed separately, to the
right of the menu item’s label. Specify the hotkey (including the modifier keys) in
the menu editor’s Accel Text field.

Specifying the callback
In PhAB, each widget’s callback list displays an entry called “Hotkey” or
Pt_CB_HOTKEY that you use to define hotkeys. Before you define the hotkey, you
need to determine where to do so. Where you define the hotkey callback depends on:

• where you want a module (such as a menu) to appear

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 187

Hotkey callbacks © 2010, QNX Software Systems GmbH & Co. KG.

• what widget you need in the callback function

• where the user is going to type the hotkey.

Where you want a module to appear

When you define the hotkey, you can specify where the module is to appear. For
example, if the hotkey is meant to display the menu module associated with a
PtMenuButtonwidget in your window’s PtMenuBar, define the hotkey in the menu
button. Use the Location dialog to have the menu appear under the menu button. For
more information, see “Positioning a module” in the Working with Modules chapter.

What widget you need in the callback function

The widget that owns the callback is the one passed to the callback function.

Where the user is going to type the hotkey

For example, if the hotkey is an accelerator for a menu item, add the hotkey to the
window in which the menu is used, not to the menu module.

• The hotkeys in a given module should be unique. If you define the same hotkey
more than once, the last one is used.

• If you’re developing a multilingual application, you’ll need to choose hotkeys
carefully so they’ll be relevant in each language, or you’ll need a different set of
hotkeys for each language. See the International Language Support chapter for
more information.

When you select the Pt_CB_HOTKEY callback, the callback editor pops up with a
Hotkey field in the link-information area:

Hotkey field in the callback editor.

You must fill in the Hotkey field when creating a hotkey callback. There are two ways
to set up the hotkey: one easy, the other not so easy.

• the not-so-easy way—you can type the hotkey value, in hex, in the Hotkey field.
To find the value for the keycap you want to use, see the header file
<photon/PkKeyDef.h>, and search for the name of the keycap, prefixed by Pk_.

188 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Hotkey callbacks

Use lowercase letters for hotkeys; uppercase letters won’t work. For example, for a
hotkey Alt-F, look up the hex value for Pk_f, not Pk_F.

The field also has 3 toggle buttons—Ctrl, Shift, and Alt—to let you specify
modifiers for the hotkey value.

• the easy way—press the button to the right of the Alt toggle button, then press the
keychord you want to use for the hotkey. PhAB automatically determines the key
and modifiers you pressed.

Processing hotkeys
Here’s how a hotkey works:

• When a key event arrives at a window, the window passes the event to its child
widgets.

• If a child consumes the event, nothing further happens.

• Otherwise, the event is checked against the window’s list of hotkeys. If the hotkey
is found, its callback is invoked.

• If the hotkey isn’t found, the parent window’s hotkey list is searched, and so on up
the hierarchy of windows.

The Pt_ARG_CONTAINER_FLAGS resource of container-class widgets includes
some flags that affect the processing of hotkeys:

Pt_HOTKEY_TERMINATOR

Prevent the hotkey search from going up to the parent container.

The Pt_HOTKEY_TERMINATOR flag works only if it’s set in a disjoint
container-class widget.

Pt_HOTKEYS_FIRST

Process key events that reach this container as hotkeys before passing them to
the container’s children. If the event is a hotkey, it’s consumed, so it isn’t passed
to the children.

Disabling hotkeys
Giving the user a visual indication that a hotkey is disabled is different from actually
disabling the hotkey.

To give the visual indication, use the technique appropriate to the widget:

• If the hotkey is associated with a button, set the Pt_GHOST flag and remove the
Pt_SELECTABLE and Pt_GETS_FOCUS flags in the button’s Pt_ARG_FLAGS
resource.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 189

Event handlers — raw and filter callbacks © 2010, QNX Software Systems GmbH & Co. KG.

• If the hotkey is associated with a menu item created in PhAB, call
ApModifyItemState().

• ...

To disable the hotkey, use one of the following techniques:

• Don’t disable the hotkey. Instead, as the first thing you do in your hotkey’s callback
code, check to see if anything should be done. If not, just return from the callback.
For example, if the hotkey callback is the one for pasting text, check to see if
there’s anything to paste. If there isn’t, simply return.

Or

• With the exception of disjoint widgets, if the widget that the hotkey callback is
attached to isn’t selectable, the hotkey is treated as if it didn’t exist. For a widget to
be selectable, the Pt_SELECTABLE flag must be set in the Pt_ARG_FLAGS
resource.

One good reason for this approach is that it works even if your application has the
same hotkey defined in more than one window. For example, we might have an
Edit menu in the base window and an Erase button in a child window, both with
Alt-E as a hotkey. If the child window currently has focus and the user presses
Alt-E, the child window’s Erase button callback is called.

Now, if we disable the Erase button in the child window, we would want Alt-E to
cause the base window’s Edit menu to appear. In this scenario, as long as the Erase
button is selectable, its callback would be called. So we simply make the Erase
button unselectable. Now when the user presses Alt-E, the base window’s Edit
menu appears, even though the child window still has focus.

Or

• You could call PtRemoveHotkeyHandler() to remove the hotkey and later call
PtAddHotkeyHandler() to enable it again.

Event handlers — raw and filter callbacks
Event handlers let you respond directly to Photon events. You can attach event
handlers to any widget; they’re like other widget callbacks, but with the addition of an
event mask. Using this mask, you can choose which events your callbacks receive.

You’ll find them particularly useful for getting the Ph_EV_DRAG events for a
particular window. For more information on dragging, see “ Dragging” in the Events
chapter.

PtWidget defines the following event-handler resources:

Pt_CB_FILTER Invoked before the event is passed to the widget.

Pt_CB_RAW Invoked after the widget has processed the event (even if the
widget consumes the event).

190 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Event handlers — raw and filter callbacks

For a description of raw and filter event handlers and how they’re used, see “Event
handlers — raw and filter callbacks” in the Events chapter.

For information on adding event handlers in application code, see “Event handlers” in
the Managing Widgets in Application Code chapter.

To attach a raw or filter callback:

1 Select the widget, then switch to the Callbacks control panel, if necessary.

2 Click on the Pt_CB_RAW (Raw Event) or Pt_CB_FILTER (Filter) resource to
open the callback editor.

3 The editor pops up with an Event Mask field in the link information area:

Event Mask field in the callback editor.

The Event Mask field lets you specify which Photon events you want the widget
to be sensitive to. When any of those low-level events occur, the widget invokes
the callback.

Click on the icon next to this field to open the event selector:

Event selector.

4 Select the events you want the widget to be sensitive to, then close the selector.

May 13, 2010 Chapter 7 • Editing Resources and Callbacks in PhAB 191

Event handlers — raw and filter callbacks © 2010, QNX Software Systems GmbH & Co. KG.

For more info, see the event types described for the PhEvent_t structure in the
Photon Library Reference.

192 Chapter 7 • Editing Resources and Callbacks in PhAB May 13, 2010

Chapter 8

Geometry Management

In this chapter. . .
Container widgets 195
Geometry negotiation 195
Absolute positioning 199
Aligning widgets using groups 200
Constraint management using anchors 204
Using layouts 208
Enforcing position or size constraints without anchors or layouts 229

May 13, 2010 Chapter 8 • Geometry Management 193

© 2010, QNX Software Systems GmbH & Co. KG. Container widgets

This chapter discusses how to set up or fine-tune your widgets’ geometry.

Container widgets
A container widget is a child of the PtContainer widget class. Container widgets
are the only widgets that can have children. Any widget that doesn’t have a window of
its own is always rendered within the boundaries of its parent. Only widgets belonging
to a subclass of the PtWindow widget class get a window of their own.

Container widgets are responsible for performing geometry management. A container
widget’s primary responsibility is to position each child and size itself appropriately to
accommodate all its children at their desired locations. The container may also impose
size constraints on its children (for example, forcing them all to be the same size). The
container must also constrain the children so that they don’t appear outside the
container’s boundaries. This is normally done by clipping the child.

To understand how different containers handle geometry management, it’s important
to understand the geometry of a widget. See “Widget Geometry” in the Introduction to
this guide.

Geometry negotiation
When a widget is realized, a geometry negotiation process is initiated in all the
widgets in the widget family hierarchy. Each child of the widget is given the
opportunity to calculate its size. This ripples down through all the widgets in the
family, resulting in a calculation of the size of each of the descendants first.

Once each child has calculated its desired size, the parent widget may attempt to
determine the layout for its children. The layout that the widget performs depends on:

• the widget’s layout policy

• any size that has been set for the widget

• the dimensions and desired position of each of the children.

If the application has specified a size for the widget, then it may choose to lay out the
children using only that available space. This is influenced by the resize policy set for
the widget. The Pt_ARG_RESIZE_FLAGS resource is a set of flags that determine the
resizing policy for the widget. The flags specify a separate resizing policy for the
width and height of the widget. If no policy is specified for either dimension, the
widget doesn’t attempt to resize itself in that dimension when performing the layout.
Any other resize policy allows the widget to grow in that dimension to accommodate
its children. For more details, see “Resize policy,” below.

If the widget doesn’t have a predetermined size, it tries to size itself to accommodate
all the children using the appropriate layout policy. It does so by first attempting to
determine a correct layout and then determining the space required to accommodate it.

The layout process determines the desired location of each child. The layout policy
used by the widget controls how the layout attempts to position the children relative to

May 13, 2010 Chapter 8 • Geometry Management 195

Geometry negotiation © 2010, QNX Software Systems GmbH & Co. KG.

each other. It must take into account the dimensions of the children. The container is
responsible for fixing the position of each child, so the layout policy may choose
whether or not to take into account the position attributes of the children.

In performing the layout, the widget may also take the resize policy into account.
Based on this policy, it determines whether it must adjust its width or height, or change
the layout to account for space restrictions. The widget tries to choose a layout that
best meets the constraints imposed by any size restrictions and by the layout policy.

After determining the desired position of each of its children, the widget calculates the
width and height it needs to accommodate the children at these locations. It changes
its dimensions, if necessary, to fit each of the children at the desired position. If this
isn’t possible because the resize policy doesn’t allow it, the widget recalculates the
positions to fit the children within the space available.

Once the layout is successfully established, the widget sets the position of each of the
children by altering the child’s position attribute.

Resize policy
Any change to a widget that may affect the amount of space required to display its
contents can result in the widget’s resizing itself to fit its contents. This is governed by
the resize policy enforced by the widget.

The resize policy affects both basic widgets and containers. A container checks its
resize policy when it lays out its children to determine whether it should resize itself to
accommodate all the children at their desired locations. Through the geometry
negotiation process, this effect is propagated up the widget family until the size of the
window widget is determined.

The Pt_ARG_RESIZE_FLAGS resource controls the resize policy. This resource
consists of a separate set of flags for the width and the height. The values of the flags
determine the conditions under which the widget recalculates the corresponding
dimension. The values are checked whenever the widget is realized or its contents
change.

If the resize policy conflicts with the anchors, the Pt_ARG_RESIZE_FLAGS override
Pt_ARG_ANCHOR_OFFSETS and Pt_ARG_ANCHOR_FLAGS.

The resize flags are as follows:

Pt_RESIZE_X_ALWAYS

Recalculates the widget’s size whenever the value of the x dimension changes.
The widget grows or shrinks horizontally as its contents change.

For example, the following figure shows a button with the
Pt_RESIZE_X_ALWAYS flag set as the label changes from Hello to Hello,

world to Hi:

196 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Geometry negotiation

Pt_RESIZE_Y_ALWAYS

Recalculates the widget’s size whenever the value of the y dimension changes.
The widget grows or shrinks vertically as its contents change.

Pt_RESIZE_XY_ALWAYS

Recalculates the widget’s size whenever the value of the x or y dimension
changes. The widget grows or shrinks in both directions as its contents change.

The Pt_RESIZE_XY_ALWAYS flag isn’t defined in PhAB. It’s provided for your
convenience when setting resize flags from your code.

Pt_RESIZE_X_AS_REQUIRED

Recalculates the widget’s size whenever the x dimension changes and no longer
fits within the current space available.

For example, the following figure shows a button with the
Pt_RESIZE_X_AS_REQUIRED flag set as the label changes from Hello to
Hello, world to Hi.

Pt_RESIZE_Y_AS_REQUIRED

Recalculates the widget’s size whenever the y dimension changes and no longer
fits within the current space available.

Pt_RESIZE_XY_AS_REQUIRED

Recalculates the widget’s size whenever the x or y dimension changes and no
longer fits within the current space available.

The Pt_RESIZE_XY_AS_REQUIRED flag isn’t defined in PhAB. It’s provided for your
convenience when setting resize flags from your code.

These flags may also be modified by the values of another set of flags, namely:

• Pt_RESIZE_X_INITIAL

• Pt_RESIZE_Y_INITIAL

• Pt_RESIZE_XY_INITIAL

May 13, 2010 Chapter 8 • Geometry Management 197

Geometry negotiation © 2010, QNX Software Systems GmbH & Co. KG.

The Pt_RESIZE_XY_INITIAL flag isn’t defined in PhAB. It’s provided for your
convenience when setting resize flags from your code.

If you set any of these “initial” flags, the widget doesn’t resize in response to a change
in the data — it changes its size only during the geometry negotiation process
whenever it’s realized. The widget either makes itself exactly the right size for its
contents, or grows to fit its contents if the dimensions it has at the time aren’t large
enough.

If none of the resize flags is set, the widget doesn’t try to calculate its own dimensions,
but uses whatever dimensions have been set by the application (thereby possibly
clipping the widget’s contents as a result).

For example, the following figure shows a button with no resize flags set as the label
changes from Hello to Hello, world to Hi.

Setting the resize policy in PhAB

You can set these flags in PhAB by editing the container’s resize flags,
Pt_ARG_RESIZE_FLAGS, as shown below:

198 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Absolute positioning

Setting the resize policy in your application’s code

You can also set the container’s resize flags in your code, if required, using the method
described in the Manipulating Resources in Application Code chapter.

Bit masks are provided for controlling which bits are set. There’s one bit mask for
each of the x and y resize policies:

• Pt_RESIZE_X_BITS

• Pt_RESIZE_Y_BITS

• Pt_RESIZE_XY_BITS

For example, to make a container grow to fit all its children if it isn’t large enough
when it’s realized, set both the initial and required resize flags for x and y:

PtSetResource (ABW_my_container, Pt_ARG_RESIZE_FLAGS,
(Pt_RESIZE_XY_INITIAL|Pt_RESIZE_XY_AS_REQUIRED),
Pt_RESIZE_X_BITS|Pt_RESIZE_Y_BITS);

To set up the argument list to clear the x resize policy:

PtSetResource (ABW_my_container, Pt_ARG_RESIZE_FLAGS,
Pt_FALSE, Pt_RESIZE_X_BITS);

There are also some constants that simplify the setting of these flags. For example,
there’s a constant representing the bitmask for setting both the x and y flags
simultaneously, and there are constants for each flag with the x or y shift applied. All
these constants are defined in the <photon/PtWidget.h> header file.

Absolute positioning
The most basic form of layout a container can provide is to position its children
without imposing any size or positioning constraints on them. In such a situation, a
child widget is pinned to a particular location within the container, and the container
doesn’t change its size.

A widget employing this layout policy is somewhat analogous to a bulletin board. You
can pin items to the bulletin board, and they stay wherever they’re pinned. All
container widgets can perform absolute positioning.

The easiest way to position and size each child is to use the mouse in PhAB.

To position each of the children from your application’s code, you must set the
Pt_ARG_POS resource for each child. If the widgets must be a consistent or
predetermined size, you must also set the Pt_ARG_DIM resource for each child. The
position you specify is relative to the upper left corner of the parent’s canvas, so you
can disregard the parent’s margins when positioning children.

By default, all widgets that perform absolute positioning use a resize policy of
Pt_AS_REQUIRED and Pt_INITIAL. In other words, the container’s initial size is
chosen when it’s realized. The container is made large enough to fit all the children at
their specified locations, given their size after they’ve been realized.

May 13, 2010 Chapter 8 • Geometry Management 199

Aligning widgets using groups © 2010, QNX Software Systems GmbH & Co. KG.

The simplest way to do absolute positioning is to place and position widgets within the
main PtWindow widget of the application. If you need to create a container widget
that does absolute positioning as part of another container, you can use a
PtContainer widget.

Aligning widgets using groups
PtGroup widgets are container-class widgets that can manage the geometry of their
children. You’ll find them useful for aligning widgets horizontally, vertically, or in a
matrix. They also have the unique ability to stretch child widgets.

PhAB extends the usefulness of this widget class by turning it into an action-oriented
“Group” command. Using this command, you can select several widgets within a
module and group them together to form a single group widget. If you try to select any
widget in the group by clicking on it, the entire group is selected instead.

When you select a group, the Resources control panel shows the resources available to
the PtGroup widget class. These include resources that allow you to align the widgets
inside the group and to set up exclusive-selection behavior.

The PtGroup widget can be used to arrange a number of widgets in a row, column, or
matrix. Several resources are used to control this, and they’re interpreted slightly
differently depending on the desired arrangement of the children.

Joining widgets into a group
To join widgets into a group:

1 Select the widgets using either a bounding box or the “Shift and click” method
(as described in the Creating Widgets in PhAB chapter).

You should use “Shift–click” if you plan to align the widgets in order using the
Orientation resource. The first widget you select becomes first within the group.
If order isn’t important or alignment isn’t required, the bounding box method
works just fine.

2 Do one of the following:

• Choose Group from the Widget menu.

• Press Ctrl-G.

• Click on the Group icon on PhAB’s toolbar:

PhAB groups the widgets and selects the group.

Accessing widgets in a group
Although PhAB treats a group as a single widget, you can still access any of the
individual widgets that make up the group. To do this, use the next and previous
buttons in the Resources or Callbacks control panel, or select the widget directly in the

200 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Aligning widgets using groups

Module Tree panel. For more info, see “Selecting widgets” in the Creating Widgets in
PhAB chapter.

Aligning widgets horizontally or vertically
The orientation resource, Pt_ARG_GROUP_ORIENTATION, controls whether the
group widget’s children are arranged as rows or columns. Pt_GROUP_VERTICAL
causes the children to be arranged vertically, while Pt_GROUP_HORIZONTAL causes
them to be arranged horizontally.

You can control the amount of space to be left between the widgets arranged in the
group widget by using the Pt_ARG_GROUP_SPACING resource. The value of the
resource gives the number of pixels to be left between widgets.

The following example shows how several children are laid out if the group uses
vertical orientation with a space of five pixels between children:

If the orientation is changed to horizontal, the group appears like this:

When first realized, the group widget initially sizes itself to be large enough to hold all
the children after they’ve been arranged.

Aligning widgets in rows and columns
The group widget may also be used to layout children in both rows and columns for
creating tables or spreadsheets by setting the value of
Pt_ARG_GROUP_ROWS_COLS resource to some value other than one.

The interpretation of this resource depends on the orientation:

• When the orientation is vertical, this resource specifies the number of rows to be
displayed; the number of columns is calculated based on the number of widgets to
yield the correct number of rows.

• Otherwise, the value specifies the number of columns, and the widget calculates the
number of rows.

May 13, 2010 Chapter 8 • Geometry Management 201

Aligning widgets using groups © 2010, QNX Software Systems GmbH & Co. KG.

The last row or column may have fewer widgets than the others.

When the elements of a group are laid out in rows and columns, the widgets
themselves may either be tightly packed or they may be spaced out equally as rows
and/or columns. This is controlled by the Pt_ARG_GROUP_SPACING resource.

Using the Group flags
The PtGroup widget includes a set of flags, Pt_ARG_GROUP_FLAGS, that can be
used to control how the child widgets can be selected, sized, and stretched:

Pt_GROUP_EXCLUSIVE

Allow only one child to be set at a time. This flag can be used to make a group
of toggle buttons into radio buttons (that is, a set of mutually exclusive choices).

Pt_GROUP_EQUAL_SIZE

Lay out the widgets in a grid, using a cell size chosen by the group based on the
width of the widest child and the height of the tallest child. The dimensions of
all the children are set to this size when they’re laid out.

Pt_GROUP_EQUAL_SIZE_HORIZONTAL

Make all the children the width of the widest one.

Pt_GROUP_EQUAL_SIZE_VERTICAL

Make all the children the height of the tallest one.

Pt_GROUP_NO_SELECT_ALLOWED

Set this flag for an exclusive group if it’s valid not to have any child set. The
user can unselect the currently set child by clicking on it again.

Pt_GROUP_NO_KEYS

Don’t allow the user to move inside the group by pressing the arrow keys.

Pt_GROUP_NO_KEY_WRAP_HORIZONTAL

Don’t wrap around to the other side of the group when using the left and right
arrow keys.

Pt_GROUP_NO_KEY_WRAP_VERTICAL

Don’t wrap around to the top or bottom of the group when using the up and
down arrow keys.

Pt_GROUP_STRETCH_VERTICAL

Stretch the bottom row of widgets as the group expands.

202 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Aligning widgets using groups

Pt_GROUP_STRETCH_HORIZONTAL

Stretch the right column of widgets as the group expands.

Pt_GROUP_STRETCH_FILL

Stretch the last widget(s) to fill the available space in the direction indicated by
the orientation.

Don’t set the Pt_GROUP_EQUAL_SIZE_... and Pt_GROUP_STRETCH_... flags for the
same direction — the group will expand every time its extent is calculated.

For more information, see the description of the PtGroup widget in the Widget
Reference.

Splitting apart a group
To split a group into its individual widgets:

1 Select the group.

2 Do one of the following:

• Choose Split Apart from the Edit menu.

• Press Ctrl-P.

• Click on the Split icon in PhAB’s toolbar:

PhAB splits apart the widgets and removes the PtGroup container.

May 13, 2010 Chapter 8 • Geometry Management 203

Constraint management using anchors © 2010, QNX Software Systems GmbH & Co. KG.

Constraint management using anchors
Here’s a common layout situation that’s not handled by any of the layout policies
we’ve examined. Suppose a container is divided into a number of panes that have
constraints on their size and position. Normally, we don’t want the panes to overlap,
and we want control over how the panes are resized if the container itself grows or
shrinks. A constraint mechanism provides this control.

Anchors are provided as a constraint mechanism on the position and size of any widget
used within any container. The position attribute and the anchors of each of the
children are always used to determine their positions.

In the current version of the Photon microGUI, widgets are anchored immediately
upon creation. In earlier versions, anchoring is done when the widgets are realized.

An anchor may be specified for any side of a child widget. The anchor is attached to
one of the sides of the parent. It maintains the corresponding side of the child at a fixed
distance, the anchor offset from the anchoring side of the parent. The anchor offset
may also be expressed as a proportion of the canvas width or height of the parent.

It’s possible — but not always desirable — to anchor a widget’s edges beyond its
parent’s canvas.

Any time the parent is resized, the child’s position (and possibly size) is altered to
maintain this relationship. If any side of the child is not anchored to the parent, it’s
allowed to float freely. If you explicitly set the size and/or position of an anchored
widget, its anchor offsets are recalculated automatically.

When using PhAB, you don’t specify anchor offsets. Instead you position the widgets
at the desired offset by setting the position (Pt_ARG_POS) and dimension
(Pt_ARG_DIM) resources. PhAB calculates the anchor offsets automatically, based
on the relative sizes and positions of the parent and the anchored child.

You can turn anchoring on or off using the Anchoring on/off button on the PhAB
toolbar. If a parent widget has children that are anchored, and you want to change the
size of the parent widget without affecting size of the children, turn anchoring off.

The width of the child widget is influenced by the anchors for its left and right sides;
the height is influenced by the anchors for the top and bottom. If either of an opposing
pair of edges is allowed to float, the constraints are met by altering only the position of
the widget in the corresponding dimension. This means that the widget may slide in
any of the four directions to satisfy the anchor constraints. If both edges are anchored,
the widget must be resized in that dimension as well.

204 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Constraint management using anchors

Example of anchoring.

If the resize policy conflicts with the anchors, the Pt_ARG_RESIZE_FLAGS override
Pt_ARG_ANCHOR_OFFSETS and Pt_ARG_ANCHOR_FLAGS.

Creating an application’s main window provides a simple example of using anchor
resources. The window commonly has at least two parts to it: the menu bar and the
work area. If we consider an application that has a group widget for the work area, we
can identify the types of anchors necessary to make it resize correctly in response to a
change in the size of the window widget.

Each edge of the work area is anchored to the corresponding edge of the window. The
left and top anchor offsets are set to be the same as the position attribute for the
widget. This must be calculated to sit below the menu bar. The dimensions of the
widget are set to the desired amount of work space.

When realized, the window positions the work area at the location specified by its
position attribute. The window’s size is set to be large enough to contain the work area.

If the window is resized, the width and height of the work area are resized accordingly,
since all the edges are anchored. If the anchor offsets were specified correctly, the
position of the widget aren’t altered.

We don’t have to do anything for the menu bar, because it’s automatically anchored to
the top and sides of the window.

May 13, 2010 Chapter 8 • Geometry Management 205

Constraint management using anchors © 2010, QNX Software Systems GmbH & Co. KG.

Anchor resources
The Pt_ARG_ANCHOR_FLAGS resource (defined by PtWidget) controls the anchor
attachments. Within the anchor flags, there are three flags associated with each edge of
the widget; these three flags allow each edge to be anchored in one of two possible
ways:

• anchored to the corresponding edge of its parent

• anchored to the opposite edge of its parent

These flags use this naming scheme:

Pt_edge_ANCHORED_anchor

where:

edge is the name of the edge to be anchored, and must be TOP , LEFT, RIGHT,
or BOTTOM.

anchor is the name of the parent edge it’s to be anchored to.

Thus, the following flags are defined:

• Pt_LEFT_ANCHORED_LEFT

• Pt_LEFT_ANCHORED_RIGHT

• Pt_RIGHT_ANCHORED_LEFT

• Pt_RIGHT_ANCHORED_RIGHT

• Pt_TOP_ANCHORED_BOTTOM

• Pt_TOP_ANCHORED_TOP

• Pt_BOTTOM_ANCHORED_BOTTOM

• Pt_BOTTOM_ANCHORED_TOP

Setting anchor flags in PhAB

To set the anchor flags, click on the anchor flags (Pt_ARG_ANCHOR_FLAGS)
resource and use PhAB’s flag editor:

206 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Constraint management using anchors

Setting anchor flags in your application’s code

You can also set these flags from your code, using the method described in the
Manipulating Resources in Application Code chapter. For convenience, each set of
flags has an associated bit mask:

• Pt_LEFT_IS_ANCHORED — isolates the bits responsible for specifying an anchor
for the left edge.

• Pt_RIGHT_IS_ANCHORED — isolates the bits responsible for specifying an
anchor for the right edge.

• Pt_TOP_IS_ANCHORED — isolates the bits responsible for specifying an anchor
for the top edge.

• Pt_BOTTOM_IS_ANCHORED — isolates the bits responsible for specifying an
anchor for the bottom edge.

So to set the left and right edge for our menu bar in the example above, the argument
list element would be initialized as follows:

PtSetArg(&arg[n], Pt_ARG_ANCHOR_FLAGS,
Pt_LEFT_ANCHORED_LEFT|Pt_RIGHT_ANCHORED_RIGHT|
Pt_TOP_ANCHORED_TOP,
Pt_LEFT_IS_ANCHORED|Pt_RIGHT_IS_ANCHORED|
Pt_TOP_IS_ANCHORED);

When setting anchor flags from your application’s code, all the anchor offsets are
specified using the Pt_ARG_ANCHOR_OFFSETS resource. This resource takes a
PhRect_t structure (see the Photon Library Reference) as a value. The upper left
corner of the rectangle is used to specify the anchor offset for the top and left edges of
the widget, and the lower right corner of the rectangle indicates the anchor offset for
the right and bottom edges.

May 13, 2010 Chapter 8 • Geometry Management 207

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

Using layouts
If you wish to maintain more complex relationships among the positions of children
relative to the container, or relative to each other, consider using layouts. A layout is a
property of container widgets that sizes and organizes its children when the container
or its children change size.

Layouts are an alternative to the direct geometry management of the widgets using
Pt_ARG_POS, Pt_ARG_DIM, and Pt_ARG_AREA. Instead of calculating positions
and sizes of the widgets in your code, your code describes the rules of how the widgets
should be laid out. This proves to be very efficient and doesn’t require additional code
to handle resize operations. Layouts usually guarantee that widgets are not
overlapping, which is an important feature for many multilingual applications. Each
type of layout has its own method of sizing and positioning the children in its
container. Each child widget can have detailed info of how it should be sized and
positioned in its parent. If a child is a container, it can have its own layout for its
children.

These are the layout types in the Photon Widget Library:

• PtFillLayout — a simple layout that “fills” widgets into a container.

• PtRowLayout — a layout that organizes widgets into rows.

• PtGridLayout — a layout that organizes widgets into a grid pattern.

• PtAnchorLayout — the default layout using widget anchors.

You set layouts using resources in the container widget. You can refine the way
layouts place widgets by setting resources on the child widgets. Below are the
resources involved in using layouts.

PtContainer has these layout-related resources:

Pt_ARG_LAYOUT This is a generic resource that lets you set the active layout of
the container and optionally the layout information structure.
Here’s an example of setting both for a fill layout:

PtArg_t args[20];
int i = 0;
PtFillLayoutInfo_t info;

info.type = Pt_LAYOUT_HORIZONTAL;
info.spacing = 2;
PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtFillLayout, &info);

Pt_ARG_LAYOUT_INFO*

This is a generic resource to specify layout info, which you can
use to set or get any of the Pt_ARG_*_LAYOUT_INFO
resources.

208 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Pt_CB_LAYOUT This callback is called when the layout is about to start laying
out children and when it’s finished. The
cbinfo->reason_subtype indicates which situation called it, and
is one of:

• Pt_LAYOUT_INIT — layout is about to start laying out

• Pt_LAYOUT_DONE — layout has finished laying out
children.

You can use this callback to fine-tune the layout procedure.

Pt_ARG_LAYOUT_TYPE

This is an alternative method of setting or getting the active
layout type and optionally the layout information structure
(Pt_ARG_*_LAYOUT_INFO). Here’s an example of setting
both for a fill layout:

PtArg_t args[20];
int i = 0;
PtFillLayoutInfo_t info;

info.type = Pt_LAYOUT_HORIZONTAL;
info.spacing = 2;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_TYPE, Pt_FILL_LAYOUT,

&info);

Pt_ARG_FILL_LAYOUT_INFO*

Used only to set the PtFillLayoutInfo_t structure for the
PtFillLayout layout type.

Pt_ARG_ROW_LAYOUT_INFO*

Used only to set the PtRowLayoutInfo_t structure for the
PtRowLayout layout type.

Pt_ARG_GRID_LAYOUT_INFO*

Used only to set the PtGridLayoutInfo_t structure for the
PtGridLayout layout type.

* You can set all the Pt_ARG_*_LAYOUT_INFO resources at the same time. The
active layout will look for its type of info structure to perform the layout.

PtWidget has these layout-related resources:

Pt_ARG_LAYOUT_DATA*

This is the generic method of setting/getting layout data for a widget.

Pt_ARG_ROW_LAYOUT_DATA*

Used only to set the PtRowLayoutData_t structure for the PtRowLayout
layout type.

May 13, 2010 Chapter 8 • Geometry Management 209

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

Pt_ARG_GRID_LAYOUT_DATA*

Used only to set the PtGridLayoutData_t structure for the PtGridLayout
layout type.

Pt_ARG_EFLAGS

If this resource has Pt_SKIP_LAYOUT set, the container doesn’t apply the layout
to the widget. This is useful if you have widgets that you want to place by hand.

* You can set all the Pt_ARG_*_LAYOUT_DATA resources at the same time. The
active layout of the widget’s parent will look for its type of data structure to perform
the layout.

These are the structures used to set layout-related resources:

Layout type (Pt_ARG_LAYOUT in
the container)

Layout Info Structure
(Pt_ARG_LAYOUT_INFO or
Pt_ARG_*_LAYOUT_INFO in the
container)

Layout Data Structure
(Pt_ARG_LAYOUT_DATA or
Pt_ARG_*_LAYOUT_DATA in child
widgets)

PtFillLayout PtFillLayoutInfo_t N/A

PtRowLayout PtRowLayoutInfo_t PtRowLayoutData_t

PtGridLayout PtGridLayoutInfo_t PtGridLayoutData_t

PtFillLayout
This is a simple type of a layout. It organizes children in one row or one column and
makes them the same size. The width of each child will be at least as wide as the
widest child’s width. The same rule applies to the height.

You can set the layout’s options using the layout information structure,
PtFillLayoutInfo_t. See the PtContainer resource
Pt_ARG_FILL_LAYOUT_INFO for a description of the PtFillLayoutInfo_t
structure.

There is no layout data structure for the Pt_ARG_LAYOUT_DATA resource of
children for this layout type.

Let’s take a look at this example:

/* fill_layout.c example */

#include <Pt.h>

int
main(int argc, char *argv[])
{
PtWidget_t *window;
PtArg_t args[20];
int i = 0;
PtFillLayoutInfo_t info;

210 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

/* Set layout type and spacing between its children */
info.type = Pt_LAYOUT_HORIZONTAL;
info.spacing = 2;

/* Create a window */
i = 0;
PtSetArg(&args[i++], Pt_ARG_WINDOW_TITLE, "PtFillLayout",
0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtFillLayout, &info
);
if(NULL == (window = PtAppInit(NULL, &argc, argv, i,
args))) {

perror("PtAppInit()");
return 1;

}

/* Create buttons */
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Input (stdin)",
0);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Output (stdout)", 0
);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Error (stderr)", 0
);
PtCreateWidget(PtButton, window, i, args);

PtRealizeWidget(window);
PtMainLoop();
return 0;
}

Build and run the application:

Fill layout initial.

Fill layout after resizing.

May 13, 2010 Chapter 8 • Geometry Management 211

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

Now change the type from Pt_LAYOUT_HORIZONTAL to Pt_LAYOUT_VERTICAL
and we get this:

Vertical fill layout.

Vertical fill layout after resizing.

PtRowLayout
The row layout is similar to the fill layout but it has a very important difference — it
can wrap, so it can place children in more than one row or column. When the flags
member of the PtRowLayoutInfo_t structure has the Pt_ROW_WRAP flag set, and
there is not enough space in the row to fit the next child, the child is moved to the
beginning of the next row. The row layout also has margins (the space around all the
widgets) and the children of the container can have their own data (in their
Pt_ARG_LAYOUT_DATA resources) which can be used to fine-tune the layout.

See the PtContainer resource Pt_ARG_ROW_LAYOUT_INFO for a description of
the PtRowLayoutInfo_t structure. The PtRowLayoutData_t structure is
described in the PtWidget resource Pt_ARG_ROW_LAYOUT_DATA.

Let’s take a look at an example:

#include <Pt.h>

int
main(int argc, char *argv[])
{
PtWidget_t *window, *b1, *b2, *b3;
PtArg_t args[20];
int i = 0;
PtRowLayoutInfo_t info;

212 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

/* Set layout type and layout info */
info.type = Pt_LAYOUT_HORIZONTAL;
info.flags = Pt_ROW_PACK | Pt_ROW_WRAP;
info.margin.ul.x = 3;
info.margin.ul.y = 3;
info.margin.lr.x = 3;
info.margin.lr.y = 3;
info.h_spacing = 3;
info.v_spacing = 3;

/* Create a window */
i = 0;
PtSetArg(&args[i++], Pt_ARG_WINDOW_TITLE, "PtRowLayout",
0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtRowLayout, &info
);
if(NULL == (window = PtAppInit(NULL, &argc, argv, i,
args))) {

perror("PtAppInit()");
return 1;

}

/* Create buttons */
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Input", 0);
b1 = PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Output (stdout)", 0
);
b2 = PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Err", 0);
b3 = PtCreateWidget(PtButton, window, i, args);

PtRealizeWidget(window);
PtMainLoop();
return 0;
}

When you build and run this application, you’ll see:

Initial row layout.

May 13, 2010 Chapter 8 • Geometry Management 213

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

Row layout after resizing.

Let’s look at what happens when we set and unset some PtRowLayoutInfo_t flags.

When the Pt_ROW_WRAP is not set, content is clipped to the size of the window. To
test this case, you need to clear resize flags for Pt_RESIZE_X_BITS on the window:

Initial window without Pt_ROW_WRAP set.

After shrinking without Pt_ROW_WRAP set.

When Pt_ROW_PACK is not set, all the buttons are the same size:

Initial window without Pt_ROW_PACK set.

After resizing without Pt_ROW_PACK set.

When Pt_ROW_JUSTIFY is set, extra space is distributed evenly between the buttons:

214 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Initial window with Pt_ROW_JUSTIFY set.

After resizing with Pt_ROW_JUSTIFY set.

Now see what happens when we set the layout type to Pt_LAYOUT_VERTICAL:

Initial window with Pt_LAYOUT_VERTICAL set.

After resizing with Pt_LAYOUT_VERTICAL set.

If we replace this code:

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Err", 0);
b3 = PtCreateWidget(PtButton, window, i, args);

with:

PtRowLayoutData_t data = { {0,0}, Pt_ROW_FILL | Pt_ROW_WRAP_BEFORE
};
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Err", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data,

May 13, 2010 Chapter 8 • Geometry Management 215

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

PtRowLayout);
b3 = PtCreateWidget(PtButton, window, i, args);

The results are:

Initial window.

After stretching.

After shrinking.

What happened? The Err button started its own row because the
Pt_ROW_WRAP_BEFORE flag was set. Then the Err button was stretched to fill all
the extra space because the Pt_ROW_FILL flag was set.

PtGridLayout
The Grid Layout is a very powerful and widely used layout. This layout arranges
children in a grid, which is why it’s sometimes called a “table layout.” The layout info
structure PtGridLayoutInfo_t contains a number of members that adjust the
layout operation. Children of the layout container can have layout data
(PtGridLayoutData_t) attached to them to fine-tune the layout.

See the PtContainer resource Pt_ARG_GRID_LAYOUT_INFO for a description of
the PtGridLayoutInfo_t structure. The PtGridLayoutData_t structure is
described in the PtWidget resource Pt_ARG_GRID_LAYOUT_DATA.

216 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Let’s look at some examples that use a grid layout:

#include <Pt.h>

int
main(int argc, char *argv[])
{
PtWidget_t *window;
PtArg_t args[20];
int i = 0;
PtGridLayoutInfo_t info = PtGridLayoutInfoDflts;
PtGridLayoutData_t data = PtGridLayoutDataDflts;

info.n_cols = 3;
info.flags = 0;
data.flags = Pt_H_ALIGN_BEGINNING;

/* Create a window */
i = 0;
PtSetArg(&args[i++], Pt_ARG_WINDOW_TITLE, "PtGridLayout",
0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtGridLayout, &info
);
if(NULL == (window = PtAppInit(NULL, &argc, argv, i,
args))) {

perror("PtAppInit()");
return 1;

}

/* Create buttons */
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "B1", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Button 2 (two)", 0
);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Butt 3", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "B4", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
PtCreateWidget(PtButton, window, i, args);

i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Butt 5", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
PtCreateWidget(PtButton, window, i, args);

PtRealizeWidget(window);
PtMainLoop();

May 13, 2010 Chapter 8 • Geometry Management 217

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

return 0;
}

Build and run the sample, and you’ll see:

One column (n_cols=1).

Two columns (n_cols=2).

Three columns (n_cols=3).

Change the code info.flags = 0; to info.flags |= Pt_EQUAL_COLS;, and
we get this:

Now let’s see how different cell alignments work.

218 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Set data.flags to Pt_H_ALIGN_BEGINNING:

Set data.flags to Pt_H_ALIGN_CENTER:

Set data.flags to Pt_H_ALIGN_END:

Set data.flags to Pt_H_ALIGN_FILL:

Let’s see how spans work. Set the horizontal span of Butt 5 to 2 columns. To do that,
add this code before Butt 5 is created:

data.flags = Pt_H_ALIGN_FILL;
data.h_span = 2;

The result is:

Let’s test the vertical span. Undo the changes for the previous example and add the
following code before the Butt 3 widget is created:

data.flags = Pt_V_ALIGN_FILL;
data.v_span = 2;

and add the following code after the widget creation call:

May 13, 2010 Chapter 8 • Geometry Management 219

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

data = PtGridLayoutDataDflts;

The result:

Finally, let’s see how the grab flags work. If we resize the window we get this:

If we change the flags for the Butt 3 widget to:

data.flags = Pt_ALIGN_FILL_BOTH | Pt_GRAB_BOTH;

We get this:

Let’s take a look at a more complicated example. Here is the draft drawing of what we
need to program

220 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Module:

File:

Comment:

Type:

Target:

Icon:

Icon image area

Browse...

CPU

CPU
list

Grows
down

Margin

1 2 3

1

2

3

4

5

6

7

8

9

10

11

Add

Delete

Save

Responsible

Name:

Location:

Grows both
ways

Grows to
the right

Right-aligned

Sketch of grid layout.

The code example below implements this grid-layout plan. Please note that this
example is for demonstration purposes only and there are no optimizations in the code.

#include <Pt.h>

int

main(int argc, char *argv[])
{
PtWidget_t *window, *w, *ctnr;

PtArg_t args[20];
int i = 0;
PtGridLayoutInfo_t info;

PtGridLayoutData_t data;

info = PtGridLayoutInfoDflts;

info.n_cols = 3;
info.margin.ul.x = info.margin.ul.y = 5;
info.margin.lr.x = info.margin.lr.y = 5;

/* Create a window */
i = 0;
PtSetArg(&args[i++], Pt_ARG_WINDOW_TITLE, "Module Config", 0);

PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtGridLayout, &info);
if(NULL == (window = PtAppInit(NULL, &argc, argv, i, args))) {

perror("PtAppInit()");

return 1;
}

May 13, 2010 Chapter 8 • Geometry Management 221

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_CENTER;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Module:", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL | Pt_H_GRAB;

data.h_span = 2;
i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "phlocale", 0);
PtCreateWidget(PtText, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_CENTER;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "File:", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL | Pt_H_GRAB;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "/usr/photon/bin/phlocale", 0);
PtCreateWidget(PtText, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL | Pt_V_ALIGN_CENTER;

i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Browse...", 0);

PtCreateWidget(PtButton, window, i, args);

data = PtGridLayoutDataDflts;

data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_CENTER;
i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Comment:", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL | Pt_H_GRAB;
data.h_span = 2;

i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Localization utility

(timezone, language, keyboard)", 0);
PtCreateWidget(PtText, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_CENTER;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Type:", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL | Pt_V_ALIGN_CENTER;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "<module
type>", 0);

w = PtCreateWidget(PtComboBox, window, i, args);
{

const char *list[] = { "Binary", "Config", "Development", "Support" };

PtListAddItems(w, list, sizeof(list)/sizeof(list[0]), 1
);
}

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_CENTER | Pt_V_ALIGN_CENTER;

i = 0;

222 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "CPU", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_CENTER;

i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Target:", 0);

PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;

data.flags = Pt_H_ALIGN_FILL | Pt_V_ALIGN_CENTER;
i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "<target>",
0);
w = PtCreateWidget(PtComboBox, window, i, args);

{
const char *list[] = { "OS targets", "GUI target", "DEV target" };
PtListAddItems(w, list, sizeof(list)/sizeof(list[0]), 1);

}

data = PtGridLayoutDataDflts;
data.flags = Pt_V_ALIGN_FILL | Pt_H_ALIGN_FILL;

data.v_span = 5;
data.hint.h = 30; // This is important to keep the list "in bounds"
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);

w = PtCreateWidget(PtList, window, i, args);
{

const char *list[] = { "arm", "mips", "sh", "x86" };

PtListAddItems(w, list, sizeof(list)/sizeof(list[0]), 1);
}

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END | Pt_V_ALIGN_BEGINNING | Pt_V_GRAB;
i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Icon:", 0);
PtCreateWidget(PtLabel, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_ALIGN_FILL_BOTH | Pt_GRAB_BOTH;

data.v_span = 3;
i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "", 0);
PtCreateWidget(PtButton, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_BEGINNING | Pt_V_ALIGN_BEGINNING;
data.margin.ul.x = 10;

i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Add", 0);

PtCreateWidget(PtButton, window, i, args);

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_BEGINNING | Pt_V_ALIGN_BEGINNING;

data.margin.ul.x = 10;
i = 0;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Delete", 0);
PtCreateWidget(PtButton, window, i, args);

data = PtGridLayoutDataDflts;
data.h_span = 2;
data.flags = Pt_H_ALIGN_FILL;

i = 0;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);

PtSetArg(&args[i++], Pt_ARG_CONTAINER_FLAGS,
Pt_SHOW_TITLE|Pt_ETCH_TITLE_AREA | Pt_GRADIENT_TITLE_AREA,
Pt_SHOW_TITLE|Pt_ETCH_TITLE_AREA | Pt_GRADIENT_TITLE_AREA

);

May 13, 2010 Chapter 8 • Geometry Management 223

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

PtSetArg(&args[i++], Pt_ARG_TITLE, "Responsible", 0);
ctnr = PtCreateWidget(PtPane, window, i, args);

{
PtGridLayoutInfo_t info = PtGridLayoutInfoDflts;
info.n_cols = 2;

PtSetResource(ctnr, Pt_ARG_LAYOUT, PtGridLayout, &info);

i = 0;
data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END;

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Name:", 0);
PtCreateWidget(PtLabel, ctnr, i, args);

i = 0;
data = PtGridLayoutDataDflts;

data.flags = Pt_H_GRAB | Pt_H_ALIGN_FILL;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "David Johnson", 0);

PtCreateWidget(PtText, ctnr, i, args);

i = 0;
data = PtGridLayoutDataDflts;

data.flags = Pt_H_ALIGN_END;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Location:", 0);

PtCreateWidget(PtLabel, ctnr, i, args);

i = 0;

data = PtGridLayoutDataDflts;
data.flags = Pt_H_GRAB | Pt_H_ALIGN_FILL;
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, 0);

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "North America", 0);
PtCreateWidget(PtText, ctnr, i, args);

}

i = 0;

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_FILL;
data.h_span = 3;

data.hint.h = 6;
PtSetArg(&args[i++], Pt_ARG_SEP_FLAGS, Pt_SEP_HORIZONTAL, 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);

PtCreateWidget(PtSeparator, window, i, args);

i = 0;

data = PtGridLayoutDataDflts;
data.flags = Pt_H_ALIGN_END;
data.h_span = 3;

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "Save", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout);
PtCreateWidget(PtButton, window, i, args);

PtRealizeWidget(window);
PtMainLoop();
return 0;

}

Here’s what the resulting interface looks like:

224 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Complex grid layout — initial.

May 13, 2010 Chapter 8 • Geometry Management 225

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

Complex grid layout — resize.

Using hints
Let’s take a look at an interesting way of using hints with the grid layout. We will use
a “draggable” separator to obtain the user’s input and adjust the width hint of one of
the widgets in the layout.

This is what we’ll do:

1 The grid layout contains four columns and one row.

2 Buttons are placed in columns 1, 3, and 4.

3 A separator is placed in column 2.

4 The separator is draggable (the Pt_SEP_DRAGGABLE bit is set in
Pt_ARG_SEP_FLAGS.

5 When the separator is dragged, the user’s callback (Pt_CB_SEP_DRAG)
checks that the separator position is in the acceptable range, and adjusts the hint
of the button in column 1.

226 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using layouts

Here is the actual implementation:

#include <Pt.h>

#define MARGIN_W 2
#define SPACING_W 2
#define SEP_WIDTH 5

/* These variables contain the limits for the separator movement
*/

static short col1_min_width, col2to4_width;

/**

DRAG_CB() ***/
int
drag_cb(PtWidget_t *widget, void *data, PtCallbackInfo_t *cbinfo)

{
PtSeparatorCallback_t *cb = (PtSeparatorCallback_t*)cbinfo->cbdata;
PtWidget_t *b1 = (PtWidget_t*)data;

short pos_x = cb->rect.ul.x;
PtGridLayoutData_t *_grid_data, grid_data;
const PhRect_t *p_canvas = PtGetCanvas(widget->parent

);
short parent_width = p_canvas->lr.x - p_canvas->ul.x&
#SPACE

+ 1;

/* Validate the pos.x of the separator, so that it stays in the

range */
pos_x = max(col1_min_width, pos_x);
pos_x = min(pos_x, parent_width - col2to4_width);

PtGetResource(b1, Pt_ARG_LAYOUT_DATA, &_grid_data, PtGridLayout
);
grid_data = *_grid_data;

grid_data.hint.w = pos_x - (MARGIN_W + SPACING_W);
PtSetResource(b1, Pt_ARG_LAYOUT_DATA, &grid_data, PtGridLayout
);

return Pt_CONTINUE;
}

/***
MAIN() ***/

int
main(int argc, char *argv[])
{

int i;
PtWidget_t *window, *sep, *b1, *b2, *b3;
PtArg_t args[20];

PhDim_t dim;
PtGridLayoutData_t data;
PtGridLayoutInfo_t info = PtGridLayoutInfoDflts;

info.n_cols = 4;
info.margin.ul.x = info.margin.lr.x = MARGIN_W;

info.h_spacing = SPACING_W;

i = 0;

PtSetArg(&args[i++], Pt_ARG_WINDOW_TITLE, "example: Draggable
Separator", 0);
PtSetArg(&args[i++], Pt_ARG_HEIGHT, 100, 0);

PtSetArg(&args[i++], Pt_ARG_WIDTH, 400, 0);
PtSetArg(&args[i++], Pt_ARG_CONTAINER_FLAGS, Pt_AUTO_EXTENT,
Pt_AUTO_EXTENT);
PtSetArg(&args[i++], Pt_ARG_LAYOUT, PtGridLayout, &info

);

if(NULL == (window = PtAppInit(NULL, &argc, argv, i,

args))) {
perror("PtAppInit()");
return 1;

}

data = PtGridLayoutDataDflts;

May 13, 2010 Chapter 8 • Geometry Management 227

Using layouts © 2010, QNX Software Systems GmbH & Co. KG.

data.flags = Pt_V_ALIGN_FILL | Pt_H_ALIGN_FILL;
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "B1", 0);

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
b1 = PtCreateWidget(PtButton, NULL, i, args);

data = PtGridLayoutDataDflts;
data.hint.w = SEP_WIDTH;

data.flags = Pt_V_ALIGN_FILL;
i = 0;
PtSetArg(&args[i++], Pt_ARG_SEP_ORIENTATION, Pt_VERTICAL,

0);
PtSetArg(&args[i++], Pt_ARG_SEP_TYPE, Pt_DOUBLE_LINE,
0);

PtSetArg(&args[i++], Pt_ARG_SEP_FLAGS, Pt_SEP_DRAGGABLE, Pt_SEP_DRAGGABLE&
#SPACE
);

PtSetArg(&args[i++], Pt_ARG_CURSOR_TYPE, Ph_CURSOR_DRAG_HORIZONTAL,
0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout

);
sep = PtCreateWidget(PtSeparator, NULL, i, args);
PtAddCallback(sep, Pt_CB_SEP_DRAG, drag_cb, b1);

i = 0;
data = PtGridLayoutDataDflts;
data.flags = Pt_V_ALIGN_FILL | Pt_H_ALIGN_FILL | Pt_GRAB_BOTH;

PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "B2", 0);
PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);

b2 = PtCreateWidget(PtButton, NULL, i, args);

data = PtGridLayoutDataDflts;

data.flags = Pt_V_ALIGN_FILL | Pt_H_ALIGN_FILL | Pt_GRAB_BOTH;
i = 0;
PtSetArg(&args[i++], Pt_ARG_TEXT_STRING, "B3", 0);

PtSetArg(&args[i++], Pt_ARG_LAYOUT_DATA, &data, PtGridLayout
);
b3 = PtCreateWidget(PtButton, NULL, i, args);

/* Calculate the limits of the dragging */

/* Column 1: width of the b1 + left margin + spacing */
PtGetPreferredDim(b1, 0, 0, &dim);
col1_min_width = dim.w + MARGIN_W + SPACING_W;

/* Column 2 to 4:
* separator width + spacing + b2 width + spacing + b3 width

+ right margin
*/

col2to4_width = SEP_WIDTH + SPACING_W;

PtGetPreferredDim(b2, 0, 0, &dim);
col2to4_width += dim.w + info.h_spacing;

PtGetPreferredDim(b3, 0, 0, &dim);
col2to4_width += dim.w + info.margin.lr.x;

PtRealizeWidget(window);

PtMainLoop();

return 0;
}

This is how the application behaves when resized:

228 Chapter 8 • Geometry Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Enforcing position or size constraints without anchors or layouts

Initial Hints example.

Hints example after resizing.

Enforcing position or size constraints without anchors or
layouts
If you wish to maintain more complex relationships among the positions of children
relative to the container, or relative to each other, and you don’t want to use layouts,
you must catch resize events for the container. The PtContainer widget class
provides a resize callback, Pt_CB_RESIZE, that you can use for this purpose.

The cbdata member of the PtCallbackInfo_t structure (see the Photon Widget
Reference) is a pointer to a PtContainerCallback_t structure that contains at least
the following:

PhRect_t old_size

A PhRect_t structure (see the Photon Library Reference) that defines the
former size of the container.

PhRect_t new_size

A PhRect_t structure that defines the new size.

May 13, 2010 Chapter 8 • Geometry Management 229

Chapter 9

Generating, Compiling, and Running Code

In this chapter. . .
Using the Build menu 233
Generating application code 235
How application files are organized 239
Editing source 242
Compiling and linking 244
Customizing the build process 246
Running the application 246
Debugging 247
Managing targets 248
The Build menu 249
Including non-PhAB files in your application 249
Making a DLL out of a PhAB application 251

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 231

© 2010, QNX Software Systems GmbH & Co. KG. Using the Build menu

PhAB automatically generates everything that’s required to turn your application into
a working executable, including:

• code to handle the UI portion of your application

• stub C and/or C++ files for application-specific callbacks, module-setup functions,
application-initialization functions, and so on

• all the files required to compile and link the application—Makefile, global header,
main-line file, and prototype file.

By doing all this, PhAB lets you get on with the job of writing the code that
implements your application’s main functionality.

The way you build PhAB projects depends on whether you’re running PhAB
standalone or from the IDE. This chapter describes building and generating code using
PhAB standalone, and indicates where there are differences when using the IDE. For
more information on building and generating code in the IDE, see the “Building
Projects” section in the Developing Programs chapter of the IDE User’s Guide.

For most code generation, you can use the Build menu. However, you can also
generate some C and C++ stub files on the spot when using various dialogs to develop
your application; use the icons located next to function or filename fields:

This means you’re free to edit a callback function while still in the process of
attaching it to the widget. You don’t have to go into the Build menu, generate code
from there, and then come back to write the function.

Using the Build menu
If you are using PhAB from the IDE, you can use PhAB’s Build menu to generate the
application’s user interface code. All other build and run functions are handled by the
IDE.

In standalone PhAB, the Build menu is the development center for building your
applications. From this menu you can:

• generate the application code

• make (compile and link) your application

• debug your application

• run your application

• configure your targets.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 233

Using the Build menu © 2010, QNX Software Systems GmbH & Co. KG.

Building your application
To build your application in standalone PhAB:

• Select Build→Build.

When you build your application, PhAB creates an executable that you can run on
the target system.

If you haven’t already added targets to your application, the Select New Platform
dialog is displayed:

234 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Generating application code

This dialog lets you select a target platform. For example, if you plan to run your
application on an SH processor, you should select SH (Little Endian).

You can add more targets later using the Select New Platform dialog. To open this
dialog, select Build→Targets, then click Add target. See Managing targets below.

Select your target and click Done.

• Generate the application by selecting Build→Generate UI. PhAB saves your
application and then generates the required files. See Generating application code.

• PhAB opens the Make Application dialog and compiles and links your application,
generating an executable that can be run on your target system. PhAB runs make in
all of the selected target directories. The make utility links and compiles the source
files; PhAB then runs binders to build the widget files into your executable.

If any errors or warnings are detected during the make process and it can determine
which source file contains errors, PhAB enables the Edit button.

To edit the first file that contains errors, click Edit. After fixing the problems, click
Restart to run make again.

To stop make at any time, click Cancel.

Depending on the state of the application, PhAB may skip some of the above steps.
For instance, if you’ve already built your application, but just changed a resource for
one of the widgets, PhAB may only save your application to update the changed
widget and then rebind the widget files into your application; it will skip code
generation, compilation, and linking.

Generating application code
When you make changes to your application, even within your own source files, you
may need to generate the application code. Doing so ensures that the prototype header
file, proto.h, is up to date. You can safely generate the code at any time — PhAB
won’t overwrite any code you’ve added to the stubs it generated earlier.

When you use PhAB from the IDE, PhAB regenerates the application code every time
you save the project.

Before generating the code, PhAB saves your application if you’ve modified any
modules. To minimize compile time, PhAB compiles only the files that have changed.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 235

Generating application code © 2010, QNX Software Systems GmbH & Co. KG.

If you plan to use a global header in your application, you should set up the header
before generating any code. For more information, see “Setting project properties” in
the Working with Applications chapter, and “Global header file” in the Working with
Code chapter.

To generate your application code, select Generate UI from the Build menu. PhAB
generates any required files any time you build your application.

What PhAB generates
PhAB generates various files and stores them in the application’s src directory.

CAUTION: Any filename that starts with ab is a PhAB file and shouldn’t be modified
at any time. If you try to edit an ab file, you could lose work (when PhAB overwrites
the file) or experience incorrect behavior (when files get out of sync).

!

You can modify any other files that PhAB generates, with few conditions. These
conditions are described in the following sections.

Here are the files that PhAB generates:

appname/Makefile

Used to compile and link the application

appname/common.mk

Contains traditional makefile options, such as compiler options
and link options.

src/Usemsg A usage message for the application

src/abHfiles Contains a list of header files that PhAB knows about.

src/abLfiles External PhAB references in the Makefile

src/abSfiles Contains a list of source files that PhAB knows about, for
example source files with callbacks used in the PhAB project.

src/abWfiles Contains a list of PhAB modules that are part of your
application.

src/abdefine.h Contains all the PhAB-generated manifests. PhAB includes
this header in all C files.

src/abevents.h Contains all the application’s callbacks

src/abimport.h The extern reference header that’s included in all C files. See
“Function prototypes”, below.

src/ablinks.h Contains all the application’s module definitions

236 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Generating application code

src/abmain.c The application’s main-line C file. This file starts with ab, so
don’t modify it.

src/abmain.cc If PhAB detects any C++ functions in your application, it
generates abmain.cc instead of abmain.c. This file also
starts with ab, so don’t modify it.

src/abplatform Contains a list of the platform directories for the application

src/abvars.h Contains all the PhAB-generated global variables

src/abwidgets.h Contains all the PhAB data references

src/indHfiles Contains additional header files not contained in abHfiles.

src/indLfiles Contains additional options for the linker.

src/indSfiles Contains additional source files not contained in abSfiles.

proto.h Contains the application’s prototypes — see “Function
prototypes”, below. Don’t rename this file.

Version control
Here are the files you need to save if you’re using version-control software (PhAB can
generate some of them, but it’s a good idea to save them all):

abapp.dfn Callbacks and other information — this is a binary file.

abapp.wsp Widget lock status — this is a binary file.

wgt/* Widget resources — these might look like text, but they’re binary.

src/*.{c,cc,cpp,C,h}

Source files and headers.

src/*files, src/Usemsg

Files that list non-PhAB source files. Be sure to save the non-PhAB
source, too.

Makefile, common.mk

The make files.

target_directory/Makefile, target_directory/*/Makefile

The target files and their content.

application_name.ldb

Your application’s language database. Save any translation files as
well.

You’ll need to keep a matched set of all the files that PhAB generates; save the same
version of the abapp.dfn, src/ab*, and wgt/*.wgt? files.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 237

Generating application code © 2010, QNX Software Systems GmbH & Co. KG.

Tips on using CVS

It’s easier to save a PhAB application in CVS than RCS. Here are some things to keep
in mind:
• Flag the *.wgt? and abapp.dfn files as binary (-kb).

• Since binary files can’t be merged, try to prevent multiple people from modifying
the binary files at the same time. CVS doesn’t support locking; the closest you can
get is to set a “watch” on abapp.dfn (cvs watch on abapp.dfn).

This way, if you just check out an application, your copy of abapp.dfn is
read-only and PhAB doesn’t let you load the application. If you do want to modify
the application, you have to run cvs edit abapp.dfn, which makes the file
writable. Even though this doesn’t prevent other people from doing the same, it at
least adds you to a list of “editors” on the CVS server that other people can query.

Function prototypes
PhAB generates function prototypes used by the compiler to check that your functions
are called correctly. These prototypes are placed in abimport.h and optionally in
proto.h. Here’s how these files compare:

proto.h abimport.h

Generated by parsing your source code. Generated by looking at your
application’s settings.

Prototypes for all functions are
generated.

Only prototypes known to PhAB
(callbacks, setup functions,
pointer-to-function resources) are
generated.

You can have problems with
preprocessor directives (see “Potential
problems with generating proto.h”),
unusual C constructs, syntax errors, and
C++ code.

Prototypes don’t depend on the source
code.

Doesn’t work with C++. Contains the appropriate #ifdefs and
extern "C" declarations required by
C++.

Prototypes match what the functions
look like.

Prototypes match what the functions are
supposed to look like—if the source
code is different, the compiler can detect
it.

To suppress the generation of prototypes in proto.h:

1 Press F2 or from the Project menu, choose Properties to open the Project
Properties dialog.

238 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. How application files are organized

2 Click the Generate Options tab.

3 Disable the Scan Source Files for Prototypes option.

Potential problems with generating proto.h

In the interests of speed, the program that scans your source files for function
prototypes ignores preprocessor directives. This can cause some problems in
proto.h.

For example, say we have the following code:

#ifdef DOUBLE
for (i = 0; i < 18; i++, i++) {

#else
for (i = 0; i < 18; i++) {

#endif
x += 2 * (i + x);
y += x;

}

Since preprocessor directives are ignored, the prototype generator sees:

for (i = 0; i < 18; i++, i++) {
for (i = 0; i < 18; i++) {

x += 2 * (i + x);
y += x;

}

The two opening braces cause it some confusion, and an incorrect prototype is
generated. Look for this kind of thing if the prototype generator is creating incorrect
prototypes.

To fix the example above, we could remove the opening braces and put an opening
brace on the line after the #endif. Or we could do the following:

#ifdef DOUBLE
#define ADDAMOUNT 2
#else
#define ADDAMOUNT 1
#endif

for (i = 0; i < 18; i += ADDAMOUNT) {
x += 2 * (i + x);
y += x;

}

How application files are organized
PhAB stores each application as a directory structure. This structure consists of a main
directory that holds the application-definition file, two subdirectories that store the
module files and application source code, and, potentially, directories for different
development platforms:

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 239

How application files are organized © 2010, QNX Software Systems GmbH & Co. KG.

appl

src wgt
Platforms

reports

Directories for a PhAB application.

At the top of the application’s directory structure are the wgt and src directories. The
wgt directory contains the application’s widget files (files with extension .wgt* that
PhAB uses to store information about your modules that are part of your application).
The src directory contains header and source files needed to compile your
application. At the same level as src and wgt are the platform directories (e.g. x86,
mips, and arm). Their structure is the same as the structure generated by the
addvariant command. The reports directory contains the files created when you
choose the Generate Report command from the Project menu.

This directory structure is called the “Eclipse PhAB project” structure, because it is
allows you to create an application in PhAB and then load it in Eclipse as an “Eclipse
PhAB project”. Conversely, an application created in Eclipse can be loaded in PhAB.

If you first generated your application with an earlier version of Photon, it might have
been created as a single-platform application. In this case, the placement of files is
slightly different, as described in the sections that follow.

You can choose the target platforms on which to compile your application. You can
edit your target configuration by choosing Targets from the Build menu.

Multiplatform applications
Here’s what each directory contains for a multiplatform application:

appl The name of this directory is the same as your application. It contains
the application-definition file, abapp.dfn. Because this file is
proprietary to PhAB, you shouldn’t try to modify it.

appl/src The src directory contains the source code, headers, and a Makefile
generated by PhAB, as well as any code you create yourself.

For detailed information on the files stored in this directory, see “What
PhAB generates” in this chapter.

240 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. How application files are organized

appl/src/platforms

These directories contain the Makefile, object files, and executables
for the chosen platforms. The Makefile in the src directory runs
those in the platform directories.

appl/wgt The wgt directory contains your application modules. Because each
type of module has a different file extension, it’s fairly easy to recognize
the exact modules you want when importing modules from another
application. For more info, see the handy tables in the “Module types”
section in the Working with Modules chapter.

CAUTION: Always use PhAB to edit the module files in the wgt directory. Don’t try
to edit these binary files with another editor.

Never modify any files prefixed by ab.

!

Single-platform applications
Here’s what each directory contains for a single-platform application:

appl The name of this directory is the same as your application. It contains
the application-definition file, abdefn.app. Because this file is
proprietary to PhAB, you shouldn’t try to modify it. After you’ve
compiled and linked the application, the executable is also placed in this
directory.

appl/src The src directory contains the source code, headers, object files, and
Makefile generated by PhAB, as well as any code you create yourself.

For detailed information on the files stored in this directory, see “What
PhAB generates” in this chapter.

appl/wgt The wgt directory contains your application modules. Because each
type of module has a different file extension, it’s fairly easy to recognize
the exact modules you want when importing modules from another
application. For more info, see the handy tables in the “Module types”
section in the Working with Modules chapter.

CAUTION: Always use PhAB to edit the module files in the wgt directory. Don’t try
to edit these binary files with another editor.

Never modify any files prefixed by ab.

!

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 241

Editing source © 2010, QNX Software Systems GmbH & Co. KG.

Converting to Eclipse
If you have a single-platform application built with an earlier version of Photon, it is
converted to “Eclipse Project” format when you load it for the first time. When
converting an application, PhAB moves any existing Makefile to
src/default/Makefile.old.

If you have a multiplatform application built with an earlier version of Photon, it is
loaded by PhAB as is. You can choose to convert it to Eclipse Project format by
selecting Project→Convert to Eclipse Project.

Editing source
You can edit source files from an external editor, which you can configure in PhAB. If
you’re using PhAB from the IDE, you can use an editor in the IDE to work with
source files as well.

You can open source files for editing within PhAB from the Browse Files palette. If
the Browse Files palette isn’t visible, select Window→Show Project. The Browse
Files palette looks like this:

242 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Editing source

Browse Files palette.

To edit, view, or delete source code from within PhAB:

1 Click the source-code file.

2 Click the appropriate action button (Edit, View, Delete, ...).

You can also edit a file by double-clicking its name.

Choosing an editor or browser
To choose which external editor or browser the Edit and View buttons invoke, see
“Customizing your PhAB environment” in the PhAB’s Environment chapter.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 243

Compiling and linking © 2010, QNX Software Systems GmbH & Co. KG.

Creating a source module
To create a new source-code module:

1 Click Create to open the Create File dialog, then type the name of the new file.

2 If you wish to create the file using a template (for a header file or widget
callback), select a format from the Template combobox.

3 Click Create. You’ll see a terminal window that displays either an empty file or
a file that contains the template.

If you create any files, click Refresh to reread the application directory and refresh the
list of files in the Browse Files palette.

Changing the file display
To control which files are displayed in the Browse Files palette, use the following:

• Refresh—forces a reread of the application source directory to ensure that your file
list is current

• Filter—lets you specify a filename pattern

The Filter line at the bottom of the palette allows you to filter the list of the files the
Browse Files palette displays. For instance *.[ch] displays subdirectories and
filenames ending in .c and .h.

Compiling and linking
This section applies to standalone PhAB. For information about compiling and linking
applications using the IDE, see the “Building projects” section in the Developing
Programs chapter of the IDE User’s Guide.

After generating the application code, you need to:

• specify additional libraries your application needs

• use make to compile and link your application.

Specifying additional libraries
By default all PhAB applications link against libAp and libph. You can specify
addtional libraries libraries for your application in the Link Libraries field of the
Build and Debug Options dialog.

You can also specify how libraries are linked against your application:

• Static Lib—link the Photon and PhAB libraries into the application executable.
The application is larger than if you used the shared library, but runs without the
shared libraries. This might be useful in an embedded environment.

• Shared Lib—don’t include the libraries in the application. The application is much
smaller, but requires the Photon shared libraries in order to run.

244 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Compiling and linking

The default is shared libraries. To specify how libraries are linked, use the -B option in
the Link Libraries field of the Build and Debug Options dialog. For example,
consider the following Link Libraries line: -Bstatic -lphexlib -Bdynamic

-lmylib -Bstatic. This links against libphexlib.a, mylib.so, and since the
default libraries are considered being after the end, libAp.a and libph.a.

You can also specify a list of library callback functions when you start PhAB. For
more information, see appbuilder in the Utilities Reference.

Running make
Once you’ve chosen the library type, you’re ready to compile and link.

The first time you generate your application, PhAB creates Makefile and
common.mk files in the project directory (plus a Makefile for each platform selected
for multiplatform development) so you can make the application. Subsequent
generations don’t modify the file directly; instead, they update external files referenced
in the common.mk.

Once the common.mk is generated you can modify it, though you should only do so
when there’s no way to set options from within PhAB.

By default, the Makefile is compatible with the installed make command. You can
convert the file to a format that suits the make command you prefer—just ensure the
external file reference method is still compatible.

For more information, see “Including non-PhAB files in your application,” later in this
chapter.

To make your application:

1 Select Build→Build to open the Make Application dialog and start the make
process.

2 If any errors or warnings are detected during the make process, PhAB enables
the Edit and Restart buttons.

To edit the first file that contains errors, click Edit. After fixing the problems,
click Restart to run make again.

To stop make at any time, click Cancel.

3 Once the application has been compiled and linked, PhAB enables the Make
dialog’s Done button. Click Done to close the dialog.

The Done button is also enabled when you click Cancel.

Modifying the make command

By default, PhAB uses the installed make command to make your application. If you
need to change this command in any way, click Build Preferences.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 245

Customizing the build process © 2010, QNX Software Systems GmbH & Co. KG.

Any changes you make to Build Preferences settings are saved with the application
itself rather than as a global preference.

Customizing the build process
You can customize the build options on the Build and Debug Options tab on the
Project Properties dialog. Open the Project Properties dialog by selecting
Project→Properties. For a description of this dialog, see Build and Debug options in
the Working with Applications chapter.

When you use PhAB from the IDE, PhAB handles the code generation for the user
interface, while the IDE manages the build process. Therefore, only items in this
dialog that affect generation are available when you run PhAB from the IDE.

The first time you generate your application, PhAB creates a Makefile and a
common.mk in the top level directory. Subsequent generations don’t modify the file
directly. You can customize your build process by changing or adding compile and
link flags in common.mk.

Once the Makefile is generated you can modify it, though you should only do so
when there’s no way to set options from within PhAB.

By default, the Makefile is compatible with the installed make command. You can
convert the file to a format that suits the make command you prefer—just ensure the
external file reference method is still compatible.

For more information, see “Including non-PhAB files in your application,” later in this
chapter.

Running the application
How you run an application developed in PhAB depends on whether you’re running
PhAB standalone or from the IDE. When running PhAB from the IDE, you set up
launch configurations for targets through the IDE. For more information, see the
Preparing Your Target chapter and “Running projects” section of the Developing
C/C++ Programs chapter in the IDE User’s Guide.

From standalone PhAB, once your application has been compiled and linked without
errors, it’s ready to run. Just follow these steps:

1 Select Run from the Build menu. The following dialog appears:

246 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Debugging

2 If you’ve used PhAB to create a multilingual application, you can choose the
language from the Language list. For more information, see the International
Language Support chapter.

3 If your application needs command-line arguments, type them into Run
Arguments.

4 Click OK.

When your application runs, its working directory is the platform directory (i.e. the
directory containing the executable).

If you check Do not show this dialog again, the Run Options dialog doesn’t appear
the next time you run the application. To reenable the dialog, check the Ask for run
arguments option on the General tab of the AppBuilder Preferences Settings dialog.

If you check Always use these settings, then the settings are saved and used any time
you run this application. You can change the run arguments or language on the Run
Options tab of the Project Properties dialog.

If you use functions such as printf() in your application, the output goes to your
console if you run your application from PhAB. To see this output, open a pterm and
run the application from there instead of from PhAB.

PhAB is still active while your application is running. To switch between the two, use
the Window Manager’s taskbar.

If the target you chose to build your application for is not the same as the one you run
PhAB on, you’ll have to transfer your application’s executable to your target in order
to run it.

Debugging
You can run your application with a debugger, which can be handy if your application
crashes or behaves incorrectly.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 247

Managing targets © 2010, QNX Software Systems GmbH & Co. KG.

When running PhAB from the IDE, you use the debug features in the IDE. For more
information, see the Debugging Programs chapter in the IDE User’s Guide.

✸ To debug your application in standalone PhAB, choose Build & Debug from
the Build menu. This launches the application in your preferred debugger.

In order to debug an application, you have to compile a debug-build version. To do
this, select Build & Debug from the Build menu.

To switch between the debugger and the application, use the Window Manager’s
taskbar.

Managing targets
You can add or delete target platforms using the Manage Targets dialog. To open this
dialog, select Build→Targets.

Manage Targets dialog.

To add a target, click Add target.

248 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. The Build menu

• If you select a target that is already added to your application, the Makefile in the
target directory is overwritten.

• Targets on which Photon doesn’t run are greyed out and can’t be selected. The
targets which don’t support Photon are defined in a configuration file,
$QNX_HOST/usr/photon/appbuilder/nonphoton_targets.def.

To delete a target, select it and click Delete target.

Only the targets selected in this dialog are built.

The Build menu
Here’s a description of all the items in the Build menu:

Build & Run Standalone PhAB only. Builds the current application and then
runs it. This command saves any changed files before building the
application.

Build & Debug Standalone PhAB only. Builds your application and then debugs
it. This command saves any changed files before building the
application.

Rebuild All Standalone PhAB only. Rebuilds all files for all selected targets.

Build Standalone PhAB only. Builds the application for selected targets.

Make Clean Standalone PhAB only. Removes the executable and object files
from the target directories before running Make.

Generate UI Generates files related to the user interface, but doesn’t build the
application’s executable.

Run Standalone PhAB only. Runs the last built executable.

Targets Standalone PhAB only. Opens the Manage Targets dialog.

* For these commands, “all your selected targets” means the building process will take
place only for selected targets. To change the currently selected targets simply choose
Targets from the Build menu and change the selection in the target list. You can also
select targets from the Build and Debug Options tab of the Project Properties dialog.

Including non-PhAB files in your application
Your application can include files that aren’t created with PhAB, but you need to tell
PhAB how to find them.

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 249

Including non-PhAB files in your application © 2010, QNX Software Systems GmbH & Co. KG.

Eclipse Project applications
To add non-PhAB source files to an application, place them in the project’s src
directory.

Multiplatform applications
PhAB generates empty lists in the following files in the src directory, and you can
edit them:

indHfiles Non-PhAB header files. For example:

MYHDR = ../header1.h ../header2.h

indOfiles Non-PhAB object files. For example:

MYOBJ = file1.o file2.o

indSfiles Non-PhAB source files. For example:

MYSRC = file1.c file2.c

Remember to specify the filenames relative to where the Makefile is found. For a
multiplatform application, that’s relative to the platform directory:

• Header files and source files are usually in the parent directory, src, so their names
start with ../ .

• Object files are usually in the same directories as the Makefiles.

Single-platform applications
A single-platform application from an earlier version of Photon doesn’t have the
indHfiles, indOfiles, and indSfiles files. Instead, you’ll find MYHDR,
MYOBJ, and MYSRC in your Makefile, and you can specify filenames there.

Remember to specify the filenames relative to where the Makefile is found. For a
single-platform application, that’s relative to the src directory.

250 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Making a DLL out of a PhAB application

Adding libraries
If your application uses a library that isn’t included by default in the Makefile, you
can add it with the Link Libraries line on the Build and Debug Options tab of the
Project Properties dialog. Open this dialog by selecting Project→Properties.

For instance, if you want to link against the socket library, put the following in the
Link Libraries line:

-l socket.

You can also add it by editing the LDFLAGS variable in common.mk:

Making a DLL out of a PhAB application
You can make a PhAB application into a DLL, but there isn’t a PhAB option that will
do it for you. PhAB doesn’t know anything about building DLLs; it’s the PhAB
library that lets you turn a PhAB application into a DLL.

The application that loads your DLL must be a PhAB application so that the PhAB
library is properly initialized.

Even though PhAB lets you set up an initialization function and windows to open at
startup, they’re ignored when your application is a DLL. That’s because this regular
PhAB startup is done by main(), and the main() function of a DLL isn’t called. (Don’t
attempt to call it from your own code, either.)

Compiling and linking
In general, you can turn any application (whether created by PhAB or not) into a DLL
by adding -shared to the compiler and linker flags (and most likely adding a dll
extension to the filename). You should also give the -Bsymbolic option to the linker
to make sure that locally defined symbols that your DLL uses aren’t overridden by any
symbols in the executable with the same name.

To make these changes for a PhAB application, run the addvariant command at the
top level directory for the application. For example:

addvariant x86 dll

For more information, see addvariant in the Utilities Reference, and the
Conventions for Recursive Makefiles and Directories appendix of the QNX Neutrino
Programmer’s Guide.

Initializing your DLL
Typically, a DLL defines an initialization function that an application calls after it calls
dlopen() to load the DLL. Your DLL’s initialization function needs the full path to the
DLL.

Before calling any PhAB code, the initialization function must call ApAddContext(),
like this:

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 251

Making a DLL out of a PhAB application © 2010, QNX Software Systems GmbH & Co. KG.

ApAddContext(&AbContext, fullpath);

The arguments are:

AbContext A global data structure that PhAB puts in abmain.c.

This structure has the same name in every PhAB application or DLL, so you must link
your DLL with the -Bsymbolic option mentioned above.

fullpath The full path of your DLL, suitable for passing to open().

You can call ApAddContext() more than once, but you need to keep track of how many
times you called it.

ApAddContext() returns zero on success, or -1 on failure. Don’t call any Ap* functions
if ApAddContext() fails.

AbContext holds, among other things, the location of the executable or DLL that it’s
contained in, and the language translation files currently loaded for that file. At any
time, one of the registered contexts may be “current”; a few libAp functions
implicitly refer to the current context, and some require a current context when you
call them. At program startup, the program’s context is made current. You can unset it
or change it to a different context by calling ApSetContext():

ApContext_t *ApSetContext(ApContext_t *context);

This makes the given context current, and returns the previous current context. Both
can be NULL; but if you pass a non-NULL pointer, it must point to a registered context.

So, for example, your initialization code would look something like this in your main
application (with error checking removed for clarity):

void *handle = dlopen(path, 0)
int (*entrypnt)() = ((int(*)()) dlsym(handle, "myentrypoint");
(*entrypnt)(path, ABW_dll_pane);

And the initialization function in the DLL would look something like this:

int myentrypoint(const char *path, PtWidget_t *panewgt) {
ApAddContext(&AbContext, path);
ApCreateModule(ABM_dll_contents, panewgt, NULL);

}

Unloading your DLL
When an application is about to unload a DLL, it typically calls a cleanup function in
the DLL. In your DLL’s cleanup function, you must:

• close any widget databases that your DLL opened:

252 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Making a DLL out of a PhAB application

- that was opened using ApOpenDBase() with an argument pointing to a module
defined in the DLL

or

- that was opened using ApOpenDBaseFile() if the DLL’s AbContext was the
current context when it was called

• destroy any PhAB widgets that “belong” to your DLL; this means you have to
destroy any widgets:

- created by PhAB link callbacks defined in the DLL

- ApCreateModule() using a module in the DLL

- that are using any of the widget databases that must be closed

• if your DLL defined widget classes by calling ApAddClass(), remove them by
calling ApRemoveClass()

• call ApRemoveContext(), like this:

ApRemoveContext(&AbContext);

May 13, 2010 Chapter 9 • Generating, Compiling, and Running Code 253

Making a DLL out of a PhAB application © 2010, QNX Software Systems GmbH & Co. KG.

You must call ApRemoveContext() the number of times that you successfully called
ApAddContext(). After you’ve called ApRemoveContext(), your DLL must not call any
PhAB functions.

254 Chapter 9 • Generating, Compiling, and Running Code May 13, 2010

Chapter 10

Working with Code

In this chapter. . .
Variables and manifests 257
Global header file 260
Function names and filenames 261
Initialization function 262
Module setup functions 264
Code-callback functions 266
Geometry data types 267
Timers 267
Initializing menus 269
Delaying and forcing updates to the display 275

May 13, 2010 Chapter 10 • Working with Code 255

© 2010, QNX Software Systems GmbH & Co. KG. Variables and manifests

PhAB makes it easy to create the user interface for an application. Once PhAB has
generated code stubs for your application, you’ll need to write the parts that make the
application do something. This chapter describes how to work with the code for a
PhAB application.

For information about using threads in a Photon program, see the Parallel Operations
chapter.

Variables and manifests
Widget variables and manifests

PhAB creates global variables and manifests for every module you create, and every
widget with a unique instance name. This makes it easier to access the widgets from
your application code.

The global variable represents the widget’s name, and is defined in the abvars.h file.
Each global variable takes this form:

• ABN_widget_name—where widget_name is the widget name or module-instance
name that you defined in the Resources or Callbacks control panel. The value of
this variable is unique in the entire application.

The manifest represents the widget’s instance pointer, and is defined in the
abdefine.h file. This file, which is included in all application C files, also defines an
external reference to the global variables. Each manifest takes this form:

• ABW_widget_name—where widget_name is the widget name or module-instance
name that you defined in the Resources or Callbacks control panel.

PhAB doesn’t create ABW_... manifests for menu modules or menu items. Menus
typically don’t exist for very long, so manifests for them aren’t very useful. If you
need to change the resources of the PtMenu, create a setup function for the menu
module and do the work there. See “Module setup functions,” below.

The manifest for a window module refers to the last created instance of the module.
See “Handling multiple instances of a window,” below.

When PhAB detects a unique instance name it generates a global variable name and a
widget manifest. For example, if you change the instance name for a PtButton-class
widget to done, PhAB will generate the following:

• ABN_done

• ABW_done

May 13, 2010 Chapter 10 • Working with Code 257

Variables and manifests © 2010, QNX Software Systems GmbH & Co. KG.

A widget’s global variable and manifest are valid only after the widget has been
created, and before it has been destroyed.

Using the global variable and widget manifest
Let’s now look at some examples of how you can use the global name and widget
manifest within application code. First, here’s an example of using the ABN_done
constant and the ApName() function to check for a specific widget in a callback:

int
mycallback(PtWidget_t *widget, ...)

{

/* check for specific widget */
if (ApName(widget) == ABN_done) {

/* done button processing */
}

return(Pt_CONTINUE);
}

The next example uses ABW_done to change the done widget’s background color to
red (for more information, see the Manipulating Resources in Application Code
chapter):

int
mycallback(PtWidget_t *widget, ...)

{
PtSetResource(ABW_done, Pt_ARG_FILL_COLOR, Pg_RED, 0);

return(Pt_CONTINUE);
}

Remember that the global variable and the manifest are valid only after the widget has
been created and before it has been destroyed.

Handling multiple instances of a window
If you have more than one instance of a window module displayed at a time, then
you’ll have a problem accessing the widgets in the window. The problem stems from
the fact that ABW_instance_name for any widget in a window module points to the last
created instance of that widget. If you have more than one instance of the window,
then you have more than one instance of the widgets within the window created.

Let’s say you have the following window module:

258 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Variables and manifests

A sample search window.

Let’s assume that the instance names are:

• search_win for the window

• name_txt for the text field

• search_btn for the button.

If you have two instances of the window on the screen at the same time and the user
clicks on the Search button, how can you get the value in the Name text widget? Since
two instances of the window exist, two instances of the text widget exist.
ABW_name_txt points to the last instance of the text widget that was created.

The solution lies in the fact that ABN_name_txt can be used to refer to both instances
of name_txt, provided you have the widget pointer to the window that contains the
desired text widget. This is done using the ApGetWidgetPtr() function:

PtWidget_t *window_wgt, *text_wgt;

text_wgt = ApGetWidgetPtr(window_wgt, ABN_name_txt);

Where do you get window_wgt? In the above case, you’d have a code callback on the
Search button. The first parameter passed to that code callback is the widget pointer to
the Search button. You can use ApGetInstance() to get a pointer to the window that
contains the Search button.

So the callback would become:

int search_callback(PtWidget_t *widget, ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
char *name;
PtWidget_t *window_wgt, *text_wgt;

/* Get the window that the Search button is in. */

window_wgt = ApGetInstance(widget);

/* Given the window, find the text widget. */

text_wgt = ApGetWidgetPtr(window_wgt, ABN_name_txt);

May 13, 2010 Chapter 10 • Working with Code 259

Global header file © 2010, QNX Software Systems GmbH & Co. KG.

/* Now get the text. */

PtGetResource(text_wgt, Pt_ARG_TEXT_STRING, &name, 0);

/* The ’name’ variable now points to the correct name text.
Process the text as appropriate. */

...

return(Pt_CONTINUE);
}

Internal link manifests
PhAB generates a manifest for each internal link defined in your application:

• ABM_internal_link_name—where internal_link_name is a pointer to the
module’s internal definition.

For more information about using internal links, see the Accessing PhAB Modules
from Code chapter.

Global header file
PhAB lets you define one global header file for each application. PhAB generates this
file only once, the first time you generate the application’s code.

Once you’ve defined the header, PhAB automatically includes it in any generated C or
C++ stub file. So it’s best to define the header when you first create the application.
See “Startup Windows tab” in the Working with Applications chapter. You can modify
the header whenever you need to.

Here’s a handy way of using this single header file to simultaneously define all your
global variables and the extern references to those variables:

/* Header "globals.h" for my_appl Application */

#include <Pt.h>

#ifdef DEFINE_GLOBALS

#define GLOBAL
#define INIT(x) = x

#else

#define GLOBAL extern
#define INIT(x)

#endif

/* global variables */
GLOBAL int variable1 INIT(1);

If DEFINE_GLOBALS is defined, then the last line in the above example looks like:

260 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Function names and filenames

int variable1 = 1;

If DEFINE_GLOBALS isn’t defined, then the last line in the above example looks like:

extern int variable1;

Remember to define all your application’s global variables with the GLOBAL prefix, as
shown above. Also make sure to include the following line in one (and only one) of
your code files:

#define DEFINE_GLOBALS

Including this line ensures that the global variables are defined in this code file and
used as extern declarations in all other code files.

In the Makefile, make the code files dependent on the header file. That way, if you
make any changes to the header, all the code will be recompiled when you make your
application.

Function names and filenames
PhAB generates a function for every initialization function, module setup function,
callback, function menu item, and so on you’ve specified in your application. If you
don’t need a function, leave its name blank.

After a function has been generated, you’re free to modify it. There’s just one
condition: if you change the function’s name, you must also change the name you
specified in the link callback or internal link definition. Otherwise, PhAB will
continue to regenerate the old name every time it generates the application.

The way you specify the function name in PhAB determines the name of the file the
stub is put into:

function_name Create a C stub file called function_name.c

function_name@filename.ext

Create a stub function and put it in filename.ext. This file will
include the headers and function structure required to compile in
the Photon environment.

PhAB recognizes .cc, .cpp, and .C as C++ extensions.

If this file already exists, the stub function is added to it. You can
use this technique to reduce the number of code files for your
application. You can place any number of functions in the same
file. We recommend you put all functions related to a module in
the same file.

function_name.ext Short form for function_name@function_name.ext

May 13, 2010 Chapter 10 • Working with Code 261

Initialization function © 2010, QNX Software Systems GmbH & Co. KG.

class::function_name@filename.cc

Generate a stub C++ static member function, but no prototype.

class::function_name@

Don’t create a stub function or a prototype. Instead, invoke a
C++ static class member function. Prototypes aren’t generated
for class member functions; your application must have the
necessary declarations in its global header file.

function_name@ Generate a prototype for a C function, but not a stub. This is
useful if you’re using a library of C functions.

::function_name@ Generate a prototype for a C++ function, but not a stub. This is
useful if you’re using a library of C++ functions.

You can use C and C++ in the same PhAB application. See “What PhAB generates” in
the Generating, Compiling, and Running Code chapter.

Initialization function
PhAB lets you define an application-level initialization function. The PhAB API calls
this function once at startup, before any windows or other widgets are created. For
information on setting up this function, see “Startup Windows tab” in the Working
with Applications chapter.

The initialization function includes the standard argc and argv arguments so that your
application can parse command-line options if needed (see below). You can also use
this function to open any widget databases (see the Accessing PhAB Modules from
Code chapter) or other application-specific data files.

Here’s a sample initialization function generated by PhAB:

/* Y o u r D e s c r i p t i o n */
/* AppBuilder Photon Code Lib */
/* Version 2.01A */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

/* Application Options string */
const char ApOptions[] =

AB_OPTIONS ""; /* Add your options in the "" */

262 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Initialization function

int
init(int argc, char *argv[])

{

/* eliminate ’unreferenced’ warnings */
argc = argc, argv = argv;

/* Handle command-line options - if required.
Remember to ignore the ones handled by Photon. */

/* Typical spot to open widget databases */

/* Any other application-specific initialization */

return(Pt_CONTINUE);

}

Processing command-line options
PhAB applications have several command-line options by default:

-h height[%] The height of the window, in pixels, or as a percentage of the
screen height if % is specified.

-s server_name The name of the Photon server:

If server_name is: This server is used:

node_number //node_number/dev/photon

fullpath fullpath

relative_path /dev/relative_path

-w width[%] The width of the window, in pixels, or as a percentage of the
screen width if % is specified.

-x position[%][r] The x coordinate of the upper-left corner of the window, in
pixels, or as a percentage of screen width if % is specified. If r
is specified, the coordinate is relative to the current console.

-y position[%][r] The y coordinate of the upper-left corner of the window, in
pixels, or as a percentage of screen height if % is specified. If r
is specified, the coordinate is relative to the current console.

-Si|m|n The initial state of the main window (iconified, maximized, or
normal).

May 13, 2010 Chapter 10 • Working with Code 263

Module setup functions © 2010, QNX Software Systems GmbH & Co. KG.

You can suppress the options for the application’s size and position—see
“Command-line options” in the Working with Applications chapter. You can also
define additional options.

Edit the application’s usage message, which you’ll find in the Usemsg file in your
application’s src directory, to include any additional options. For details about the
usage message syntax, see usemsg in the QNX Neutrino Utilities Reference.

Use the getopt() function (described in the C Library Reference) to process the
command-line options. The following example shows how you could process several
options (three of which take arguments):

const char ApOptions[] = AB_OPTIONS "a:b:c:pqr";

int init(int argc, char *argv[]) {
int opt;
while ((opt = getopt(argc, argv, ApOptions)) != -1)

switch (opt) {
case ’a’ : ...
case ’b’ : ...
...
case ’?’ : ...
}

...
return Pt_CONTINUE;
}

AB_OPTIONS is a macro that defines the default options added by PhAB. It’s
generated by PhAB, based on your the settings from the Generate Options tab of the
Project Properties dialog. For example, if you disable the Enable Window Position
Arguments option, the AB_OPTIONS macro won’t contain x: or y:. You can process
the options in AB_OPTIONS in two ways:

• include a case branch for each option, but do nothing in it. You could also include
a default that prints a message if an invalid option is given.

or

• don’t include case branches for them. If you do this, you won’t be able to have a
default branch.

The PhAB library also looks at the ApOptions array to take into account the options
you’ve added. For example, for the above code the library recognizes that -px100
specifies the X position (along with -p), while -ax100 doesn’t.

Module setup functions
A module setup function is generated if you specify a function name in a module-type
link callback, as described in “Module callback” in the Editing Resources and
Callbacks in PhAB chapter.

All PhAB setup functions have three main arguments:

264 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Module setup functions

int
base_setup(PtWidget_t *link_instance,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate unreferenced warnings */
link_instance = link_instance,

apinfo = apinfo,
cbinfo = cbinfo;

/* your code here */

return(Pt_CONTINUE);
}

where:

link_instance an instance pointer for the PhAB module being created. You’ll need
to save this pointer if it points to a window module that supports
multiple instances.

apinfo A pointer to a ApInfo_t structure that provides:

• A pointer to the widget that caused the setup function to be
invoked (that is, the widget that caused the module to be
displayed). For an internal link, this pointer is a copy of the
widget pointer passed to ApCreateModule(); this pointer is
useful for positioning the module.

You can also determine the widget that caused the setup function
to be invoked by calling ApWidget().

• Reason codes related to the type of setup function being invoked:

ABR_PRE_REALIZE This setup function is being called before
the module is realized.

ABR_POST_REALIZE

This setup function is being called after the
module is displayed on the screen.

cbinfo a pointer to a common Photon callback structure. The structure
provides information related to the widget callback being invoked,
the Photon event, and some widget-specific callback data. The
format of the data varies with the widget class and callback type.
For more info, see PtCallbackInfo_t in the Widget Reference.

Normally, a setup function returns the value Pt_CONTINUE. This tells the PhAB API
to continue processing and to display the module being linked. For window and dialog
modules, you can return Pt_END to terminate the link callback and destroy the module
without displaying it. For window modules, you can return Pt_HALT to neither realize
nor destroy the window. This is useful if you want to realize the window later.

May 13, 2010 Chapter 10 • Working with Code 265

Code-callback functions © 2010, QNX Software Systems GmbH & Co. KG.

Code-callback functions
A code-callback function is generated if you specify a code-type link callback, as
described in “Code callbacks” in the Editing Resources and Callbacks in PhAB
chapter.

All code-type callback functions have three main arguments:

int
mycallback(PtWidget_t *widget,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate unreferenced warnings */
widget = widget,
apinfo = apinfo,
cbinfo = cbinfo;

/* your code here */

return(Pt_CONTINUE);
}

where:

widget A pointer to the widget instance that invoked the callback. This is a pointer
to a PtWidget_t structure, but you should treat it as a widget identifier;
don’t manipulate the members of the structure.

apinfo A pointer to a ApInfo_t structure that includes reason codes related to the
type of callback function being invoked:

ABR_CANCEL This callback function is being called by a Cancel link.

ABR_CODE This callback function is being called by a Code link.

ABR_DONE This callback function is being called by a Done link.

cbinfo a pointer to a common Photon callback structure. The structure provides
information related to the widget callback being invoked, the Photon event,
and some widget-specific callback data. The format of the data varies with
the widget class and callback type. For more information, see
PtCallbackInfo_t in the Widget Reference.

Your callback should return Pt_CONTINUE unless the description of the callback gives
you a reason to return some thing else. ABR_CANCEL and ABR_DONE callbacks can
return Pt_HALT to prevent the module from being closed.

266 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Geometry data types

Geometry data types
Here are the data structures that you’ll use a lot when specifying positions, sizes, and
areas:

PhPoint_t The x and y coordinates of a single point. You’ll use it to specify
locations on the screen, in widget canvasses, and so on.

PhDim_t. A width (w) and a height (h), usually in Photon coordinates. You’ll
use it to specify dimensions.

PhArea_t A rectangular area, expressed as a PhPoint_t for the area’s upper
left corner, and a PhDim_t that defines the area’s size.

PhRect_t A rectangle, expressed as two PhPoint_t structures, one for the
upper left corner, and one for the lower right.

PhTile_t A list of rectangles. This structure is used mostly in damage lists that
define the areas of the screen or a widget that need to be refreshed.

Photon maintains an internal pool of tiles because they’re frequently used, and using a
pool reduces the amount of time spent allocating and freeing the tiles. Use PhGetTile()
to get a tile from the pool, and PhFreeTiles() to return a list of tiles to the pool.

You probably won’t use the PhTile_t structure unless you’re using
a PtRaw widget or creating a custom widget. For more information,
see “PtRaw widget” in the Raw Drawing and Animation chapter, and
Building Custom Widgets.

The Photon libraries provide various functions that work with these data types:

PhAreaToRect() Convert an area into a rectangle

PhDeTranslateRect()

Detranslate a rectangle (subtract offset)

PhRectIntersect() Find the intersection of two rectangles

PhRectToArea() Convert a rectangle into an area

PhRectUnion() Determine a bounding box for two rectangles

PhTranslateRect() Translate a rectangle (add offset)

Timers
If you wish to schedule your own operations at particular time intervals, or if you just
want to implement a time-out or trigger an event at a particular time, you may want to
have a timer-based callback function. There are several ways to do this, with varying
amounts of difficulty and accuracy:

May 13, 2010 Chapter 10 • Working with Code 267

Timers © 2010, QNX Software Systems GmbH & Co. KG.

• PtTimer widget — easy, but not very accurate.

• RtTimer* functions — a bit more work, a bit more accurate.

• Timers in a separate process from the GUI — necessary for hard realtime. For
more information, see “Threads” in the Parallel Operations chapter.

The Photon libraries also include some low-level timer routines, but you need to be
careful using them:

PhTimerArm() Arm a timer event. Don’t use this function in an application that
uses widgets.

PtTimerArm() Arm a timer event on a widget. This routine is typically used when
building custom widgets. Some widgets (such as PtTerminal)
already use this type of timer, so calling PtTimerArm() may have
unexpected results.

Using PtTimer
The easiest way to implement a timer is to use a PtTimer widget. It defines these
resources:

Pt_ARG_TIMER_INITIAL

Initial expiration time.

Pt_ARG_TIMER_REPEAT

Optional repeat interval.

Pt_CB_TIMER_ACTIVATE

Expiration callbacks.

For more information, see the Widget Reference.

When you create a PtTimer widget in PhAB, it appears as a black box. The box
doesn’t appear when you run the application; it’s just a placeholder.

PtTimer is easy to use, but doesn’t give accurate timer events. In particular, it doesn’t
guarantee a constant repeat rate; since the repetition is handled by rearming the timer
for each event, any delays in handling the events accumulate. Kernel timers guarantee
an accurate repeat rate even if your application can’t keep up with them.

RtTimer* functions
The RtTimer* functions (described in the Photon Library Reference) give more
accurate timing than PtTimer, but still not hard realtime. They’re cover functions for
the POSIX functions that manipulate the kernel timers:

268 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Initializing menus

RtTimerCreate() Create a realtime timer

RtTimerDelete() Delete a realtime timer

RtTimerGetTime() Get the time remaining on a realtime timer

RtTimerSetTime() Set the expiration time for a realtime timer

These functions are more accurate than PtTimer because the timer is rearmed by the
kernel, not by Photon. However, if Photon is busy handling events, there could still be
delays in processing the expiration events.

Initializing menus
You may want to do various things to a menu before it’s displayed. You can use the
menu’s setup function to:

• enable, disable, or toggle items

• change the text for an item

You can also use a function menu item to generate new items at runtime.

The methods for doing these things are discussed in the sections that follow.

Enabling, disabling, or toggling menu items
If a menu item isn’t currently a valid choice, it’s a good idea to disable it so the user
won’t try to select it. Of course, you’ll need to enable it when appropriate, too. If your
menu has any toggle items, you’ll also need to set them before the menu is displayed.
To do these things, use the ApModifyItemState() function.

ApModifyItemState() takes a variable number of arguments:

• The first argument is a pointer to the menu module. For example, if the instance
name of the menu module is draw_menu, pass &draw_menu as the first parameter.

• The second argument is the desired state:

AB_ITEM_DIM to disable the item

AB_ITEM_NORMAL

to enable and unset the item

AB_ITEM_SET to set a toggle item

• The rest of the arguments form a NULL-terminated list of the menu items to be set
to the given state. This list consists of the ABN_... constants of the items.

For example, suppose our application has a menu module whose name is draw_menu,
which includes items with the instance names draw_group and draw_align. We
can disable these items with the following call:

May 13, 2010 Chapter 10 • Working with Code 269

Initializing menus © 2010, QNX Software Systems GmbH & Co. KG.

ApModifyItemState (&draw_menu, AB_ITEM_DIM,
ABN_draw_group, ABN_draw_align, NULL);

Changing menu-item text
You can use the ApModifyItemText() function to change the text for a menu item, for
example, to replace a command by its opposite. The arguments are as follows:

• a pointer to the menu module. For example, if the instance name of the menu
module is draw_menu, pass &draw_menu as the first parameter.

• the ABN_... constant for the menu item

• the new text

For example, our Draw menu might have an item that’s either Group or Split,
depending on what objects the user chooses. We could change the text of the
draw_group item in the draw_menu with the following code:

ApModifyItemText (&draw_menu, ABN_draw_group, "Split");

To get the current item text, call ApGetItemText().

If you change the item’s text, you probably need to change the shortcut, too, by calling
ApModifyItemAccel().

Generating menu items
Sometimes you may need to generate the menu items at runtime. For example,
PhAB’s Window menu includes a list of the modules in your application. To generate
menu items, add a function item to your menu module (as described in “Creating
function items” of the Working with Modules chapter), and edit the stub function
PhAB generates.

For example, if our draw_menu module includes a function item that calls
add_shapes(), PhAB generates the following code:

int add_shapes (PtWidget_t *widget, ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate ’unreferenced’ warnings */
widget=widget, apinfo=apinfo, cbinfo=cbinfo;

return (Pt_CONTINUE);
}

The parameters passed to this function are of no use.

We use the PtCreateWidget() function to create the menu items, which are usually
PtMenuButtonwidgets. As discussed in the Manipulating Resources in Application
Code chapter, we can use the same sort of argument list to set initial values for the
resources as we use with PtSetResources(). For example, to add an item Rectangle

with a keyboard shortcut of R:

270 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Initializing menus

PtArg_t args[2];
PtWidget_t *new_item;

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Rectangle", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "R", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);

The second parameter in the call to PtCreateWidget() is the parent of the widget; when
you’re generating menu items, this should be set to Pt_DEFAULT_PARENT. This
makes the new item a child of the current menu or submenu. Don’t call
PtSetParentWidget() in this case.

Next, we need a callback function for the new item. We have to create this manually;
PhAB doesn’t create a stub function for it. For example, the callback for our new item
could be:

int rect_callback(PtWidget_t *widget,
void *client_data,
PtCallbackInfo_t *cbinfo)

{
...

}

This callback is similar to a code callback generated by PhAB. Its arguments are:

widget A pointer to the menu item selected.

client_data Arbitrary data passed to the callback.

This is different from a PhAB code callback, which receives apinfo as its second
argument.

cbinfo a pointer to a common Photon callback structure. The structure
provides information related to the widget callback being invoked,
the Photon event, and some widget-specific callback data. The format
of the data varies with the widget class and callback type. For more
info, see PtCallbackInfo_t in the Widget Reference.

The last thing we need to do is add the callback to the menu item’s Pt_CB_ACTIVATE
callback list, using the PtAddCallback() function:

PtAddCallback (new_item, Pt_CB_ACTIVATE,
rect_callback, NULL);

The last argument to PtAddCallback() specifies what’s to be passed as the client_data
argument of the callback. For more information, see “Callbacks” in the Managing
Widgets in Application Code chapter.

Let’s put all this together:

int rect_callback(PtWidget_t *widget,
void *client_data,
PtCallbackInfo_t *cbinfo)

May 13, 2010 Chapter 10 • Working with Code 271

Initializing menus © 2010, QNX Software Systems GmbH & Co. KG.

{
...

}

int
add_shapes (PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

PtArg_t args[2];
PtWidget_t *new_item;

/* eliminate ’unreferenced’ warnings */
widget=widget, apinfo-apinfo, cbinfo=cbinfo;

PtSetArg (&args[0], Pt_ARG_TEXT_STRING,
"Rectangle", 0);

PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "R", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE,

rect_callback, NULL);

/* Repeat the above for other shapes... */

return (Pt_CONTINUE);
}

Creating submenus

You can create submenus in the menu created for a menu function item as follows:

1 Create a menu button for the cascade menu, setting the
Pt_ARG_BUTTON_TYPE to Pt_MENU_RIGHT or Pt_MENU_DOWN, as
required.

2 Save a pointer to the current parent widget by calling PtGetParent():

menu = PtGetParentWidget ();

3 Create a new PtMenu widget and set Pt_MENU_CHILD in the new menu’s
Pt_ARG_MENU_FLAGS resource.

PtMenu is a container, so this new menu becomes the current default parent.

4 Create submenu items, as described above.

5 Reset the default parent from the saved value by calling PtSetParentWidget():

PtSetParentWidget(menu);

6 Continue adding items to the top menu, if desired.

This example shows how to generate a submenu, as well as one way the client_data
can be used in a generic callback to identify the item chosen from the menu:

272 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Initializing menus

/* A menu with a submenu */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

/* Constants for the shapes in the menu */
#define RECTANGLE 1
#define CIRCLE 2
#define DOT 3
#define BLOB 4
#define POLYGON 5

int
ShapeMenuCB(PtWidget_t *widget, void *client_data,

PtCallbackInfo_t *cbinfo)
{

int shape_chosen = (int) client_data;

widget=widget, client_data=client_data, cbinfo=cbinfo;

/* This callback uses the client data to determine
which shape was chosen. */

switch (shape_chosen) {

case RECTANGLE: ...
break;

case CIRCLE : ...
break;

case DOT : ...
break;

case BLOB : ...
break;

case POLYGON : ...
break;

default : printf ("Unknown shape: %d\n",
shape_chosen);

}

return (Pt_CONTINUE);
}

int
add_shapes(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

PtArg_t args[3];
PtWidget_t *menu, *new_item;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

May 13, 2010 Chapter 10 • Working with Code 273

Initializing menus © 2010, QNX Software Systems GmbH & Co. KG.

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Rectangle", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "R", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE, ShapeMenuCB,

(void *)RECTANGLE);

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Circle", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "C", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE, ShapeMenuCB,

(void *)CIRCLE);

/* Create a menu button for the submenu. */

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Miscellaneous", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "M", 0);
PtSetArg (&args[2], Pt_ARG_BUTTON_TYPE, Pt_MENU_RIGHT, 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

3, args);

/* Save the current default parent. */

menu = PtGetParentWidget();

/* Create a submenu. It becomes the new default parent. */

PtSetArg (&args[0], Pt_ARG_MENU_FLAGS,
Pt_MENU_CHILD, Pt_MENU_CHILD);

new_item = PtCreateWidget(PtMenu, Pt_DEFAULT_PARENT, 1, args);

/* Add items to the submenu. */

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Dot", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "D", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE, ShapeMenuCB,

(void *)DOT);

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Blob", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "B", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE, ShapeMenuCB,

(void *)BLOB);

/* Restore the current default parent. */

PtSetParentWidget (menu);

/* Continue adding items to the top menu. */

PtSetArg (&args[0], Pt_ARG_TEXT_STRING, "Polygon", 0);
PtSetArg (&args[1], Pt_ARG_ACCEL_KEY, "P", 0);
new_item = PtCreateWidget(PtMenuButton, Pt_DEFAULT_PARENT,

2, args);
PtAddCallback (new_item, Pt_CB_ACTIVATE, ShapeMenuCB,

(void *)POLYGON);

return(Pt_CONTINUE);

274 Chapter 10 • Working with Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Delaying and forcing updates to the display

}

Delaying and forcing updates to the display
If your application is making changes to a lot of widgets at once, you might want to
delay updating the display until you’re finished making the changes. Doing this can
reduce flickering, and, in some cases, improve your application’s performance.

You can delay updating:

• all of your application’s widgets — the Photon libraries record any damage, but
don’t redraw the widgets.

• a specific container and its children — the libraries don’t even record the damage.

Globally
The Photon libraries use a hold count to let you delay updating the display for your
entire application:

• When the hold count is nonzero, the display isn’t updated. To increment the hold
count, call PtHold().

• When you modify a widget, the libraries mark it as damaged.

• When the hold count is 0, the libraries repair damaged widgets as normal. To
decrement the hold count, call PtRelease() or PtUpdate() (these two functions are
identical).

For more information about these functions, see the Photon Library Reference.

For a specific container
The Photon libraries use flux counts to let you delay updating the display for a specific
container. When the flux count is nonzero, and you modify the container or its
children, the widgets aren’t marked as damaged. What happens when the flux count
returns to zero depends on which functions you use:

PtStartFlux()
PtEndFlux() When the container’s flux count goes to zero, you must explicitly

damage the areas you want to repair.

PtContainerHold()
PtContainerRelease()

When the container’s flux count goes to zero, the entire container is
marked as damaged.

PtContainerHold() and PtContainerRelease() are easier to use, because you don’t
need to determine which widgets or areas you need to damage. However, there might
be more flickering than if you use PtStartFlux() and PtEndFlux().

May 13, 2010 Chapter 10 • Working with Code 275

Delaying and forcing updates to the display © 2010, QNX Software Systems GmbH & Co. KG.

If you need to determine if a container or any of its parents is currently in flux, call
PtIsFluxing().

For more information about these functions, see the Photon Library Reference.

Forcing updates
You can call PtFlush() at any time to immediately update the damaged areas of the
display. PtFlush() ignores the hold count and doesn’t change it.

If a container is in flux, and you modify it or its children, the Photon libraries don’t
mark the widgets as damaged, so PtFlush() doesn’t repair them.

Combining holds on the whole application, holds on containers, and calls to PtFlush()
can give you unexpected results. For example, if you hold the entire application,
damage part of a container, hold the container, modify it, and then call PtFlush(), the
libraries repair the damage — displaying whatever portion of the modifications that
affect the damaged area.

276 Chapter 10 • Working with Code May 13, 2010

Chapter 11

Manipulating Resources in Application
Code

In this chapter. . .
Argument lists 279
Setting resources 280
Getting resources 285
Application-level resources 292

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 277

© 2010, QNX Software Systems GmbH & Co. KG. Argument lists

This chapter describes how you can set and get the values of a widget’s resources
inside your application.

Although you can set the initial values of a widget’s resources in PhAB, you’ll
probably need to access them from your code. For example:

• when a dialog appears, you may need to initialize some of the data it displays by
setting resources beforehand

• when the user types a value in a PtText widget, you may need the value in your
program, so you’ll have to get resources.

In addition, if you use PtCreateWidget() to instantiate a widget in your code, you can
give an initial value to its resources.

The value for the resource is specified or retrieved using an argument list.

There are two steps involved in specifying or retrieving more than one resource value:

• Setting up the argument list, using the PtSetArg() macro.

• Setting the value, using PtSetResources(), or retrieving the value, using
PtGetResources().

If you’re getting or setting one resource, it’s easier to use PtGetResource() or
PtSetResource() — you don’t need to set up the argument list.

Argument lists
An argument list is an array of PtArg_t structures (see the Photon Library
Reference). Each of these elements identifies a widget resource and a new value for the
resource (or the address of a variable that will be set to the resource’s current value).

You can use the PtSetArg() macro to initialize each element of the argument list:

PtSetArg(PtArg_t *arg,
long type,
long value,
long len);

If the values don’t need to be calculated at runtime, you might be able to use
Pt_ARG() instead to initialize the argument list. For more information, see the Photon
Library Reference.

The first two arguments to PtSetArg() are the address of the argument list element, and
the name of the resource. The third and fourth arguments vary, depending on the type
of the resource, and on whether a set or a get operation is being applied. When setting
a resource, the third argument is always used to hold a resource value or a pointer to a
resource’s value.

The fourth argument is used as either a size indicator or a mask, depending on the type
of the value being specified. The possible resource types are given in the table below:

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 279

Setting resources © 2010, QNX Software Systems GmbH & Co. KG.

Type: Description:

Alloc An arbitrarily sized memory object

Array An array

Boolean A bit that’s either on or off

Color A color

Complex A resource that’s handled in a special way; see below.

Flag A value in which each bit has a different meaning

Function A pointer to a function

Image A pointer to a PhImage_t structure

Link A linked list

Pointer A pointer to an address that you specify

Scalar A value that can be represented within a single long

String A null-terminated string

Struct A fixed-size data type, usually a structure, float, or double

For information about the resources defined for each widget, see the Photon Widget
Reference.

Complex resources are special; see their descriptions in the Widget Reference for
instructions for setting and getting them. Widgets that have complex resources usually
have convenience functions to make it easier to work with them.

Setting resources
Remember that there are two steps involved in setting more than one resource value:

• Setting up the argument list, using the PtSetArg() macro.

• Setting the value, using PtSetResources().

If you’re setting one resource, it’s easier to use PtSetResource() — you don’t need to
set up the argument list. See “Setting one resource,” below.

Argument lists for setting resources
Many of the sections that follow demonstrate setting some resources for a
PtComboBox widget. Note that you can set more than one resource at a time. To do
so, define an argument list of the appropriate length:

PtArg_t args[5];

After initializing the argument list, you’ll actually set the resources.

280 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Setting resources

Scalar and color resources

When setting a scalar value, you should specify the value as the third argument to
PtSetArg(). The fourth argument isn’t used and should be set to 0.

For example, to set the bevel width of the combo box, pass the new value as the third
argument:

PtSetArg(&args[0], Pt_ARG_BEVEL_WIDTH, 5, 0);

When you call PtSetResources(), the widget copies the scalar value into its own
internal data structure.

String resources

Setting a string value is similar to setting a scalar value; you specify the string as the
third argument to the PtSetArg() macro. The fourth argument is the number of bytes to
copy; if it’s 0, strlen() is used to determine the length of the string.

For example, to set the default text for the combo box, you could specify a value for
the Pt_ARG_TEXT_STRING resource in one element of the argument list:

PtSetArg(&args[1], Pt_ARG_TEXT_STRING,
"Rectangle", 0);

When you call PtSetResources(), the widget copies the string into its own internal data
structure.

If you need to use international (non-ASCII) characters in a string, do one of the
following:

• Define the string in a widget database and use the language editor to translate the
string. See the International Language Support chapter.

• Use ped or some other UTF-compatible editor to edit the application’s C code. You
can then use the compose sequences described in “Photon compose sequences” in
the Unicode Multilingual Support appendix.

Most pterm-based editors, such as elvis and vedit, aren’t UTF-compatible.

For more information on ped, see the QNX Neutrino Utilities Reference.

• Look up the desired symbol in <photon/PkKeyDef.h>, use wctomb() to convert
the character from Unicode to UTF-8, and then code the hexadecimal digits in your
string. For example, the French word résumé would be coded as
"r\xC3\xA9sum\xC3\xA9"— difficult to read, but it works with all editors.

For more information on Unicode and UTF-8, see the appendix on Unicode
Multilingual Support.

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 281

Setting resources © 2010, QNX Software Systems GmbH & Co. KG.

Alloc resources

Some resources are designed to store an allocated block of memory. For example,
every widget includes a Pt_ARG_USER_DATA resource that you can use to store any
data you want in the widget’s internal memory. To set this resource, pass a pointer to
the data as the third argument to PtSetArg(). The fourth argument is the size of the
block of memory, in bytes:

my_struct user_data;

/* Initialize the data */

PtSetArg(&args[2], Pt_ARG_USER_DATA, &user_data,
sizeof (user_data));

The widget copies the number of bytes given into its internal memory when you call
PtSetResources().

Image resources

Image resources are designed to store a PhImage_t structure. For example, a
PtLabel has a Pt_ARG_LABEL_IMAGE resource that you can use to store an image.
To set this resource, create and initialize the PhImage_t structure, and pass a pointer
to it as the third argument to PtSetArg(). The fourth argument is 0:

PhImage_t *my_image;

/* Create and initialize the image. */

PtSetArg(&args[2], Pt_ARG_LABEL_IMAGE, my_image, 0);

The widget copies the image structure (but not any memory pointed to by the
PhImage_t members) into its internal memory when you call PtSetResources().

Array resources

When setting an array value, the third argument to PtSetArg() is the address of the
array. The fourth argument is the number of elements in the array.

For example, the following entry in the argument list can be used to set up
Pt_ARG_ITEMS, the list of choices for the combo box:

char *cbox_items[3] = {"Circle", "Rectangle", "Polygon"};

PtSetArg(&args[3], Pt_ARG_ITEMS, cbox_items, 3);

The widget copies the contents of the array into its own internal data structure when
you call PtSetResources().

Flag resources

When setting a flag, the third argument to PtSetArg() is a bit field specifying the value
of the bits to be set. The fourth argument is a bit mask indicating which elements of
the bit field should be used.

282 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Setting resources

For the value, use Pt_TRUE, Pt_FALSE, or a combination of specific bits and their
complements. Don’t use a value of 1, since it contains just one bit that’s on; that bit
might not correspond to the bit you’re trying to set.

For example, the following argument list specification turns on the combo box
widget’s Pt_COMBOBOX_STATIC flag (so that the combo box always displays the list
of items):

PtSetArg(&args[4], Pt_ARG_CBOX_FLAGS,
Pt_TRUE, Pt_COMBOBOX_STATIC);

When you call PtSetResources(), the widget uses the bit mask to determine which bits
of its internal flag resource representation to alter. It takes the bit values from the value
specified.

Function resources

When setting a function resource, pass a pointer to the function as the third argument
to PtSetArg(). The fourth argument is ignored; set it to 0.

For example, to specify a drawing function for a PtRaw widget, set the
Pt_ARG_RAW_DRAW_F resource as follows:

PtSetArg(&args[0], Pt_ARG_RAW_DRAW_F,
&my_raw_draw_fn, 0);

When you call PtSetResources(), the widget copies the pointer into the resource.

Pointer resources

When setting a pointer resource, the pointer must be given as the third argument to
PtSetArg(). The fourth argument is ignored and should be set to 0.

When you call PtSetResources(), the widget simply does a shallow copy of the pointer
into the resource.

The widget doesn’t make a copy of the memory referenced by the pointer; don’t free
the memory while the widget is still referencing it.

For example, every widget includes a Pt_ARG_POINTER resource that you can use to
store in the widget’s internal memory a pointer to arbitrary data. The widget never
refers to this data; it’s just for you to use. To set this resource, allocate the desired
memory, and pass a pointer to it as the third argument to PtSetArg(). The fourth
argument is set to 0:

my_struct *user_data;

/* Allocate and initialize the data */

PtSetArg(&args[0], Pt_ARG_POINTER, user_data, 0);

The widget copies the value of the pointer into its internal memory when you call
PtSetResources().

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 283

Setting resources © 2010, QNX Software Systems GmbH & Co. KG.

Link resources

When setting a Link, pass the address of an array of data as the third argument to
PtSetArg(). The fourth argument has some special meanings:

num append num items (if num is 0, one item is appended)

Pt_LINK_INSERT insert the first array element at the beginning of the linked list

Pt_LINK_DELETE remove the first list element that matches the first array element

The widget copies the data into its internal memory when you call PtSetResources().

Struct resources

When setting a struct resource, pass the address of the data as the third argument to
PtSetArg(). The fourth argument isn’t used and should be set to 0.

The widget copies the data into its internal memory when you call PtSetResources().

Boolean resources

When setting a Boolean value, you should specify the value as the third argument to
PtSetArg(), using 0 for false, and a nonzero value for true. The fourth argument isn’t
used, and should be set to 0.

For example, to set the protocol for a PtTerminal to ANSI, pass a nonzero value as
the third argument:

PtSetArg(&args[1], Pt_ARG_TERM_ANSI_PROTOCOL, 1, 0);

When you call PtSetResources(), the widget clears or sets one bit in its own internal
data structure depending on whether or not the value is zero.

Calling PtSetResources()
Once you’ve set up the argument list, you’re ready to set the resources. Remember that
PtSetArg() doesn’t set the resources; it just sets up the argument list.

You can use PtSetResources() to set the new values for resources:

int PtSetResources(PtWidget_t *widget,
int n_args,
PtArg_t *args);

The arguments to this function are a pointer to the widget, the number of entries in the
argument list, and the argument list itself.

You can also set resources by passing an argument list to PtCreateWidget(). The rules
for specifying values in argument list elements are the same. For more information,
see “Creating widgets” in the Managing Widgets in Application Code chapter.

For example, you could set the resources of a combo box, using the argument list
created above. Call PtSetResources() as follows:

284 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Getting resources

PtSetResources (ABW_shapes_cbox, 5, args);

In response to a change to its resources, a widget may have to redisplay itself. The
PtSetResources() call triggers this change. Any changes to the appearance of the
widget, however, don’t take effect until control is restored to the Photon
event-handling loop. Therefore, if PtSetResources() is called from within a callback
function or an event-handling function, the change to the widget won’t be visible until
all the callbacks in the callback list and all event handlers have been executed.

Setting one resource
If you’re setting one resource, it’s easier to use PtSetResource() than PtSetResources().
With PtSetResource(), you don’t need to set up the argument list.

The arguments to PtSetResource() are a combination of those for PtSetArg() and
PtSetResources():

int PtSetResource(PtWidget_t *widget,
long type,
long value,
long len);

The widget is a pointer to the widget whose resource you’re setting. The other
arguments are set just as they are for PtSetArg() when setting more than one resource.
See “Argument lists for setting resources,” above.

For example, setting one resource with PtSetResources() requires code like this:

PtArg_t args[1];

PtSetArg(&args[0], Pt_ARG_BEVEL_WIDTH, 5, 0);
PtSetResources (ABW_shapes_cbox, 1, args);

Setting the same resource with PtSetResource() is like this:

PtSetResource (ABW_shapes_cbox,
Pt_ARG_BEVEL_WIDTH, 5, 0);

It takes just one function call, and there’s no need for an args array.

Getting resources
There are two steps involved in retrieving more than one resource value:

• Setting up the argument list, using the PtSetArg() macro.

• Getting the value, using PtGetResources().

If you’re getting one resource, it’s easier to use PtGetResource() — you don’t need to
set up the argument list. See “Getting one resource,” below.

There are two methods of getting resources: one that involves pointers, and one that
doesn’t. The nonpointer method is usually easier and safer:

• Since you’re getting a copy of the value, the chances of overwriting the original by
accident are smaller.

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 285

Getting resources © 2010, QNX Software Systems GmbH & Co. KG.

• You don’t need to worry about the type of the value (short versus long).
• You have fewer local variables and don’t use pointers to them, which makes your

code easier to read and helps the compiler generate better code.

The pointer method may be less confusing if you’re getting the values of several
resources at once; you’ll have named pointers to the values instead of having to
remember which element in the argument list corresponds to which resource.

Not using pointers
If you set the value and len arguments to PtSetArg() to zero, PtGetResources() returns
the resource’s value (converted to long) as follows:

Resource type value len

Flags (any C type) Value of the resource N/A

Scalar (any C type) Value of the resource N/A

Pointer (any C type) Value of the resource N/A

String Address of the string N/A

Struct Address of the data N/A

Array Address of the first array
item

Number of items in the array

Alloc Address of where the
resource is stored

N/A

Boolean 0 (false) or 1 (true) N/A

Scalar and flag resources (nonpointer method)

To get a scalar or flag resource (of any C type) with the nonpointer method:

unsigned long getscalar(PtWidget_t *widget, long type) {
/* Get any kind of scalar */
PtArg_t arg;
PtSetArg(&arg, type, 0, 0);
PtGetResources(widget, 1, &arg);
return arg.value;
}

String resources (nonpointer method)

Here’s how to use the nonpointer method to get the value of a string resource:

const char *getstr2(PtWidget_t *widget, long type) {
PtArg_t arg;

PtSetArg(&arg, type, 0, 0);
PtGetResources(widget, 1, &arg);
return (char*) arg.value;
}

286 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Getting resources

Boolean resources (nonpointer method)

In the nonpointer method to get a boolean, the value (0 or 1) is returned in value
argument to PtSetArg():

int getbool(PtWidget_t *widget, long type) {
PtArg_t arg;

PtSetArg(&arg, type, 0, 0);
PtGetResources(widget, 1, &arg);
return arg.value;
}

Using pointers
When using the pointer method to get a scalar, array, or flag resource, the widget
always gives a pointer to an internal widget data structure. In the argument list element
you set up using PtSetArg(), you must provide the address of a variable to which the
internal data pointer can be assigned.

The fourth argument isn’t used for most types of resources. For arrays, it’s the address
of a pointer that on return from PtGetResources() points to the number of entries.

For example, to obtain the contents of the Pt_ARG_FLAGS resource (which is a
long) for a widget, you must pass the address of a pointer to a long:

const long *flags;
PtArg_t arg[1];

PtSetArg(&arg[0], Pt_ARG_FLAGS, &flags, 0);
PtGetResources(ABW_label, 1, arg);

CAUTION: PtGetResources() returns pointers directly into the widget’s internal
memory. Don’t attempt to modify the resources directly using these pointers. Such a
modification won’t have the desired effect and will likely corrupt the widget’s
behavior. Never free these pointers either — this will certainly result in a memory
violation or some other fault.

Using const pointers will help avoid these problems.

Changes to the widget’s state may invalidate these pointers; use them promptly.

!

If you wish to retrieve the value of a given resource and then modify that value:

1 Get the resource.

2 Copy the resource to a temporary variable.

3 Modify the temporary variable.

4 Using the modified copy, set the resource.

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 287

Getting resources © 2010, QNX Software Systems GmbH & Co. KG.

You can use the value obtained to set the value of another resource of this or any other
widget, as long as you don’t change the original value.

For example, you can use the following code to obtain Pt_ARG_TEXT_STRING, the
text string displayed in the label widget named label:

char *str;
PtArg_t args[1];

PtSetArg(&args[0], Pt_ARG_TEXT_STRING, &str, 0);
PtGetResources(ABW_label, 1, args);

You can then assign this text string to another label named label2:

PtSetArg(&args[0], Pt_ARG_TEXT_STRING, str, 0);
PtSetResources(ABW_label2, 1, args);

Scalar and flag resources (pointer method)

If you’re getting scalar or flag resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer to the appropriate C
type.

• len isn’t used.

When PtGetResources() is called, the pointer is set to point to the widget’s internal
storage for that resource.

Here are some functions that get a scalar or flag resource, using the pointer method:

unsigned long getlong(PtWidget_t *widget, long type) {
/* Get a long or long flags */
PtArg_t arg; unsigned long const *result;

PtSetArg(&arg, type, &result, 0);
PtGetResources(widget, 1, &arg);
return *result;
}

unsigned getshort(PtWidget_t *widget, long type) {
/* Get a short or short flags */
PtArg_t arg; unsigned short const *result;

PtSetArg(&arg, type, &result, 0);
PtGetResources(widget, 1, &arg);
return *result;
}

unsigned getbyte(PtWidget_t *widget, long type) {
/* Get a char or char flags */
PtArg_t arg; unsigned char const *result;

PtSetArg(&arg, type, &result, 0);
PtGetResources(widget, 1, &arg);
return *result;
}

288 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Getting resources

String resources (pointer method)

If you’re getting string resources using the pointer method:

• The value argument to PtSetArg() is the address of a char pointer.

• len isn’t used.

When PtGetResources() is called, the pointer specified is set to point to the widget’s
internal storage for the string resource. For example:

const char *getstr1(PtWidget_t *widget, long type) {
PtArg_t arg; const char *str;

PtSetArg(&arg, type, &str, 0);
PtGetResources(widget, 1, &arg);
return str;
}

Alloc resources (pointer method)

If you’re getting alloc resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer of the appropriate type
(the type is determined by the data given to the widget when this resource is set).

• The len isn’t used.

When PtGetResources() is called, the pointer specified is set to point to the widget’s
internal data.

Image resources (pointer method)

If you’re getting Image resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer to a PhImage_t
structure.

• The len isn’t used.

When PtGetResources() is called, the pointer specified is set to point to the widget’s
internal data.

Array resources (pointer method)

If you’re getting array resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer of the appropriate C
type (the first of the two C types given in the “New Resources” table).

• len is the address of a pointer of the second C type given.

When PtGetResources() is called:

• The pointer given by value is set to point to the beginning of the array in the
widget’s internal storage.

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 289

Getting resources © 2010, QNX Software Systems GmbH & Co. KG.

• The pointer given by len is set to point to the array-item count in the widget’s
internal storage.

Pointer resources (pointer method)

If you’re getting pointer resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer of the appropriate C
type.

• len isn’t used.

When PtGetResources() is called, the pointer specified is set to point to the same data
as the widget’s internal pointer. The data is external to the widget; you might be able
to modify it, depending on the resource.

Link resources (pointer method)

If you’re getting link resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer to a
PtLinkedList_t list structure. This structure contains at least:

struct Pt_linked_list *next

A pointer to the next item in the list.

char data[1] The address of the data stored in the list.

• len isn’t used.

When PtGetResources() is called, The pointer given by value is set to point to the first
node of the widget’s internal linked list.

If you get a callback resource, the value argument to PtSetArg() is the address of a
pointer to a PtCallbackList_t structure. For more information, see “Examining
callbacks” in the Managing Widgets in Application Code chapter.

Struct resources (pointer method)

If you’re getting struct resources using the pointer method:

• The value argument to PtSetArg() is the address of a pointer of the appropriate C
type.

• len isn’t used.

When PtGetResources() is called, the pointer specified is set to point to the widget’s
internal storage for the struct resource.

290 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Getting resources

Boolean resources (pointer method)

If you’re getting boolean resources using the pointer method:

• The value argument to PtSetArg() is a pointer to an int.

• len isn’t used.

When PtGetResources() is called, the int is set to 1 if the Boolean is true, or 0 if it’s
false.

For example, to get the value of the Pt_ARG_CURSOR_OVERRIDE resource of a
PtContainer:

PtArg_t arg;
int bool_value;

PtSetArg(&arg[0], Pt_ARG_CURSOR_OVERRIDE, &bool_value, 0);
PtGetResources (ABW_container, 1, arg);

if (bool_value) {
/* The container’s cursor overrides that of its children. */

}

Calling PtGetResources()
Use PtGetResources() to obtain the values of each of the resources identified in an
argument list:

int PtGetResources(PtWidget_t *widget,
int n_args,
PtArg_t *args);

The arguments to this function are the identifier for the widget, the number of entries
in the argument list, and the argument list itself.

PtGetResources() returns 0 on success, or -1 if an error occurs. A return code of -1
might indicate that you’ve tried to get the value of a resource that isn’t defined for the
widget.

Getting one resource
If you’re getting the value of one resource, it’s easier to use PtGetResource() than
PtGetResources(). With PtGetResource(), you don’t need to set up the argument list.
The arguments to PtGetResource() are:

int PtGetResource(PtWidget_t *widget,
long type,
long value,
long len);

The widget is a pointer to the widget whose resource you’re getting. The other
arguments are set just as they are for PtSetArg() when getting more than one resource
using the pointer method.

Here’s an example of getting one resource with PtGetResources() and the pointer
method:

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 291

Application-level resources © 2010, QNX Software Systems GmbH & Co. KG.

unsigned short *width;
PtArg_t arg;

PtSetArg(&arg, Pt_ARG_BEVEL_WIDTH, &width, 0);
PtGetResources(widget, 1, &arg);

With PtGetResource(), the code is like this:

unsigned short *width;

PtGetResource(widget, Pt_ARG_BEVEL_WIDTH, &width, 0);

CAUTION: PtGetResource() returns a pointer directly into the widget’s internal
memory. Don’t attempt to modify the resource directly using this pointer. Such a
modification won’t have the desired effect and will likely corrupt the widget’s
behavior. Never free the pointer either — this will certainly result in a memory
violation or some other fault.

Using a const pointer will help avoid these problems.

Changes to the widget’s state may invalidate the pointer; use it promptly.

!

Application-level resources
Applications have callback resources that you can set and get, just like widgets, except
the resources apply to the application as a whole instead of individual widget
instances. These resources apply to applications:

• Pt_CB_APP_EXIT

• Pt_CB_APP_WCLASS_CREATED

• Pt_CB_FILTER

• Pt_CB_RAW

• Pt_CB_HOTKEY

At this time, application-level resources are all callback resources. There may be other
resource types in a future version of the Photon library.

To manipulate application-level resources, you can use these functions:

• PtAppAddCallback()

• PtAppGetResource()

• PtAppGetResources()

• PtAppRemoveCallback()

• PtAppSetResource()

292 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Application-level resources

• PtAppSetResources()

The application-level resource functions are similar to their widget counterparts,
except you don’t specify a widget.

Setting resources
You can set application-level resources using these functions:

• PtAppAddCallback()

• PtAppSetResource()

• PtAppSetResources()

If you are adding a single callback to an application’s callback list,
PtAppAddCallback() is the easiest method. For example, here is an application exit
callback function that prints a message to the standard output when the application
exits:

int exit_cb(void *data,
PtCallbackInfo_t *cbinfo)

{
printf("I\’m exiting\n");
return(Pt_CONTINUE);

};

To add this callback to the application’s Pt_CB_APP_EXIT callback list using
PtAppAddCallback(), you would put this in the application’s initialization code:

PtAppAddCallback(Pt_CB_APP_EXIT, exit_cb, NULL);

You can also set a single callback using PtAppSetResource(), but instead of passing it
a pointer to the callback, you need to pass it the address of a PtAppCallback_t:

PtAppCallback_t exit_callback = {exit_cb, NULL};
PtAppSetResource(Pt_CB_APP_EXIT, &exit_callback, 0);

To use the PtAppSetResources() function, you’ll need to create an argument list using
PtSetArg(). For example:

PtAppCallback_t exit_callbacks[] = {{exit_cb, NULL}};
PtArg_t args[1];

PtSetArg(&args[0], Pt_CB_APP_EXIT, exit_callbacks,
sizeof(exit_callbacks)/sizeof(exit_callbacks[0]));

PtAppSetResources(1, args);

Removing callbacks
You can remove a callback using PtAppRemoveCallback(). It takes the same
arguments as PtAppAddCallback(). For example, to remove the callback added in the
examples above:

PtAppRemoveCallback(Pt_CB_APP_EXIT, exit_cb, NULL);

May 13, 2010 Chapter 11 • Manipulating Resources in Application Code 293

Application-level resources © 2010, QNX Software Systems GmbH & Co. KG.

Getting callbacks
You can retrieve a pointer to an application callback to examine it. You can use
PtAppGetResource() to get a single callback, or PtAppGetResources() to get one or
more.

For example, to retrieve a pointer to the application exit callback added in the previous
example, you would use:

PtAppCallback_t *my_exit_callback;

PtAppGetResource(Pt_CB_APP_EXIT, &my_exit_callback, 0);

See the section on Getting Resources for more information.

294 Chapter 11 • Manipulating Resources in Application Code May 13, 2010

Chapter 12

Managing Widgets in Application Code

In this chapter. . .
Creating widgets 297
Ordering widgets 298
Callbacks 299
Event handlers 302
Widget styles 305

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 295

© 2010, QNX Software Systems GmbH & Co. KG. Creating widgets

We recommend that you create your application’s UI in PhAB — it’s easier than doing
it in your code. However, if the interface is dynamic, you’ll probably have to create
parts of it “on the fly.”

Creating widgets
Creating a widget in your application code is a bit more work than creating it in PhAB.
That’s because PhAB looks after a lot of the physical attributes for you, including size,
location, and so on. If you create the widget in your code, you’ll have to set these
resources yourself.

To create a widget in your code, call PtCreateWidget(). The syntax is as follows:

PtWidget_t *PtCreateWidget(
PtWidgetClassRef_t *class,
PtWidget_t *parent,
unsigned n_args,
PtArg_t *args);

The arguments are:

class The type of widget to create (e.g. PtButton)

parent The parent of the new widget. If this is Pt_DEFAULT_PARENT, the new
widget is made a child of the default parent, which is the most recently
created container-class widget. If parent is Pt_NO_PARENT, the widget
has no parent.

n_args The number of elements in the args array.

args An array of PtArg_t structures (see the Photon Library Reference) that
store your settings for the widget’s resources. These settings are like the
ones used for PtSetResources(); see the Manipulating Resources in
Application Code chapter.

You can specify the default parent (used if the parent argument to PtCreateWidget() is
Pt_DEFAULT_PARENT) by calling PtSetParentWidget(). To assign a widget to a
different container, call PtReparentWidget().

Here are a few things to note about widgets created in application code:

• The widget isn’t realized until the container widget is realized. If the container is
already realized, you can call PtRealizeWidget() to realize the new widget.

• If you create a widget in a PhAB module and then destroy the module, the widget
is destroyed, too. The next time the module is created, it will appear as it was
specified in PhAB.

• If you save a global pointer to the widget, make sure you reset it to NULL when the
widget is destroyed. This can easily be done in the widget’s Pt_CB_DESTROYED
callback. Failing to reset the global pointer (and check it before using it) is a
frequent source of problems with widgets created in code.

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 297

Ordering widgets © 2010, QNX Software Systems GmbH & Co. KG.

Ordering widgets
The order in which widgets are given focus depends on the order in which they were
created or on the widget order specified in PhAB (see “Ordering widgets” in the
Creating Widgets in PhAB chapter). The backmost widget is the first in the tab order;
the frontmost widget is the last.

If you’re creating widgets programmatically, you can create them in the order in which
you want them to get focus, or you can use these functions to change the order:

PtWidgetInsert() Insert a widget in the widget family hierarchy

PtWidgetToBack() Move a widget behind all its brothers

PtWidgetToFront() Move a widget in front of all its brothers

Alternatively, you can use a widget’s Pt_CB_LOST_FOCUS callback (defined by
PtBasic) to override the tab order by giving focus to another widget.

In the lost-focus callback, use PtContainerGiveFocus() to give focus to the desired
widget, and return Pt_END from the callback to prevent focus from being given to the
original target of the focus change.

The Pt_CB_LOST_FOCUS callback is called a second time as focus is removed from
the widget to go to the new target. To avoid an endless loop, use a static variable to
indicate that this callback has already redirected focus.

Working in the widget family
The following functions can be used to work with the widget family hierarchy, and
may be useful in setting the focus order:

PtChildType() Determine the relationship between two widgets

PtFindDisjoint() Return the nearest disjoint parent widget

PtFindFocusChild() Find the closest focusable child widget

PtFindGuardian() Find the widget responsible for another widget’s actions

PtGetParent() Find the nearest parent widget that matches the specified class

PtGetParentWidget()

Return the current default widget parent

PtNextTopLevelWidget()

Get a pointer to the next top-level widget

PtValidParent() Identify a valid parent for a widget

298 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Callbacks

PtWidgetBrotherBehind()

Get the brother behind a widget

PtWidgetBrotherInFront()

Get the brother in front of a widget

PtWidgetChildBack()

Get the child that’s farthest back in a container

PtWidgetChildFront()

Get the child at the very front of a container

PtWidgetFamily() Traverse the widget hierarchy from back to front

PtWidgetParent() Get a widget’s parent

PtWidgetSkip() Skip to a widget in the next hierarchy

PtWidgetTree() Walk the widget tree from front to back

PtWidgetTreeTraverse()

Walk the widget family hierarchy from front to back

Callbacks
You can add and remove callbacks in your code as well as from PhAB — just watch
for differences between the two types!

Adding callbacks
An application registers callbacks by manipulating the widget’s callback resources.
The Photon widget classes employ a naming convention for these resources — they all
begin with Pt_CB_.

Callbacks can be added to the callback list kept by these resources using
PtAddCallbacks() to add several callback functions to the list or PtAddCallback() to
add just one. In either case, the first two arguments to the function are the widget and
the name of the callback resource to be augmented. The remaining arguments depend
on which function is used.

The third argument to PtAddCallbacks() is an array of callback records. Each record
contains a pointer to a callback function and the associated client data pointer that will
be passed to the callback function when it’s invoked. Each of these callback records is
copied to the widget’s internal callback list.

For example, we might want to have the application perform some action when the
user selects (i.e. presses) a button. The PtButton widget class provides the
Pt_CB_ACTIVATE callback resource for notifying the application when the button
has been pressed. To create the widget and attach a callback function to this callback
resource, we’d have to use code like this:

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 299

Callbacks © 2010, QNX Software Systems GmbH & Co. KG.

{
PtWidget_t *button;
int push_button_cb(PtWidget_t *, void *,

PtCallbackInfo_t *);
PtCallback_t callbacks[] = { {push_button_cb, NULL} };

...

button = PtCreateWidget(PtButton, window, 0, NULL);
PtAddCallbacks(button, Pt_CB_ACTIVATE, callbacks, 1);

}

where push_button_cb is the name of the application function that would be called
when the user presses the button. The PtCallback_t structure is used to define lists
of callbacks; for details, see the Photon Widget Reference.

When adding only one callback function to the callback list (as in this case), it’s
simpler to use PtAddCallback(). This function takes the pointer to the callback
function as the third argument, and the client data pointer as the final argument. The
above code fragment could be written more concisely as:

{
PtWidget_t *button;
int push_button_cb(PtWidget_t *, void *,

PtCallbackInfo_t *);
button = PtCreateWidget(PtButton, window, 0, NULL);
PtAddCallback(button, Pt_CB_ACTIVATE, push_button_cb,

NULL);
}

You can also give an array of callback records as the value for the callback resource
when using argument lists in conjunction with PtCreateWidget() or PtSetResources().
Since the callback list is an array, you should specify the array’s base address as the
third argument to PtSetArg(), and the number of elements as the final argument. In this
case, the callback records are added to the current callback list, if there is one. This
gives us another way to specify the callback for the above example:

{
PtArg_t arg[5];
int push_button_cb(PtWidget_t *, void *,

PtCallbackInfo_t *);
PtCallback_t callbacks[] = { {push_button_cb, NULL} };

...
PtSetArg(&args[0], Pt_CB_ACTIVATE, callbacks, 1);
PtCreateWidget(PtButton, window, 1, arg);

}

Each of these methods has its advantages. PtAddCallback() is of course simple.
PtAddCallbacks() is more efficient when there are several callbacks. Using PtSetArg()
and passing the result to PtCreateWidget() allows the widget creation and callback list
attachment to be performed atomically.

Callback invocation
When called, the callback function is invoked with the following parameters:

300 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Callbacks

PtWidget_t *widget

The widget that caused the callback function to be called, i.e. the one on which
the action took place.

void *client_data

Application-specific data that was associated with the callback when it was
registered with the widget.

The client data that’s passed to a callback you add from your code isn’t the same as the
apinfo data passed to a PhAB callback.

PtCallbackInfo_t *call_data

A pointer to a PtCallbackInfo_t structure (see the Photon Widget Reference)
that holds data specific to this invocation of the callback. It relates to the reason
the callback was called and may have data specific to the callback’s behavior.

The PtCallbackInfo_t structure is defined as:

typedef struct Pt_callback_info {
unsigned long reason;
unsigned long reason_subtype;
PhEvent_t *event;
void *cbdata;

} PtCallbackInfo_t;

The elements of PtCallbackInfo_t have the following meaning:

• reason — indicates the reason the callback was called; this is normally set to
the name of the callback resource whose callback list has been called.

• reason_subtype — indicates a particular callback type associated with the
reason; for most callbacks, this value is zero.

• event — a pointer to a PhEvent_t structure (see the Photon Library
Reference) that describes the Photon event that caused the callback to be
invoked.

• cbdata — call data that is specific to the callback resource that caused the
callback function to be called.

For more information, see the descriptions of the callbacks defined for each
widget in the Widget Reference.

Removing callbacks
You can remove one or more callbacks from a callback list associated with a widget
resource using the PtRemoveCallbacks() and PtRemoveCallback() functions.

CAUTION: Don’t try to remove a callback that was added through PhAB; unexpected
behavior may result.!

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 301

Event handlers © 2010, QNX Software Systems GmbH & Co. KG.

PtRemoveCallbacks() takes an array of callback records as an argument and removes
all the callbacks specified by it from the callback list. PtRemoveCallback() removes
just one callback function from the callback list. Both functions take the widget as the
first argument and the widget resource as the second argument.

To remove the callback from the button we’ve created above, we could do this:

int push_button_cb(PtWidget_t *, void *,
PtCallbackInfo_t *);

PtCallback_t callbacks[] = { {push_button_cb, NULL} };
PtRemoveCallbacks(button, Pt_CB_ACTIVATE, callbacks, 1);

or this:

int push_button_cb(PtWidget_t *, void *,
PtCallbackInfo_t *);

PtRemoveCallback(button, Pt_CB_ACTIVATE, push_button_cb,

Both the callback function pointer and the client data pointer are important when
removing callbacks. Only the first element of the callback list that has both the same
callback function and the same client data pointer will be removed from the callback
list.

Examining callbacks
You can examine the callback list by getting the value of the appropriate callback list
resource. The type of value you get from a callback list resource is different from the
value used to set the resource. Although this resource is set with an array of callback
records, the value obtained by getting the resource is a pointer to a list of callback
records. The type of the list is PtCallbackList_t. Each element of the list contains
a cb member (i.e. the callback record) and a next pointer (which points to the next
element of the list).

The following example shows how you can traverse through the Pt_CB_ACTIVATE
callback list for widget to find all instances of a particular callback function, cb:

...
PtCallbackList_t *cl;

PtGetResources(widget, Pt_CB_ACTIVATE, &cl, 0);
for (; cl; cl = cl->next)
{

if (cl->cb.func == cb)
break;

}

Event handlers
You can add and remove event handlers (raw and filter callbacks) in your application
code as well as in PhAB — however, there are some differences between the two
types.

302 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Event handlers

For a description of raw and filter callbacks and how they’re used, see “Event handlers
— raw and filter callbacks” in the Events chapter.

For information on adding event handlers in PhAB, see “Event handlers — raw and
filter callbacks” in the Editing Resources and Callbacks in PhAB chapter.

Adding event handlers
As with callbacks, you can also set or examine event handlers by performing a set or
get directly on the event handler resource. The following resources of PtWidget let
you specify handlers for Photon events:

• Pt_CB_FILTER

• Pt_CB_RAW

For more information about these callback resources, see the Photon Widget Reference.

The set operation requires an array of event handler records of type
PtRawCallback_t. These are similar to the callback records mentioned above,
having event_mask, event_f , and data fields.

The event mask is a mask of Photon event types (see PhEvent_t in the Photon
Library Reference) indicating which events will cause the callback function to be
invoked. The event_f and data members are the event handler function and client data,
respectively.

If you add an event handler to a realized widget and the widget’s region isn’t sensitive
to one or more of the events contained in the event mask, then the region is made
sensitive to them.

If you add the event handler before realizing the widget, you have to adjust the
region’s sensitivity yourself after realizing the widget. See PhRegionChange() in the
Photon Library Reference.

A get operation yields a PtRawCallbackList_t * list of event handler records. As
with callback lists, the list contains two members: next and cb. The cb member is an
event handler record.

You can add Pt_CB_RAW event handlers using either the PtAddEventHandler() or
PtAddEventHandlers() function.

You can add Pt_CB_FILTER event handlers using either the PtAddFilterCallback() or
PtAddFilterCallbacks() function.

The arguments to PtAddEventHandler() and PtAddFilterCallback() are:

widget Widget to which the event handler should be added.

event_mask Event mask specifying which events should cause the event handler
to be called.

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 303

Event handlers © 2010, QNX Software Systems GmbH & Co. KG.

event_f Event-handling function.

data A pointer to pass to the event handler as client data.

The arguments to PtAddEventHandlers() and PtAddFilterCallbacks() are:

widget Widget to which the event handlers should be added.

handlers Array of event handler records.

nhandlers Number of event handlers defined in the array.

Removing event handlers
You can remove Pt_CB_RAW event handlers by calling either
PtRemoveEventHandler() or PtRemoveEventHandlers().

You can remove Pt_CB_FILTER event handlers by calling either
PtRemoveFilterCallback() or PtRemoveFilterCallbacks()

CAUTION: Don’t remove event handlers that were added through PhAB; unexpected
behavior may result.!
The parameters to PtRemoveEventHandler() and PtRemoveFilterCallback() are:

widget Widget from which the event handler should be removed.

event_mask Event mask specifying the events the handler is responsible for.

event_f Event-handling function.

data Client data associated with the handler.

This looks for an event handler with the same signature — i.e. the same event_mask,
data and event_f — in the widget and removes one if it’s found.

The parameters to PtRemoveEventHandlers() and PtRemoveFilterCallbacks() are:

widget Widget from which the event handlers should be removed.

handlers Array of event-handler records.

nhandlers Number of event handlers defined in the array.

As with PtRemoveEventHandler() and PtRemoveFilterCallback(), an event handler is
removed only if it has the exact same signature as one of the event handler
specifications in the array of event handler records.

304 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget styles

Event handler invocation
When invoked, event handlers receive the same arguments as callback functions, i.e.
the parameters are:

• the widget that received the event (widget)

• the client data associated with the event handler (client_data)

The client data passed to this event handler isn’t the same as the apinfo data passed to
an event handler added through PhAB.

• the callback information associated with the particular event (info).

Event handlers return an integer value that the event handler must use to indicate
whether or not further processing should be performed on the event. If the event
handler returns the value Pt_END, this indicates that no further processing is to be
performed on the Photon event, and the event is consumed.

The event member of the info parameter contains a pointer to the event that caused the
event handler to be invoked. You should check the type member of this event to
determine how to deal with the event. It will be one of the event types specified in the
event_mask given when the event handler was added to the widget.

To retrieve the data associated with the particular event, call the PhGetData() with the
pointer to the event as a parameter. This will return a pointer to a structure with the
data specific to that particular event type. This structure’s type depends on the event
type.

Widget styles
Widget class styles let you customize or modify a widget’s appearance, size, and
behavior at runtime. They also let multiple looks for a single type of widget exist at
the same time. Essentially, a widget class style is a collection of methods and data that
define the look and feel of instances of the widget class.

Each widget class has a default style, but you can add or modify an arbitrary number
of additional styles at any time. You can even modify the default style for a class,
changing the look and feel of any instances of that class that are using the default style.

Each instance of a widget can reference a specific style provided by its class. You can
change the style that any widget is using whenever you want.

Each style has a set of members, including a name for the style and functions that
replace or augment some of the widget class’s methods. Methods are class-level
functions that define how the widget initializes itself, draws itself, calculates its extent,
and so on. For more information about methods, see the Building Custom Widgets
guide.

The members of a style are identified by the following manifests:

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 305

Widget styles © 2010, QNX Software Systems GmbH & Co. KG.

Pt_STYLE_DRAW The address of a function that’s called whenever any widget
that’s using this style needs to draw itself.

Pt_STYLE_EXTENT or Pt_STYLE_SIZING

The address of a function that whenever a widget that’s using
this style is moved, resized, or modified in some fashion that
may require the widget to move or resize (change in widget
data). This function is responsible for setting the widget’s
dimension to the appropriate values.

Pt_STYLE_ACTIVATE

The address of a function that’s called whenever a widget is
created that defaults to this style, and whenever a widget’s style
is changed from some other style to this one. This function is
the place to put manipulation of a widget’s control surfaces, the
addition of callbacks, or the setting of resources (to override
the widget’s defaults).

Pt_STYLE_CALC_BORDER

The address of a function that’s responsible for reporting how
much space is required to render the widget’s edge decorations
and margins.

Pt_STYLE_CALC_OPAQUE

The address of a function that’s responsible for calculating the
list of tiles that represents the opaque areas of a widget. This
list is used to determine what needs to be damaged below this
widget when it’s modified.

Pt_STYLE_DEACTIVATE

The address of a function that’s called whenever a widget using
this style is either being destroyed or is switching to a different
style.

Pt_STYLE_NAME The name of the style.

Pt_STYLE_DATA A pointer to an arbitrary data block for the style’s use.

For details about the members, see PtSetStyleMember().

The following functions let you create and manipulate the widget class styles:

PtAddClassStyle() Add a style to a widget class

PtCreateClassStyle() Create a class style

PtDupClassStyle() Get a copy of a widget class style

PtFindClassStyle() Find the style with a given name

306 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget styles

PtGetStyleMember() Get a member of a style

PtGetWidgetStyle() Get the style that a widget is currently using

PtSetClassStyleMethods()

Set multiple members of a style from an array

PtSetStyleMember() Set a member of a style

PtSetStyleMembers() Set multiple members of a style from a variable-length
argument list

PtSetWidgetStyle() Set the current style for a widget

Some of these functions require or return a pointer to a PtWidgetClassStyle_t
structure. Don’t access the members of this structure directly; call
PtGetStyleMember() instead.

You can also set the style for a widget instance by setting its Pt_ARG_STYLE resource
(see PtBasic in the Widget Reference). Setting this resource has the same effect as
calling PtSetWidgetStyle().

This example creates a style called blue and some buttons. Note that your widgets
can use a style before you’ve added the style to the class or even before you’ve created
the style. When you do create the style and add it to the class, any widgets that use the
style are updated immediately.

#include <Pt.h>

PtWidget_t *win, *but;
PtWidgetClassStyle_t *b;

void blue_draw (PtWidget_t *widget, PhTile_t *damage)
{

/* This is the drawing function for the blue style.
It draws a blue rectangle (without a label) for
the widget. */

PgSetFillColor(Pg_BLUE);
PgDrawRect(PtWidgetExtent (widget,NULL),

Pg_DRAW_FILL);
}

int use_blue_style(PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{
/* This callback sets the current style for the given

widget instance. If you haven’t attached the blue
style to the class, there shouldn’t be any change
in the widget’s appearance. */

PtSetWidgetStyle (widget, "blue");
return Pt_CONTINUE;

}

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 307

Widget styles © 2010, QNX Software Systems GmbH & Co. KG.

int attach_blue_style(PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{

/* This callback adds the style to the widget class.
If you’ve clicked on one of the "Use blue style"
buttons, the style of all buttons should change. */

PtAddClassStyle (PtButton, b);
return Pt_CONTINUE;

}

int main()
{

PhArea_t area = {{0,50},{100,100}};
PtArg_t argt[10];
PtStyleMethods_t meth;
PtCallback_t cb = {use_blue_style, NULL};
PtCallback_t cb2 = {attach_blue_style, NULL};
int unsigned n;

/* Initialize the methods for the style. */
meth.method_index = Pt_STYLE_DRAW;
meth.func = blue_draw;

PtInit(NULL);

/* Create the window. */
PtSetArg (&argt[0], Pt_ARG_DIM, &area.size, 0);
win = PtCreateWidget (PtWindow, NULL, 1, argt);

/* Create some buttons. When you click on one of these
buttons, the callback makes the widget instance use
the blue style. */

n = 0;
PtSetArg (&argt[n++], Pt_ARG_TEXT_STRING,

"Use blue style", 0);
PtSetArg (&argt[n++], Pt_CB_ACTIVATE, &cb, 1);
but = PtCreateWidget (PtButton, NULL, n, argt);

PtSetArg (&argt[0], Pt_ARG_TEXT_STRING,
"Use blue style also", 0);

PtSetArg (&argt[n++], Pt_ARG_POS, &area.pos, 0);
but = PtCreateWidget (PtButton, NULL, n, argt);

/* Create another button. When you click on it, the
callback attaches the blue style to the widget class. */

n = 0;
PtSetArg (&argt[n++], Pt_ARG_TEXT_STRING,

"Attach blue style", 0);
PtSetArg (&argt[n++], Pt_CB_ACTIVATE, &cb2, 1);
PtSetArg (&argt[n++], Pt_ARG_POS, &area.pos, 0);
area.pos.y = 85;
but = PtCreateWidget (PtButton, NULL, n, argt);

/* Copy the default style to make the blue style.
Replace the drawing member of the new style. */

b = PtDupClassStyle (PtButton, NULL, "blue");
PtSetClassStyleMethods (b,1,&meth);

PtRealizeWidget (win);

308 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget styles

PtMainLoop();

return EXIT_SUCCESS;
}

Photon hook
Photon provides a mechanism for you to allow a block of user code to be pulled in and
executed during the initialization of Photon applications. This functionality is most
frequently used to customize widget styles, allowing you to change the appearance
and behavior of widgets without having to re-compile, re-link, or otherwise
reconstruct executables.

The Photon hook can be used for many other things besides widget styles. For
example, it can be used to log application usage information, or for more complicated
situations such as remote control of an application.

PtInit() looks for a DLL, PtHook.so, in the search path, and executes the symbol for
PtHook() in the DLL.

Multi-hook

You can use the pt_multihook.soDLL and rename it as PtHook.so to load one or
several DLLs, pointed to by the PHOTON_HOOK environment variable. If
PHOTON_HOOK points to a DLL, that DLL is loaded and its PtHook() function is
executed. If PHOTON_HOOK points to a directory, each DLL in it is loaded and its
PtHook() function executed.

The PtHook.so feature may introduce security holes if the DLL code is insecure. If
you use the pt_multihook.so, you may wish to modify its code to add your own
security features. See the code listing below.

Example PtHook.so - the pt_multihook:

#include <stdio.h>

#include <stdlib.h>

#include <dlfcn.h>

#include <dirent.h>

#include <photon/PtHook.h>

static int hookit(const char *hookname, PtHookData_t *data) {
void *handle;

if ((handle = dlopen(hookname, 0)) == NULL)
return -1;

else {

PtHookF_t *hook;
if ((hook = (PtHookF_t*) dlsym(handle, "PtHook")) == NULL
|| (*hook)(data) == 0

)
dlclose(handle);

return 0;

} }

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 309

Widget styles © 2010, QNX Software Systems GmbH & Co. KG.

int PtHook(PtHookData_t *data) {
const char *hookname;
DIR *dir;

if ((hookname = getenv("PHOTON_HOOK")) != NULL
&& hookit(hookname, data) != 0
&& (dir = opendir(hookname)) != NULL

) {
struct dirent *de;
while ((de = readdir(dir)) != NULL)

if (de->d_name[0] != ’.’) {
char path[512];
if ((unsigned) snprintf(path, sizeof(path), "%s/%s",

hookname, de->d_name) < sizeof(path))
hookit(path, data);

}

closedir(dir);
}

return Pt_CONTINUE;

}

The PtHook function, declared in Photon/PtHook.h, looks like this:

int PtHook(PtHookData_t *data);

PtHookData_t has at least these members:

int size The size of the PtHookData_t structure.

int version The version of the Photon library that loaded the DLL.

The function can return Pt_END to ensure the DLL is not unloaded by PtInit(), or
return Pt_CONTINUE to ensure DLL is unloaded.

Setting widget styles using the Photon Hook

Here is a simple example of changing widget styles using the Photon Hook. The
following code changes the fill for all buttons to blue, based on the previous widget
style example.

To compile this code, use:

cc -shared button_sample.c -o PtHook.so

Place the PtHook.so in the search path to change the button style for all Photon
applications. You can get the search path with getconf _CS_LIBPATH.

#include <Pt.h>

static void (*button_draw)(PtWidget_t *widget, PhTile_t const *damage) = NULL;

void blue_draw (PtWidget_t *widget, PhTile_t *damage)

{

/* This is the drawing function for the blue style.
It draws a blue rectangle (without a label) for

the widget. */

PgSetFillColor(Pg_BLUE);

PgDrawRect(PtWidgetExtent (widget,NULL),
Pg_DRAW_FILL);

}

int

310 Chapter 12 • Managing Widgets in Application Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Widget styles

PtHook (void *data)
{

PtStyleMethods_t button_meth = { Pt_STYLE_DRAW, blue_draw };

PtWidgetClassStyle_t *button_style = PtFindClassStyle(PtButton, NULL);

button_draw = button_style->draw_f;

PtSetClassStyleMethods(button_style, 1, &button_meth);
return(Pt_END);

}

May 13, 2010 Chapter 12 • Managing Widgets in Application Code 311

Chapter 13

Control Surfaces

In this chapter. . .
What’s a control surface? 315
Control-surface API 316
Example 321

May 13, 2010 Chapter 13 • Control Surfaces 313

© 2010, QNX Software Systems GmbH & Co. KG. What’s a control surface?

What’s a control surface?
Control surfaces are geometrical regions within a widget that can position, size and
draw themselves. Additionally, they can define their own behavior. They do all this via
callbacks and event-handling flags that are supplied when the surface is created.

Control surfaces let you redefine the behavior for any area within a widget’s drawable
extent. Additionally, they can draw themselves as well as calculate their own
geometry. Conceptually, they can be considered as lightweight “widgets within
widgets.”

For example, consider a scroll bar. You get different actions, depending on where you
click on it: the arrow buttons step up and down; clicking in the trough pages up and
down; dragging on the handle scrolls as you move. PtScrollbar is implemented as
a single widget with several control surfaces on it.

You could also use control surfaces for:

• keyboard emulations, for example to add a Shift-lock to a Shift key

• panels of pushbuttons

• and so on.

It’s important to note that control surfaces are a property of a widget; they require a
widget in order to exist. However, a widget can possess any number of control
surfaces, making it possible to implement a whole user interface using only one
widget (say a PtWindow) at a fraction of the runtime data size (8% being a reasonable
upper bound) as opposed to implementing the same UI using widgets.

Limitations
There are a few limitations to control surfaces:

• The widget library provides services to widgets that can’t, for reasons of economy,
be provided to control surfaces. For instance, widgets have the concept of opacity,
which the library uses when drawing to reduce flicker. Control surfaces are simply
drawn from the back to the front without any regard to opacity.

• Control surfaces can’t contain other control surfaces, and don’t include the concept
of focus.

• Control surfaces are very raw elements and can provide only the behavior that you
implement when you create them. It isn’t difficult to implement a button as a
control surface, but building PtMultitext as one would require more effort.

Binding actions to control surfaces
You can bind control surfaces to any of a widget’s predefined actions or to
user-defined actions.

The types of control surfaces are:

May 13, 2010 Chapter 13 • Control Surfaces 315

Control-surface API © 2010, QNX Software Systems GmbH & Co. KG.

Regular surfaces Let you define an event mask and callback function for the
control surface.

Action surfaces Let you automatically bind a control surface to one of a widget’s
predefined actions.

Referring to control surfaces
You can refer to a control surface via:

• a pointer to the control surface structure (PtSurface_t *).

• a numerical identifier (16-bit unsigned PtSurfaceId_t). This ID uniquely
identifies a control surface within its associated widget. Valid values for the surface
ID are in the range of 1 through 255, inclusive.

While the pointer method is more direct and therefore quicker, it’s not as safe as the ID
method. To understand why, consider how control surfaces are organized and stored in
memory.

Unlike the widget hierarchy, which is implemented as a linked list, control surfaces are
stored as an array of surface structures (PtSurface_t). The major reasons for storing
them this way are:

• The array allows for quick traversal in both directions (which is a requirement,
since drawing is handled from back to front and events are processed from front to
back).

• The array reduces the memory requirement per surface. To satisfy the
quick-traversal requirement, a doubly linked list would have to be used, adding
significantly to the amount of memory required.

• You aren’t likely to add or remove control surfaces very often, so using an array
doesn’t cause much of a penalty in performance.

As you physically move control surfaces around in the stacking order, their placement
in the array changes, affecting their address in memory. In addition, as you add or
remove control surfaces to or from a widget, the array needs to be reallocated, which
also may cause the array itself to move around in memory. With all this possibility of
memory movement, numerical identifiers are the only reliable way of locating a
surface.

If you’re pretty certain that a widget’s surface configuration isn’t going to change, then
the pointer method is safe (and quicker, since the ID method needs to do a linear
lookup in the surface array).

Control-surface API
The functions listed below are described in the Photon Library Reference.

316 Chapter 13 • Control Surfaces May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Control-surface API

Creating and destroying control surfaces
The following functions create and destroy control surfaces:

PtCreateActionSurface()

Create a control surface within a widget, bound to a widget
action

PtCreateSurface() Create a regular control surface within a widget

PtDestroyAllSurfaces()

Destroy all of a widget’s control surfaces

PtDestroySurface() Destroy a control surface

PtDestroySurfaceById()

Destroy the control surface with a given ID

Finding IDs for control surfaces
To find surface and action IDs, use these functions:

PtSurfaceActionId()

Get the action ID for a surface

PtSurfaceId() Get the ID of a control surface

Calculating geometry for control surfaces
You must provide a function that calculates the control surface’s geometry. Control
surfaces are asked to calculate their geometry twice when the widget that owns them is
asked to calculate its geometry:

• once before the widget’s geometry calculation (which allows a widget to size itself
according to the requirements of its surfaces if it cares — and some widgets do)

• once after (allowing surfaces to position and size themselves according to the size
of the widget).

The post argument that’s passed to the geometry function tells you which case is in
progress.

A surface may also calculate its geometry based on the geometry of other surfaces.
Using PtCalcSurface() or PtCalcSurfaceById(), you can ensure that the surface you’re
interested in has calculated its geometry prior to examining it.

The actual recording of the surface’s geometry is simply a matter of directly modifying
the surface’s points array. Be sure you know how this array is organized before
proceeding. This organization is detailed in the documentation for PtCreateSurface().

These functions deal with a control surface’s geometry:

May 13, 2010 Chapter 13 • Control Surfaces 317

Control-surface API © 2010, QNX Software Systems GmbH & Co. KG.

PtCalcSurface() Force a surface to calculate its geometry

PtCalcSurfaceByAction()

Force all surfaces associated with an action to calculate their
geometry

PtCalcSurfaceById()

Force the control surface with a given ID to calculate its
geometry

PtSurfaceCalcBoundingBox(), PtSurfaceCalcBoundingBoxById()

Calculate the bounding box for a control surface

PtSurfaceExtent(), PtSurfaceExtentById()

Calculate the extent of a control surface

PtSurfaceHit() Find the control surface hit by a given point

PtSurfaceRect(), PtSurfaceRectById()

Get the bounding box of a control surface

PtSurfaceTestPoint()

Test whether or not a point is inside a control surface

Drawing control surfaces
Control surfaces are asked to draw themselves from back to front, after the widget
itself has drawn. No clipping is done for you. If you want clipping, you have to
implement the necessary logic to adjust the clipping list as surfaces are traversed, and
then reinstate the clipping stack after the last surface is drawn. Otherwise, you’ll get
some unexpected results.

The following functions damage control surfaces so they’ll be redrawn:

PtDamageSurface(), PtDamageSurfaceById()

Mark a surface as damaged so that it will be redrawn

PtDamageSurfaceByAction()

Damage all surfaces that are associated with an action

Activating control surfaces
This function activates a control surface:

PtCheckSurfaces() Match an event with the control surfaces belonging to a widget

318 Chapter 13 • Control Surfaces May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Control-surface API

Enabling and disabling control surfaces
You can enable and disable control surfaces, like widgets:

PtDisableSurface(), PtDisableSurfaceById()

Disable a control surface

PtDisableSurfaceByAction()

Disable all control surfaces associated with an action

PtEnableSurface(), PtEnableSurfaceById()

Enable a control surface

PtEnableSurfaceByAction()

Enable all control surfaces associated with an action

PtSurfaceIsDisabled()

Determine if a control surface is disabled

PtSurfaceIsEnabled()

Determine if a control surface is enabled

Finding control surfaces
To find a control surface, use these functions:

PtFindSurface() Find the control surface with a given ID

PtFindSurfaceByAction()

Find the control surface associated with a given action

PtWidgetActiveSurface()

Get a widget’s currently active control surface

Hiding and showing control surfaces
You can hide and show control surfaces, too:

PtHideSurface(), PtHideSurfaceById()

Hide a control surface

PtHideSurfaceByAction()

Hide all control surfaces associated with an action

PtShowSurface(), PtShowSurfaceById()

Show a hidden control surface

PtShowSurfaceByAction()

Show all hidden control surfaces associated with an action

May 13, 2010 Chapter 13 • Control Surfaces 319

Control-surface API © 2010, QNX Software Systems GmbH & Co. KG.

PtSurfaceIsHidden()

Determine if a control surface is hidden

PtSurfaceIsShown()

Determine if a control surface is shown

Ordering control surfaces
Like widgets, you can stack control surfaces:

PtInsertSurface(), PtInsertSurfaceById()

Insert a control surface in front of or behind another

PtSurfaceBrotherBehind()

Get the control surface behind a given one

PtSurfaceBrotherInFront()

Get the control surface in front of a given one

PtSurfaceInBack() Get the backmost control surface belonging to a widget

PtSurfaceInFront() Get the frontmost control surface belonging to a widget

PtSurfaceToBack(), PtSurfaceToBackById()

Move a control surface behind all other control surfaces
belonging to a widget

PtSurfaceToFront(), PtSurfaceToFrontById()

Move a control surface in front of all other control surfaces
belonging to a widget

Storing user data with control surfaces
There’s no callback data in the function associated with control surfaces; you can store
user data with control surfaces by calling:

PtSurfaceAddData(), PtSurfaceAddDataById()

Add data to a control surface

PtSurfaceGetData(), PtSurfaceGetDataById()

Get data associated with a control surface

PtSurfaceRemoveData(), PtSurfaceRemoveDataById()

Remove data from a control surface

320 Chapter 13 • Control Surfaces May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

Example
Here’s a program that creates some control surfaces:

#include <Pt.h>

/* This is the function that’s called when an event occurs
for our rectangular control surface. When a user clicks
on this surface, we’ll tally up the clicks and print how
many have occurred. */

static int rect_surface_callback(PtWidget_t *widget,
PtSurface_t *surface,
PhEvent_t *event)

{
static int rclicks = 1;
printf("Rectangle clicks: %d\n", rclicks++);
return(Pt_END);

}

/* This is the function which draws the contents of our
rectangular control surface. This is a very simple
example; it draws a red rectangle. */

static void rect_surface_draw(PtWidget_t *widget,
PtSurface_t *surface,
PhTile_t *damage)

{
PgSetFillColor(Pg_RED);
PgDrawRect(PtSurfaceRect(surface, NULL), Pg_DRAW_FILL);

}

/* This is the function keeps the size of the control
surface in sync with the size of the widget.
PtWidgetExtent() returns a rect containing the current size
of the widget.

PtSurfaceRect() is a macro; this means that you have direct
access to the data within your control surface. You do not
need to call any functions to change its size. Change the
data directly. */

static void rect_surface_calc(PtWidget_t *widget,
PtSurface_t *surface,
uint8_t post)

{
/* Do this only after widget has extented. */
if(post)
{
/* The rect occupies the top left quadrant of the window. */
PhRect_t *extent;
PhRect_t *srect;

extent = PtWidgetExtent(widget, NULL);
srect = PtSurfaceRect(surface, NULL);

srect->ul = extent->ul;
srect->lr.x = (extent->ul.x + extent->lr.x) / 2;
srect->lr.y = (extent->ul.y + extent->lr.y) / 2;

}
}

/* This is the function that’s called when an event occurs

May 13, 2010 Chapter 13 • Control Surfaces 321

Example © 2010, QNX Software Systems GmbH & Co. KG.

for our elliptical control surface. When a user clicks on
this surface, we’ll tally up the clicks and print how
many have occurred. */

static int ell_surface_callback(PtWidget_t *widget,
PtSurface_t *surface,
PhEvent_t *event)

{
static int eclicks = 1;
printf("Ellipse clicks: %d\n", eclicks++);
return(Pt_END);

}

/* This is the function that draws the contents of our
elliptical control surface. This is a very simple
example; it draws a green ellipse. */

static void ell_surface_draw(PtWidget_t *widget,
PtSurface_t *surface,
PhTile_t *damage)

{
PhRect_t *s = PtSurfaceRect(surface, NULL);
PgSetFillColor(Pg_GREEN);
PgDrawEllipse(&(s->ul), &(s->lr),

Pg_DRAW_FILL | Pg_EXTENT_BASED);
}

/* This is our main function. We create a window, initialize
our application with the Photon server and create two
control surfaces.

Notice that the second surface doesn’t supply the last
parameter, the extent calculation function. This isn’t
needed because of the fifth parameter, the height and
width stored in a point structure. This is a pointer
to the actual point structure within the window widget.
Thus, if the window’s extent changes, changing the
extent point structure, the control surface is
automatically updated with the new values! */

int main(int argc, char **argv)
{
PtArg_t args[1];
PtWidget_t *window;
const PhDim_t dim = { 200, 200 };

PtSetArg(&args[0], Pt_ARG_DIM, &dim, 0);
window = PtAppInit(NULL, &argc, argv, 1, args);

/* Create a rectangular control surface. */
PtCreateSurface(window, 0, 0, Pt_SURFACE_RECT, NULL,

Ph_EV_BUT_PRESS, rect_surface_callback,
rect_surface_draw, rect_surface_calc);

/* Create an elliptical control surface to fill the window. */
PtCreateSurface(window, 0, 0, Pt_SURFACE_ELLIPSE,

(PhPoint_t*)PtWidgetExtent(window, NULL),
Ph_EV_BUT_PRESS, ell_surface_callback,
ell_surface_draw, NULL);

PtRealizeWidget(window);
PtMainLoop();

322 Chapter 13 • Control Surfaces May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

return(EXIT_SUCCESS);
}

May 13, 2010 Chapter 13 • Control Surfaces 323

Chapter 14

Accessing PhAB Modules from Code

In this chapter. . .
Creating internal links 327
Using internal links in your code 329
Using widget databases 330

May 13, 2010 Chapter 14 • Accessing PhAB Modules from Code 325

© 2010, QNX Software Systems GmbH & Co. KG. Creating internal links

You can access any module directly from your application code by creating an internal
link to that module.

An internal link is like a link callback—it lets you specify the module type, a setup
function, and, where appropriate, a location. But unlike a link callback, which is
always associated directly with a widget callback, an internal link has no association
with any widget. Instead, PhAB will generate a manifest that you use in your
application code to specify which internal link you want to use. PhAB provides
several functions to help you use internal links (discussed below).

You can use internal links to:

• Create a PhAB module within application code.

Using a link callback, you can directly link a widget to a PhAB application module.
But sometimes you need to create the module from your application code instead.
To do that, use an internal link.

Here are some common situations where you should use an internal link to create a
module:

- when your application can display one of two different modules based on some
condition inside the application

- when you need to control the parentage of a module instead of using the PhAB
defaults (by default a new module is a child of the base window)

- when you want to display a menu when the user presses the right mouse button.

• Access and display picture modules.

You use picture modules primarily to replace the contents of existing container
widgets, such as PtWindow or PtPanelGroup.

Note that when you create a picture module using ApCreateModule(), you must
specify the parent container widget.

• Open widget databases. For more information, see “Using widget databases.”

Creating internal links
To create an internal link:

1 Choose Internal Links from the Application menu or press F4. You’ll see the
Internal Module Links dialog:

May 13, 2010 Chapter 14 • Accessing PhAB Modules from Code 327

Creating internal links © 2010, QNX Software Systems GmbH & Co. KG.

Internal Module Links dialog.

2 Click on the <NEW> option if it isn’t already selected.

3 Choose the type of module you want.

4 Fill in the fields in the Module Link Info section — see below.

5 Click on Apply, then click on Done. If the module you specified in the Name
field doesn’t exist, PhAB will ask whether it should create that module.

You can create only one internal link per module.

The fields in the Internal Module Links dialog include:

• Name—Contains the name of the module. To select from a list of existing modules,
click on the icon next to this field.

• Location—Determines where the module will appear; see “Positioning a module”
in the Working with Modules chapter.

• Setup Function—Specifies the function that will be called when the module is
realized (optional). To edit the function, click on the icon next to this field.

For more information, see “Module setup functions” in the Working with Code
chapter.

328 Chapter 14 • Accessing PhAB Modules from Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using internal links in your code

• Called—Determines whether the setup function is called before the module is
realized, after the module is realized, or both.

• Apply—Applies any changes.

• Reset—Restores the internal link information to its original state.

• Remove—Deletes the selected internal link from the Module Links list.

Using internal links in your code
Manifests

For every internal link defined in your application, PhAB generates a manifest so you
can identify and access the link.

Since PhAB derives the manifest name from the module name, each module can have
only one internal link. This may appear limiting, but PhAB provides module-related
functions (see below) that let you customize a module’s setup function and location
from within your application code.

To create the manifest name, PhAB takes the module’s name and adds ABM_ as a
prefix. So, for example, if you create an internal link to a module named mydialog,
PhAB creates the manifest ABM_mydialog.

Internal-link functions
The manifest is used by the following PhAB API functions:

ApCreateModule() Lets you manually create modules designed within PhAB.

A module created with this function behaves exactly as if it
were linked directly with a link callback. For example, if you
define a location and a setup function for the internal link, the
module will appear at that location and the setup function will
be called. Furthermore, widget callbacks, hotkeys, and so on
will become active.

ApModuleFunction() Lets you change the setup function associated with an internal
link.

ApModuleLocation() Lets you change the display location associated with an
internal link.

ApModuleParent() Lets you change the parent of a window or dialog module
associated with an internal link. This function applies only to
internal links for window and dialog modules.

ApOpenDBase() Lets you open the module associated with an internal link as a
widget database.

For more info on the above functions, see the Photon Library Reference.

May 13, 2010 Chapter 14 • Accessing PhAB Modules from Code 329

Using widget databases © 2010, QNX Software Systems GmbH & Co. KG.

Example — displaying a menu
Here’s how you can display a menu module when the user presses the right mouse
button while pointing at a widget:

1 In PhAB, create the menu module. Give it a name, such as my_menu.

2 Create an internal link to the menu module, as described above. For a popup
menu, you’ll usually want the module to be positioned relative to the widget or
relative to the pointer.

3 Select the widget to be associated with the menu. Make sure it has
Pt_MENUABLE set and Pt_ALL_BUTTONS cleared in its Pt_ARG_FLAGS.

4 Generate the code for your application. PhAB creates a manifest for the internal
link. In this example, it’s called ABM_my_menu.

5 Every widget that’s a descendant of PtBasic has a Pt_CB_MENU resource
that’s a list of callbacks invoked when you press the right mouse button while
pointing at the widget. Edit this resource, and create a callback function like
this:

int
text_menu_cb(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

ApCreateModule (ABM_my_menu, widget, cbinfo);

return(Pt_CONTINUE);

}

The widget passed to ApCreateModule() is used if the menu is to be positioned
relative to the widget; the cbinfo argument is used if the menu is to be positioned
relative to the pointer.

6 Compile, link, and run your application. When you press the right mouse button
over the widget, your menu should appear.

Using widget databases
Picture modules have two purposes:

• to let an application replace the contents of any container widget

• to serve as widget databases.

If you plan to use a widget several times within your application, a widget database
lets you design the widget just once. It also saves you from a lot of coding. All you
have to do is preset the widget’s resources and then, using PhAB’s widget-database

330 Chapter 14 • Accessing PhAB Modules from Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using widget databases

API functions, create a copy of the widget wherever you’d normally create the widget
within your code.

Here’s an example of a widget database—it’s part of the one that PhAB uses for its
own interface:

Widget database used for PhAB’s interface.

Creating a database
To create a widget database:

1 Create a picture module within your application.

2 Create an internal link to the picture module.

3 Create the widgets that you’ll need to access in your application code.

For example, let’s say you need to create a certain icon many times in your
application. By creating the icon inside the picture module, you can create as
many copies of the icon as you need at run time.

Preattaching callbacks
Besides being able to preset all of a widget’s resources in the database module, you
can also preattach its callbacks. When you create the widget dynamically, any
callbacks you attached will also be created.

By presetting the resources and callbacks of a database widget, you can easily reduce
the code required to dynamically create the widget to a single line.

May 13, 2010 Chapter 14 • Accessing PhAB Modules from Code 331

Using widget databases © 2010, QNX Software Systems GmbH & Co. KG.

Preattached callbacks work only with modules and functions that are part of your
executable. If your application opens an external file as a widget database, the PhAB
library won’t be able to find the code to attach to the callback.

Assigning unique instance names
Assign each widget in a widget database an instance name—this lets you refer to the
widgets when using database-related API functions.

Creating a dynamic database
You can also create a widget database that you can change dynamically. To do this,
open an external widget database—that is, one that isn’t bound into your
executable—with ApOpenDBaseFile() instead of ApOpenDBase().
ApOpenDBaseFile() lets you access a module file directly and open it as a database.

Once you’ve opened the module file, you can copy the widgets from that file to your
application’s internal database and save the resulting database to a new file that you
can reopen later.

Widget-database functions
PhAB provides several support functions to let you open a widget database and copy
its widgets into modules—you can copy the widgets as often as needed. PhAB also
provides convenience functions to let you copy widgets between databases, create
widgets, delete widgets, and save widget databases.

ApOpenDBase()
ApCloseDBase() These let you open and close a widget database.

To ensure that the database is always available, you typically
use ApOpenDBase() in the application’s initialization function.

ApOpenDBaseFile()
ApSaveDBaseFile()

These let you open and save external module files as databases
within your application.

ApAddClass() This function lets you indicate which widget classes you’re
likely to encounter when you call ApOpenDBaseFile(). When
you link your application, only those widgets it needs are linked
into it. If you access widgets that aren’t in your application
because they’re in an external database, you must add them to
your internal class table so that they can be linked in at compile
time.

332 Chapter 14 • Accessing PhAB Modules from Code May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using widget databases

ApCreateDBWidget()
ApCreateDBWidgetFamily()
ApCreateWidget()
ApCreateWidgetFamily()

These create widgets from the widget database.
ApCreateWidget() and ApCreateDBWidget() create a single
widget only, regardless of the widget’s class.

For a noncontainer-class widget, ApCreateWidgetFamily() and
ApCreateDBWidgetFamily() create a single widget; for a
container-class widget, they create all the widgets within the
container.

These functions differ in the parent used for the widgets:

• ApCreateDBWidget() and ApCreateDBWidgetFamily()
include a parent argument; if this is NULL, the widget has no
parent.

• ApCreateWidget() and ApCreateWidgetFamily() put the new
widget(s) in the current parent. To make sure the correct
widget is the current parent, call PtSetParentWidget() before
calling either of these functions.

Don’t use the manifests generated for the widget database’s picture module. Instead,
use the widget pointers returned by ApCreateWidget() or ApCreateDBWidget().

ApCopyDBWidget() Lets you copy a widget from one widget database to another.
Typically, you use this only when you’re dynamically creating
and saving widget databases within your application.

ApDeleteDBWidget()

Deletes a widget from a widget database.

ApGetDBWidgetInfo()

Gets information about a widget in a widget database, including
its name, class, parent, and level in the hierarchy.

ApGetImageRes() Pull out image-resource data from a widget and use this data to
set resources of a widget already displayed in your application.
This function lets you achieve very basic animation.

May 13, 2010 Chapter 14 • Accessing PhAB Modules from Code 333

Using widget databases © 2010, QNX Software Systems GmbH & Co. KG.

If you use a widget database to create widgets that have PhImage_t data attached to
them, don’t close the database with ApCloseDBase() until after those widgets are
destroyed. (Closing the database frees the memory used by the image.) If you must
close the database, make sure to copy the image data within your application code and
to reset the image data resource to point to your new copy.

For more information, see the “Animation” section in the
chapter on Drawing.

ApGetTextRes() This lets you extract text strings from a widget database. It’s
useful for multilingual applications, as the text is automatically
translated if the language support is enabled. For more
information, see the International Language Support chapter.

ApRemoveClass() Remove a widget class. If you’ve loaded a DLL that defines
widget classes, you should remove them before unloading the
DLL. For more information, see “Making a DLL out of a PhAB
application” in the Generating, Compiling, and Running Code
chapter.

For more info on widget database functions, see the Photon Library Reference.

334 Chapter 14 • Accessing PhAB Modules from Code May 13, 2010

Chapter 15

International Language Support

In this chapter. . .
Application design considerations 337
Generating a language database 342
Message databases 342
Language editor 343
Running your application 347
Distributing your application 349

May 13, 2010 Chapter 15 • International Language Support 335

© 2010, QNX Software Systems GmbH & Co. KG. Application design considerations

PhAB has builtin support for applications that need to be translated into other
languages.

By keeping a few design considerations in mind, and then following a few simple
steps, your application can very easily be translated into other languages without the
need to recompile or rebuild your application:

1 PhAB generates a database of all the text strings used by your application.

2 This text database is used by PhAB’s language editor to allow you to translate
each text string into another language.

3 The translated text strings are saved in a translation file, and are shipped with
your application.

4 To run your application in another language, simply set an environment variable
before starting the application. When PhAB’s API builds the application
windows, dialogs and other modules, it replaces the text strings with the new
translations.

It’s that simple.

Application design considerations
This section provides a few design considerations to assist you in creating a
language-independent application. You should keep these ideas in mind as you are
designing and implementing your application, since modifying the application after
it’s complete is more difficult.

Size of text-based widgets
Typically, when you design an application, you lay out the window using widgets that
have the default application text already preset. For example, if you had a Done button
at the bottom of a dialog window, the button itself would be only large enough to hold
the text string “Done”. You would also place the Done button based on its current size.
This works well in an application that doesn’t require translation, but causes many
problems for a language-independent application. What would happen if the translated
text were 12 characters instead of the default of 4 characters?

• The translated button could become much larger. In this case, the button may be so
wide that it writes on top of other widgets in the window. This would cause the
application to look ugly or poorly designed.

or

• The text could be truncated within the default size. In this case, the translated text
would be unreadable, and the user wouldn’t know what the button does.

For example, these buttons are too small to accommodate translated text:

May 13, 2010 Chapter 15 • International Language Support 337

Application design considerations © 2010, QNX Software Systems GmbH & Co. KG.

The solution is simple. Make the button larger to accommodate longer translated text
strings. Here’s an example:

Justification
In addition to making text-based widgets wider to accommodate translated text, you
should give some thought to the justification of text, based on the widget’s usage. For
example, in a simple text entry field, it’s quite common to place a label to the left side
of the field. If you make the label wider to allow for translation, the label itself moves
to the far left:

This problem is easily solved by setting the label’s horizontal alignment to be
right-justified. This allows for longer translated text strings, and still keeps a tight
alignment with the text entry field:

Another common labeling method is to place a label centered above or within the
border of a box. Usually the text is centered by placing it in the desired position based
on its current text:

When the text is later translated, it’s either too short or too long, and the box label
looks lopsided. The simple solution is to make the box title much wider than
necessary, and set the horizontal alignment to be centered.

338 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Application design considerations

There are probably many other cases similar to this but the important point is to think
about how the translated text will effect the look of the application. A lot of aesthetics
can be maintained simply by making text-based widgets wider and setting an
appropriate justification.

Font height
The fonts for some languages, such as Japanese or Chinese, are only readable at large
point sizes. For these fonts, the minimum size may be 14 points or even larger. If
you’ve designed your entire application using a 10-point Helvetica font, you’ll have
lots of problems when all your text-based widgets are stretched 4 or more pixels taller
to accommodate the larger fonts. If your application needs to be translated to other
languages, look into the font requirements before you begin, and use this minimum
font size in the default language built into the application.

If you really want to use the smaller font sizes for your default application text, you
can borrow a tip from the previous section. You can make the height of widget larger
and set the vertical alignment to center. However, this may not work well for text input
fields, and you should keep this consideration in mind.

Hard-coded strings
Another major area for consideration is with informational, warning, error or any
textual messages that are displayed in popup dialog windows or other points within the
application. Examples include calls to PtAlert(), PtNotice(), and PtPrompt(). The
most common way to handle text messages is to embed the text strings in the
application code. For example:

char *btns[] = { "&Yes", "&No", "&Cancel" };

answer = PtAlert(base_wgt, NULL, NULL, NULL,
"File has changed. Save it?",
NULL, 3, btns, NULL, 1, 3,
Pt_MODAL);

While this is quick to code, it’s impossible to translate without rewriting the
application code, recompiling, and so on. Essentially, you need to create a complete
new version of the application for each language supported.

May 13, 2010 Chapter 15 • International Language Support 339

Application design considerations © 2010, QNX Software Systems GmbH & Co. KG.

A much better method is to take advantage of PhAB’s message databases. Using a
message database, you can put all your text messages into a single file and give each
message a unique name. To retrieve the text at runtime, call ApGetMessage().

char *btns[3];
ApMsgDBase_t *textdb;
ApLoadMessageDB(textdb, "MyMessageDb");

btns[0] = ApGetMessage(textdb, "msgyes");
btns[1] = ApGetMessage(textdb, "msgno");
btns[2] = ApGetMessage(textdb, "msgcancel");
answer = PtAlert(base_wgt, NULL, NULL, NULL,

ApGetMessage(textdb, "file_save_msg"),
NULL, 3, btns, NULL, 1, 3,
Pt_MODAL);

ApCloseMessageDB(textdb);

An advantage of message databases is that they can be shared between applications. If
several applications use the same types of strings, this can make translation easier.

See the section Message Databases below for more information.

Another method of storing strings is to use PhAB’s widget databases. You can put all
your text messages in a single (or multiple) widget database and give each message a
unique name. To retrieve the text at runtime, call ApGetTextRes() (see the Photon
Library Reference for details). In the PtAlert() example above, it would become:

char *btns[3];

btns[0] = ApGetTextRes(textdb, "@msgyes");
btns[1] = ApGetTextRes(textdb, "@msgno");
btns[2] = ApGetTextRes(textdb, "@msgcancel");
answer = PtAlert(base_wgt, NULL, NULL, NULL,

ApGetTextRes(textdb, "@msg001"),
NULL, 3, btns, NULL, 1, 3,
Pt_MODAL);

This method allows the application to have no predefined text-based messages within
it, and it can be easily translated. In addition, because the text strings are put into a
widget database, PhAB automatically takes care of including the message texts when
it generates the application’s text string database. This may be more convenient than
using a separate message database, especially if you only have a few strings, they’re
only used in one application, and the application has a widget database anyway.

Use of @ in instance names
By default, PhAB ignores widgets that have no instance name or have the instance set
to the class name. This means if you place a label within a window and change the text
to something appropriate, PhAB skips this widget when it generates code for your
application. This is because PhAB assumes the label is constant and the application
doesn’t require access to it. However, when it comes to translating your application to
another language, this label becomes very important.

To differentiate between widgets that are important for translation but not for code
generation, PhAB recognizes a special character when placed in the first position of

340 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Application design considerations

the instance name. This special character is the @ character. This means you can give a
label the instance name of @label1, and PhAB will recognize this label when
generating the text language database, but skip over it when generating code.

This sounds fine, except PhAB also requires that all instance names be unique. This
rule must be adhered to so that PhAB knows which text string to replace at run time.
Unfortunately, dreaming up potentially hundreds of unique instance names that you
don’t really care about can be a lot of work. To simplify this task, PhAB lets you
specify a single @ character for the instance name, and PhAB appends an internal
sequence number to the end. This eliminates the need to keep track of all constant text
strings that require instance names just for translation.

If you want to group translation text strings (say, by module), you can give them all the
same instance name, and PhAB will append a sequence number to make the name
unique. For example, if you assign the name @base to several widgets, PhAB
generates @base, @base0, @base1, ... as instance names.

Bilingual applications
Sometimes it’s necessary to design an application to be bilingual. This means two
different languages are displayed in every text string. While this can be done, it’s
usually difficult for the user to read and understand.

PhAB allows you to use another approach. You can create the application in one
language and provide the ability to flip to the other language within application
control. This is done via a PhAB API function named ApSetTranslation(). This
function (which is described in the Photon Library Reference) changes the current
translation file for the application immediately, such that all future dialogs, windows,
and so on are drawn using the new translation file.

Any existing modules and widgets aren’t translated, only new ones. If you want
immediate feedback, you need to recreate the modules. This is easy for dialogs, but
more difficult for the base window; remember that destroying the base window exits
the application. One way to translate the contents of the base window is to put them in
a picture module, which can be recreated.

Common strings
If you have several applications to translate, you can reduce the work by sharing the
common text strings and translating them separately. To do this:

1 Create a message database populated with the common text strings.

May 13, 2010 Chapter 15 • International Language Support 341

Generating a language database © 2010, QNX Software Systems GmbH & Co. KG.

2 Use the PhAB Language Editor to translate the strings.

3 Once the database is created and translated, you can open it and use the strings
in other applications using ApLoadMessageDB() and ApGetMessage().

Generating a language database
This is the easy part. The most important aspect to this step is to know when to
generate the text string database. Ideally, you want to do this when all application
development is complete. This is because the run-time translation mechanism is
hinged on the widget’s instance name. If you generate your database mid-way through
the development and do the translations, it’s quite likely that a lot of widgets will be
changed or deleted, and translations may be deleted or the time wasted.

One exception to this would be bilingual applications. In this case, you might want to
generate and translate the application continuously so that the application’s
translations can be tested throughout the development.

To generate an application’s language database:

1 Select the Project→Language Editor→Generate Language Database.

2 A progress dialog appears, and the language database is generated.

3 Click Done.

The Languages item in the Application menu is disabled if you haven’t saved your
application for the first time and given it a name.

The database has now been generated and is ready for use with the PhAB Language
Editor. The name of the database is app.ldb, where app is the name of the executable
file for the application (which is typically the same as the name of the application,
unless you’ve used the Save As command to rename the application). The language
database is placed in the application’s directory (where the abapp.dfn file is found).

Message databases
A message database is a file that contains textual messages. Each message is identified
by a tag name.

To load a message database, call ApLoadMessageDB(). This function does the usual
file search based on the ABLPATH environment variable and the current language:

• If no language is defined, the message database is loaded. It must have a name of
name.mdb.

• If a language is defined, the function looks for a translation file called
name.language. Translation files can be created using the PhAB translation editor
— it can handle message databases.

342 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Language editor

To retrieve a message, given its tag, call ApGetMessage().

To close the message database, call ApCloseMessageDB().

You can create message databases using the PhAB message database utility phabmsg,
located in the PhAB application directory. This utility allows you to create new
message databases, and edit existing message databases.

Language editor
After the database has been generated, you can use PhAB’s Language Editor to
translate the default text strings to another language. The Language Editor is designed
to work both as a stand-alone application that you can distribute with your application,
or as an integrated part of PhAB itself.

PhAB Language Editor.

Starting the Language Editor within PhAB
When you are developing an application within PhAB, you can run the Language
Editor using the current application’s language database quite easily:

✸ Select Project→Language Editor→Run Language Editor.

This starts the Language Editor using the current application’s language database. At
this point, you can proceed to create a new translation file or edit an existing one.

May 13, 2010 Chapter 15 • International Language Support 343

Language editor © 2010, QNX Software Systems GmbH & Co. KG.

Starting the Language Editor as a stand-alone application
If you plan to allow your application to be translated at a customer site, you’ll need to
include the following files with your application:

• /usr/photon/appbuilder/phablang

• /usr/photon/appbuilder/languages.def

The languages.def file must be in the same directory as the phablang editor.

• your application’s language database file, xxx.ldb

To start at the client site, you can:

• type /usr/photon/appbuilder/phablang &

or

• create an entry in the Desktop Manager to run
/usr/photon/appbuilder/phablang (assuming the customer is running the
full desktop environment).

Once phablang is started:

1 Click on the Open Folder icon

to bring up the file selector.

2 Using the file selector, find the application’s xxx.ldb file.

3 Open the xxx.ldb file.

Creating a new translation file
To create a new translation file:

1 Click on the New button located at the bottom of the window. The Language
Selection dialog is displayed:

344 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Language editor

Language Selection dialog.

2 Choose the desired language from the list of supported language file types.

3 Click on Add.

4 At this point you’re asked to reconfirm your selection. Click on Yes.

The Language Selection dialog closes, and you should now see the newly created
translation file in the list of available translations.

Editing an existing translation file
To edit a translation file in the Translations list:

1 Click on the desired language from the list.

2 Click on the Open button.

The Text Translation Editor dialog appears. This editor displays all the text strings
available for translation in the current language database.

Translating the text
To translate a text string:

1 Click on the text string you want to translate. The selected text string is
displayed in the text areas at the bottom of the window:

Default Text the default text bound into the application

May 13, 2010 Chapter 15 • International Language Support 345

Language editor © 2010, QNX Software Systems GmbH & Co. KG.

Translation the current translation (if any) for the text string. This is the
area you use to type in the new translation.

• If you need to type characters that don’t appear on your keyboard, you can
use the compose sequences listed in “Photon compose sequences” in the
Unicode Multilingual Support appendix.

• You don’t have to translate every string. If a translation isn’t available, the
default text is used.

You can use the cut, copy, and paste buttons that are above the Translation area
when editing the translations.

2 Once you change the translated string, a green check mark and red X appear
above the Translation area.

3 Click on the green check mark to accept your changes (the shortcut is
Ctrl-Enter).

4 Click on the red X to cancel your changes.

Repeat the above steps for all the text strings you need to translate. When you’re
finished, click on the Save & Close button.

Hotkeys
One problem with translating an application is that the hotkey assignments no longer
match up if the translated string doesn’t include the accelerator key value. For this
reason, PhAB adds the accelerator key strings to the language database too.

When translating the text string, the translator can also change the accelerator key. If
the key used in the hotkey isn’t a function key (i.e. the key code is less than 0xF000),
PhAB automatically changes the hotkey to match the accelerator key.

For example, suppose your application has a button labeled Cancel. You’d set the
button’s Pt_ARG_ACCEL_KEY to be C, and arrange for Alt-C to invoke
Pt_CB_HOTKEY .

When you generate the language database, you’ll find that it includes the button’s label
and its accelerator key. If you translate the application into French, the button’s label
would become Annuler, so the hotkey Alt-C is no longer appropriate. Just translate
the button’s Pt_ARG_ACCEL_KEY to be A, and the hotkey automatically becomes
Alt-A when you run the application in French.

You’ll need to make sure there are no duplicate accelerator keys. If it does happen by
accident, only the first key defined is accepted.

346 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Running your application

Help resources
If you use the Photon Helpviewer for your application help and you plan on providing
multiple language help files for your application, the translator can also translate the
help topic paths to point to the correct positions within the corresponding help files.

Translation functions
You can build a custom language editor if the default one doesn’t meet your needs.
You’ll find these functions (described in the Photon Library Reference) useful:

AlClearTranslation()

Clear all the translations in a language or message database

AlCloseDBase() Close a language or message database

AlGetEntry() Get an entry from a language or message database

AlGetSize() Get the number of records in a language or message database

AlOpenDBase() Load a language or message database

AlReadTranslation()

Read a translation file into a database

AlSaveTranslation()

Save translations from a language or message database

AlSetEntry() Set the translated string for a database entry

You can use these functions to create your own language editor, or to convert a
language database to a different file format (for example, so you can send the file to a
non-Photon or non-QNX system for translation).

Running your application
After the language database is fully translated, the last step is to run the application.

When you create the translation files, they’re placed in the same directory as your
application’s abapp.dfn file. You can think of these as the working versions of the
files. When you run your application from PhAB, these are the versions you’ll use.

When you run your application outside of PhAB, it looks for the translation files as
follows:

1 In the directories listed in the ABLPATH environment variable, if defined. This
list takes the form:

dir:dir:dir:dir

Unlike the PATH environment variable, the current directory must be indicated
by a period, not a space. A space indicates the directory where the executable is.

May 13, 2010 Chapter 15 • International Language Support 347

Running your application © 2010, QNX Software Systems GmbH & Co. KG.

2 In the same directory as the executable, if the ABLPATH environment variable
isn’t defined.

You can think of these as the production versions of the translation files.

In order for the PhAB API to know which translation file you want to use, you must
set the ABLANG environment variable to one of the values below:

Language: Value:

Belgian French fr_BE

Canadian English en_CA

Canadian French fr_CA

Chinese zh_CN

Danish da_DK

Dutch nl_NL

French fr_FR

German de_DE

Italian it_IT

Japanese ja_JP

Korean (North) ko_KP

Korean (South) ko_KR

Norwegian no_NO

Polish pl_PL

Portuguese pt_PT

Slovak sk_SK

Spanish es_ES

Swedish se_SE

Swiss French fr_CH

Swiss German de_CH

UK English en_GB

USA English en_US

348 Chapter 15 • International Language Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Distributing your application

This list is current at the time this document was written, but may have since been
updated. For the latest version, see the file:

/usr/photon/appbuilder/languages.def

For example, to run an application in German (as spoken in Germany), you would do
the following:

$ export ABLANG=de_DE
$ myapplication

The application looks for the best match. For example, if the language extension
specified is fr_CA, the search is as follows:

1 Exact match (e.g. fr_CA).

2 General match (e.g. fr).

3 Wildcard match (e.g. fr*).

If no translation is found, the original text in the application is used.

The export command could be put in the user’s login profile so that the application
will run in each user’s preferred language.

Distributing your application
When you ship your application to the customer site, you must make sure to include
the translation files in your distribution list. For example, if your application is named
myapp, and you have translation files for French and German, you would need to
include the myapp.fr_FR and myapp.de_DE files with the application. These files
must be located:

• in the directories listed in the ABLPATH environment variable, if defined. This list
takes the form:

dir:dir:dir:dir

Unlike the PATH environment variable, the current directory must be indicated by
a period, not a space. A space indicates the directory where the executable is.

• in the same directory as the executable, if ABLPATH isn’t defined

If you want each customer to be able to translate the application, you’ll also need to
distribute:

• the language editor (phablang), which can be placed in the /usr/bin/photon
directory

• the language definition file (languages.def), which must be installed in the same
directory as the editor

May 13, 2010 Chapter 15 • International Language Support 349

Distributing your application © 2010, QNX Software Systems GmbH & Co. KG.

• the application’s language database (myapp.ldb)

The language database and the translation files that the customer creates should be in:

• one of the directories listed in the ABLPATH environment variable, if defined

• the same directory as the executable, if ABLPATH isn’t defined

350 Chapter 15 • International Language Support May 13, 2010

Chapter 16

Context-Sensitive Help

In this chapter. . .
Referring to help topics 353
Connecting help to widgets 353
Accessing help from your code 355

May 13, 2010 Chapter 16 • Context-Sensitive Help 351

© 2010, QNX Software Systems GmbH & Co. KG. Referring to help topics

For information about creating help files for use with the helpviewer, see “Creating
Help Files” in the helpviewer topic in the QNX Neutrino Utilities Reference.

Referring to help topics
The Helpviewer understands two distinct ways of specifying the location of the
HTML help text to be displayed:

• Universal Resource Locator (URL)

• topic path

Universal Resource Locator (URL)
A URL specifies the filesystem path of the help-text file. It specifies this path in the
standard HTML way, except that all files must reside on the local network. Here’s a
sample URL:

$QNX_TARGET/usr/help/product/photon/prog_guide/window_mgmt.html

URLs are case-sensitive. These URLs are restricted in scope to the help files; they
can’t be used to access the web.

Topic path
A topic path is a group of concatenated topic titles that are defined in the current topic
tree. For example, here’s the equivalent topic path to the above URL:

/Photon microGUI/Programmer’s Guide/Window Management

For the Helpviewer, the topic path is case-insensitive (unlike other HTML browsers)
and may contain the wildcard characters * or ?, where * matches a string and ?

matches a character. The first matching topic is selected.

A topic tree used by the Helpviewer must have at least three hierarchical levels: the
top level is known as the bookshelf, the second level as the book set, and the third
level as the book. A book may contain further levels of chapters and sections.

Entries in a bookshelf or book set should not contain any HTML, only .toc entries
for the next level; help text should only be found in books.

Connecting help to widgets
You can display help information for a widget in the Helpviewer or in a help balloon.
You can even use both methods in an application. For example, you could use a
balloon for short explanations and the Helpviewer for more detailed help.

No matter which method you choose, you need to do the following in each of your
application’s windows:

May 13, 2010 Chapter 16 • Context-Sensitive Help 353

Connecting help to widgets © 2010, QNX Software Systems GmbH & Co. KG.

1 Set Ph_WM_HELP in the Flags: Managed
(Pt_ARG_WINDOW_MANAGED_FLAGS) resource.

2 Set Ph_WM_RENDER_HELP in the Flags: Render
(Pt_ARG_WINDOW_RENDER_FLAGS) resource. This will add a ? icon to the
window frame. The user can click on it, and then click on a widget, and the help
information will be displayed.

If using the ? icon isn’t suitable for your application, see “Help without the ?
icon” later in this chapter.

For more information, see the Window Management chapter.

Displaying help in the Helpviewer
To use the Helpviewer to display help information for a widget, do the following:

1 Optionally, specify the Help Root (Pt_ARG_WINDOW_HELP_ROOT)
resource for each window in your application. This allows you to specify
relative topic paths for widgets inside the window.

Use a topic path, not a URL.

The topic root should start with a slash (/), and should be the top of all topics
for the window, usually taken from a TOC file in the /usr/help/product
directory. For example:

/Photon microGUI/User’s Guide

2 For each widget in the window, fill in the Help Topic (Pt_ARG_HELP_TOPIC)
resource. If you specified a topic root for the window, this topic path can be
relative to the window’s topic root. For example:

Introduction

When the user clicks on the ? icon and selects the widget, the help information is
displayed in the Helpviewer.

If you get an error message about a bad link when you ask for help for a widget, make
sure that the topic path is correct.

Displaying help in a balloon
To use a balloon to display help information for a widget:

1 Put the text you want displayed in the balloon into the widget’s Help Topic
(Pt_ARG_HELP_TOPIC) resource.

2 Set the Pt_INTERNAL_HELP flag in the widget’s Extended Flags
(Pt_ARG_EFLAGS) resource.

When the user clicks on the ? icon, and selects the widget, the help information
appears in a balloon.

354 Chapter 16 • Context-Sensitive Help May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Accessing help from your code

Help without the ? icon
In many applications the ? icon in the window frame isn’t suitable. However, you may
still want to use the Photon Helpviewer for displaying help. For example:

• For touch screens, the window’s ? icon may be too small.

• You may want the mouse pointer to change to the Help pointer when a key is
pressed.

To get the mouse pointer to change to the Help pointer, forward the Ph_WM_HELP
event to the window manager. The following code would be in a callback attached to a
PtButton widget labeled Help:

int
help_cb(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)
{

PhWindowEvent_t winev;

memset(&winev, 0, sizeof(winev));
winev.event_f = Ph_WM_HELP;
winev.rid = PtWidgetRid(window);
PtForwardWindowEvent(&winev);

return(Pt_CONTINUE);
}

The window must have Ph_WM_HELP set in the Managed Flags
(Pt_ARG_WINDOW_MANAGED_FLAGS) resource. You must also fill in the Help
Topic (Pt_ARG_HELP_TOPIC) resource for the widgets that have help, as outlined
above.

Accessing help from your code
Use the following functions (described in the Photon Library Reference) to access help
from your application’s code—you don’t need them if you’re using the method
described in “Connecting help to widgets”:

PtHelpUrl() Display help for the URL.

PtHelpUrlRoot() Set a URL root.

PtHelpTopic() Display help for a topic path.

PtHelpTopicRoot() Set a topic root.

PtHelpTopicTree() Display help for the topic tree.

PtHelpSearch() Search for a string.

PtHelpQuit() Exit the Helpviewer.

May 13, 2010 Chapter 16 • Context-Sensitive Help 355

Accessing help from your code © 2010, QNX Software Systems GmbH & Co. KG.

PtHelpUrlRoot() and PtHelpTopicRoot() don’t save the passed string, so don’t free it
until you’re finished using the help root.

356 Chapter 16 • Context-Sensitive Help May 13, 2010

Chapter 17

Interprocess Communication

In this chapter. . .
Connections 360
Sending QNX messages 365
Receiving QNX messages 366
Photon pulses 371
Processing signals 376
Other I/O mechanisms 377

May 13, 2010 Chapter 17 • Interprocess Communication 357

© 2010, QNX Software Systems GmbH & Co. KG.

A Photon application can’t always work in isolation — sometimes it needs to
communicate with other processes.

The QNX Neutrino operating system supports various methods of interprocess
communication (IPC), including:

• messages

• pulses

• signals

These methods can be used in a Photon application, as long as you’re careful.
However, it’s best to use Photon connections:

• Connectors let the two communicating processes find each other easily. Photon
connectors are registered with Photon, and therefore there’s no chance of
namespace conflicts between multiple Photon sessions running on the same
machine.

• Photon connections know how to direct messages even if you have multiple
connections between the same pair of processes. If you use raw Neutrino messages
and input processes, you might need to handle that possibility yourself.

On the other hand, here’s why raw Neutrino messages and/or pulses might sometimes
be better:

• If one of the two communicating processes is not a Photon application, it can’t use
the Photon library. In this case both processes should use Neutrino messages or
pulses.

• If the two processes don’t necessarily belong to the same Photon session, they will
need some other way of finding each other.

• If all you need is pulses, using a Photon connection is overkill.

The Photon main event-handling loop that your application calls is responsible for
handling Photon events so that widgets update themselves and your callback functions
are called.

This simple event-driven model of programming used with the Photon widget library
presents some challenges for the application developer because the event-handling
loop performs an unconditional MsgReceive() to obtain events from Photon. This
means your application has to be careful if it needs to call MsgReceive(), or Photon
events might go astray and the user interface might not be updated.

If you need to:

• respond to other messages in your application

• perform I/O using another mechanism (such as reading from a pipe)

• process signals

May 13, 2010 Chapter 17 • Interprocess Communication 359

Connections © 2010, QNX Software Systems GmbH & Co. KG.

• respond to pulses

you’ll need a way to hook your application code into the event-handling loop.
Similarly, you may want to be able to add time-outs to your application and associate
callback functions with them.

Connections
The process of establishing a connection uses an object called a connector. The
connector is a name that the server creates and owns, and the client attaches its
connection to. The connector is used only for establishing a connection.

The connector has a numeric ID and may also have a name associated with it. Both the
name and the ID are unique in their Photon session. Here are a few examples of how
the name can be used:

• When the server is started, it creates a connector with a well known name (such as
Helpviewer). Clients connect to it, send requests, and then disconnect. If a client
fails to find the name, it spawns the server and retries.

• A server creates a nameless connector and somehow sends the connector’s ID to a
potential client (drag-and-drop events use this scheme). The client then uses the ID
to connect to the server.

• If a client always needs to spawn a new server for itself even if a copy of the server
is already running, the client can call PtConnectionTmpName(). to create a
“temporary connector name,” pass the name to the server in a command-line
argument or an environment variable, and then connect to the server.

Naming conventions
You can define unique names for your connectors by following these naming
conventions:

• Names that don’t contain a slash are reserved for QNX Software Systems.

• Third-party products should register only names that start with a unique string (e.g.
an email address or a domain name) followed by a slash. For example,
www.acme.com/dbmanager.

Typical scenario
Here’s how you typically use connections:

1 The server calls PtConnectorCreate() to set up a connector, specifying a
function to call whenever a client connects to the connector.

2 If the client needs a connector ID to find the connector, the server calls
PtConnectorGetId() to determine the ID. The server then needs to give the ID to
the client.

360 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Connections

3 The client looks for a connector by calling PtConnectionFindName() or
PtConnectionFindId(). If these functions succeed, they return a client
connection object of type PtConnectionClient_t.

The client can make repeated attempts (within a specified time limit or until the
server terminates) to find the server by calling PtConnectionWaitForName().

4 If the client finds the connector, the library sets up a connection to it and invokes
the callback that the server specified when it created the connector, passing a
PtConnectionServer_t server connection object to the routine.

5 The server’s callback uses PtConnectionAddMsgHandlers() to set up a handler
for any messages from the client.

6 The client uses PtConnectionSend() or PtConnectionSendmx() to send a
message to the server. The client blocks until the server replies.

7 The library invokes the server’s message handler, which calls
PtConnectionReply() or PtConnectionReplymx() to reply to the client.

8 The client and server continue to exchange messages.

9 If the client wants to break the connection, it calls PtConnectionClientDestroy();
if the server wants to break the connection, it calls
PtConnectionServerDestroy().

10 When the server no longer needs the connector, it destroys it by calling
PtConnectorDestroy().

You can pass user data with the connection. The server calls
PtConnectionServerSetUserData() to specify the data that the client can retrieve by
calling PtConnectionClientGetUserData(). Similarly, the client calls
PtConnectionClientSetUserData() to specify the data that the server can retrieve by
calling PtConnectionServerGetUserData().

You can set up functions to handler errors; the server does this by calling
PtConnectionServerSetError(), and the client by calling
PtConnectionClientSetError().

The server can also use events to communicate with the client:

1 The client sets up one or more event handlers by calling
PtConnectionAddEventHandlers(). You can set up different types of messages,
and handlers for each type.

2 To send an event to the client, the server calls PtConnectionNotify(), which in
turn can call PtConnectionFlush() if there isn’t enough room for the notification
in the server’s buffer.

3 The server can change the size of the buffer by calling
PtConnectionResizeEventBuffer().

May 13, 2010 Chapter 17 • Interprocess Communication 361

Connections © 2010, QNX Software Systems GmbH & Co. KG.

Local connections
It’s possible for a process to create a connection to itself. The behavior of such a
connection differs a little bit from a normal connection:

• For a normal connection, the PtConnectionSend(), PtConnectionSendmx(), and
PtConnectionNotify() functions simply send a message or a pulse, and never
execute any user code (except when PtConnectionNotify() needs to flush the buffer,
which may cause Photon events to be processed in the normal way).

If the connection is local, PtConnectionSend(), PtConnectionSendmx(), and
PtConnectionNotify() invoke the handler directly, and both the calling code and the
handler must take into account any side effect of that.

• Another difference is that the handlers are called from a different context.
Normally, an event handler or message handler callback is called from within an
input function. Since input functions are not invoked unless you either return to the
main loop or call PtBkgdHandlerProcess() or PtProcessEvent(), it’s often safe to
assume that a handler won’t be invoked while a callback is running. But if the
connection is local, the handler is invoked directly by PtConnectionSend(),
PtConnectionSendmx(), or PtConnectionNotify(), and the assumptions need to be
modified accordingly.

• Another side effect of this is that if a message handler calls PtConnectionNotify(),
the client gets the notification before the reply. In other words, the client’s event
handler is invoked before the PtConnectionSend() or PtConnectionSendmx() call
returns. If the handler calls PtConnectionSend() or PtConnectionSendmx() again,
the call fails with errno set to EBUSY (that’s how the library protects itself from
infinite recursion).

The simplest way around this is to avoid sending notifications from within a
message handler — instead, the notification can be placed in the reply.

Example
This application uses a connector to determine if there’s already another instance of
the application running. The program takes two command-line options:

-e If another instance of the application is already running, tell it to exit.

-f file If another instance of the application is already running, tell it to open the
given file; otherwise just open the file.

Here’s the code:

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */

362 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Connections

#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

enum MyMsgType {
MY_MSGTYPE_EXIT, MY_MSGTYPE_OPEN_DOC, MY_MSGTYPE_TOFRONT
};

enum MyReplyType {
MY_REPTYPE_SUCCESS, MY_REPTYPE_BADMSG
};

struct MyMsg {
char docname[PATH_MAX];
};

struct MyReply {
enum MyReplyType status;
};

/* Handle a message from a client: */
static PtConnectionMsgFunc_t msghandler;

static void const *msghandler(
PtConnectionServer_t *connection, void *data,
unsigned long type, void const *msgptr,
unsigned msglen, unsigned *reply_len
)

{
struct MyMsg const *msg = (struct MyMsg const*) msgptr;
static struct MyReply reply;

reply.status = MY_REPTYPE_SUCCESS;
switch (type) {

case MY_MSGTYPE_EXIT :
PtConnectionReply(connection, sizeof(reply),

&reply);
PtExit(EXIT_SUCCESS);
break;

case MY_MSGTYPE_OPEN_DOC :
reply.status = OpenNewDocument(msg->docname);
break;

case MY_MSGTYPE_TOFRONT :
break;

default :
reply.status = MY_REPTYPE_BADMSG;

}

PtWindowToFront(ABW_base);
*reply_len = sizeof(reply);
return &reply;

}

/* Set up a new connection: */
static PtConnectorCallbackFunc_t connector_callback;

May 13, 2010 Chapter 17 • Interprocess Communication 363

Connections © 2010, QNX Software Systems GmbH & Co. KG.

static void connector_callback(
PtConnector_t *connector,
PtConnectionServer_t *connection,
void *data)

{
static const PtConnectionMsgHandler_t

handlers = { 0, msghandler };
if (PtConnectionAddMsgHandlers(connection,

&handlers, 1) != 0) {
fputs("Unable to set up connection handler\n", stderr);
PtConnectionServerDestroy(connection);

}
}

/* Application Options string */
const char ApOptions[] =

AB_OPTIONS "ef:"; /* Add your options in the "" */

/* Application initialization function */
int init(int argc, char *argv[])
{

struct MyMsg msg;
int opt;
long msgtype = MY_MSGTYPE_TOFRONT;
const char *document = NULL;
static const char name[] = "me@myself.com/ConnectionExample";

while ((opt = getopt(argc, argv, ApOptions)) != -1)
switch (opt) {

case ’?’ :
PtExit(EXIT_FAILURE);

case ’e’ :
msgtype = MY_MSGTYPE_EXIT;
break;

case ’f’ :
document = optarg;

}

if (document)
if (msgtype == MY_MSGTYPE_EXIT) {

fputs(
"You can’t specify both the -e and -f options\n",
stderr);

PtExit(EXIT_FAILURE);
} else {

msgtype = MY_MSGTYPE_OPEN_DOC;
strncpy(msg.docname, document,

sizeof(msg.docname)-1);
}

while (PtConnectorCreate(name, connector_callback, 0)
== NULL) {

/* If this failed, another instance of the app must
be already running */

PtConnectionClient_t *clnt;
if ((clnt = PtConnectionFindName(name, 0, 0))

!= 0) {
struct MyReply reply;
int result = PtConnectionSend(clnt, msgtype,

364 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Sending QNX messages

&msg, &reply, sizeof(msg),
sizeof(reply));

PtConnectionClientDestroy(clnt);
if (result == 0)

PtExit(reply.status);
}

}

/* Since PtConnectorCreate() has succeeded, we’re the only
instance of the app running */

if (msgtype == MY_MSGTYPE_EXIT) {
fputs("Can’t tell it to exit; it’s not running\n",

stderr);
PtExit(EXIT_FAILURE);
}

if (document)
OpenNewDocument(document);

return Pt_CONTINUE;
}

Sending QNX messages
A Photon application can use MsgSend() to pass messages to another process, but the
other process needs to MsgReply() promptly, as Photon events aren’t processed while
the application is blocked. (Promptness isn’t an issue if your application has multiple
threads that process events, and you call PtLeave() before MsgSend(), and PtEnter()
after. For a discussion of writing applications that use multiple threads, see the Parallel
Operations chapter.)

As an example, here’s a callback that extracts a string from a text widget, sends it to
another process, and displays the reply in the same text widget:

/* Callback that sends a message to another process */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/neutrino.h> /* Needed for MsgSend() */

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "globals.h"
#include "abimport.h"
#include "proto.h"

extern int coid;

int
send_msg_to_b(PtWidget_t *widget,

May 13, 2010 Chapter 17 • Interprocess Communication 365

Receiving QNX messages © 2010, QNX Software Systems GmbH & Co. KG.

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
char *a_message;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

/* Get the string from the text widget. */

PtGetResource (ABW_msg_text, Pt_ARG_TEXT_STRING, 0, 0);

/* Send the string to another process. */

a_message = (char *)args[0].value;
if (MsgSend (coid, a_message, msg_size,

rcv_msg, msg_size) == -1)
{
perror ("Send to B failed");
PtExit (-1);

}

/* Remember the UI is "hung" until the other
process replies! */

/* Display the reply in the same text widget. */

PtSetResource (ABW_msg_text, Pt_ARG_TEXT_STRING,
rcv_msg, 0);

return(Pt_CONTINUE);

}

For more information on messages, see the QNX Neutrino System Architecture guide.

Receiving QNX messages
To handle non-Photon events in a Photon application, you need to register an input
handling procedure (or input handler), otherwise the events are lost. This is because
the unconditional MsgReceive() performed by the Photon event handling loop ignores
non-Photon events.

You can create your own channel and call MsgReceive() on it, but remember that your
application and its interface will be blocked until that process sends a message. It’s
better to use an input handler as described in this section.

An input handler is responsible for handling messages received by the application
from a particular process. When you register the handler with the widget library, you
identify the pid the input handler is associated with.

You can define more than one input handler in your application for a pid. When a
message is received from that process, the widget library starts calling the handlers in
the list, starting with the last one registered, and continuing up the list in reverse order

366 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Receiving QNX messages

until a handler recognizes the message (that is, it doesn’t return Pt_CONTINUE). See
the description of Pt_CONTINUE below.

You can register a nonspecific input handler by specifying a value of zero for the pid.
This handler is called when the application receives:

• any non-Photon messages that don’t have an input handler specifically associated
with the sender’s pid

• any non-Photon messages that have input handlers associated with the sender’s pid,
but which were not handled (that is, the input handlers returned PT_CONTINUE)

• a user pulse (i.e. a pulse with a nonnegative code)

Adding an input handler
To register an input handler, call PtAppAddInput() when you initialize the application.
The syntax is given below; for more information, see the Photon Library Reference.

PtInputId_t *PtAppAddInput(
PtAppContext_t app_context,
pid_t pid,
PtInputCallbackProc_t input_func,
void *data);

The arguments are:

app_context The address of the application context, a PtAppContext_t
structure that manages all the data associated with this application.
Pass NULL for this argument, so that the default context is used.

pid The process ID of the process whose messages this handler is to deal
with, or 0 if the handler is for messages from all processes.

input_func Your input handler, of type PtInputCallbackProc_t. For details,
see the Photon Library Reference.

data Extra data to be passed to the input handler.

PtAppAddInput() returns a pointer to an input-handler ID, which you’ll need if you
want to remove the input handler later.

The prototype for an input handler is as follows:

int input_proc(void *data,
int rcvid,
void *msg,
size_t msglen);

The arguments are:

data A pointer to any extra data you want to pass to the input handler.

rcvid The rcvid of the process that sent the message.

May 13, 2010 Chapter 17 • Interprocess Communication 367

Receiving QNX messages © 2010, QNX Software Systems GmbH & Co. KG.

msg A pointer to the message sent.

msglen The size of the message buffer. If the actual message is longer than the
buffer, load the rest of the message by calling MsgRead().

You can also declare the input handler to be of type PtInputCallbackProcF_t to
take advantage of the prototype checking done by the compiler.

If your input handler changes the display, it should call PtFlush() to make sure the
display is updated.

An input handler must return one of the following:

Pt_CONTINUE The input handler doesn’t recognize the message. If there are other
input handlers attached to the same process ID, they’re called. If
there are no input handlers attached specifically to this process ID,
or if all input handlers attached specifically to this process ID
return Pt_CONTINUE, the library looks for input handlers attached
to rcvid 0. If all the input handlers return Pt_CONTINUE, the
library replies to the message with an ENOSYS.

Pt_END The message has been recognized and processed and the input
handler needs to be removed from the list. No other input handlers
are called for this message.

Pt_HALT The message has been recognized and processed but the input
handler needs to stay on the list. No other input handlers are called
for this message.

name_attach() and PtAppAddInput()

If possible, you should use a Photon connection instead of name_attach() to establish
a connection with another process. However, you can’t use a Photon connection in
these cases:

• The connecting client isn’t a Photon application.

• The connecting processes belong to a different Photon session. This applies even if
you’re running multiple Photon sessions on one machine, or if your Photon session
consists of applications running on several machines and the two connecting
processes happen to be on different machines.

PtAppAddInput() and name_attach() both try to create a channel with
_NTO_CHF_COID_DISCONNECT and _NTO_CHF_DISCONNECT set (see the QNX
Neutrino Library Reference). If your application calls both functions, you need to let
Photon use the same channel as name_attach(), by calling PhChannelAttach() first,
like this:

PhChannelAttach(chid, -1, NULL);

368 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Receiving QNX messages

before calling name_attach() or PtAppAddInput().

If you want to create a separate channel for Photon, it doesn’t matter whether you
create it and give it to PhChannelAttach() before or after calling name_attach(). But
keep in mind that since certain mechanisms in Photon library expect the Photon
channel to have the two DISCONNECT flags, they might not work properly if it
doesn’t. One such mechanism is the detection of broken connections (see
PtConnectionClientSetError() and PtConnectionServerSetError()) and anything that
relies on it.

Removing an input handler
To remove an input handler:

• Have it return Pt_END.

Or:

• Call PtAppRemoveInput(), passing it the ID returned by PtAppAddInput().

Message buffer size
As described above, arguments to your input function include:

msg A pointer to an event buffer that was used to receive the message.

msglen The size of the buffer.

This buffer might not be large enough to hold the entire message. One way of
handling this is to have the first few bytes of the message indicate the message type
and from that determine how big the message should be. Once you know the message
size, you can:

• Reread the entire message by calling MsgReadv().

Or:

• Copy the part you’ve already received into a new buffer. Get the rest of the message
by calling MsgReadv(). Add the rest of the message to the first part.

Alternatively, you can set the event buffer to be the size of the largest message your
application will receive (if known). This can be done by calling PtResizeEventMsg().
You’d typically call this before you expect to receive any messages.

PtResizeEventMsg() won’t reduce the message buffer beyond a certain minimum size.
This is so that the widget library will continue to function.

May 13, 2010 Chapter 17 • Interprocess Communication 369

Receiving QNX messages © 2010, QNX Software Systems GmbH & Co. KG.

Example — logging error messages
The following code fragment shows how a nonspecific input handler may be used to
respond to error-logging messages from any process. When one of these messages is
received, the application displays the message’s contents in a multiline text widget.
(This example assumes log_message is declared elsewhere.)

int input_proc(void *client_data, int rcvid, void *msg,
size_t msglen)

{
struct log_message *log = (struct log_message *)msg;

/* Only process log messages */
if (log->type == LOG_MSG)
{

PtWidget_t *text = (PtWidget_t *)client_data;
struct log_message header;
int msg_offset = offsetof(struct log_message, msg);
int log_msglen;
int status;

/* See if our entire header is in the buffer --
it should be */

if (msglen < msg_offset)
{

/* Read in the whole header */
if (MsgRead(rcvid, &header, msg_offset, 0) == -1)
{

status = errno;
MsgError(rcvid, status);
return Pt_HALT; /* bail out */

}
log = &header;

}

log_msglen = msg_offset+log->msg_len;

/* See if the whole message is in the buffer */

if (msglen < log_msglen)
{

struct log_message *log_msg =
(struct log_message *)alloca(log_msglen);

/* Read the remainder of the message into
space on the stack */

if (log_msg == NULL ||
MsgRead(rcvid, log_msg, log_msglen, 0) == -1)

{
status = errno;
MsgError(rcvid, status);
return Pt_HALT; /* bail out */

}
log = log_msg;

}

add_msg(text, log);
status = 0;
MspReply(rcvid, 0, 0, 0);

}

370 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon pulses

return Pt_HALT;
}

This application registers the input_proc() function as an input handler for handling
non-Photon messages from any other process.

The input_proc() function first checks the message type of the incoming message. If
the input handler isn’t responsible for this type of message, it returns immediately.
This is important because any other nonspecific input handlers that were registered
will be called as well, and only one of them should respond to a given message.

If the type of message received is a log message, the function makes sure that Photon
has read the entire message into the Photon event buffer. This can be determined by
looking at the message length provided as the msglen to the input handler. If part of
the message isn’t in the event buffer, a message buffer is allocated and MsgRead() is
called to get the whole message. The input_proc() function then calls add_msg() to
add the message to the text widget and replies to the message.

When input_proc() is complete, it returns the value Pt_HALT. This instructs the
Photon widget library not to remove the input handler.

Photon pulses
In addition to synchronous message-passing, Photon supports pulses. A process that
wants to notify another process but doesn’t want to wait for a reply can use a Photon
pulse. For example, a server can use a pulse to contact a client process in a situation
where sending a message would leave both SEND-blocked (and hence deadlocked).

A Photon pulse is identified by a negative PID that can be used as the pid argument to
PtAppAddInput(). This PID is local to your application. If you want another process to
send pulses to you, you must “arm” the pulse using PtPulseArm(). This creates a
PtPulseMsg_t object that can be sent to the other process in a message. The other
process will then be able to send pulses by calling MsgDeliverEvent() function.

Under the QNX Neutrino OS version 6, PtPulseMsg_t is a sigevent structure.
The bits in msg.sigev_value.sival_int that correspond to _NOTIFY_COND_MASK are
clear, but can be set by the application that sends the pulse. For more information, see
ionotify() in the QNX Neutrino Library Reference.

PtPulseArm() (described in the Photon Library Reference) simply takes a sigevent
structure. PtPulseArmFd() and PtPulseArmPid() are for compatibility with earlier
version of the QNX Neutrino OS and the Photon microGUI.

Let’s look at the code you’ll need to write to support pulses in a:

• Photon application that receives pulses

• Photon application that delivers pulses

May 13, 2010 Chapter 17 • Interprocess Communication 371

Photon pulses © 2010, QNX Software Systems GmbH & Co. KG.

Photon application that receives a pulse
It’s the recipient of a Photon pulse that has to do the most preparation. It has to:

1 Create the pulse.

2 Arm the pulse.

3 Send the pulse message to the process that will deliver it.

4 Register an input handler for the pulse message.

5 Deliver the pulse to itself, if necessary.

6 Destroy the pulse when it’s no longer needed.

The sections below discuss each step, followed by an example.

Before exiting, the recipient process should tell the delivering process to stop sending
pulses.

Creating a pulse

To create a Photon pulse, call PtAppCreatePulse():

pid_t PtAppCreatePulse(PtAppContext_t app,
int priority);

The arguments are:

app The address of the application context, a PtAppContext_t structure that
manages all the data associated with this application. You should pass
NULL for this argument, so that the default context is used.

priority The priority of the pulse. If this is -1, the priority of the calling program
is used.

PtAppCreatePulse() returns a pulse process ID, which is negative but never -1. This is
the receiver’s end of the pulse.

Arming a pulse

Arming the pulse fills in the sigevent structure, which can be used for most of the
QNX Neutrino calls that take this type of argument.

There’s nothing wrong with having more than one process deliver the same pulse,
although the recipient won’t be able to tell which process sent it.

To arm a pulse, call PtPulseArm(). The prototype is:

int PtPulseArm(PtAppContext_t app,
pid_t pulse,
struct sigevent *msg);

372 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon pulses

The arguments are:

app A pointer to the PtAppContext_t structure that defines the current
application context (typically NULL).

pulse The pulse created by PtAppCreatePulse().

msg A pointer to a pulse message that this function creates. This is the
deliverer’s end of the pulse, and we’ll need to send it to that process, as
described below.

This function returns a pointer to a pulse message ID, which you’ll need later.

Sending the pulse message to the deliverer

The method you use to send the pulse message depends on the process that will deliver
the pulse. For example,

• For a resource manager, use ionotify():

ionotify (fd, _NOTIFY_ACTION_POLLARM, _NOTIFY_COND_INPUT,
&pulsemsg);

• For other process types, you could use MsgSendv():

/* Create your own message format: */
msg.pulsemsg = pulsemsg;
MsgSendv (connection_id, &msg, msg_parts, &rmsg, rmsg_parts);

Registering an input handler

Registering an input handler for the pulse is similar to registering one for a message;
see “Adding an input handler” earlier in this chapter. Pass the pulse ID returned by
PtAppCreatePulse() as the pid parameter to PtAppAddInput().

The rcvid argument for the input handler won’t necessarily have the same value as the
pulse ID: it matches the pulse ID on the bits defined by _NOTIFY_DATA_MASK (see
ionotify() in the QNX Neutrino Library Reference), but the other bits are taken from
the Neutrino pulse that was received.

Delivering a pulse to yourself

If the application needs to send a pulse to itself, it can call PtAppPulseTrigger():

int PtAppPulseTrigger(PtAppContext_t app,
pid_t pulse);

The parameters for this function are the PtAppContext_t structure that defines the
application context (typically NULL) and the pulse ID returned by
PtAppCreatePulse().

May 13, 2010 Chapter 17 • Interprocess Communication 373

Photon pulses © 2010, QNX Software Systems GmbH & Co. KG.

Destroying a pulse

When your application no longer needs the pulse, it can be destroyed by calling
PtAppDeletePulse():

int PtAppDeletePulse(PtAppContext_t app,
pid_t pulse_pid);

The parameters are the PtAppContext_t structure that defines the application
context (typically NULL) and the pulse ID returned by PtAppCreatePulse().

Example — message queues

Here’s an application that receives Photon pulses. It opens a message queue
(/dev/mqueue/testqueue by default), sets up a pulse, and uses mq_notify() to give
itself a pulse when there’s something to read from the message queue:

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <mqueue.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/stat.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

mqd_t mqd = -1;
struct sigevent sigev;

static void readqueue(void) {
static unsigned counter;
unsigned mprio;
ssize_t msize;
char mbuf[4096];
while ((msize = mq_receive(mqd, mbuf, sizeof(mbuf),

&mprio)) >= 0) {
char hbuf[40];
PtTextModifyText(ABW_mtext, 0, 0, -1, hbuf,

sprintf(hbuf, "Msg #%u (prio %d):\n", ++counter,
mprio)

);
PtTextModifyText(ABW_mtext, 0, 0, -1, mbuf, msize);
}

if (errno != EAGAIN)
perror("mq_receive");

}

static int input_fun(void *data, int rcvid, void *message,
size_t mbsize) {

if (mq_notify(mqd, &sigev) == -1)

374 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon pulses

perror("mq_notify");
readqueue();
return Pt_HALT;
}

pid_t pulse;

/* Application Options string */
const char ApOptions[] =

AB_OPTIONS ""; /* Add your options in the "" */

int init(int argc, char *argv[]) {
if ((pulse = PtAppCreatePulse(NULL, -1)) == 0

|| PtAppAddInput(NULL, pulse, input_fun, NULL) ==
NULL) {

fputs("Initialization failed\n", stderr);
exit(EXIT_FAILURE);
}

PtPulseArm(NULL, pulse, &sigev);
/* eliminate ’unreferenced’ warnings */
argc = argc, argv = argv;
return(Pt_CONTINUE);
}

int open_queue(PtWidget_t *link_instance, ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo) {

const char *name;
PtArg_t arg;

if (mqd >= 0)
mq_close(mqd);

PtSetArg(&arg, Pt_ARG_TEXT_STRING, &name, 0);
PtGetResources(ABW_qname, 1, &arg);
if ((mqd = mq_open(name, O_RDONLY | O_CREAT | O_NONBLOCK,

S_IRUSR | S_IWUSR, NULL)) < 0)
perror(name);

else
if (mq_notify(mqd, &sigev) == -1) {

perror("mq_notify");
mq_close(mqd);
mqd = -1;
}

else
readqueue();

/* eliminate ’unreferenced’ warnings */
link_instance = link_instance, apinfo = apinfo;
cbinfo = cbinfo;

return(Pt_CONTINUE);
}

Photon application that delivers a pulse
A Photon application that’s going to deliver a pulse must:

• Have an input handler for messages from the application that’s going to receive the
pulses. This input handler is created as described in “Receiving QNX messages”

May 13, 2010 Chapter 17 • Interprocess Communication 375

Processing signals © 2010, QNX Software Systems GmbH & Co. KG.

earlier in this chapter. It will need to handle messages that contain the pulse
message, and tell the deliverer to stop sending pulses.

Save the rcvid from the message that contains the pulse message — you’ll need it
to deliver the pulse.

• Deliver the pulse by calling MsgDeliverEvent().

Processing signals
If your application needs to process signals, you’ll need to set up a signal handler. The
problem is that you can’t call Photon functions from a signal handler because the
widget library isn’t signal-safe or reentrant.

To get around this problem, the Photon library includes a signal handler. You register a
signal-processing function, and Photon calls it after

• Photon’s signal handler returns

AND

• all processing for the current widget is complete

CAUTION: By handling signals in this way, you’re not getting strict realtime
performance, since your signal-processing function isn’t called right away.!

Adding a signal-processing function
To add a signal-processing function, use the PtAppAddSignalProc() function. You
typically call this in

• your application’s initialization function

Or

• the setup function for a window

You’ll need to include <signal.h>.

The syntax for PtAppAddSignalProc() is as follows:

int PtAppAddSignalProc(PtAppContext_t app,
sigset_t const *set,
PtSignalProc_t func,
void *data);

The arguments are as follows:

app The address of the application context, a PtAppContext_t structure that
manages all the data associated with this application. Specify NULL for this
argument, so that the default context is used.

376 Chapter 17 • Interprocess Communication May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Other I/O mechanisms

set A pointer to the set of signals that should cause the signal-processing
function to be called. Use the sigemptyset() and sigaddset() functions to
build this set. See the QNX Neutrino Library Reference for more
information.

func The signal-processing function. See PtSignalProc_t in the Photon
Library Reference.

data Any data to be passed to the function.

PtAppAddSignalProc() returns 0 on success, or -1 if an error occurs.

Your signal-processing function has the following prototype:

int signalProcFunctions (int signum
void *data);

The arguments are:

signum The number of the signal to be processed.

data The data parameter specified in the call to PtAppAddSignalProc().

If you want the signal handler to remain installed, return Pt_CONTINUE. To remove it
for the current signal, return Pt_END (if the function was registered for other signals,
it’s still called if they’re raised).

Removing a signal-processing function
To remove a signal-processing function:

• Call PtAppRemoveSignal() to remove one or all occurrences of a (signal-processing
function, data) pair.

• Return Pt_END from the signal-processing function. If the function was registered
for more than one signal, it remains installed for signals other than the one just
processed.

Other I/O mechanisms
If your application needs to perform I/O such as reading from or writing to a pipe, you
should add an fd handler. An fd handler is a function that’s called by the main event
loop when a given file descriptor (fd) is ready for input or output:

• To add an fd handler to your application, call PtAppAddFd() or PtAppAddFdPri().

• For details about the prototype of the fd handler, see PtFdProc_t.

• To change the mode that’s of interest to the fd handler, call PtAppSetFdMode()

• To remove an fd handler, return Pt_END from it or call PtAppRemoveFd().

May 13, 2010 Chapter 17 • Interprocess Communication 377

Other I/O mechanisms © 2010, QNX Software Systems GmbH & Co. KG.

These functions are described in the Photon Library Reference.

If your fd handler changes the display, it should call PtFlush() to make sure the
display is updated.

378 Chapter 17 • Interprocess Communication May 13, 2010

Chapter 18

Parallel Operations

In this chapter. . .
Overview 381
Background processing 381
Work procedures 382
Threads 387

May 13, 2010 Chapter 18 • Parallel Operations 379

© 2010, QNX Software Systems GmbH & Co. KG. Overview

Overview
When you have to perform an operation that takes a long time to execute, it’s not a
good idea to implement it as a simple callback. During the time the callback is
executing, the widgets in your application can’t repair damage and they won’t respond
to user input at all. You should develop a strategy for handling lengthy operations
within your application that involves returning from your callback as quickly as
possible.

Returning from your callback allows the widgets to continue to update themselves
visually. It also gives some visual feedback if the user attempts to do anything. If you
don’t want the user to be able to perform any UI operations during this time, you
should deactivate the menu and command buttons. You can do this by setting the
Pt_BLOCKED flag in the application window widget’s Pt_ARG_FLAGS resource.

You might consider one of several different mechanisms for dealing with parallel
operations:

• If you can’t break the operation into pieces, process Photon events while the
operation continues; see “Background processing,” below.

• If you can break the operation into small chunks, you may wish to have a function
that keeps track of the current state and executes one small chunk of the operation
at a time. You can then set up a timer widget and attach it to a callback that invokes
the function whenever the timer goes off. Or you may call the function from within
a work procedure. These methods are especially effective for iterative operations
where the function may be executed once per iteration. See “Work procedures,”
below.

• Use multiple threads. This requires some special handling, because the Photon
libraries aren’t thread-safe; see “Threads,” below.

• Spawn another process in the callback, and have the other process return its results
to the application by sending it messages. In this case, it’s very important to be able
to monitor the operation’s progress and give the user visual feedback.

Background processing
If a lengthy operation can’t be easily decomposed, and you don’t want to use multiple
threads, you should at least call PtBkgdHandlerProcess() to process Photon events so
that the GUI doesn’t appear to be frozen.

If the operation is very lengthy, you can call PtBkgdHandlerProcess() within a loop.
How often you need to call PtBkgdHandlerProcess() depends on what your
application is doing. You should also find a way to let the user know what progress the
operation is making.

For example, if you’re reading a large directory, you could call the background handler
after reading a few files. If you’re opening and processing every file in a directory, you
could call PtBkgdHandlerProcess() after each file.

May 13, 2010 Chapter 18 • Parallel Operations 381

Work procedures © 2010, QNX Software Systems GmbH & Co. KG.

It’s safe to call PtBkgdHandlerProcess() in callbacks, work procedures, and input
procedures, but not in a widget’s Draw method (see Building Custom Widgets) or a
PtRaw widget’s drawing function.

If a callback calls PtBkgdHandlerProcess(), be careful if the application can invoke
the callback more than once simultaneously. If you don’t want to handle this
recursion, you should block the widget(s) associated with the callback.

The following functions process Photon events:

• PtBkgdHandlerProcess()

• PtFileSelection()

• PtProcessEvent()

• PtSpawnWait()

Work procedures
A work procedure is run whenever there are no messages for your application to
respond to. In every iteration of the Photon event-handling loop, this procedure is
called if no messages have arrived (rather than block on a MsgReceive() waiting for
more messages). This procedure will be run very frequently, so keep it as short as
possible.

If your work procedure changes the display, call PtFlush() to make sure that it’s
updated.

See “Threads and work procedures,” below, if you’re writing a work procedure for a
multithreaded program.

Work procedures are stacked; when you register a work procedure, it’s placed on the
top of the stack. Only the work procedure at the top of the stack is called. When you
remove the work procedure that’s at the top of the stack, the one below it is called.

There is one exception to this rule. If the work procedure that’s at the top of the stack
is running already, the next one is called. This is only possible if the already running
procedure allows the Photon library to start another one, perhaps by calling a modal
function like PtModalBlock(), PtFileSelection() or PtAlert(), or calling PtLeave()
while you have other threads ready to process events.

The work procedure itself is a callback function that takes a single void * parameter,
client_data. This client_data is data that you associate with the work procedure when
you register it with the widget library. You should create a data structure for the work
procedure that contains all its state information and provide this as the client_data.

To register, or add, a work procedure, call PtAppAddWorkProc():

382 Chapter 18 • Parallel Operations May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Work procedures

PtWorkProcId_t *PtAppAddWorkProc(
PtAppContext_t app_context,
PtWorkProc_t work_func,
void *data);

The parameters are:

• app_context—the address of the application context, a PtAppContext_t structure
that manages all the data associated with this application. This must be specified as
NULL, so that the default context is used.

• work_func—the work procedure callback function. See PtWorkProc_t in the
Photon Library Reference.

• client_data—the data to be passed to the function when it’s invoked.

PtAppAddWorkProc() returns a pointer to a PtWorkProcId_t structure that identifies
the work procedure.

To remove a work procedure when it’s no longer needed, call
PtAppRemoveWorkProc():

void PtAppRemoveWorkProc(
PtAppContext_t app_context,
PtWorkProcId_t *WorkProc_id);

passing it the same application context and the pointer returned by
PtAppAddWorkProc().

A practical example of the use of work procedures would be too long to cover here, so
here’s a simple iterative example. The work procedure counts to a large number,
updating a label to reflect its progress on a periodic basis.

#include <Pt.h>
#include <stdlib.h>

typedef struct workDialog {
PtWidget_t *widget;
PtWidget_t *label;
PtWidget_t *ok_button;

} WorkDialog_t;

typedef struct countdownClosure {
WorkDialog_t *dialog;
int value;
int maxvalue;
int done;
PtWorkProcId_t *work_id;

} CountdownClosure_t;

WorkDialog_t *create_working_dialog(PtWidget_t *parent)
{

PhDim_t dim;
PtArg_t args[3];
int nargs;
PtWidget_t *window, *group;
WorkDialog_t *dialog =

(WorkDialog_t *)malloc(sizeof(WorkDialog_t));

May 13, 2010 Chapter 18 • Parallel Operations 383

Work procedures © 2010, QNX Software Systems GmbH & Co. KG.

if (dialog)
{

dialog->widget = window =
PtCreateWidget(PtWindow, parent, 0, NULL);

nargs = 0;
PtSetArg(&args[nargs], Pt_ARG_GROUP_ORIENTATION,

Pt_GROUP_VERTICAL, 0); nargs++;
PtSetArg(&args[nargs], Pt_ARG_GROUP_VERT_ALIGN,

Pt_GROUP_VERT_CENTER, 0); nargs++;
group = PtCreateWidget(PtGroup, window, nargs, args);

nargs = 0;
dim.w = 200;
dim.h = 100;
PtSetArg(&args[nargs], Pt_ARG_DIM, &dim, 0); nargs++;
PtSetArg(&args[nargs], Pt_ARG_TEXT_STRING,

"Counter: ", 0); nargs++;
dialog->label = PtCreateWidget(PtLabel, group,

nargs, args);

PtCreateWidget(PtSeparator, group, 0, NULL);

nargs = 0;
PtSetArg(&args[nargs], Pt_ARG_TEXT_STRING, "Stop", 0);

nargs++;
dialog->ok_button = PtCreateWidget(PtButton, group,

1, args);
}
return dialog;

}

int done(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
CountdownClosure_t *closure =

(CountdownClosure_t *)client;

call = call;

if (!closure->done) {
PtAppRemoveWorkProc(NULL, closure->work_id);

}
PtDestroyWidget(closure->dialog->widget);
free(closure->dialog);
free(closure);
return (Pt_CONTINUE);

}

int
count_cb(void *data)
{

CountdownClosure_t *closure =
(CountdownClosure_t *)data;

char buf[64];
int finished = 0;

if (closure->value++ == 0 || closure->value %
1000 == 0)

{
sprintf(buf, "Counter: %d", closure->value);
PtSetResource(closure->dialog->label,

Pt_ARG_TEXT_STRING, buf, 0);

384 Chapter 18 • Parallel Operations May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Work procedures

}

if (closure->value == closure->maxvalue)
{

closure->done = finished = 1;
PtSetResource(closure->dialog->ok_button,

Pt_ARG_TEXT_STRING, "Done", 0);
}

return finished ? Pt_END : Pt_CONTINUE;
}

int push_button_cb(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
PtWidget_t *parent = (PtWidget_t *)client;
WorkDialog_t *dialog;

w = w; call = call;

dialog = create_working_dialog(parent);

if (dialog)
{

CountdownClosure_t *closure =
(CountdownClosure_t *)
malloc(sizeof(CountdownClosure_t));

if (closure)
{

PtWorkProcId_t *id;

closure->dialog = dialog;
closure->value = 0;
closure->maxvalue = 200000;
closure->done = 0;
closure->work_id = id =

PtAppAddWorkProc(NULL, count_cb, closure);

PtAddCallback(dialog->ok_button, Pt_CB_ACTIVATE,
done, closure);

PtRealizeWidget(dialog->widget);
}

}
return (Pt_CONTINUE);

}

int main(int argc, char *argv[])
{

PhDim_t dim;
PtArg_t args[3];
int n;
PtWidget_t *window;
PtCallback_t callbacks[] = {{push_button_cb, NULL}};
char Helvetica14b[MAX_FONT_TAG];

if (PtInit(NULL) == -1)
exit(EXIT_FAILURE);

dim.w = 200;
dim.h = 100;
PtSetArg(&args[0], Pt_ARG_DIM, &dim, 0);
if ((window = PtCreateWidget(PtWindow, Pt_NO_PARENT,

May 13, 2010 Chapter 18 • Parallel Operations 385

Work procedures © 2010, QNX Software Systems GmbH & Co. KG.

1, args)) == NULL)
PtExit(EXIT_FAILURE);

callbacks[0].data = window;
n = 0;
PtSetArg(&args[n++], Pt_ARG_TEXT_STRING, "Count Down...", 0);

/* Use 14-point, bold Helvetica if it’s available. */

if(PfGenerateFontName("Helvetica", PF_STYLE_BOLD, 14,
Helvetica14b) == NULL) {

perror("Unable to generate font name");
} else {

PtSetArg(&args[n++], Pt_ARG_TEXT_FONT, Helvetica14b, 0);
}
PtSetArg(&args[n++], Pt_CB_ACTIVATE, callbacks,

sizeof(callbacks)/sizeof(PtCallback_t));
PtCreateWidget(PtButton, window, n, args);

PtRealizeWidget(window);

PtMainLoop();
return (EXIT_SUCCESS);

}

When the pushbutton is pressed, the callback attached to it creates a working dialog
and adds a work procedure, passing a closure containing all the information needed to
perform the countdown and to clean up when it’s done.

The closure contains a pointer to the dialog, the current counter, and the value to count
to. When the value is reached, the work procedure changes the label on the dialog’s
button and attaches a callback that will tear down the entire dialog when the button is
pressed. Upon such completion, the work procedure returns Pt_END in order to get
removed.

The done() function is called if the user stops the work procedure, or if it has
completed. This function destroys the dialog associated with the work procedure and
removes the work procedure if it was stopped by the user (i.e. it didn’t run to
completion).

If you run this example, you may discover one of the other features of work
procedures — they preempt one another. When you add a new work procedure, it
preempts all others. The new work procedure will be the only one run until it has
completed or is removed. After that, the work procedure that was previously running
resumes. This is illustrated in the above example if the user presses the Count Down...
button before a countdown is finished. A new countdown dialog is created, and that
countdown runs to the exclusion of the first until it’s done.

The granularity for this preemption is at the function call level. When the callback
function for a work procedure returns, that work procedure may be preempted by
another work procedure.

386 Chapter 18 • Parallel Operations May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Threads

Threads
Photon applications are event-driven and callback-based; whenever an event arrives,
the appropriate callback is invoked to handle it, and then the control returns to the
event loop to wait for the next event. Because of this structure, most Photon
applications are single-threaded.

The Photon library lets you use threads, but in a way that minimizes the overhead for
single-threaded applications. The Photon library is “thread-friendly,” rather than
completely thread-safe the way printf() and malloc() are thread-safe.

Don’t cancel a thread that might be executing a Photon library function or a callback
(because the library might need to do some cleanup when the callback returns).

Locking the Photon library
You can use multiple threads by arranging your program so that only the thread that
called PtInit() calls Photon functions, but you might find this approach restrictive.

The Photon library is mostly single-threaded, but has a mechanism that lets multiple
threads use it in a safe way. This mechanism is a library lock, implemented by the
PtEnter() and PtLeave() functions.

This lock is like a big mutex protecting the Photon library: only one thread can own
the lock at a time, and only that thread is allowed to make Photon calls. Any other
thread that wants to call a Photon function must call PtEnter() first, which blocks until
the lock is available. When a thread no longer needs the lock, it calls PtLeave() to let
other threads use the Photon library.

To write your non-Photon threads:

• Put calls to PtEnter() and PtLeave() around any Photon calls in them.

• Group as much Photon code together as you can and wrap it in a single enter-leave
pair, because this minimizes the number of potentially blocking calls to PtEnter()
in your code.

• Try to leave any non-Photon code that can take a while to complete outside of the
enter-leave section — otherwise it may unnecessarily prevent other threads from
doing their job.

Don’t call PtLeave() if your thread hasn’t called PtEnter(), because your application
could crash or misbehave.

Remember that if you’re in a callback function, something must have called PtEnter()
to let you get there.

PtLeave() doesn’t atomically give the library lock to another thread blocked inside
PtEnter(); the other thread gets unblocked, but then it must compete with any other
threads as if it just called PtEnter().

May 13, 2010 Chapter 18 • Parallel Operations 387

Threads © 2010, QNX Software Systems GmbH & Co. KG.

You should use PtEnter() and PtLeave() instead of using your own mutex because
when PtProcessEvent() (which PtMainLoop() calls) is about to wait for an event, it
unlocks the library. Once PtProcessEvent() has an event that it can process, it locks
the library again. This way, your non-Photon threads can freely access Photon
functions when you don’t have any events to process.

If you use your own mutex that PtProcessEvent() doesn’t know about, it’s unlocked
only when your code unlocks it. This means that the only time that your non-Photon
threads can lock the mutex is when your application is processing an event that
invokes one of your callbacks. The non-Photon threads can’t lock the mutex when the
application is idle.

Multiple event-processing threads
If you need to have a lengthy callback in your application, you can have your callback
invoke PtBkgdHandlerProcess() as described earlier in this chapter. You can also
spawn a new thread to do the job instead of doing it in the callback.

Another choice is to have more than one Photon thread that processes Photon events in
your application. Here’s how:

• Spawn one or more extra threads that call PtEnter() followed by PtMainLoop(). If
one of your Photon threads receives an event that invokes your lengthy callback,
the remaining threads can take over processing Photon events.

• Call PtLeave() from the callback to give the other threads access to the Photon
library.

• Don’t forget to call PtEnter() before returning from the callback; the code that
invokes your callback expects to own the Photon lock when the callback returns.

Unlocking the library lets other threads modify your widgets and global variables
while you’re not looking, so be careful.

If your callback allows other threads to process events while it’s doing its lengthy
operation, there’s a chance that the person holding the mouse may press the same
button again, invoking your callback before its first invocation is complete.

You have to make sure that your application either handles this situation properly, or
prevents it from happening. Here are several ways to do this:

• Block your button before the callback calls PtLeave(), and unblock the button after
calling PtEnter().

Or:

• Use a flag to tell the second invocation of the callback that it’s already running.

Or:

• Use a counter if you want to count rather than just ignore any extra button presses.

Or:

388 Chapter 18 • Parallel Operations May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Threads

• Use your own mutex or another synchronization mechanism to make sure that
you’re not stepping on your own toes (but watch out for potential deadlocks).

Realtime threads
Don’t make Photon calls from threads that must have deterministic realtime behavior.
It’s hard to predict how long PtEnter() will block for; it can take a while for the thread
that owns the lock to finish processing the current event or call PtLeave(), especially if
it involves sending to other processes (like the window manager).

It’s better to have a “worker thread” that accepts requests from your realtime threads
and executes them in its own enter-leave section. A condition variable — and possibly
a queue of requests — is a good way of sending these requests between threads.

If you’re using worker threads, and you need to use a condition variable, call
PtCondWait() instead of pthread_cond_wait() and a separate mutex. PtCondWait()
uses the Photon library lock as the mutex and makes an implicit call to PtLeave()
when you block, and to PtEnter() when you unblock.

The threads block until:

• They get access to the library.

• They get hit by a signal.

• Another thread raises a signal or broadcasts on the condition variable.

• Another thread calls PtExit(), exit(), or _exit().

PtCondTimedWait() is similar to PtCondWait(), but the blocking is limited by a
timeout.

Non-Photon and Photon threads
The library keeps track of which of your threads are Photon threads (event readers)
and which are non-Photon threads (nonreaders). This way, the library always knows
how many of your threads are available to receive and process events. This
information is currently used only by the PtModalBlock() function (see “Modal
operations and threads,” below).

By default, the thread that called PtInit() is an event reader, and any other thread isn’t.
But if a nonreader thread calls PtProcessEvent() or PtMainLoop(), it automatically
becomes an event reader.

Photon doesn’t start new threads for you if you run out of Photon threads.

You can also turn a nonreader into a reader and back by passing a flag to PtEnter() or
PtLeave():

Pt_EVENT_PROCESS_ALLOW

Turn the calling thread into an event reader.

May 13, 2010 Chapter 18 • Parallel Operations 389

Threads © 2010, QNX Software Systems GmbH & Co. KG.

Pt_EVENT_PROCESS_PREVENT

Turn the calling thread into a nonreader.

If you don’t need to change the thread’s status (e.g. for a non-Photon thread that never
processes any events), don’t set either of these bits in the flags.

If you’re calling PtLeave() in a callback because you’re about to do something lengthy,
pass Pt_EVENT_PROCESS_PREVENT to PtLeave(). This tells the library that this
thread isn’t going to process events for a significant amount of time. Make sure to pass
Pt_EVENT_PROCESS_ALLOW to PtEnter() before returning from the callback.

Modal operations and threads
A modal operation is one where you need to wait until a particular event happens
before you can proceed — for example, when you want the user to make a decision
and push a Yes or a No button. Since other events usually arrive before the one you’re
waiting for, you need to make sure that they’re processed.

In a single-threaded application, attach a callback to the Yes and No buttons. In this
callback, call PtModalUnblock(). When you display the dialog, call PtModalBlock().
This function runs an event-processing loop similar to PtMainLoop(), except that
PtModalBlock() returns when something (e.g. the callback attached to the Yes and No
buttons) calls PtModalUnblock().

In a multithreaded application, PtModalBlock() may either:

• Do the same as in a single-threaded application.

Or:

• Block on a condition variable and let other Photon threads process events.

By default, PtModalBlock() uses a condition variable if you have any other Photon
threads. This removes the thread from the pool of event-processing threads, but
prevents a situation where starting a second modal operation in a thread that’s running
the event loop in PtModalBlock() makes it impossible for the first PtModalBlock() to
return until after the second modal operation has completed.

In most applications, there’s no chance of this happening; usually, you either don’t
want to allow another modal operation until the current one has completed, or you
actually want the stacking behavior where the second modal operation prevents
completion of the first one. For example, if the first modal operation is a file selector
and the second one is an “Are you sure you want to overwrite this file?” question, you
don’t want to let the user dismiss the file selector before answering the question.

If you know that your application doesn’t have two unrelated modal operations that
may happen at the same time but can be completed in any order, you can pass
Pt_EVENT_PROCESS_ALLOW to PtModalBlock(). This tells PtModalBlock() to run
an event loop even if you have other Photon threads available, and may reduce the
total number of Photon threads that your application needs.

390 Chapter 18 • Parallel Operations May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Threads

Exiting a multithreaded program
Terminating a multithreaded application can be tricky; calling exit() makes all your
threads just disappear, so you have to make sure that you don’t exit while another
thread is doing something that shouldn’t be interrupted, such as saving a file.

Don’t call pthread_exit() in any kind of callback (such as a widget callback, an input
function, a work procedure, and so on). It is likely that the library code that invoked
your callback needs to do some cleanup when the callback returns. If it doesn’t return,
your application may leak memory.

Remember that all callbacks are run by a thread that has locked the libraries.

In a Photon application, the library may call PtExit() when your application’s last
window is closed. If you don’t want that to happen while a thread is doing something
important, turn off Ph_WM_CLOSE in your base window’s
Pt_ARG_WINDOW_MANAGED_FLAGS resource and handle the close message
yourself. You also need to find all the calls to exit() or PtExit() in your code and make
sure that you don’t exit until it’s safe to exit. If a widget in your base window has a
Done or Cancel type callback, you have to handle that, too.

The Photon library provides some mechanisms to make handling this type of situation
easier and safer:

• There’s a simple counter that tells PtExit() to block until the counter goes to zero.

The functions that implement this counter, PtPreventExit() and PtAllowExit(), are
not only thread-safe, but also realtime-friendly: they’re guaranteed to run a bound
amount of code and never generate priority inversion.

This mechanism is considered relatively low-level and meant primarily for threads
that don’t have anything to do with Photon (perhaps temporarily — i.e. while in a
PtLeave() - PtEnter() section of a Photon callback).

The reason is that certain Photon calls that normally are blocking cause the calling
thread to go to sleep (blocked indefinitely) if PtExit() is pending (otherwise PtExit()
would potentially block for a long time). This also happens when a thread blocks
before another thread calls PtExit(); the blocked thread stays blocked without
returning from the blocking call. The sleeping threads behave as if the scheduler
didn’t give them any CPU cycles until the entire process terminates. This allows
the thread(s) that called PtPreventExit() to finish their job as quickly as possible.

The list of Photon calls that make their calling threads sleep after another thread
has called PtExit() includes attempts to process events, do anything modal, block
on a condvar using PtCondWait() or PtCondTimedWait(), calling PtEnter() or
PtLeave(), and calling PtExit().

• It may sometimes be difficult to make sure that your thread doesn’t call any of
those after calling PtPreventExit() — and if it does and stays blocked without
having a chance to call PtAllowExit(), your process will lock up and you’ll have to
kill it manually.

May 13, 2010 Chapter 18 • Parallel Operations 391

Threads © 2010, QNX Software Systems GmbH & Co. KG.

To prevent such situations, there’s a Pt_DELAY_EXIT flag that you can pass to
PtEnter() and PtLeave(). Doing it not only prevents PtEnter() and PtLeave() from
blocking indefinitely if another thread has called PtExit(), but also implicitly calls
PtPreventExit(). If your thread is put to sleep by a “sleep inducing” call, the library
knows to call PtAllowExit() for you. The only way to keep Pt_DELAY_EXIT turned
on is by making sure that you don’t call any of the “sleep inducing” calls and pass
Pt_DELAY_EXIT to PtEnter() and PtLeave() each time you call them. The
Pt_DELAY_EXIT flag makes your “save file” callback as simple as this:

my_callback(...)
{

PtLeave(Pt_DELAY_EXIT);
save_file(); /* You’re safe here... */
PtEnter(0); /* But this may never return

-- and that’s OK! */
}

You still have to make sure that save_file() doesn’t attempt any of the “sleep
inducing” calls. In particular, you can’t pop up a dialog with an error message if
something goes wrong. If you want to pop up a dialog that will potentially sit on the
screen for minutes or hours, you have to do it before calling PtExit(), for example,
by using the Pt_ARG_WINDOW_MANAGED_FLAGS trick mentioned above.

The protection that Pt_DELAY_EXIT gives your thread is disabled not only when the
thread is put to sleep, but also when it dies for any reason.

Threads and work procedures
Note the following concerning threads and work procedures:

• If you attach a work procedure and you have more than one reader thread, there’s a
very narrow window where the work procedure can be invoked right away instead
of after you run out of events.

• Mixing threads and work procedures might cause a minor problem; if one of the
other threads adds a workproc while another thread is already waiting for an event,
the workproc might not be invoked until you receive an event.

392 Chapter 18 • Parallel Operations May 13, 2010

Chapter 19

Raw Drawing and Animation

In this chapter. . .
PtRaw widget 395
Color 401
Drawing attributes 402
Arcs, ellipses, polygons, and rectangles 405
Lines, pixels, and pixel arrays 412
Text 413
Bitmaps 415
Images 416
Animation 422
Direct mode 425
Video memory offscreen 428
Alpha blending support 432
Chroma key support 433
Extended raster operations 434
Video modes 435
Gradients 436
Video overlay 437
Layers 441

May 13, 2010 Chapter 19 • Raw Drawing and Animation 393

© 2010, QNX Software Systems GmbH & Co. KG. PtRaw widget

PtRaw widget
The Pg routines in the Photon library are the lowest-level drawing functions. They’re
used by the widget library to draw the widgets. You can use the Pg functions in a
Photon application, but your application has to:

• handle any interaction with the user

• determine when the drawing is damaged (for example, when it’s uncovered, or
when the user moves the window)

• repair the drawing whenever it’s damaged.

You should use widgets whenever possible because they do all of the above
themselves.

If your application must do its own drawing, you should use the PtRaw widget. It does
the following:

1 Tells the application what has been damaged.

2 Flushes the draw buffer almost whenever necessary. (You should flush the buffer
explicitly; for example, before a blitting operation. Blitting shifts a rectangular
area of your drawing by some distance; you want your drawing to be up-to-date
before this happens.)

To create a PtRaw widget in PhAB, click on its icon in the widget palette:

Position it where you want your drawing to appear.

You can provide various functions for the PtRaw widget; they’re called in the order
given below when the widget is realized, and are then called as necessary:

Pt_ARG_RAW_INIT_F

An initialization function that’s called before the widget’s extent is calculated.

Pt_ARG_RAW_EXTENT_F

If provided, calculates the widget’s extent when the widget is moved or resized.

Pt_ARG_RAW_CALC_OPAQUE_F

Calculates the raw widget’s opacity tile list.

Pt_ARG_RAW_CONNECT_F

Called as the last stage in realizing the widget, just before any required regions
are created.

Pt_ARG_RAW_DRAW_F

Does the drawing.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 395

PtRaw widget © 2010, QNX Software Systems GmbH & Co. KG.

Most of the time you’ll need to specify only the drawing function (see below). You
can use PhAB’s function editor (described in the Editing Resources and Callbacks in
PhAB chapter) to edit these resources — but you must give the raw widget a unique
instance name first. You can also set these resources in your application’s code; for
more information, see “Function resources” in the Manipulating Resources in
Application Code chapter.

For information on PtRaw’s resources, see the Photon Widget Reference.

Raw drawing function
When you create a PtRaw widget in PhAB and edit its Pt_ARG_RAW_DRAW_F
function, you’ll see default code like this:

void my_raw_draw_fn(PtWidget_t *widget,
PhTile_t *damage)

{
PtSuperClassDraw(PtBasic, widget, damage);

}

The call to PtSuperClassDraw() (described in the Building Custom Widgets guide)
invokes PtBasic’s draw function, which draws the raw widget’s borders, fills the
widget, and so on, as specified by its resources. The raw widget can do all this by
itself, but using PtSuperClassDraw() reduces the complexity of the raw drawing
function.

There are several things to consider in the raw drawing function:

• You’ll need to know the raw widget’s canvas.

• The origin for the drawing primitives is the top left corner of the canvas of the raw
widget’s parent, not the raw widget itself. You’ll need to translate the coordinates.

• The raw widget can draw beyond its canvas, but it’s not a good idea. You should set
up clipping in the drawing function.

• The drawing function is passed a list of damaged areas that can be used to speed up
repairs.

• For raw widgets whose contents change dynamically, you can define a model that
describes what to draw.

These are described below, followed by some examples of simple drawing functions.

396 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. PtRaw widget

Don’t call PtBkgdHandlerProcess() in a PtRaw widget’s drawing function.

Don’t change any other widget in any way (creating, destroying, setting resources, and
so on) in a raw widget’s drawing function. It’s safe to get resources from other
widgets.

Don’t call the drawing function directly from your program. Instead, damage the
widget by calling PtDamageWidget(), and let the library call the drawing function.

Determining the raw widget canvas

You can determine the raw widget’s canvas by calling PtCalcCanvas() as follows:

PhRect_t raw_canvas;

PtCalcCanvas (widget, &raw_canvas);

You’ll need this canvas to perform any required translations and clipping.

Translating coordinates

The origin for the drawing primitives is the upper left corner of the raw widget’s
parent’s canvas. You’ll probably find it easier to use the upper left corner of the raw
widget’s canvas as the origin.

Once you’ve determined the raw widget’s canvas, you can do one of the following:

• Add the coordinates of the upper left corner of the raw widget’s canvas to any
coordinates passed to the drawing primitives. For example, to draw an ellipse
centered at (80, 60) relative to the raw widget’s canvas:

PhPoint_t c1 = { 80, 60 };
PhPoint_t r = { 72, 52 };

c1.x += raw_canvas.ul.x;
c1.y += raw_canvas.ul.y;
PgSetFillColor(Pg_YELLOW);
PgDrawEllipse (&c1, &r, Pg_DRAW_FILL);

This is the preferred method.

• You can set the translation by calling PgSetTranslation(), passing to it the upper
left corner of the raw widget’s canvas:

PhPoint_t c1 = { 80, 60 };
PhPoint_t r = { 72, 52 };

PgSetTranslation (&raw_canvas.ul, Pg_RELATIVE);

PgSetFillColor(Pg_YELLOW);
PgDrawEllipse (&c1, &r, Pg_DRAW_FILL);

May 13, 2010 Chapter 19 • Raw Drawing and Animation 397

PtRaw widget © 2010, QNX Software Systems GmbH & Co. KG.

Be sure to restore the old translation before leaving the raw widget’s drawing function.
Here’s one way to do it:

/* Restore the translation by subtracting the
coordinates of the raw widget’s canvas. */

raw_canvas.ul.x *= -1;
raw_canvas.ul.y *= -1;
PgSetTranslation (&raw_canvas.ul, Pg_RELATIVE);

Clipping

As mentioned above, it’s possible to draw beyond the raw widget’s extent in its
drawing function, but it’s not a good thing to do:

• It can mess up the rest of your application’s interface.

• If the raw drawing beyond the raw widget’s extent is damaged but the raw widget
itself isn’t, the raw widget’s drawing function isn’t called, so the damage won’t be
repaired.

It’s possible to write the drawing function so that clipping isn’t needed, but it can
make your code more complicated. For example, if you try to write text that extends
beyond the raw widget’s canvas, you might need to draw partial letters. You’ll also
have to consider what happens if the user changes the size of the raw widget.

It’s much easier to use PtClipAdd() to set the clipping area to be the raw widget’s
canvas and let the graphics driver restrict the drawing:

PtClipAdd (widget, &raw_canvas);

Before leaving the drawing function, call PtClipRemove() to reset the clipping area:

PtClipRemove ();

Using damage tiles

If your raw widget’s drawing function takes a lot of time, you might not want to
redraw the entire canvas when a small portion of it has been damaged. You can speed
up the repairs by using the drawing function’s damage argument.

The damage argument is a pointer to a linked list of PhTile_t structures (see the
Photon Library Reference), each of which includes these members:

rect A PhRect_t structure that defines the damaged area.

next A pointer to the next tile in the list.

The damaged areas are relative to the raw widget’s disjoint parent (usually a
PtWindow widget). Use PtWidgetOffset() to obtain the offset.

If there’s more than one tile in the linked list, the first one covers the entire area
covered by the rest. Either use the first tile and ignore the rest, or ignore the first and
use the rest:

398 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. PtRaw widget

void rawDrawFunction (PtWidget_t *widget,
PhTile_t *damage)

{
if (damage->next != NULL) {

/* If there’s more than one tile, skip the first. */

damage = damage->next;
}

while (damage != NULL) {

/* Examine ’damage’ to see if any drawing
needs doing:

damage->rect.ul.x, damage->rect.ul.y,
damage->rect.lr.x, damage->rect.lr.y */

...
damage = damage->next; /* Go on to the next tile. */

}
}

The following functions (described in the Photon Library Reference) work with tiles:

PhAddMergeTiles() Merge two list tiles, eliminating overlap

PhClipTilings() Clip one list of tiles from another

PhCoalesceTiles() Combine a list of tiles

PhCopyTiles() Copy a list of tiles

PhDeTranslateTiles()

Subtract x and y offsets from the vertices of a list of tiles

PhFreeTiles() Return a list of tiles to the internal tile pool

PhGetTile() Retrieve a tile from the internal tile pool

PhIntersectTilings() Determine the intersection of two lists of tiles

PhMergeTiles() Remove all overlap from a list of tiles

PhRectsToTiles() Create a list of tiles from an array of rectangles

PhSortTiles() Sort a list of tiles

PhTilesToRects() Create an array of rectangles from a list of tiles

PhTranslateTiles() Add x and y offsets to the vertices of a list of tiles

May 13, 2010 Chapter 19 • Raw Drawing and Animation 399

PtRaw widget © 2010, QNX Software Systems GmbH & Co. KG.

Using a model for more complex drawing

If the contents of the raw widget are static, you can call the Pg drawing primitives
directly from the raw drawing function. If the contents are dynamic, you’ll need to
define a data structure or model that describes them.

The structure of the model depends on your application; the raw drawing function
must be able to traverse the model and draw the required graphics. Use the raw
widget’s Pt_ARG_USER_DATA or Pt_ARG_POINTER resource to save a pointer to
the model.

Examples of simple PtRaw drawing functions

This drawing function draws a couple of ellipses, one of which is clipped:

void my_raw_draw_fn(PtWidget_t *widget,
PhTile_t *damage)

{
PhRect_t raw_canvas;
PhPoint_t c1 = { 80, 60 };
PhPoint_t c2 = { 30, 210 };
PhPoint_t r = { 72, 52 };

PtSuperClassDraw(PtBasic, widget, damage);
PtCalcCanvas(widget, &raw_canvas);

/* Set the clipping area to be the raw widget’s
canvas. */

PtClipAdd (widget, &raw_canvas);

/* Draw the ellipses. */

c1.x += raw_canvas.ul.x;
c1.y += raw_canvas.ul.y;
PgSetFillColor(Pg_YELLOW);
PgDrawEllipse (&c1, &r, Pg_DRAW_FILL);

c2.x += raw_canvas.ul.x;
c2.y += raw_canvas.ul.y;
PgSetFillColor(Pg_RED);
PgDrawEllipse (&c2, &r, Pg_DRAW_FILL);

/* Reset the clipping area. */

PtClipRemove ();
}

This function is the same, but it sets the translation:

void my_raw_draw_fn(PtWidget_t *widget,
PhTile_t *damage)

{
PhRect_t raw_canvas;
PhPoint_t c1 = { 80, 60 };
PhPoint_t c2 = { 30, 210 };
PhPoint_t r = { 72, 52 };

PtSuperClassDraw(PtBasic, widget, damage);
PtCalcCanvas(widget, &raw_canvas);

400 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Color

/* Set the clipping area to be the raw widget’s

canvas. */

PtClipAdd (widget, &raw_canvas);

/* Set the translation so that drawing operations
are relative to the raw widget’s canvas. */

PgSetTranslation (&raw_canvas.ul, Pg_RELATIVE);

/* Draw the ellipses. */

PgSetFillColor(Pg_YELLOW);
PgDrawEllipse (&c1, &r, Pg_DRAW_FILL);

PgSetFillColor(Pg_RED);
PgDrawEllipse (&c2, &r, Pg_DRAW_FILL);

/* Restore the translation by subtracting the
coordinates of the raw widget’s canvas. */

raw_canvas.ul.x *= -1;
raw_canvas.ul.y *= -1;
PgSetTranslation (&raw_canvas.ul, Pg_RELATIVE);

/* Reset the clipping area. */

PtClipRemove ();
}

Color
Colors are specified in the Photon microGUI with the PgColor_t type. The library
and graphics drivers interpret this data type according to the current color model
(described in the documentation for PgColor_t).

The default color model, Pg_CM_PRGB, uses a 32-bit Red-Green-Blue (RGB)
representation:

Reserved Red Green Blue

0000 0000 rrrr rrrr gggg gggg bbbb bbbb

Macros for the most commonly used colors are defined in <photon/Pg.h>.

Although PgColor_t uses 32 bits, only 24 bits are used per color. This representation
is called true color. The Photon microGUI is a true-color windowing system; it uses
this 24-bit RGB representation internally.

Most graphics cards currently use true color (24 bits) or high color (16 bits). However,
some graphics drivers take advantage of the palette on older palette-based cards.

The following datatypes and functions that deal with color are described in the Photon
Library Reference:

May 13, 2010 Chapter 19 • Raw Drawing and Animation 401

Drawing attributes © 2010, QNX Software Systems GmbH & Co. KG.

PgAlphaValue() Extract the alpha component from a color value

PgARGB() Convert alpha, red, green, and blue values to composite color
format

PgBackgroundShadings()

Calculate top and bottom shading colors

PgBlueValue() Extract the blue component from a color value

PgCMY() Convert cyan, magenta, and yellow values to composite color
format

PgColorHSV_t Hue-Saturation-Value color value

PgColorMatch() Query for best color matches

PgGetColorModel()

Get the current color model

PgGetPalette() Query for current color palette

PgGray() Generate a shade of gray

PgGrayValue() Extract color brightness

PgGreenValue() Extract the green component from a color value

PgHSV() Convert hue, saturation, and value to composite color format

PgHSV2RGB() Convert HSV colors to RGB

PgRedValue() Extract the red component from a color

PgRGB() Convert red, green, and blue values to composite color format

PgRGB2HSV() Convert RGB colors to HSV

PgSetColorModel()

Set the current color model

PgSetPalette() Set the color palette

Drawing attributes
When doing raw drawing, you can set various attributes, including fonts, palettes, fill
colors, line colors and styles, and text colors. The attributes that you set affect all raw
drawing operations until you set them again. For example, the line color affects all
lines, pixels, and bitmaps that you draw using the drawing primitives.

402 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Drawing attributes

You don’t need to set these attributes if you’re using widgets; the drawing attributes
are set based on the widgets’ definitions and resources.

However, in all other cases you should set these attributes before you begin drawing.
The defaults are undefined and drawing before setting the relevant attributes may
produce unexpected results.

General attributes
The functions that set general drawing attributes are:

PgDefaultMode() Reset draw mode and plane mask to their default values

PgSetDrawMode() Set draw mode

PgSetPlaneMask() Protect video memory from being modified

Text attributes
The text attributes affect all the text that you draw by calling the drawing primitives
described in “Text,” below. The functions that set text attributes are:

PgDefaultText() Reset the text attribute to its system default

PgSetFont() Set text font

PgSetTextColor() Set text color

PgSetTextDither() Set text dither pattern

PgSetTextTransPat() Set draw transparency

PgSetTextXORColor()

Set a color for XOR drawing

PgSetUnderline() Set colors for underlining text

Fill attributes
The fill attributes affect all the drawing that you do by calling the primitive functions
described in

• Arcs, ellipses, polygons, and rectangles

• Text

• Bitmaps

The functions that set fill attributes are:

May 13, 2010 Chapter 19 • Raw Drawing and Animation 403

Drawing attributes © 2010, QNX Software Systems GmbH & Co. KG.

PgDefaultFill() Reset the fill attribute to its default value

PgSetFillColor() Set exact fill color

PgSetFillDither() Set specific dither pattern and colors

PgSetFillTransPat() Set draw transparency

PgSetFillXORColor()

Set a color for XOR drawing

Stroke (line) attributes
The stroke attributes affect all the drawing that you do by calling the primitive
functions described in

• Arcs, ellipses, polygons, and rectangles

• Lines, pixels, and pixel arrays

• Text

• Bitmaps

PgDrawEllipse*() does not support stroke joins

The functions that set stroke attributes are:

PgDefaultStroke() Reset the stroke attribute to its system default

PgSetStrokeCap() Set what the ends of lines look like

PgSetStrokeColor() Set the color of subsequent outlines

PgSetStrokeDither() Apply a color pattern to outlines

PgSetStrokeTransPat()

Use a masking pattern to set draw transparency on outlines

PgSetStrokeXORColor()

Use the XOR of a color to draw outlines

PgSetStrokeDash() Set dashed lines

PgSetStrokeWidth() Set line thickness

PgSetStrokeFWidth()

Set line thickness

404 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Arcs, ellipses, polygons, and rectangles

Arcs, ellipses, polygons, and rectangles
The Photon libraries include a number of primitive functions that you can use to draw
shapes, including:
• rectangles

• rounded rectangles

• beveled boxes, rectangles, and arrows

• polygons

• arcs, circles, chords, and pies

• spans — complex shapes

Don’t use these drawing primitives in an interface that uses widgets; widgets redisplay
themselves when damaged, so anything drawn on top of them disappears. To display
arcs, lines, etc. in an interface:

• Create a PtRaw widget and call the primitives in its draw function. See the section
on the PtRaw widget earlier in this chapter.

Or:

• Use the corresponding graphical widget. For more information, see PtGraphic in
the Photon Widget Reference.

By using each primitive’s flags, you can easily draw an outline (stroke), draw the filled
“inside” (fill), or draw both as a filled outline.

The current fill and stroke attributes are used. For more information, see “Drawing
attributes,” earlier in this chapter.

To: Set flags to:

Fill the primitive, using the current fill attributes Pg_DRAW_FILL

Outline the primitive, using the current stroke
attributes

Pg_DRAW_STROKE

Fill the primitive and outline it, using the current fill
and stroke attributes

Pg_DRAW_FILL_STROKE

The mx versions of these functions place the address of the primitive into the draw
buffer in your application’s data space. When the draw buffer is flushed, the primitive
is copied to the graphics driver. The non-mx versions copy the primitive itself into the
draw buffer.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 405

Arcs, ellipses, polygons, and rectangles © 2010, QNX Software Systems GmbH & Co. KG.

Rectangles
You can draw rectangles, using the current drawing attributes, by calling
PgDrawIRect() or PgDrawRect().

PgDrawRect() uses a PhRect_t structure (see the Photon Library Reference) for the
rectangle coordinates, while PgDrawIRect() lets you specify the coordinates
individually. Use whichever method you want.

The following example draws a rectangle that’s filled, but not stroked (i.e. it has no
border):

void DrawFillRect(void)
{

PgSetFillColor(Pg_CYAN);
PgDrawIRect(8, 8, 152, 112, Pg_DRAW_FILL);

}

If you wish, you can call PgDrawRect() instead:

void DrawFillRect(void)
{

PhRect_t rect = { {8, 8}, {152, 112} };

PgSetFillColor(Pg_CYAN);
PgDrawRect(&rect, Pg_DRAW_FILL);

}

The following example draws a stroked, unfilled rectangle:

void DrawStrokeRect(void)
{

PgSetStrokeColor(Pg_BLACK);
PgDrawIRect(8, 8, 152, 112, Pg_DRAW_STROKE);

}

This code draw a stroked, filled rectangle:

void DrawFillStrokeRect(void)
{

PgSetFillColor(Pg_CYAN);
PgSetStrokeColor(Pg_BLACK);
PgDrawIRect(8, 8, 152, 112, Pg_DRAW_FILL_STROKE);

}

Filled and stroked rectangles.

Rounded rectangles
Rounded rectangles are programmed almost the same way as rectangles — just call
PgDrawRoundRect() with a PhPoint_t parameter to indicate, in pixels, the
roundness of the rectangle corners. The radii are truncated to the rectangle’s sides.

The following example draws a black rounded rectangle with five pixels worth of
rounding at the corners:

406 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Arcs, ellipses, polygons, and rectangles

void DrawStrokeRoundRect(void)
{

PhRect_t rect = { {20, 20}, {100, 100} };
PhPoint_t radii = { 5, 5 };

PgSetStrokeColor(Pg_BLACK);
PgDrawRoundRect(&rect, &radii, Pg_DRAW_STROKE);

}

Beveled boxes, rectangles, and arrows
PgDrawBevelBox() draws a beveled box, which is a special type of rectangle:

• If you set Pg_DRAW_FILL or Pg_DRAW_FILL_STROKE in the flags argument, the
area of the beveled box is filled according to the current fill attributes.

• If you set Pg_DRAW_STROKE OR Pg_DRAW_FILL_STROKE in the flags, the top
and left edges are drawn according to the current stroke attributes, and the bottom
and left edges are drawn with an extra color that’s passed as one of the parameters.

• There’s also a parameter to let you set the with or “depth” of the bevel.

This code draws a dark grey beveled box with a green and red bevel that’s four pixels
wide:

void DrawBevelBox(void)
{

PhRect_t r = { 8, 8, 152, 112 };
PgSetFillColor(Pg_DGREY);
PgSetStrokeColor(Pg_RED);
PgDrawBevelBox(&r, Pg_GREEN, 4, Pg_DRAW_FILL_STROKE);

}

A beveled box.

You can call PgDrawBeveled() to draw a beveled rectangle (optionally with clipped or
rounded corners) or a beveled arrow. If you draw a rectangle with square corners, the
results are the same as for PgDrawBevelBox(). Here’s some code that draws clipped
and rounded rectangles, and a set of arrows:

void DrawBeveled() {

PhRect_t clipped_rect = { {10, 10}, {150, 62} };
PhRect_t rounded_rect = { {10, 67}, {150, 119} };
PhPoint_t clipping = { 8, 8 };

May 13, 2010 Chapter 19 • Raw Drawing and Animation 407

Arcs, ellipses, polygons, and rectangles © 2010, QNX Software Systems GmbH & Co. KG.

PhPoint_t rounding = { 12, 12 };

PhRect_t rup = { {190, 20}, {230, 40} };
PhRect_t rdown = { {190, 90}, {230, 110} };
PhRect_t rleft = { {165, 45}, {185, 85} };
PhRect_t rright = { {235, 45}, {255, 85} };

/* Draw beveled rectangles: one clipped, one rounded. */

PgSetFillColor(Pg_GREEN);
PgSetStrokeColor(Pg_GREY);
PgDrawBeveled(&clipped_rect, &clipping, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_CLIP);
PgDrawBeveled(&rounded_rect, &rounding, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_ROUND);

/* Draw beveled arrows. */

PgSetFillColor(Pg_CYAN);
PgSetStrokeColor(Pg_GREY);
PgDrawBeveled(&rup, NULL, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_AUP);
PgDrawBeveled(&rdown, NULL, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_ADOWN);
PgDrawBeveled(&rleft, NULL, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_ALEFT);
PgDrawBeveled(&rright, NULL, Pg_BLACK, 2,

Pg_DRAW_FILL_STROKE | Pg_BEVEL_ARIGHT);
}

Beveled rectangles and arrows.

If you want to draw an arrow that fits inside a given rectangle (for example, the arrow
for a scrollbar), call PgDrawArrow().

Polygons
You can create polygons by specifying an array of PhPoint_t points. If you use
Pg_CLOSED as part of the flags, the last point is automatically connected to the first
point, closing the polygon. You can also specify points relative to the first point (using
Pg_POLY_RELATIVE).

The following example draws a blue-filled hexagon with a white outline:

void DrawFillStrokePoly(void)
{

PhPoint_t start_point = { 0, 0 };
int num_points = 6;

408 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Arcs, ellipses, polygons, and rectangles

PhPoint_t points[6] = {
{ 32,21 }, { 50,30 }, { 50,50 },
{ 32,59 }, { 15,50 }, { 15,30 }

};

PgSetFillColor(Pg_BLUE);
PgSetStrokeColor(Pg_WHITE);
PgDrawPolygon(points, num_points, start_point,

Pg_DRAW_FILL_STROKE | Pg_CLOSED);
}

Overlapping polygons

Polygons that overlap themselves are filled using the so-called even-odd rule: if an
area overlaps an odd number of times, it isn’t filled. Another way of looking at this is
to draw a horizontal line across the polygon. As you travel along this line and cross
the first line, you’re inside the polygon; as you cross the second line, you’re outside.
As an example, consider a simple polygon:

Filling a simple polygon.

This rule can be extended for more complicated polygons:

• When you cross an odd number of lines, you’re inside the polygon, so the area is
filled.

• When you cross an even number of lines, you’re outside the polygon, so the area
isn’t filled

May 13, 2010 Chapter 19 • Raw Drawing and Animation 409

Arcs, ellipses, polygons, and rectangles © 2010, QNX Software Systems GmbH & Co. KG.

Filling an overlapping polygon.

The even-odd rule applies to both the PgDrawPolygon() and PgDrawPolygonmx()
functions.

Arcs, circles, chords, and pies
The PgDrawArc() function can be used for drawing:

• arcs

• circles

• ellipses

• elliptical arcs

• chords

• pie slices

You can also call PgDrawEllipse() to draw an ellipse.

The start and end angles of arc segments are specified in binary gradations (bi-grads),
with 65536 bi-grads in a complete circle.

To draw a full circle or ellipse, specify the same value in bi-grads for the start and end
angles. For example:

void DrawFullCurves(void)
{

PhPoint_t circle_center = { 150, 150 },
ellipse_center = { 150, 300 };

PhPoint_t circle_radii = { 100, 100 },
ellipse_radii = { 100, 50 };

410 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Arcs, ellipses, polygons, and rectangles

/* Draw a white, unfilled circle. */
PgSetStrokeColor(Pg_WHITE);
PgDrawArc(&circle_center, &circle_radii, 0, 0,

Pg_DRAW_STROKE | Pg_ARC);

/* Draw an ellipse with a white outline, filled
with black. */

PgSetFillColor(Pg_BLACK);
PgDrawArc(&ellipse_center, &ellipse_radii, 0, 0,

Pg_DRAW_FILL_STROKE | Pg_ARC);
}

To draw a chord (a curve with the end points connected by a straight line), add
Pg_ARC_CHORD to the flags parameter. For example:

void DrawChord(void)
{

PhPoint_t center = { 150, 150 };
PhPoint_t radii = { 100, 50 };

/* Draw an elliptical chord with a white outline,
filled with black. The arc is drawn from 0 degrees
through to 45 degrees (0x2000 bi-grads). */

PgSetStrokeColor(Pg_WHITE);
PgSetFillColor(Pg_BLACK);
PgDrawArc(¢er, &radii, 0, 0x2000,

Pg_DRAW_FILL_STROKE | Pg_ARC_CHORD);
}

Similarly, to draw a pie section or curve, add Pg_ARC_PIE or Pg_ARC to the flags. For
example:

void DrawPieCurve(void)
{

PhPoint_t pie_center = { 150, 150 },
arc_center = { 150, 300 };

PhPoint_t pie_radii = { 100, 50 },
arc_radii = { 50, 100 };

/* Draw an elliptical pie with a white outline,
filled with black. */

PgSetStrokeColor(Pg_WHITE);
PgSetFillColor(Pg_BLACK);
PgDrawArc(&pie_center, &pie_radii, 0, 0x2000,

Pg_DRAW_FILL_STROKE | Pg_ARC_PIE);

/* Draw a black arc. */
PgSetStrokeColor(Pg_BLACK);
PgDrawArc(&arc_center, &arc_radii, 0, 0x2000,

Pg_DRAW_STROKE | Pg_ARC);
}

Filled and stroked arcs.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 411

Lines, pixels, and pixel arrays © 2010, QNX Software Systems GmbH & Co. KG.

Spans — complex shapes
If the shape you want to draw can’t be expressed as any of the other shapes that the
Photon microGUI supports, you can draw it as a series of spans by calling
PgDrawSpan().

This function takes as one of its arguments an array of PgSpan_t records. The
members are:

short x1 Starting x position.

short x2 Last x position.

short y Y position.

Lines, pixels, and pixel arrays
Lines and pixels are drawn using the current stroke state (color, thickness, etc.). The
drawing primitives are:

PgDrawBezier(), PgDrawBeziermx()

Draw a stroked and/or filled Bézier curve

PgDrawGrid() Draw a grid

PgDrawLine(), PgDrawILine()

Draw a single line

PgDrawPixel(), PgDrawIPixel()

Draw a single point

PgDrawPixelArray(), PgDrawPixelArraymx()

Draw multiple points

PgDrawTrend(), PgDrawTrendmx()

Draw a trend graph

The following example draws red, green, and blue lines:

void DrawLines(void)
{

PgSetStrokeColor(Pg_RED);
PgDrawILine(8, 8, 152, 8);
PgSetStrokeColor(Pg_GREEN);
PgDrawILine(8, 8, 152, 60);
PgSetStrokeColor(Pg_BLUE);
PgDrawILine(8, 8, 152, 112);

}

412 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Text

Lines created by the drawing primitives.

Text
There are various routines that draw text, depending on your requirements:

PgDrawMultiTextArea()

Draw multiline text in an area

PgDrawString(), PgDrawStringmx()

Draw a string of characters

PgDrawText(), PgDrawTextmx()

Draw text

PgDrawTextArea() Draw text within an area

PgDrawTextChars() Draw the specified number of text characters

PgExtentMultiText() Calculate the extent of a multiline text string

PgExtentText() Calculate the extent of a string of text

Text is drawn using the current text attributes; for more information, see “Text
attributes,” above. If you set flags to Pg_BACK_FILL, the text’s extent is filled
according to the current fill attributes (see “Fill attributes”). If you define an underline
with PgSetUnderline(), the underline is drawn under the text and on top of the backfill.

For example, to print black text in 18-point Helvetica:

void DrawSimpleText(void)
{

char *s = "Hello World!";
PhPoint_t p = { 8, 30 };
char Helvetica18[MAX_FONT_TAG];

if(PfGenerateFontName("Helvetica", 0, 18,
Helvetica18) == NULL) {

perror("Unable to generate font name");
} else {

PgSetFont(Helvetica18);
}

May 13, 2010 Chapter 19 • Raw Drawing and Animation 413

Text © 2010, QNX Software Systems GmbH & Co. KG.

PgSetTextColor(Pg_BLACK);
PgDrawText(s, strlen(s), &p, 0);

}

To print black text on a cyan background:

void DrawBackFillText(void)
{

char *s = "Hello World!";
PhPoint_t p = { 8, 30 };
char Helvetica18[MAX_FONT_TAG];

if(PfGenerateFontName("Helvetica", 0, 18,
Helvetica18) == NULL) {

perror("Unable to generate font name");
} else {

PgSetFont(Helvetica18);
}
PgSetTextColor(Pg_BLACK);
PgSetFillColor(Pg_CYAN);
PgDrawText(s, strlen(s), &p, Pg_BACK_FILL);

}

To print black text with a red underline:

void DrawUnderlineText(void)
{

char *s = "Hello World!";
PhPoint_t p = { 8, 30 };
char Helvetica18[MAX_FONT_TAG];

if(PfGenerateFontName("Helvetica", 0, 18,
Helvetica18) == NULL) {

perror("Unable to generate font name");
} else {

PgSetFont(Helvetica18);
}
PgSetTextColor(Pg_BLACK);
PgSetUnderline(Pg_RED, Pg_TRANSPARENT, 0);
PgDrawText(s, strlen(s), &p, 0);
PgSetUnderline(Pg_TRANSPARENT, Pg_TRANSPARENT, 0);

}

To print black text with a red underline on a cyan background:

void DrawBackFillUnderlineText(void)
{

char *s = "Hello World!";
PhPoint_t p = { 8, 30 };
char Helvetica18[MAX_FONT_TAG];

if(PfGenerateFontName("Helvetica", 0, 18,
Helvetica18) == NULL) {

perror("Unable to generate font name");
} else {

PgSetFont(Helvetica18);
}
PgSetTextColor(Pg_BLACK);
PgSetFillColor(Pg_CYAN);
PgSetUnderline(Pg_RED, Pg_TRANSPARENT, 0);
PgDrawText(s, strlen(s), &p, Pg_BACK_FILL);
PgSetUnderline(Pg_TRANSPARENT, Pg_TRANSPARENT, 0);

}

414 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Bitmaps

Text created by the drawing primitives.

Bitmaps
Bitmaps are drawn using the current text state. If you set flags to Pg_BACK_FILL, the
blank pixels in the image are drawn using the current fill state. The drawing primitives
for bitmaps are:

PgDrawBitmap(), PgDrawBitmapmx()

Draw a bitmap

PgDrawRepBitmap(), PgDrawRepBitmapmx()

Draw a bitmap several times

This example draws the bitmap with a transparent background:

void DrawSimpleBitmap(void)
{

PhPoint_t p = { 8, 8 };

PgSetTextColor(Pg_CELIDON);
PgDrawBitmap(TestBitmap, 0, &p, &TestBitmapSize,

TestBitmapBPL, 0);
}

A bitmap with a transparent background.

This example draws the bitmap against a yellow background:

void DrawBackFillBitmap(void)
{

PhPoint_t p = { 8, 8 };

PgSetTextColor(Pg_CELIDON);

May 13, 2010 Chapter 19 • Raw Drawing and Animation 415

Images © 2010, QNX Software Systems GmbH & Co. KG.

PgSetFillColor(Pg_YELLOW);
PgDrawBitmap(TestBitmap, Pg_BACK_FILL, &p,

&TestBitmapSize, TestBitmapBPL, 0);
}

A backfilled bitmap.

Images
The Photon microGUI supports these main types of images:

direct color Consisting of:

• image data — a matrix of colors (but not necessarily of type
PgColor_t). Each element in the matrix is the color of a
single pixel.

Direct-color images have a type that starts with
Pg_IMAGE_DIRECT_.

palette-based Consisting of:

• a palette — an array of type PgColor_t

• image data — a matrix whose elements are offsets into the
palette.

Palette-based images have a type that starts with
Pg_IMAGE_PALETTE_.

gradient color Colors are algorithmically generated as a gradient between two
given colors.

You can define any image by its pixel size, bytes per line, image data, and format.
Images can be stored in structures of type PhImage_t (described in the Photon
Library Reference). The type field of this data structure identifies the type of image.

Palette-based images
Palette-based images provide a fast, compact method for drawing images. Before
drawing a palette-based image, you must set either a hard palette or soft palette to
define the colors for the image.

Setting a hard palette changes the physical palette. All colors set with a
PgSetFillColor() function are chosen from this palette. Other processes continue to
choose colors from the Photon microGUI’s global palette and may appear incorrect.

416 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Images

When you release the hard palette, the other processes return to normal without being
redrawn. You should always release the hard palette when your window loses focus.

Setting a soft palette lets you redefine how colors are interpreted for the given draw
context without changing the physical palette. All colors in the soft palette are mapped
to the physical palette.

If your physical palette uses more colors than your graphics card supports, some
colors are dropped, and the image won’t look as nice.

The image data (either bytes or nibbles) is an index into the current palette. For
example:

PgColor_t ImagePalette[256];
char *ImageData;
PhPoint_t ImageSize;
int ImageBPL;

void DrawYourImage(PhPoint_t pos)
{

PgSetPalette(ImagePalette, 0, 0, 256,
Pg_PALSET_SOFT);

PgDrawImage(ImageData, Pg_IMAGE_PALETTE_BYTE, pos,
ImageSize, ImageBPL, 0);

}

Direct-color images
With direct-color images, every pixel can be any color. But compared to palette-based
images, the image data is larger and the image may take longer to draw. You can
choose from several types of direct-color images, listed in the description of
PhImage_t in the Photon Library Reference; each has a different image-pixel size
and color accuracy.

Gradient-color images
With gradient-color images, colors are algorithmically generated as a gradient
between two given colors.

Creating images
To create a PhImage_t structure:

• Call PhCreateImage()

Or:

• Call PxLoadImage() to load an image from disk.

Or:

• Call ApGetImageRes() to load an image from a PhAB widget database.

Or:

May 13, 2010 Chapter 19 • Raw Drawing and Animation 417

Images © 2010, QNX Software Systems GmbH & Co. KG.

• Get the value of the Pt_ARG_LABEL_IMAGE resource of a PtLabel or
PtButton widget (provided the widget’s Pt_ARG_LABEL_TYPE is Pt_IMAGE or
Pt_TEXT_IMAGE).

Or:

• Allocate it and fill in the members by hand.

It’s better to call PhCreateImage() than to allocate the structure and fill it in by hand.
Not only does PhCreateImage() provide the convenience of setting up a blank image,
but it also observes the restrictions that the graphics drivers impose on image
alignment, and so on.

Caching images
The image_tag and palette_tag members of the PhImage_t structure are used for
caching images when dealing with remote processes via phrelay (see the QNX
Neutrino Utilities Reference) for example, when using phindows.

These tags are cyclic-redundancy checks (CRCs) for the image data and the palette,
and can be computed by PtCRC() or PtCRCValue() If these tags are nonzero,
phindows and phditto cache the images. Before sending an image, phrelay sends
its tag. If phindows finds the same tag in its cache, it uses the image in the cache.
This scheme reduces the amount of data transmitted.

You don’t need to fill in the tags if the images don’t need to be saved in the cache. For
example, set the tags to 0 if you’re displaying animation by displaying images, and the
images never repeat.

PxLoadImage() and ApGetImageRes() set the tags automatically. PhAB generates the
tags for any images generated through it (for example, in the pixmap editor).

Transparency in images
If you want parts of an image to be transparent, you can:

• Use a chroma key.

Or:

• Create a transparency mask for the image.

Chroma is accelerated by most hardware, whereas transparency bitmaps are always
implemented in software.

Using chroma

To make a given color transparent in an image, using chroma if possible, call
PhMakeTransparent(), passing it the image and the RGB color that you want to be
made transparent.

418 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Images

Using a transparency mask

The transparency mask is stored in the mask_bm member of the PhImage_t structure.
It’s a bitmap that corresponds to the image data; each bit represents a pixel:

If the bit is: The corresponding pixel is:

0 Transparent

1 Whatever color is specified in the image data

The mask_bpl member of the PhImage_t structure specifies the number of bytes per
line for the transparency mask.

You can build a transparency mask by calling PhMakeTransBitmap().

If you use PxLoadImage() to load a transparent image, set PX_TRANSPARENT in the
flags member of the PxMethods_t structure. If you do this, the function automatically
makes the image transparent; you don’t need to create a transparency mask.

Displaying images
There are various ways to display an image:

• If the image is stored in a PhImage_t structure, call PgDrawPhImage() or
PgDrawPhImagemx(). These functions automatically handle chroma key, alpha
operations, ghosting, transparency, and so on.

To draw the image repeatedly, call PgDrawRepPhImage() or
PgDrawRepPhImagemx().

To draw a rectangular portion of the image, call PgDrawPhImageRectmx().

• If the image isn’t stored in a PhImage_t data structure, call PgDrawImage() or
PgDrawImagemx().

To draw the image repeatedly, call PgDrawRepImage() or PgDrawRepImagemx()

• If the image isn’t stored in a PhImage_t structure and has a transparency mask,
call PgDrawTImage() or PgDrawTImagemx().

• Set the Pt_ARG_LABEL_IMAGE resource for a PtLabel or PtButton widget
(which use PgDrawPhImagemx() internally). The widget’s
Pt_ARG_LABEL_TYPE must be Pt_IMAGE or Pt_TEXT_IMAGE.

The mx versions of these functions place the address of the image into the draw buffer
in your application’s data space. When the draw buffer is flushed, the entire image is
copied to the graphics driver. The non-mx versions copy the image itself into the draw
buffer.

You can speed up the drawing by using shared memory. Call PgShmemCreate() to
allocate the image data buffer:

May 13, 2010 Chapter 19 • Raw Drawing and Animation 419

Images © 2010, QNX Software Systems GmbH & Co. KG.

my_image->image = PgShmemCreate(size, NULL);

If you do this, the image data isn’t copied to the graphics driver.

The images created and returned by ApGetImageRes() and PxLoadImage() aren’t in
shared memory.

Manipulating images
The following functions let you manipulate images:

PiConvertImage() Convert an image to another type

PiCropImage() Crop an image to the specified boundary

PiDuplicateImage() Duplicate an image

PiFlipImage() Flip all or part of an image

PiGetPixel() Retrieve the value of a pixel within an image

PiGetPixelFromData()

Retrieve a value from a run of pixels

PiGetPixelRGB() Retrieve the RGB value of a pixel within an image

PiResizeImage() Resize an image

PiSetPixel() Alter the value of a pixel within an image

PiSetPixelInData() Set the value of a pixel in a run of pixels

PxRotateImage() Rotate an image

Releasing images
The PhImage_t structure includes a flags member that can make it easier to release
the memory used by an image. These flags indicate which members you would like to
release:

• Ph_RELEASE_IMAGE

• Ph_RELEASE_PALETTE

• Ph_RELEASE_TRANSPARENCY_MASK

• Ph_RELEASE_GHOST_BITMAP

420 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Images

Calling PhReleaseImage() with an image frees any resources that have the
corresponding bit set in the image flags.

• PhReleaseImage() doesn’t free the PhImage_t structure itself, just the allocated
members of it.

• PhReleaseImage() correctly frees memory allocated with PgShmemCreate().

The flags for images created by ApGetImageRes(), PiCropImage(),
PiDuplicateImage(), PiFlipImage(), and PxLoadImage() aren’t set. If you want
PhReleaseImage() to free the allocated members, you’ll have to set the flags yourself:

my_image->flags = Ph_RELEASE_IMAGE |
Ph_RELEASE_PALETTE |
Ph_RELEASE_TRANSPARENCY_MASK |
Ph_RELEASE_GHOST_BITMAP;

When should you set the release flags? When you know that the image is referred to
only by one entity. For example, if one widget will be using an image, then it should
free the image once it’s done with it. If you set the release flags appropriately, prior to
setting the image resource, then this will happen automatically — that is, the widget
will free the image and data when it’s destroyed, or you apply a new setting for the
resource.

If multiple widgets use the same image (they have their own copies of the image
structure but share the data to conserve memory), then you need to be a little more
clever and make sure the image is freed only when all the widgets are done with it, and
never before. There are a number of ways to accomplish this. For example, you could:

• Release the image in a Pt_CB_DESTROYED, but you would need to be sure that
no other widgets are using it. If you know that one widget will survive the rest, then
release the image in its Pt_CB_DESTROYED. Otherwise you need a more
sophisticated approach, like your own reference count.

• Alternatively, if you know one widget will outlast all the others using the image,
then set the release flags in the structure prior to setting the image resource of that
widget. All the rest should have the flags clear. Note that if you change the image
resource on that widget, however, the image will be freed, thus invalidating all the
other widgets’ references to it!

The approach you take will depend on your situation and requirements.

If the image is stored in a widget, the allocated members of images are automatically
freed when an new image is specified or the widget is destroyed, provided that the
appropriate bits in the flags member of the PhImage_t structure are set before the
image is added to the widget.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 421

Animation © 2010, QNX Software Systems GmbH & Co. KG.

Animation
This section describes how you can create simple animation. There are two basic steps:

• creating a series of “snapshots” of the object in motion

• cycling through the snapshots

It’s better to use images for animation than bitmaps, as images aren’t transparent
(provided you haven’t created a transparency mask). This means that the background
doesn’t need to be redrawn when replacing one image with another. As a result,
there’s no flicker when you use images. For other methods of eliminating flicker, see
“Flickerless animation”, below.

It’s also possible to create animation by using a PtRaw widget and the Photon drawing
primitives. See “PtRaw widget”, earlier in this chapter.

Creating a series of snapshots
To animate an image you’ll need a series of snapshots of it in motion. For example,
you can use a PtLabel widget (with a Pt_ARG_LABEL_TYPE of Pt_IMAGE or
Pt_TEXT_IMAGE) for animation. Create one PtLabel widget where you want the
animation to appear, and create another PtLabel widget for each snapshot. You can
store these snapshots in a widget database or a file.

Using a widget database

As described in “Widget databases” in the Accessing PhAB Modules from Code
chapter, you can use a picture module as a widget database. To use one for animation,
do the following in PhAB:

1 Create a picture module to use as widget database.

2 Create an internal link to the picture module.

3 Create the snapshots of the object in motion. Use the same widget type as you
use where the animation is to appear. Give each snapshot a unique instance
name.

In your application’s initialization function, open the database by calling
ApOpenDBase() or ApOpenDBaseFile(). Then, load the images with the
ApGetImageRes() function. For example:

/* global data */
PhImage_t *images[4];
ApDBase_t *database;
int cur_image = -1,

num_images = 4;

int
app_init(int argc, char *argv[])

422 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Animation

{
int i;
char image_name[15];

/* eliminate ’unreferenced’ warnings */
argc = argc, argv = argv;

database = ApOpenDBase (ABM_image_db);

for (i = 0; i < num_images; i++)
{
sprintf (image_name, "image%d", i);
images[i] = ApGetImageRes (database, image_name);

}

return (PT_CONTINUE);
}

ApGetImageRes() returns a pointer into the widget database. Don’t close the database
while you’re still using the images in it.

Using a file

You can also load the snapshots from a file into a PhImage_t structure, by using the
PxLoadImage() function. This function supports a number of formats, including GIF,
PCX, JPG, BMP, and PNG. For a complete list, see /usr/photon/dll/pi_io_*.

Cycling through the snapshots
No matter where you get the images, the animation is the same:

1 Create a PtTimer widget in your application. PhAB displays it as a black box;
it won’t appear when you run your application.

2 Specify the initial (Pt_ARG_TIMER_INITIAL) and repeat
(Pt_ARG_TIMER_REPEAT) timer intervals.

3 Create an activate (Pt_CB_TIMER_ACTIVATE) callback for the timer. In the
callback, determine the next image to be displayed, and copy it into the
destination widget.

For example, the callback for the timer could be as follows:

/* Display the next image for our animation example. */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

May 13, 2010 Chapter 19 • Raw Drawing and Animation 423

Animation © 2010, QNX Software Systems GmbH & Co. KG.

/* Local headers */
#include "globals.h"
#include "abimport.h"
#include "proto.h"

int
display_image(PtWidget_t *widget,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

cur_image++;
if (cur_image >= num_images)
{

cur_image=0;
}

PtSetResource (ABW_base_image, Pt_ARG_LABEL_IMAGE,
images[cur_image], 0);

PtFlush ();

return(Pt_CONTINUE);

}

ABW_base_image is the widget name of the PtLabel widget in which the animation
appears.

Flickerless animation
There are two ways to eliminate flicker in animation:

• Create a PtOSContainer (an offscreen-context container) and make it the parent
of all the widgets in the area being animated.

Or:

• Use the PmMem...() memory-context functions to build the image in memory, and
display it when complete.

PtOSContainer

When you do animation in a child of an offscreen-context container, the
PtOSContainer renders the draw stream into offscreen video memory, taking
advantage of any hardware-acceleration features that the graphics driver supports. The
graphics hardware can then blit the image directly onto the screen, resulting in
flicker-free widgets and/or animation.

PtRaw (like any other widget) can be a child of PtOSContainer. This means that
you can have flicker-free animation even when using the Photon drawing primitives.

424 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Direct mode

Memory-context functions

You can call these functions to use a memory context to reduce flickering:

PmMemCreateMC() Create a memory context

PmMemFlush() Flush a memory context to its bitmap

PmMemReleaseMC()

Release a memory context

PmMemSetChunkSize()

Set the increment for growing a memory context’s draw buffer

PmMemSetMaxBufSize()

Set the maximum size of a memory context’s draw buffer

PmMemSetType() Set the type of a memory context

PmMemStart() Make a memory context active

PmMemStop() Deactivate a memory context

Start by creating a memory context:

PmMemoryContext_t * PmMemCreateMC(
PhImage_t *image,
PhDim_t *dim,
PhPoint_t *translation);

The image structure must at least specify the type and size members. The image data
buffer is optional, but if you want it in shared memory, you must provide it. The image
type must be either Pg_IMAGE_DIRECT_888 or Pg_IMAGE_PALETTE_BYTE.

Once you’ve created the memory context:

• Call PmMemStart() to set the current draw context to the memory context.

• Call PmMemStop() when finished your drawing, to return to the default draw
context.

• Call PmMemFlush() to get the resulting image.

When you no longer need the memory context, call PmMemReleaseMC().

Direct mode
In normal (nondirect) mode, an application sends drawing requests to the Photon
manager. The graphics driver blocks on the Photon manager.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 425

Direct mode © 2010, QNX Software Systems GmbH & Co. KG.

Default
context

Photon
manager

Graphics
driver

Send Reply

Communication in normal (nondirect) mode.

When an application enters direct mode, it’s requesting that the graphics driver receive
draw streams and service messages directly from the application, instead of from the
Photon manager. The driver blocks on the application, which is now responsible for
telling the graphics driver what to do.

Default
context

Graphics
driver

Reply

Communication in direct mode.

While in direct mode, the application has complete control over the display, since no
other applications are able to be serviced by the graphics driver. The graphics driver’s
region is also no longer sensitive to draw events (this way the Photon manager
discards all other applications’ requests for rendering services to this driver). The
other benefit with this mode is that graphical services are no longer sent through the
Photon event space, so performance is improved. The drawback for this mode is that
applications that expect to capture draw events can’t record the application’s view.

For convenience, a new context type, called a PdDirectContext_t, has been
created. This context, when activated, becomes the default context for the application,
so all other Photon Pg* calls work correctly while in this mode.

While in this mode, the origin of all drawing operations is the upper left corner of the
display, since the requests are no longer clipped or translated by the Photon event
space. Your application can still translate and clip the events by calling
PgSetTranslation() and PgSetClipping() if necessary.

The following functions deal with direct mode:

PdCreateDirectContext()

Create a direct-mode context

PdDirectStart() Enter direct mode

PdDirectStop() Leave direct mode

PdGetDevices() Get region IDs for the currently available draw devices

426 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Direct mode

PdReleaseDirectContext()

Leave direct mode and release the direct-mode context

PdSetTargetDevice()

Set the target device

PgWaitVSync() Wait for vertical synchronization

Here are some things to keep in mind:

• When you enter or leave direct mode, all video RAM contexts (except the display),
are destroyed on the driver side (an OSINFO event is shot out by the driver so
applications are notified and can reinitialize any video memory contexts). This
includes video RAM used by PdOffscreenContext_t structures and anything
used by the video overlay API.

• When you leave direct mode, an expose event is also sent out by the driver, so all
other applications redraw themselves.

• When you’re in direct mode, the graphics driver region is no longer sensitive to
draw events (so the Photon manager doesn’t build up a massive list of draw events
to be processed from other applications).

• If you have automatic double buffering turned on (e.g. devg-banshee -B ...),
it’s turned off while you’re in direct mode (to let applications control the double
buffering themselves).

Example
Here’s how to get the address of any video memory context (including the display,
which is considered to be one).

If you create a direct context by calling PdCreateDirectContext(), and then enter direct
mode by calling PdDirectStart(), your application “owns” the graphics driver
(PgFlush() goes to the video driver directly, instead of to the Photon server). You
don’t need to be in direct mode to get a pointer to offscreen RAM, but you do need to
be to get a pointer to the primary display.

Here’s some pseudo-code:

/* Create the direct context. */
direct_context = PdCreateDirectContext();

/* Start Direct Mode. */
PdDirectStart(direct_context);

/* Get the primary display. */
primary_display = PdCreateOffscreenContext(0, 0, 0,

Pg_OSC_MAIN_DISPLAY);

/* Get a pointer to the display. */
vidptr = PdGetOffscreenContextPtr(primary_display);

May 13, 2010 Chapter 19 • Raw Drawing and Animation 427

Video memory offscreen © 2010, QNX Software Systems GmbH & Co. KG.

/* Make sure the Photon driver isn’t doing anything
(it shouldn’t be at this point but this is just to
be sure that we haven’t gotten ahead of the video
card’s draw engine). */

PgWaitHWIdle();

/* Do what ever you do to the memory. */
Do_something(vidptr);

/* Leave direct mode, and destroy the direct context
(an alternative would be PdDirectStop if you don’t
want to destroy the context). */

PdReleaseDirectContext(direct_context);

Video memory offscreen
These API calls allow you to use the leftover memory on a video card. When a video
card is in a video mode, there’s usually video RAM leftover that isn’t being used by
the display area. These areas of RAM can be used to do a variety of graphical
operations while still using the accelerator on the video card. They’re treated in the
Photon microGUI basically the same way that a memory context is used, but should be
much faster because there’s hardware acceleration for these areas.

The functions and data structures include:

PdCreateOffscreenContext()

Create an offscreen context in video RAM

PdDupOffscreenContext()

Duplicate an offscreen context

PdGetOffscreenContextPtr()

Create a shared memory object reference to an offscreen context

PdOffscreenContext_t

Data structure that describes an offscreen context

PdSetOffscreenTranslation()

Set the translation for an offscreen context

PdSetTargetDevice()

Set the target device

PgContextBlit() Copy data from a rectangle in one context to another context

PgContextBlitArea()

Copy data from an area in one context to another context

PgSwapDisplay() Point the CRT of the video display at a given context

PgWaitHWIdle() Wait until the video driver is idle

428 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Video memory offscreen

PhDCRelease() Release a draw context

Here’s an example that loads an image, creates an offscreen context for the image, and
then blits the image data to the screen. It creates a window that contains a PtRaw, and
uses PgContextBlit() in the PtRaw’s raw drawing callback to redraw the image
whenever the window is damaged or resized. You can specify a starting size for the
window by passing -h and -w commandline options, followed by the path to an image
(the format must be supported by PxLoadImage()).

• You need to link against the libphexlib.so library when you build this sample:
qcc offscreen_ex.c -o offscreen_ex -lph -lphexlib

• You need to have all the /usr/photon/dll/pi_io_* dlls and libphimg.so on
your target to run this example.

#include <Pt.h>
#include <photon/PxImage.h>

static PdOffscreenContext_t *context;
static void *my_alloc(long nbytes,int type);
static void raw_draw(PtWidget_t *widget,PhTile_t *damage);

int main(int argc,char *argv[])
{

int c;
PhDim_t dim = { 0,0 };

if(PtInit(NULL))
return(-1);

while((c = getopt(argc,argv,"h:w:")) != -1)
{

switch(c)
{

case ’h’:
dim.h = atoi(optarg);
break;

case ’w’:
dim.w = atoi(optarg);
break;

}
}

if(argv[optind])
{

PxMethods_t methods;
PhImage_t *image;

memset(&methods,0,sizeof(methods));
methods.px_alloc = my_alloc;
methods.flags = PX_DIRECT_COLOR;

if((image = PxLoadImage(argv[optind],&methods)) != NULL)
{

/* Create a context to render the image into. The context will be

May 13, 2010 Chapter 19 • Raw Drawing and Animation 429

Video memory offscreen © 2010, QNX Software Systems GmbH & Co. KG.

created to be the size of the image and will store an exact copy
of the original. Note: if you are short on video RAM, you
might want to enable the Pg_OSC_MEM_SYS_ONLY flag to force
the context to go to system RAM. This will result in a slower
1:1 blit though because the video h/w will not be able to access
the image data directly - the data will have to be transferred
from system memory (over the PCI bus) to video memory. However
if using a s/w scaled blit (ie scaled blit not supported in your
h/w) it’s better for the original image to be in system
RAM because otherwise the CPU has to read the original,
unscaled image from video RAM (over the PCI bus) to
scale, then put it back into video RAM (over the PCI bus).
The round trip (particularly the read) is expensive. */

if((context = PdCreateOffscreenContext(image->type,
image->size.w,image->size.h,0)) != NULL)

{
PtArg_t args[4];
PtWidget_t *window;
PhDrawContext_t *dc = PhDCSetCurrent(context);

if(!dim.w || !dim.h)
dim = image->size;

PgSetFillColor(Pg_WHITE);
PgDrawIRect(0,0,image->size.w - 1,image->size.h - 1,Pg_DRAW_FILL);
PgDrawPhImagemx(NULL,image,0);
PgFlush();
PgWaitHWIdle();
PhDCSetCurrent(dc);

image->flags |= Ph_RELEASE_IMAGE_ALL;
PhReleaseImage(image);
free(image);

/* create a PtWindow with a PtRaw inside to draw the image */

PtSetArg(&args[0],Pt_ARG_DIM,&dim,0);
PtSetArg(&args[1],Pt_ARG_WINDOW_TITLE,argv[optind],0);
if((window = PtCreateWidget(PtWindow,Pt_NO_PARENT,2,args)) != NULL)
{

PhRect_t arect = { { 0,0 },{ 0,0 } };

PtSetArg(&args[1],Pt_ARG_RAW_DRAW_F,raw_draw,0);
PtSetArg(&args[2],Pt_ARG_ANCHOR_FLAGS,

Pt_LEFT_ANCHORED_LEFT | Pt_RIGHT_ANCHORED_RIGHT |
Pt_TOP_ANCHORED_TOP | Pt_BOTTOM_ANCHORED_BOTTOM,
Pt_LEFT_ANCHORED_LEFT | Pt_RIGHT_ANCHORED_RIGHT |
Pt_TOP_ANCHORED_TOP | Pt_BOTTOM_ANCHORED_BOTTOM);

PtSetArg(&args[3],Pt_ARG_ANCHOR_OFFSETS,&arect,0);
if(PtCreateWidget(PtRaw,Pt_DFLT_PARENT,4,args) != NULL)
{

PtRealizeWidget(window);
PtMainLoop();
return(0);

}
}

}
}

}

return(-1);
}

430 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Video memory offscreen

static void *my_alloc(long nbytes,int type)
{

return(type == PX_IMAGE ? PgShmemCreate(nbytes,NULL) : malloc(nbytes));
}

static void raw_draw(PtWidget_t *widget,PhTile_t *damage)
{

/* raw widget draw function; simply blit the context onto the screen.
PgContextBlit() will take care of scaling */

PhRect_t src;

src.ul.x = src.ul.y = 0;
src.lr.x = context->dim.w - 1;
src.lr.y = context->dim.h - 1;

PgContextBlit(context,&src,PhDCGetCurrent(),PtCalcCanvas(widget,NULL));
}

Offscreen contexts can be invalidated by the graphics driver for a number of reasons.
When this happens, the graphics driver sends to the Photon manager a Ph_EV_INFO
event with a subtype of Ph_OFFSCREEN_INVALID. The event data is a single long
describing why the offscreen areas have been invalidated. The possible reasons are as
follows:

Pg_VIDEO_MODE_SWITCHED

The graphics driver has changed video modes.

Pg_ENTERED_DIRECT

An application has entered direct mode.

Pg_EXITED_DIRECT

An application has left direct mode.

Pg_DRIVER_STARTED

The video driver has just started execution.

Applications planning on using offscreen contexts should be sensitive to this event and
reinitialize their off screen contexts accordingly.

Offscreen locks
You generally use offscreen locks with pointers that you gained via
PdGetOffscreenContextPtr(). The locks ensure that:

• Draw stream commands don’t draw while the offscreen context is locked.

• The memory is valid while the application is using it.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 431

Alpha blending support © 2010, QNX Software Systems GmbH & Co. KG.

Your application should lock offscreen memory for as little time as possible. If the
graphics driver needs to do something with the offscreen memory, it tries to gain a
lock itself, potentially blocking io-graphics for a long period of time (the result
being that the display may not get updated, and the user thinks that the computer has
locked up).

The locks are implemented as semaphores in shared memory between io-graphics

and the application.

The basic steps for using offscreen locks are:

1 Create a lock for an offscreen context by calling PdCreateOffscreenLock(). You
can arrange for a signal to be dropped on the application if a request is made to
remove the offscreen context while it’s locked.

2 Lock the offscreen context, when required, by calling PdLockOffscreen(). You
can optionally specify a timeout for the blocking.

3 Unlock the offscreen context by calling PdUnlockOffscreen().

4 When you no longer need to lock the offscreen context, destroy the lock by
calling PdDestroyOffscreenLock().

When you’re debugging, you can call PdIsOffscreenLocked() to determine whether or
not the offscreen context is currently locked.

If you’ve locked the context, call PdUnlockLockOffscreen() to unlock it before
destroying the lock or releasing the offscreen context.

Alpha blending support
Alpha blending is a technique of portraying transparency when drawing an object. It
combines the color of an object to be drawn (the source) and the color of whatever the
object is to be drawn on top of (the destination). The higher the portion of source
color, the more opaque the object looks.

Alpha blending can be applied in three ways:

• As a global factor that applies to every pixel of the source

• With a map that indicates the alpha blending to be applied to each individual pixel.
Alpha maps are “pinned” to the origin of your draw command and are tiled if the
dimensions of the map are smaller than the dimension of the drawing operation.

• On a per-pixel basis

A 32-bit color is made up of four 8-bit channels: alpha, red, green, and blue. These
channels are represented as (A, R, G, B). When referring to the source, the channels
are denoted as As, Rs, Gs, and Bs; for the destination, they’re Ad, Rd, Gd, and Bd.

432 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Chroma key support

The basic formula for alpha blending is:

Sm = source pixel * source multiplier
Dm = destination pixel * destination multiplier
destination pixel = Sm + Dm

There are several options for multipliers to achieve different blending effects. Flags
are defined for source and destination multipliers in PgSetAlpha().

You can also perform an “alpha test”, which tests for certain conditions in the alpha
channel before writing the source pixel to the destination. In an alpha test, pixels
aren’t blended — the source pixel is either written to the destination or it’s not. For
example, you can set the operation to only write the source pixel to the destination if
the source alpha is less than the destination alpha.

The functions include:

PgAlphaOff() Turn alpha blending operations off

PgAlphaOn() Turn alpha blending operations on

PgAlphaValue() Extract the alpha component from a color value

PgARGB() Convert alpha, red, green, and blue values to composite color
format

PgSetAlpha() Set the parameters for alpha blending in detail

PgSetAlphaBlend()

Set the parameters for alpha blending simply

Chroma key support
Chroma-key operations are a method of masking out pixel data during a rendering
operation (copies, image rendering, rectangles, etc.) based on a chroma color value.
The basic modes of operation are:

• Masking on the source key color

• Masking on the destination key color

• Masking on everything but the source key color

• Masking on everything but the destination key color.

The functions include:

PgChromaOff() Turn chroma key operations off

PgChromaOn() Turn chroma operations on

PgSetChroma() Set the chroma color and operation

May 13, 2010 Chapter 19 • Raw Drawing and Animation 433

Extended raster operations © 2010, QNX Software Systems GmbH & Co. KG.

Extended raster operations
The Photon microGUI supports 256 raster operations. Operations can be done using a
combination of source pixel data, destination pixel data, and color expanded
monochrome pattern pixel data. Extended raster operations are set the same way the
normal raster operations are set, using PgSetDrawMode().

The extended raster operations are pervasive, meaning that they affect all subsequent
drawing operations, including bit-blit operations and images. The old style raster
operations still exist and behave the same way they did in earlier versions of the
Photon microGUI.

The extended raster operations are defined as Pg_DrawModecharacters, in reverse
notation, where the characters are chosen from the following:

Character Meaning

P Pattern

S Source

D Destination

o OR

a AND

n NOT

x XOR

For example:

Pg_DrawModeS Copy all source data.

Pg_DrawModePSo Logically OR the source data with the pattern data.

For a complete list of all raster operations available, see <photon/Pg.h>.

Here’s some sample code:

PdOffscreenContext_t *context1;
PhRect_t rsrc,rdst;

/* Initialize the offscreen area and render the data
we want in it. */
...

/* Copy an image stored in an offscreen context to
the display, ORing the source and pattern data
together. */

rsrc.ul.x = rdst.ul.x = rsrc.ul.y = rdst.ul.y = 0;
rsrc.lr.x = rdst.lr.x = rsrc.lr.y = rdst.lr.y = 100;

434 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Video modes

PgSetDrawMode(Pg_DrawModePSo);
PgSetFillDither(Pg_BLUE,Pg_BLACK,Pg_PAT_CHECKB8);
PgContextBlit(context1, &rsrc, NULL, &rdst);

/* OR a blue and black checkerboard pattern with
source data and copy it to the display area. */

PgFlush();

Video modes
A video mode describes what the display (what you see on your monitor) looks like.
The description includes:

Width The width of the display, in pixels.

Height The height of the display, in pixels.

Pixel depth The number of bits used to represent a pixel. This affects how many
unique colors you can see on the screen at one time.

Refresh rate How many times per second the phosphor on the CRT of your
monitor is updated (represented in Hz).

The Photon microGUI’s method of video mode enumeration is similar to the VESA
spec, where there are “mode numbers”, numerical representations of the width, height,
and pixel depth of a video mode. The refresh rate is independent of the mode numbers
(it’s a different member of PgDisplaySettings_t).

The driver determines the mode numbers, so for one video card 640x480x8 might be
mode 2, while on another card it might be mode 3022. Use PgGetVideoModeInfo() to
determine the properties of any given mode number. Use PgGetVideoModeList() to
get a list of the mode numbers supported by a particular graphics driver.

The functions for working with video modes are:

PdSetTargetDevice() Set the target device

PgGetGraphicsHWCaps()

Determine the hardware capabilities

PgGetVideoMode() Get the current video mode

PgGetVideoModeInfo()

Get information about a video mode

PgGetVideoModeList()

Query a graphics driver for a list of its supported video modes

PgSetVideoMode() Set the current video mode

May 13, 2010 Chapter 19 • Raw Drawing and Animation 435

Gradients © 2010, QNX Software Systems GmbH & Co. KG.

Here’s some sample code:

PgVideoModes_t ModeList;
PgVideoModeInfo_t ModeInfo;
PgDisplaySettings_t ModeSetting;
int i=0, done=0;

if (PgGetVideoModeList(&ModeList))
{

/* Error -- driver doesn’t support this. */
}

/* Use the default refresh rate for this mode. */
ModeSetting.refresh = 0;

while (!done)
{

if (PgGetVideoModeInfo(ModeList.modes[i], &ModeInfo))
{

/* Error code */
}

if ((ModeInfo.width == 640) && (ModeInfo.height == 480) &&
(ModeInfo.bits_per_pixel == 16))

{
/* We found the mode we were looking for. */
done = 1;
ModeSetting.mode = ModeList.modes[i];

}

i++;
if (i >= ModeList.num_modes)
{

/* Error -- Mode wasn’t found. */
done=1;

}
}

PgSetVideoMode (&ModeSetting);

Gradients
A gradient is a gradual blend of two colors. The Photon library supports:

• Driver-level gradients — quick, but not sophisticated. Accuracy is sacrificed for
speed.

• Application-level gradients — slower, but more accurate.

Driver-level gradients
Although the Photon library supports a large variety of gradients (see PhImage_t),
there are times when you would just want a simple gradient to be rendered without
having to store it in a PhImage_t. As a result, some basic gradient rendering
operations have been added to the graphics driver:

PgDrawGradient()

Ask the graphics driver to render a gradient

436 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Video overlay

Application-level gradients
These functions let you create your own gradients:

PgBevelBox() Draw a beveled box with gradients

PgCalcColorContrast()

Compute light and dark colors to use for a gradient

PgContrastBevelBox()

Draw a beveled box with gradients and a given level of contrast

PgDrawGradientBevelBox()

Draw a beveled box with gradients and two flat colors

Video overlay
A video overlay scaler is a hardware feature that allows a rectangular area of the
visible screen to be replaced by a scaled version of a different image. The prescaled
video frames are typically stored in offscreen memory, and are fetched from memory
and overlaid on top of the desktop display image in real time, by the overlay scaler.

Chroma keying is used to control what parts of the video frame are visible. Typically,
the application picks a color to be the chroma-key color and draws a rectangle of this
color where video content is to appear. When another application’s window is placed
on top of the video playback application, the chroma-colored rectangle is obscured.
Since the video hardware is programmed to display video content only where the
chroma-key color is drawn, video doesn’t show through where the chroma-colored
rectangle is obscured.

The following functions and data types deal with video overlay:

PgConfigScalerChannel()

Configure a video overlay scaler channel

PgCreateVideoChannel()

Create a channel for video streaming

PgDestroyVideoChannel()

Destroy resources associated with a video channel

PgGetOverlayChromaColor()

Return the color used for video overlay chroma-key operations

PgGetScalerCapabilities()

Get the capabilities of a video overlay scaler

PgNextVideoFrame()

Get the index of the next video buffer to fill

May 13, 2010 Chapter 19 • Raw Drawing and Animation 437

Video overlay © 2010, QNX Software Systems GmbH & Co. KG.

PgScalerCaps_t

Data structure that describes video overlay scaler capabilities

PgScalerProps_t

Data structure that describes video overlay scaler properties

PgVideoChannel_t

Data structure that describes a video overlay channel

Example
#include <stdio.h>

#include <Ph.h>

#define SRC_WIDTH 100
#define SRC_HEIGHT 100

#define DATA_FORMAT Pg_VIDEO_FORMAT_YV12

unsigned char *ybuf0, *ybuf1;
unsigned char *ubuf0, *ubuf1;
unsigned char *vbuf0, *vbuf1;

void
grab_ptrs(PgVideoChannel_t *channel)
{

/* Buffers have moved; get the pointers again. */
ybuf0 = PdGetOffscreenContextPtr(channel->yplane1);
ybuf1 = PdGetOffscreenContextPtr(channel->yplane2);
ubuf0 = PdGetOffscreenContextPtr(channel->uplane1);
ubuf1 = PdGetOffscreenContextPtr(channel->uplane2);
vbuf0 = PdGetOffscreenContextPtr(channel->vplane1);
vbuf1 = PdGetOffscreenContextPtr(channel->vplane2);

if (channel->yplane1)
fprintf(stderr, "ybuf0: %x, stride %d\n", ybuf0,

channel->yplane1->pitch);
if (channel->uplane1)

fprintf(stderr, "ubuf0: %x, stride %d\n", ubuf0,
channel->uplane1->pitch);

if (channel->vplane1)
fprintf(stderr, "vbuf0: %x, stride %d\n", vbuf0,

channel->vplane1->pitch);

if (channel->yplane2)
fprintf(stderr, "ybuf1: %x, stride %d\n", ybuf1,

channel->yplane2->pitch);
if (channel->uplane2)

fprintf(stderr, "ubuf1: %x, stride %d\n", ubuf1,
channel->uplane2->pitch);

if (channel->vplane2)
fprintf(stderr, "vbuf1: %x, stride %d\n", vbuf1,

channel->vplane2->pitch);
}

void
overlay_example()
{

PgVideoChannel_t *channel;

438 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Video overlay

PgScalerCaps_t vcaps;
PgScalerProps_t props;
unsigned char *ptr;
unsigned short *ptr16;
int i = 0, j, k, index;
int color;
PhDrawContext_t *old;
int rc;

if ((channel = PgCreateVideoChannel(
Pg_VIDEO_CHANNEL_SCALER, 0)) == NULL) {

perror("PgCreateVideoChannel");
exit(1);

}

/*
* Cycle through the available formats looking for the one
* we’re interested in.
*/

vcaps.size = sizeof (vcaps);
while (PgGetScalerCapabilities(channel, i++, &vcaps) == 0) {

if (vcaps.format == DATA_FORMAT)
break;

vcaps.size = sizeof (vcaps);
}
if (vcaps.format != DATA_FORMAT) {

fprintf(stderr, "Format not supported?\n");
exit(1);

}

props.size = sizeof (props);
props.format = DATA_FORMAT;
props.viewport.ul.x = 20;
props.viewport.ul.y = 20;
props.viewport.lr.x = 600;
props.viewport.lr.y = 440;
props.src_dim.w = SRC_WIDTH;
props.src_dim.h = SRC_HEIGHT;
props.flags =

Pg_SCALER_PROP_SCALER_ENABLE |
Pg_SCALER_PROP_DOUBLE_BUFFER |
Pg_SCALER_PROP_DISABLE_FILTERING;

if (PgConfigScalerChannel(channel, &props) == -1) {
fprintf(stderr, "Configure channel failed\n");
exit(1);

}

grab_ptrs(channel);

for (i = 0; i < 100; i++) {
index = PgNextVideoFrame(channel);
delay(50);
ptr = (void *)(index ? ybuf1 : ybuf0);
color = rand() & 0xff;
for (k = 0; k < props.src_dim.h; k++) {

memset(ptr, color, channel->yplane1->pitch);
ptr += channel->yplane1->pitch;

}
}

props.flags &= ˜Pg_SCALER_PROP_DISABLE_FILTERING;
switch (PgConfigScalerChannel(channel, &props)) {
case -1:

May 13, 2010 Chapter 19 • Raw Drawing and Animation 439

Video overlay © 2010, QNX Software Systems GmbH & Co. KG.

fprintf(stderr, "Configure channel failed\n");
exit(1);
break;

case 1:
grab_ptrs(channel);
break;

case 0:
default:

break;
}

fprintf(stderr, "\"TV snow\" effect\n");
for (i = 0; i < 1000; i++) {

index = PgNextVideoFrame(channel);
ptr = (void *)(index ? ybuf1 : ybuf0);
for (k = 0; k < props.src_dim.h; k++) {

for (j = 0; j < channel->yplane1->pitch; j++)
*(ptr + j) = rand() & 0xff;

ptr = (void *)((char *)ptr + channel->yplane1->pitch);
}

/* Set the chromanance to neutral for monochrome */
ptr = ubuf0;
for (i = 0; i < props.src_dim.h; i++) {

memset(ptr, 128, props.src_dim.w / 2);
ptr += channel->uplane1->pitch;

}
ptr = vbuf0;
for (i = 0; i < props.src_dim.h; i++) {

memset(ptr, 128, props.src_dim.w / 2);
ptr += channel->vplane1->pitch;

}

if (rand() % 200 == 23) {
props.viewport.ul.x = rand() % 400;
props.viewport.ul.y = rand() % 300;
props.viewport.lr.x =

props.viewport.ul.x + SRC_WIDTH + rand() % 200;
props.viewport.lr.y =

props.viewport.ul.y + SRC_HEIGHT + rand() % 200;
if (PgConfigScalerChannel(channel, &props) == 1)

grab_ptrs(channel);
}

}

/*
* This isn’t really necessary, since the video resources
* should automatically be released when the app exits
*/

PgDestroyVideoChannel(channel);
}

int
main(int argc, char *argv[])
{

PhAttach(NULL, NULL);

overlay_example();

fprintf(stderr, "Exiting normally\n");
}

440 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layers

Layers
Some display controllers allow you to transparently overlay multiple "screens" on a
single display. Each overlay is called a layer.

Layers can be used to combine independent display elements. Because overlaying is
performed by the graphics hardware, it can be more efficient than rendering all of the
display elements onto a single layer. For example, a fast navigational display can be
implemented with a scrolling navigational map on a background layer, and pop-up
GUI elements, such as menus or a web browser, on a foreground layer.

Layer capabilities vary depending on the display controller and the driver. Some
display controllers don’t support layers. Different layers on the same display may have
different capabilities. You should use PgGetLayerCaps() to determine whether a layer
exists and which features are supported by the layer.

Layers are indexed per-display, starting from 0, from back to front in the default
overlay order.

A layer is either active (shown) or inactive (hidden). It may not be possible to activate
a layer if its configuration is incomplete (if, for example, the layer format is
unspecified, or there aren’t enough surfaces assigned to it). A layer’s configuration
persists when it’s inactive. After a video mode switch, all layers revert to their default
configuration.

The images on all the active layers of a display are combined, using alpha blending,
chroma keying, or both, to produce the final image on the display.

Surfaces
The image on a layer is fetched from one or more offscreen contexts, also called
surfaces. The number of surfaces needed by a layer is determined by the layer format.
For example, a layer whose format is Pg_LAYER_FORMAT_ARGB888 requires one
surface, while a layer whose format is Pg_LAYER_FORMAT_YUV420 requires three
surfaces for a complete image. The format of a layer is set using PgSetLayerArg().

May 13, 2010 Chapter 19 • Raw Drawing and Animation 441

Layers © 2010, QNX Software Systems GmbH & Co. KG.

Viewports
Display

Surface data

Destination viewport

Source viewport

Source and destination viewports.

The source viewport defines a rectangular window into the surface data. This window
is used to extract a portion of the surface data for display by the layer.

The destination viewport defines a rectangular window on the display. This window
defines where the layer will display its image.

Scrolling and scaling, if supported by the layer, can be implemented by adjusting the
source and destination viewports. To scroll or pan an image, move the position of the
source viewport. To scale an image, increase or decrease the size of the destination
viewport.

You must target these functions at a device by calling PdSetTargetDevice().

Layer API
The layer API includes:

PgGetLayerCaps() Query the capabilities of a layer

PgCreateLayerSurface()

Create an offscreen context displayable by a layer

PgSetLayerSurface()

Display an offscreen context on a layer

442 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layers

PgSetLayerArg() Configure a layer parameter

PgLockLayer() Lock a layer for exclusive use by an application

PgUnlockLayer() Release a locked layer

PgLayerCaps_t Data structure that describes the capabilities for a layer

WARNING: The layer API is incompatible with the existing video overlay API
(PgCreateVideoChannel(), PgConfigScalerChannel(), PgNextVideoFrame(), and so
on). Don’t run two applications that use different APIs simultaneously.

Note the following:

• Photon cannot render in offscreen contexts that are in a different format from the
current video mode. Thus, it may not be possible to use Photon draw functions in
an offscreen context allocated by PgCreateLayerSurface(). Instead, the application
should use PdGetOffscreenContextPtr() to get a pointer to the video memory and
write data directly into the video memory.

• If an application changes the main display’s surface by calling
PgSetLayerSurface(), Photon will continue to render on the old surface. The
application should keep a pointer to the old main display surface and restore it
when it releases the layer. See the code below for an example.

Using layers
To use layers, you typically do the following:

1 Call PgGetLayerCaps() with successively incremented indexes to enumerate
your hardware capabilities (unless you already know them). If
PgGetLayerCaps() fails for all values, the driver doesn’t support layers.

2 If you want to prevent other applications from accessing a layer, call
PgLockLayer().

3 Allocate surfaces for the layer, and offscreen contexts for the surfaces, by
calling PgCreateLayerSurface().

4 Call PgSetLayerArg() with an arg argument of Pg_LAYER_ARG_LIST_BEGIN.

5 Call PgSetLayerArg() to set other arguments as required.

6 Call PgSetLayerSurface() to display a surface’s offscreen context on a layer.

7 Call PgSetLayerArg() to set other arguments as required. You can specify
Pg_LAYER_ARG_ACTIVE to display the layer.

8 Call PgSetLayerArg() with an arg argument of Pg_LAYER_ARG_LIST_END.

May 13, 2010 Chapter 19 • Raw Drawing and Animation 443

Layers © 2010, QNX Software Systems GmbH & Co. KG.

9 If the layer format is one of the RGB or PAL8 formats, set the current draw
context to render into a surface’s associated draw context(s), and then use the
Pg* functions to draw into the offscreen context.

10 If the layer format is YUV, and so on, you typically dump data directly to the
buffer (like the video channel buffers).

11 If you locked a layer, you must use PgUnlockLayer() to unlock it before your
application exits.

See the code below for an example of using the layers API.

Example
#include <errno.h>
#include <stdio.h>
#include <Ph.h>

int
FindFormatIndex(int layer, unsigned int format)
{

PgLayerCaps_t caps;
int format_idx = 0;

while (PgGetLayerCaps(layer, format_idx, &caps) != -1) {
if (caps.format == format)

return format_idx;

format_idx++;
}
return -1;

}

int
main(int argc, char **argv)
{
/*
* For best results, these values should match your video mode.
*/

#define LAYER_FORMAT Pg_LAYER_FORMAT_ARGB8888
#define SURFACE_WIDTH 1024
#define SURFACE_HEIGHT 768

struct _Ph_ctrl *ph;
PgLayerCaps_t caps;
PdOffscreenContext_t *surf;
PdOffscreenContext_t *scr = NULL;
PhDrawContext_t *olddc;
PhRid_t driver_rid = -1;
int layer_idx = -1;
int format_idx = -1;
int active = 1;
int i;

PhArea_t sarea, darea;

/*
* Arguments:
* -d <driver region>
* -l <layer index>
*/

444 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layers

while ((i = getopt(argc, argv, "d:l:")) != -1) {
switch(i) {
case ’d’: /* driver region */

driver_rid = atol(optarg);
break;

case ’l’: /* layer index */
layer_idx = atoi(optarg);
break;

default:
break;

}
}

if (layer_idx == -1) {
printf("Specify layer index.\n");
exit(-1);

}

if (driver_rid == -1) {
printf("Specify graphics driver region.\n");
exit(-1);

}

ph = PhAttach(NULL, NULL);
if (ph == NULL) {

perror("PhAttach");
exit(-1);

}

if (-1 == PdSetTargetDevice(PhDCGetCurrent(), driver_rid)) {
perror("PdSetTargetDevice");
exit(-1);

}

/* Check if the layer supports the required format */
format_idx = FindFormatIndex(layer_idx, LAYER_FORMAT);
if (format_idx == -1) {

printf("Layer doesn’t support format\n");
exit(-1);

}

/* Get the layer capabilities */
PgGetLayerCaps(layer_idx, format_idx, &caps);

if (caps.caps & Pg_LAYER_CAP_MAIN_DISPLAY) {
/* Save a reference to the current display surface */
scr = PdCreateOffscreenContext(0, 0, 0,

Pg_OSC_MAIN_DISPLAY);
}

/* Allocate a surface for the layer */
surf = PgCreateLayerSurface(layer_idx, 0, format_idx,

SURFACE_WIDTH, SURFACE_HEIGHT,
Pg_OSC_MEM_PAGE_ALIGN);

if (surf == NULL)
exit(-1);

/* Draw some stuff on the surface */
olddc = PhDCSetCurrent(surf);
PgSetFillColor(Pg_BLACK);
PgDrawIRect(0, 0, SURFACE_WIDTH-1, SURFACE_HEIGHT-1,

Pg_DRAW_FILL);

May 13, 2010 Chapter 19 • Raw Drawing and Animation 445

Layers © 2010, QNX Software Systems GmbH & Co. KG.

PgSetFillColor(Pg_YELLOW);
PgDrawIRect(0, 0, 100, 100, Pg_DRAW_FILL);
PgSetFillColor(PgRGB(255,180, 0));
PgDrawIRect(70, 80, 600, 500, Pg_DRAW_FILL);
PhDCSetCurrent(olddc);

/* Lock the layer */
if (-1 == PgLockLayer(layer_idx))

exit(-1);

/* Start configuring arguments */
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_LIST_BEGIN, 0, 0);

/* Select the layer format */
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_FORMAT_INDEX,

&format_idx, sizeof(int));

/* This changes the current display surface */
PgSetLayerSurface(layer_idx, 0, surf);

PgSetLayerArg(layer_idx, Pg_LAYER_ARG_ACTIVE,
&active, sizeof(int));

/* Configure other arguments ... */

if (!(caps.caps & Pg_LAYER_CAP_MAIN_DISPLAY)) {
sarea.pos.x = 0; sarea.pos.y = 0;
sarea.size.w = SURFACE_WIDTH;
sarea.size.h = SURFACE_HEIGHT;
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_SRC_VIEWPORT, &sarea,

sizeof(sarea));

darea.pos.x =0; darea.pos.y =0;
darea.size.w =SURFACE_WIDTH/2 ;
darea.size.h =SURFACE_HEIGHT/2 ;
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_DST_VIEWPORT, &darea,

sizeof(darea));
}

/* End configuration */
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_LIST_END, 0, 0);

/* Application continues ... */
sleep(3);

/* Finished using layer; Restore the current display
surface */

active = 0;

PgSetLayerArg(layer_idx, Pg_LAYER_ARG_LIST_BEGIN, 0, 0);
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_ACTIVE, &active,

sizeof(int));
PgSetLayerSurface(layer_idx, 0, scr);
PgSetLayerArg(layer_idx, Pg_LAYER_ARG_LIST_END, 0, 0);

PgUnlockLayer(layer_idx);

if (scr) PhDCRelease(scr);
PhDCRelease(surf);

446 Chapter 19 • Raw Drawing and Animation May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Layers

PhDetach(ph);
exit(0);

}

May 13, 2010 Chapter 19 • Raw Drawing and Animation 447

Chapter 20

Understanding Encodings, Fonts,
Languages and Code Tables

May 13, 2010 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables 449

© 2010, QNX Software Systems GmbH & Co. KG.

This chapter describes the differences between encodings, fonts, languages, and code
tables with respect to QNX Neutrino and Photon.

This chapter describes the following concepts:

• Terminology Definitions

• Unicode encoding in Photon

• Advanced Graphics

• General Notes

• Language Notes

Terminology Definitions
Each concept is described below:

Language

With respect to computers, language has a vague meaning. When someone asks,
“Does your system support language X?”, you should say, “What do you mean?
Input? Display? Unicode only? Translation of antiquated encodings?”. Some
languages are complex, including, but not limited to, Thai, Hebrew, Arabic. Complex
language can either require compositing of multiple glyphs to form a single character,
or bi-directional (right-to-left) processing.

Code Table

In basic terms, a code table is a two column list that maps a numerical value to a
glyph. The most widely used code table is Unicode (see http://www.unicode.org).

Encoding

Encoding values are “stored” from a code table. There are many different encoding
types to choose from depending on your application. Here are some encodings for
storing Unicode:

• UTF-8

• UTF-16 (UCS-2)

• UTF-32 (UCS-4)

Font

A font file is a binary file that contains glyphs, or “pictures”, of symbols representing
the building blocks of a displayable character set. Depending on the language,
multiple glyphs can comprise a single character. In Unicode encoded fonts, some
languages, such as Chinese, Japanese, and Korean, have combining characters that are
comprised of multiple glyphs.

May 13, 2010 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables 451

© 2010, QNX Software Systems GmbH & Co. KG.

Characters

A character can be one of the following:

• a single Unicode point glyph (for example, 0x00CB)

• a combined character (pre-composed glyphs, already assigned a single Unicode
point, for example 0x6E90, ?)

• a composited character (composed of multiple glyphs, from multiple Unicode
points)

Unicode encoding in Photon
Photon supports the Unicode 3.x (16-bits) code table through its font rendering
subsystem. Range: 0x0000 to 0xFFFF.

Photon completely supports UTF-8 (preferred) and UTF-16 encodings. There is
limited support for UTF-32 encoding.

Photon does not currently support complex language processing. For example, Photon
does support Thai TIS-620 encoding, so that TIS-620 encoded data can be converted
to and from Unicode, however it does not support the processing of this complex
language for display and input.

The following lists specify UTF encoding support on a per-function basis. This
information is also provided in the documentation for each function.

UTF-8, UTF-16 (Pg_TEXT_WIDECHAR)

• PgDrawText(), PgDrawTextCx()

• PgDrawTextv()

• PgDrawTextChars()

• PgDrawTextvCx(), PgDrawTextCharsCx()

• PgDrawTextArea(), PgDrawTextAreaCx()

• PfExtentFractTextCharPositions()

• PfExtentTextCharPositions(), PfExtentTextCharPositionsCx()

UTF-8

• PgExtentMultiText()

• PgExtentText()

• PfExtentText()

• PfExtentTextToRect()

• PfFractionalExtentText()

452 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

• PfExtentComponents(), PfExtentComponentsCx()

• PfTextWidthBytes()

• PfTextWidthChars()

UTF-8, UTF-16 (PF_WIDECHAR), UTF-32 (PF_WIDECHAR32)

• PfRender(), PfRenderCx()

• PfExtent(), PfExtentCx()

• PfExtent16dot16()

UTF-16

• PfExtentWideText()

• PfWideTextWidthBytes()

• PfWideTextWidthChars()

String representation

In this history of Unix, the size of wchar_t was changed from 16-bits to 32-bits.
Therefore, when working in a Photon environment, you must use uint16_t for wide
character strings. In general, there is no need to use wchar_t, except possibly when
porting while creating a Photon application. Even in this situation, there is no true
benefit of using a 32-bit wchar_t, because Photon currently only supports Unicode
3.x (16-bits). To avoid these sizing issues altogether, you should use multi-byte UTF-8
encoded strings.

Translation

Photon provides the PxTranslate*() family of functions in order to translate
non-Unicode character set multi-byte strings to and from UTF-8, and
Unicode-encoded UTF-16/UTF-32 to and from UTF-8. For more information, see
Appendix: Unicode Multilingual Support.

Services

Photon uses a central font server called phfont. This server uses plugins to support
the rendering of different types of font file formats. You can find more details on each
plugin by reading the documentation, or by using the use utility on the plugins located
in /lib/dll/font. A central server allows for the consolidation of resources, and
the decoupling of vendor-specific API calls from client applications.

May 13, 2010 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables 453

© 2010, QNX Software Systems GmbH & Co. KG.

The font server phfont is not coupled to the Photon environment directly.
Non-photon applications can use Pf*Cx() calls by linking against the libfont.*
library.

Advanced Graphics
The Advanced Graphics API has no font-specific API calls. There are currently two
options for Advanced Graphics applications:

1 Use phfont() and libfont.*() utilizing the Pf*Cx() API calls.

2 Use the Bitstream Font Fusion 2.4 library directly. This library provides a very
low-level font rendering solution, which is used by several of the phfont
rendering plugins. Header files for this library are installed at
/usr/include/FontFusion/T2K.

General Notes
In general, Photon and Advanced Graphics can both utilize the same font files. The
only exception is Photon’s PHF file format, which is generated from widely available
BDF files. If you must use a bitmap font, the utility bdftophf2 can be used to
generate them.

The following font file formats are currently supported:

• Bitmap (.phf, converted from Unicode, ascending sorted, BDF files, legacy)

• TrueType (.ttf)

• Adobe Type 1 (.pfa)

• Adobe Type 2 (.ccf)

• Bitstream Stroke (.ffs)

• Bitstream T2K (.t2k)

• Bitstream Speedo (.spd, public encryption only)

• TrueType Collection (.ttc)

• Bitstream PFR (.pfr — legacy, not recommended for use in new products)

You should always use scalable font technology, unless you use a highly contained
system that only requires specific point sizes. Once you start adding additional bitmap
fonts for more point sizes, any benefits are quickly lost due to large file sizes. Due to
the flexibility and speed of current scalable font technology, bitmap fonts are no longer
recommended.

In Photon, fonts are installed under /usr/photon/font_repository. See the
documentation for mkfontdir, phfont, and the chapter Appendix: Photon in
Embedded Systems.

454 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Documentation for the current shipping version of FontFusion is available at:
$QNX_TARGET/usr/help/FontFusion/FF_Ref_Guide.pdf

Language Notes
Languages that use characters which are combined of glyphs that are already in the
Unicode range (for example Chinese, Japanese, Korean) are currently supported for
display and input. Input is supported by the input methods cpim(), vpim(), and kpim().

Languages that are complex, such as Thai, Arabic, and Hebrew (though single glyphs
can be displayed) are not currently supported for display or input.

May 13, 2010 Chapter 20 • Understanding Encodings, Fonts, Languages and Code Tables 455

Chapter 21

Fonts

In this chapter. . .
Symbol metrics 459
Font function libraries 460
Font names 462
Writing text in a rectangular area 466
Repairing damage to proportional text 470

May 13, 2010 Chapter 21 • Fonts 457

© 2010, QNX Software Systems GmbH & Co. KG. Symbol metrics

Although the Photon and font libraries provide many functions that deal with fonts
(see the Pf—Font Server chapter of the Photon Library Reference), most of them are
low-level routines that you probably don’t need to use. This chapter describes the
basics of using fonts.

Symbol metrics
Let’s start with some definitions:

Extent

Advance

Origin

X Max

Baseline

Ascender

Descender

Bearing x
(left bearing)

Symbol metrics.

Advance The amount by which the pen x position advances after drawing the
symbol. This might not be the full width of the character (especially in
an italic font) to implement kerning.

Ascender The height from the baseline to the top of the character.

Bearing x or left bearing

The amount of the character to the left of where the character is
deemed to start.

Descender The height from the bottom of the character to the baseline.

Extent The width of the symbol. Depending on the font, this might include
some white space.

Origin The lower left corner of the character

X Max The width of the symbol, not including the bearing x.

May 13, 2010 Chapter 21 • Fonts 459

Font function libraries © 2010, QNX Software Systems GmbH & Co. KG.

To save time and memory, kerning isn’t supported.

Font function libraries
There are two libraries of font-related functions shipped with Neutrino:

• the functions that come with the Photon library ph

• the separate libfont library. All libfont functions have a Cx or Dll suffix.

The Photon library font functions reference libfont functions using global contexts.

io-graphics

phfont.so

App. 1 App. 2 App. 3...

Font architecture using io-graphics with a resource manager font instance

The font library, libfont, offers three different methods for obtaining font services:

• The first method uses message passing to communicate to an external font server
process.

• The second method allows an application to create a private font server instance,
eliminating message passing for font processing.

• The third method creates a resource manager font server instance using a separate
thread within the application. The resource manager thread will attach a device
(e.g. /dev/phfont), which other applications may connect to via PfAttachCx() , if
the applications are aware of the device name. Note that to run a resource manager
font server private instance, the application must be root-privileged. The
application which invokes the font server instance does not require message
passing for font processing. This method is used by io-graphics to run global
font server by default.

These methods are made possible through the font server plugin, phfont.so, which
contains all common font server code. This allows the memory footprint of the font
server to be potentially much smaller than it was before. The font library also allows

460 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Font function libraries

you to fine-tune your system’s memory requirements for your particular embedded
environment.

For example, if your system had maximum resources, you could run a private font
server instance for every application. Each application would use
PfAttachLocalDLL(), passing either your own schema or NULL.

App. 1

phfont.so

App. 2 App. 3...

phfont.sophfont.so

Every application with its own private font server.

Now say you had only minimal resources. Your applications would use the external
font server phfont, or io-graphics that uses phfont.so, with each application
performing a message pass to process fonts, which would require minimal memory but
higher CPU usage. In the case of io-graphics, font rendering is done locally with
no memory passing.

phfont

App. 1

phfont.so

App. 2 App. 3...

Applications sharing a common font server.

The libfont library DLL functions introduce the concept of a schema, which is a
configuration file you can use to override the default settings for private font server
instances.

May 13, 2010 Chapter 21 • Fonts 461

Font names © 2010, QNX Software Systems GmbH & Co. KG.

Font names
A font is identified by its name, which can be in one of these forms:

foundry name The name assigned by the font foundry to identify the font family,
such as Helvetica, Comic Sans MS, and PrimaSans BT. Note the
use of capitals.

The foundry name doesn’t include information about the style (e.g.
bold, italic) or the size. This name is universal across operating
environments (e.g. X, Photon).

stem name A unique identifier that includes an abbreviation of the foundry
name, as well as the style (e.g. b, i) and the size. For example,
helv12 is the stem name for 12-point Helvetica, and helv12b is
the stem name for 12-point bold Helvetica.

To specify a font in the Photon API, you always use a stem name. You should consider
stem names to be constant identifiers, not modifiable strings.

You can hard-code all references to fonts in a Photon application. But your application
can be more flexible if it uses the foundry name to choose the best match from
whatever fonts are available. That way, there isn’t a problem if a particular font is
eventually renamed, removed, or replaced.

For example, the following call to PtAlert() uses the hard-coded stem name helv14 to
specify 14-point Helvetica:

answer = PtAlert(
base_wgt, NULL, "File Not Saved", NULL,
"File has not been saved.\nSave it?",
"helv14", 3, btns, NULL, 1, 3, Pt_MODAL);

You can get the available stem names from the names of the files in
${PHOTON_PATH}/font_repository— just remove any file extension (e.g.
.phf).

Alternately, if you have a $HOME/.ph directory, check in $HOME/.ph/font/.

Querying available fonts
The above example takes a shortcut by using a hard-coded stem name (helv14). And,
like any shortcut, this approach has trade-offs. First, stem names are subject to change.
More importantly, all versions of the Photon microGUI up to and including 1.13 have
only 16 characters available for the stem name. This isn’t always enough to give each
font a unique stem. The current version of the Photon microGUI allows 80 characters.

462 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Font names

We’ve defined the FontName data type for you to use for the buffer you pass to
PfGenerateFontName(). It’s an array of size MAX_FONT_TAG. For successful font
programming, don’t use a font identifier storage buffer that’s smaller than FontName.

To get around hard-coded stem name issues, you can use PfQueryFonts() to determine
which fonts are available and provide the information needed to build a stem name.
This function queries the font server, and protects you from future changes.

FontDetails structure
Once you’ve got the list of fonts, you need to examine each FontDetails structure in
it to find the font you need and determine the string to use as the stem name.

The FontDetails structure is defined in <photon/Pf.h>, and contains at least
these elements:

FontDescription desc

The foundry name or full descriptive name of the font, such as
Helvetica or Charter.

FontName stem The short form. This provides a part of the stem name used by the
Photon API calls. For example, helv and char correspond to
Helvetica and Charter.

Generating font names
As described earlier, the Photon API requires a stem name to identify a font, but if you
want to be flexible, you should use a font foundry name.

The easiest way to get a stem name, given the font foundry name, desired point size,
and style, is to call PfGenerateFontName(). It creates, in a buffer that you supply, a
unique stem name for the font. (You can use this approach even if you don’t use
PfQueryFonts() to find all the available fonts.)

Here’s the same call to PtAlert() as shown earlier, but this time it calls
PfGenerateFontName():

char Helvetica14[MAX_FONT_TAG];

if (PfGenerateFontName("Helvetica", 0, 14,
Helvetica14) == NULL)

{
/* Couldn’t find the font! */
...

}

answer = PtAlert(
base_wgt, NULL, "File Not Saved", NULL,
"File has not been saved.\nSave it?",
Helvetica14, 3, btns, NULL, 1, 3,
Pt_MODAL);

May 13, 2010 Chapter 21 • Fonts 463

Font names © 2010, QNX Software Systems GmbH & Co. KG.

Example
Now that we’ve looked at the pieces involved, it’s fairly simple to follow the steps
needed to build up the correct stem name for a given font.

Keep these things in mind:

• Use a FontName buffer to store the stem name.

• Search for a font based on the foundry name (i.e. the desc member of its
FontDetails entry), not on the stem.

You’ll probably want to do this work in the initialization function for your application,
or perhaps in the base window setup function. Define the FontName buffer as a global
variable; you can then use it as needed throughout your application.

Here’s a sample application-initialization function:

/***************************
*** global variables ***
***************************/

FontName GcaCharter14Bold;

int
fcnAppInit(int argc, char *argv[])

{
/* Local variables */
FontDetails tsFontList [nFONTLIST_SIZE];
short sCurrFont = 0;
char caBuff[20];

/* Get a description of the available fonts */

if (PfQueryFonts (PHFONT_ALL_SYMBOLS,
PHFONT_ALL_FONTS, tsFontList,
nFONTLIST_SIZE) == -1)

{
perror ("PfQueryFonts() failed: ");
return (Pt_CONTINUE);

}

/* Search among them for the font that matches our
specifications */

for (sCurrFont = 0;
sCurrFont < nFONTLIST_SIZE; sCurrFont++)

{
if (!strcmp (tsFontList[sCurrFont].desc,

"Charter"))
break; /* we’ve found it */

}

/* Overrun check */
if (sCurrFont == nFONTLIST_SIZE)
{

/* check for a partial match */
for (sCurrFont = 0;

sCurrFont < nFONTLIST_SIZE;
sCurrFont++)

464 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Font names

{
if (!strncmp (tsFontList[sCurrFont].desc,

"Charter",
strlen ("Charter")))

break; /* found a partial match */
}

if (sCurrFont == nFONTLIST_SIZE)
{

printf ("Charter not in %d fonts checked.\n",
sCurrFont);

return (Pt_CONTINUE);
}
else

printf ("Using partial match -- ’Charter’.\n");
}

/* Does it have bold? */
if (!(tsFontList[sCurrFont].flags & PHFONT_INFO_BOLD))
{

printf ("Charter not available in bold font.\n");
return (Pt_CONTINUE);

}

/* Is 14-point available? */
if (!((tsFontList[sCurrFont].losize ==

tsFontList[sCurrFont].hisize == 0)
/* proportional font -- it can be shown in
14-point*/

||

((tsFontList[sCurrFont].losize <= 14)
&&
(tsFontList[sCurrFont].hisize >= 14))))
/* 14-point fits between smallest and

largest available size */

{
printf ("Charter not available in 14-point.\n");
return (Pt_CONTINUE);

}

/* Generate the stem name */
if (PfGenerateFontName(tsFontList[sCurrFont].desc,

PF_STYLE_BOLD, 14,
GcaCharter14Bol) == NULL)

{
perror ("PfGenerateFontName() failed: ");
return (Pt_CONTINUE);

}

/* You can now use GcaCharter14Bold as an argument to
PtAlert(), etc. */

/* Eliminate ’unreferenced’ warnings */
argc = argc, argv = argv;

return(Pt_CONTINUE);

May 13, 2010 Chapter 21 • Fonts 465

Writing text in a rectangular area © 2010, QNX Software Systems GmbH & Co. KG.

}

For the above code to work, you must declare the following information in the
application’s global header file. To do this, use PhAB’s Startup Info/Modules dialog
(accessed from the Application menu).

/*********************************
*** user-defined constants ***
*********************************/
#define nFONTLIST_SIZE 100 /* an arbitrary choice of size */

/***************************
*** global variables ***
***************************/

extern FontName GcaCharter14Bold;

You can avoid using a specific size for the list by calling PfQueryFonts() with n set to
0 and list set to NULL. If you do this, PfQueryFonts() returns the number of matching
fonts but doesn’t try to fill in the list. You can use this feature to determine the number
of items to allocate.

Remember to define this header before you start adding callbacks and setup functions
— that way, it’s automatically included as a #define. If you forget, you’ll have to go
back and add the statement manually. For more information, see “Specifying a global
header file” in the Working with Applications chapter.

And last of all, here’s a sample callback that uses our stem name string:

int
fcnbase_btn_showdlg_ActivateCB(PtWidget_t *widget,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

/* This callback is used to launch a dialog box with the
intent of exercising the global variable GcaCharter14Bold */

{
PtNotice (ABW_base, NULL, "Font Demonstration", NULL,

"This sentence is in 14-pt. Charter bold",
GcaCharter14Bold, "OK", NULL, 0);

/* Eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

return(Pt_CONTINUE);
}

Writing text in a rectangular area
Writing text in a rectangle of a specific size can be tricky if the string size is unknown.

Consider a rectangle of fixed dimensions, for example a cell in a spreadsheet. How do
you determine how many characters can successfully be displayed in this cell without
clipping? Call PfExtentTextToRect(). Give it a clipping rectangle, a font identifier, a
string, and the maximum number of bytes within the string, and it tells you the number
and extent of the characters that fit within the clipping rectangle.

466 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Writing text in a rectangular area

This is useful for placing an ellipsis (...) after a truncated string and avoiding
partially clipped characters. Currently this routine supports clipping only along the
horizontal axis.

Here’s an example:

/* PfExtentTextToRect */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <Ap.h>
#include <Ph.h>
#include <Pt.h>
#include <errno.h>

PtWidget_t * pwndMain = NULL, * pbtn = NULL, * pobjRaw = NULL;
char * pcText = "pAfaBfbfffffffffffffffCfcXfxYfyZfzf";
char * pcGB = "\323\316\317\267";
char ** ppcData = NULL;

int fnDrawCanvas(PtWidget_t * ptsWidget, PhTile_t * ptsDamage);

#define FALSE 0

FontName szFont;

char * pmbGB = NULL;
struct PxTransCtrl * ptsTrans = NULL;
int iTemp1 = 0, iTemp2 = 0;

#define BUFFER_SIZE 256

int main (int argc, char *argv[])
{ PtArg_t args[4];

PhPoint_t win_size, pntPOS, pntDIM;
short nArgs = 0;

if((pmbGB = calloc(BUFFER_SIZE, sizeof(char))) == NULL)
return(EXIT_FAILURE);

PtInit (NULL);

if(argc > 1)
{ if(PfGenerateFontName(argv[1], 0, 9, szFont) == NULL)

PfGenerateFontName("TextFont", 0, 9, szFont);
}
else

PfGenerateFontName("TextFont", 0, 9, szFont);

if((ptsTrans = PxTranslateSet(NULL, "GB2312-80")) == NULL)
return(EXIT_FAILURE);

if(PxTranslateToUTF(ptsTrans, pcGB, 4, &iTemp1, pmbGB,
BUFFER_SIZE, &iTemp2) == -1)

printf("Could not translate from GB to UTF.\n");

if(argc > 2)
pcText = pmbGB;

/* Set the base pwndMain parameters. */
win_size.x = 450;

May 13, 2010 Chapter 21 • Fonts 467

Writing text in a rectangular area © 2010, QNX Software Systems GmbH & Co. KG.

win_size.y = 450;

PtSetArg(&args[0],Pt_ARG_DIM, &win_size, 0);
PtSetArg(&args[1],Pt_ARG_WINDOW_TITLE,

"PfExtentTextToRect", 0);

pwndMain = PtCreateWidget (PtWindow, Pt_NO_PARENT, 2, args);

nArgs = 0;
pntPOS.x = 100;
pntPOS.y = 10;
PtSetArg(&args[nArgs], Pt_ARG_POS, &pntPOS, 0);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_TEXT_STRING, pcText, NULL);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_TEXT_FONT, szFont, NULL);
nArgs++;
pbtn = PtCreateWidget(PtButton, pwndMain, nArgs, args);
PtRealizeWidget(pbtn);

pntPOS.y = 100;
pntPOS.x = 75;
pntDIM.x = 300;
pntDIM.y = 300;
PtSetArg(&args[0], Pt_ARG_POS, &pntPOS, 0);
PtSetArg(&args[1], Pt_ARG_DIM, &pntDIM, 0);
PtSetArg(&args[2], Pt_ARG_RAW_DRAW_F, fnDrawCanvas, 0L);
pobjRaw = PtCreateWidget(PtRaw, pwndMain, 3, args);

PtRealizeWidget(pwndMain);

PtMainLoop ();

return(0);
}

#define ASCENDER tsExtent.ul.y
#define DESCENDER tsExtent.lr.y

int fnDrawCanvas(PtWidget_t * ptsWidget, PhTile_t * ptsDamage)
{ PhRect_t tsExtentClip;

PhRect_t rect;
PhPoint_t pnt;
PhRect_t tsExtent;
PgColor_t old;
PhPoint_t pnt2;
PhPoint_t tsPos = {0, 0};
int iRet = 0;
int iBytes = 0;

/* Find our canvas. */
PtBasicWidgetCanvas(pobjRaw, &rect);
PtSuperClassDraw(PtBasic, ptsWidget, ptsDamage);

old = PgSetStrokeColor(Pg_BLACK);

PfExtentText(&tsExtent, &tsPos, szFont, pcText,
strlen(pcText));

/* Draw the text. */
pnt.x = 10 + rect.ul.x;
pnt.y = 100 + rect.ul.y;

468 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Writing text in a rectangular area

PgSetFont(szFont);
PgSetTextColor(Pg_BLACK);
PgDrawText(pcText, strlen(pcText), &pnt, 0);

pnt.x -= 10;
pnt2.x = pnt.x + tsExtent.lr.x + 20;
pnt2.y = pnt.y;

PgSetStrokeColor(Pg_BLUE);

PgDrawLine(&pnt, &pnt2);

pnt.x = 10 + rect.ul.x;
pnt.y = 100 + rect.ul.y;

PgSetStrokeColor(Pg_RED);

PgDrawIRect(tsExtent.ul.x + pnt.x,
tsExtent.ul.y + pnt.y,
(tsExtent.lr.x - min(tsExtent.ul.x, 0)
+ 1) + pnt.x, tsExtent.lr.y + pnt.y,
Pg_DRAW_STROKE);

if((iRet = PfExtentTextToRect(&tsExtentClip, szFont,
&tsExtent, pcText, strlen(pcText))) == -1)

printf("PfExtentTextToRect failed 1.\n");
else
{ printf("lrx == %d, %d characters in string.\n",

tsExtent.lr.x, utf8strlen(pcText, &iBytes));
printf("PfExtentTextToRect lrx == %d, %d characters will\

fit in clip of %d.\n", tsExtentClip.lr.x, iRet, tsExtent.lr.x);
}

tsExtent.lr.x /= 2;

if((iRet = PfExtentTextToRect(&tsExtentClip, szFont,
&tsExtent, pcText, strlen(pcText))) == -1)

printf("PfExtentTextToRect failed 2.\n");
else
{ printf("lrx == %d, %d characters in string.\n",

tsExtent.lr.x, utf8strlen(pcText, &iBytes));
printf("PfExtentTextToRect lrx == %d, %d characters will\

fit in clip of %d.\n", tsExtentClip.lr.x, iRet, tsExtent.lr.x);
}

pnt.x = 10 + rect.ul.x;
pnt.y = 150 + rect.ul.y;

PgDrawText(pcText, iRet, &pnt, 0);
PgDrawIRect(tsExtentClip.ul.x + pnt.x,

tsExtentClip.ul.y + pnt.y,
(tsExtentClip.lr.x - min(tsExtentClip.ul.x, 0)
+ 1) + pnt.x, tsExtentClip.lr.y + pnt.y,
Pg_DRAW_STROKE);

tsExtent.lr.x /= 2;

if((iRet = PfExtentTextToRect(&tsExtentClip, szFont,
&tsExtent, pcText, strlen(pcText))) == -1)

printf("PfExtentTextToRect failed 3.\n");
else
{ printf("lrx == %d, %d characters in string.\n",

tsExtent.lr.x, utf8strlen(pcText, &iBytes));

May 13, 2010 Chapter 21 • Fonts 469

Repairing damage to proportional text © 2010, QNX Software Systems GmbH & Co. KG.

printf("PfExtentTextToRect lrx == %d, %d characters will\
fit in clip of %d.\n", tsExtentClip.lr.x, iRet, tsExtent.lr.x);

}

pnt.x = 10 + rect.ul.x;
pnt.y = 200 + rect.ul.y;

PgDrawText(pcText, iRet, &pnt, 0);
PgDrawIRect(tsExtentClip.ul.x + pnt.x,

tsExtentClip.ul.y + pnt.y,
(tsExtentClip.lr.x - min(tsExtentClip.ul.x, 0)
+ 1) + pnt.x, tsExtentClip.lr.y + pnt.y,
Pg_DRAW_STROKE);

PgSetStrokeColor(old);

return(Pt_CONTINUE);
}

Repairing damage to proportional text
When dealing with proportional fonts, sometimes the vectors of one glyph run into the
vectors of another. This is especially evident when using a font such as Nuptial BT.
You need to take special care when repairing damage to such fonts.

PfExtentTextCharPositions() addresses this issue. You can use this routine to obtain
the position after each character, incorporating the bearing x of the following
character. This position is where you should draw the next character.

If you use the PF_CHAR_DRAW_POSITIONS flag, the bearing x of the following
character isn’t applied to the position, which is useful when you’re placing cursors.

For example:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <Ap.h>
#include <Ph.h>
#include <Pt.h>
#include <errno.h>

PtWidget_t * pwndMain = NULL,
* pbtn = NULL,
* pobjRaw = NULL,
* pobjLabel = NULL;

char ** ppcData = NULL;

int fnDrawCanvas(PtWidget_t * ptsWidget,
PhTile_t * ptsDamage);

#define FALSE 0

#define __WIN_SIZE_X_ 1000

FontName szFont;

int main (int argc, char *argv[])
{ PtArg_t args[8];

470 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Repairing damage to proportional text

PhPoint_t win_size, pntPOS, pntDIM;
short nArgs = 0;
char caTitle[50];

if(argc < 2)
{ printf("Usage: pen text_string\n");

exit(EXIT_FAILURE);
}

PtInit (NULL);

ppcData = argv;

PfGenerateFontName("TextFont", 0, 9, szFont);

/* Set the base pwndMain parms. */
win_size.x = 800;
win_size.y = 600;

sprintf(caTitle, "Get the pen position");
PtSetArg(&args[0],Pt_ARG_DIM, &win_size, 0);
PtSetArg(&args[1],Pt_ARG_WINDOW_TITLE, caTitle, 0);

pwndMain = PtCreateWidget (PtWindow, Pt_NO_PARENT, 2, args);

nArgs = 0;
pntDIM.x = 80;
pntDIM.y = 20;
PtSetArg(&args[nArgs], Pt_ARG_DIM, &pntDIM, 0);
nArgs++;
pntPOS.x = 100;
pntPOS.y = 10;
PtSetArg(&args[nArgs], Pt_ARG_POS, &pntPOS, 0);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_TEXT_STRING, argv[1], NULL);
nArgs++;
pbtn = PtCreateWidget(PtButton, pwndMain, nArgs, args);
PtRealizeWidget(pbtn);

nArgs = 0;
pntDIM.x = 80;
pntDIM.y = 20;
PtSetArg(&args[nArgs], Pt_ARG_DIM, &pntDIM, 0);
nArgs++;
pntPOS.x = 100;
pntPOS.y = 600;
PtSetArg(&args[nArgs], Pt_ARG_POS, &pntPOS, 0);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_TEXT_STRING, argv[1], NULL);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_RESIZE_FLAGS,

Pt_RESIZE_XY_ALWAYS, Pt_RESIZE_XY_ALWAYS);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_BORDER_WIDTH, 0L, 0L);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_MARGIN_LEFT, 0L, 0L);
nArgs++;
PtSetArg(&args[nArgs], Pt_ARG_MARGIN_RIGHT, 0L, 0L);
nArgs++;
pobjLabel = PtCreateWidget(PtLabel, pwndMain, nArgs, args);
PtRealizeWidget(pobjLabel);

pntPOS.y = 100;

May 13, 2010 Chapter 21 • Fonts 471

Repairing damage to proportional text © 2010, QNX Software Systems GmbH & Co. KG.

pntPOS.x = 75;
pntDIM.x = __WIN_SIZE_X_ - 75 - 10;
pntDIM.y = 300;
PtSetArg(&args[0], Pt_ARG_POS, &pntPOS, 0);
PtSetArg(&args[1], Pt_ARG_DIM, &pntDIM, 0);
PtSetArg(&args[2], Pt_ARG_RAW_DRAW_F, fnDrawCanvas, 0L);
pobjRaw = PtCreateWidget(PtRaw, pwndMain, 3, args);

(void) PtRealizeWidget(pwndMain);

PtMainLoop ();

return(0);
}

int fnDrawCanvas(PtWidget_t * ptsWidget, PhTile_t * ptsDamage)
{ unsigned char const * pucFont = NULL;

int * piIndx = NULL;
int * piPos = NULL;
char ** argv = (char **)ppcData;
PhRect_t rect;
PhPoint_t pnt;
PhPoint_t tsPos = {0, 0};
PhRect_t tsExtent;
short n = 0;
char * pc = NULL;
PgColor_t old;

pucFont = szFont;
pc = argv[1];
piIndx = (int *)calloc(50, sizeof(int));
piPos = (int *)calloc(50, sizeof(int));

if(strlen(pc) < 4)
{ printf("Pick a longer string, must be at least\

4 characters.\n");
exit(EXIT_SUCCESS);

}

for(n = 0; n < strlen(pc); n++)
piIndx[n] = n + 1;

/* Find our canvas. */
PtBasicWidgetCanvas(pobjRaw, &rect);

old = PgSetStrokeColor(Pg_BLACK);

PfExtentText(&tsExtent, &tsPos, pucFont, pc, strlen(pc));

PgSetFont(pucFont);
PgSetTextColor(Pg_BLACK);

for(n = 0; n < strlen(pc); n++)
piIndx[n] = n + 1;

/* Draw the string, one character at a time. */
PfExtentTextCharPositions(&tsExtent, &tsPos, pc,

pucFont, piIndx, piPos,
strlen(pc), 0L, 0, 0, NULL);

pnt.x = 10 + rect.ul.x;
pnt.y = 200 + rect.ul.y;

PgDrawIRect(tsExtent.ul.x + pnt.x,

472 Chapter 21 • Fonts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Repairing damage to proportional text

tsExtent.ul.y + pnt.y,
(tsExtent.lr.x - min(tsExtent.ul.x, 0) + 1) +
pnt.x, tsExtent.lr.y + pnt.y, Pg_DRAW_STROKE);

for(n = 0; n < strlen(pc); n++)
{ PgDrawText(pc + n, 1, &pnt, 0);

pnt.x = 10 + rect.ul.x + piPos[n];
printf("Single[%d]: %d\n", n, piPos[n]);

}
/* End draw one character at a time. */

/* Draw the string, then overlay individual characters on
top from right to left. */

printf("Overlay test.\n");

PfExtentText(&tsExtent, &tsPos, pucFont, pc, strlen(pc));
pnt.x = 10 + rect.ul.x;
pnt.y = 400 + rect.ul.y;

PgDrawIRect(tsExtent.ul.x + pnt.x,
tsExtent.ul.y + pnt.y,
(tsExtent.lr.x - min(tsExtent.ul.x, 0) + 1) +
pnt.x, tsExtent.lr.y + pnt.y, Pg_DRAW_STROKE);

PgSetFont(pucFont);
PgSetTextColor(Pg_BLACK);
PgDrawText(pc, strlen(pc), &pnt, 0);

for(n = strlen(pc) - 1; n >= 0; n--)
{ switch(n)

{ case 0: pnt.x = 10 + rect.ul.x;
PgDrawText(pc + 0, strlen(pc), &pnt, 0);
break;

default: piIndx[0] = n;
PfExtentTextCharPositions(&tsExtent,

&tsPos, pc, pucFont, piIndx, piPos,
1, 0L, 0, 0, NULL);

printf("Position: %d\n", piPos[0]);
pnt.x = 10 + rect.ul.x + piPos[0];
PgDrawText(pc + n, strlen(pc) - n, &pnt, 0);
PgFlush();
sleep(1);
break;

}
}
/* End draw string, then overlay individual characters

on top from right to left. */

PgSetStrokeColor(old);
free(piPos);
free(piIndx);

return(Pt_CONTINUE);
}

May 13, 2010 Chapter 21 • Fonts 473

Chapter 22

Printing

In this chapter. . .
Print contexts 477
Starting a print job 478
Printing the desired widgets 481
Suspending and resuming a print job 483
Ending a print job 483
Freeing the print context 483
Example 484

May 13, 2010 Chapter 22 • Printing 475

© 2010, QNX Software Systems GmbH & Co. KG. Print contexts

Printing and drawing are the same in Photon—the difference depends on the draw
context, a data structure that defines where the draw stream (i.e. the draw events)
flows:

• by default, to the graphics driver for drawing on the screen

Or:

• to a memory context (or MC) for storing images in memory for later use

Or:

• to a print context (or PC) for printing. See “Print Contexts,” below.

To print in Photon:

1 Create a print context by calling PpCreatePC().

2 Set up the print context automatically via the PtPrintSel widget, or
programmatically via PpSetPC().

3 Initialize the print job by calling PpStartJob().

4 Any time after PpStartJob() is called, make the print context “active” by calling
PpContinueJob(). When a print context is active, anything that’s drawn via
PpPrintWidget() or Pg* calls, including widgets, is directed to the file opened by
the print context during the PpStartJob() call.

5 Insert page breaks, as required, by calling PpPrintNewPage().

6 The print context can be made inactive without terminating the current print job
by calling PpSuspendJob(), or by calling PpContinueJob() with a different print
context. To resume the print job from where you left off, call PpContinueJob().

7 Complete the print job by calling PpEndJob().

8 When your application doesn’t need to print anything else, call PpReleasePC()
to free the print context.

Print contexts
A print context is a PpPrintContext_t structure whose members control how
printing is to be done. For information about what’s in a print context, see the Photon
Library Reference.

Never directly access the members of a PpPrintContext_t structure; use
PpGetPC() to extract members, and PpSetPC() to change them.

May 13, 2010 Chapter 22 • Printing 477

Starting a print job © 2010, QNX Software Systems GmbH & Co. KG.

Creating a print context
The first step to printing in Photon is to create a print context by calling PpCreatePC():

PpPrintContext_t *pc;

pc = PpCreatePC();

Modifying a print context
Once the print context is created, you must set it up properly for your printer and the
options (orientation, paper size, etc.) you want to use. You can do this by calling:

• PpLoadDefaultPrinter()

• PpLoadPrinter()

• PpSetPC()

• PtPrintPropSelect()

• PtPrintSelect()

• PtPrintSelection()

These functions are described in the Photon Library Reference.

You can also use PtPrintSel (see the Photon Widget Reference).

You can get a list of available printers by calling PpLoadPrinterList(). When you’re
finished with the list, call PpFreePrinterList().

Starting a print job
If you’re using an application that needs to know anything about the print context, you
can use PpGetPC() to get the appropriate information. For example, you might need to
know the selected orientation (in order to orient your widgets properly). If you need to
know the size of the margins, you can call PpGetCanvas().

Before printing, you must set the source size or resolution. For example:

• If you want a widget to fill the page, set the source size to equal the widget’s
dimensions. You can call PpSetCanvas() to do this.

• by default, the source resolution is 100 pixels per inch so that fonts are printed at an
appealing size. You can get the size of the interior canvas by calling
PpGetCanvas(), which gives dimensions that take into account the marginal,
nonprintable area.

When setting the source size, take the nonprintable area of the printer into account. All
printers have a margin around the page that they won’t print on, even if the page
margins are set to 0. Therefore, the size set above is actually a bit larger than the size
of a page, and the font will be scaled down to fit on the printable part of the page.

478 Chapter 22 • Printing May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Starting a print job

In the following example, the page size and nonprintable area are taken into account to
give the proper source size and text height. Try this, and measure the output to prove
the font is 1″ high from ascender to descender:

#include <stdio.h>
#include <stdlib.h>
#include <Pt.h>

PtWidget_t *label, *window;
PpPrintContext_t *pc;

int quit_cb (PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{
exit (EXIT_SUCCESS);
return (Pt_CONTINUE);

}

int print_cb (PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{
int action;
PhDim_t size;
PhRect_t const *rect;
PhDim_t const *dim;

action = PtPrintSelection(window, NULL,
"Demo Print Selector",
pc, Pt_PRINTSEL_DFLT_LOOK);

if (action != Pt_PRINTSEL_CANCEL)
{

/* Get the nonprintable area and page size. Both are in
1/1000ths of an inch. */

PpGetPC(pc, Pp_PC_NONPRINT_MARGINS, &rect);
PpGetPC(pc, Pp_PC_PAPER_SIZE, &dim);
size.w = ((dim->w -

(rect->ul.x + rect->lr.x)) * 72) / 1000;
size.h = ((dim->h -

(rect->ul.y + rect->lr.y)) * 72) / 1000;

/* Set the source size. */
PpSetPC(pc, Pp_PC_SOURCE_SIZE, &size, 0);

/* Start printing the label. */
PpStartJob(pc);
PpContinueJob(pc);

/* Damage the widget. */
PtDamageWidget(label);
PtFlush();

/* Close the PC. */
PpSuspendJob(pc);
PpEndJob(pc);

}
return (Pt_CONTINUE);

}

int main(int argc, char *argv[])
{

PtArg_t args[10];

May 13, 2010 Chapter 22 • Printing 479

Starting a print job © 2010, QNX Software Systems GmbH & Co. KG.

PtWidget_t *print, *quit;
PhDim_t win_dim = { 400, 200 };
PhPoint_t lbl_pos = {0, 0};
PhArea_t print_area = { {130, 170}, {60, 20} };
PhArea_t quit_area = { {210, 170}, {60, 20} };
PtCallback_t callbacks[2] = { {print_cb, NULL},

{quit_cb, NULL} };

if (PtInit(NULL) == -1)
PtExit(EXIT_FAILURE);

/* Create the main window. */
PtSetArg (&args[0], Pt_ARG_DIM, &win_dim, 0);
PtSetArg (&args[1], Pt_ARG_WINDOW_TITLE,

"Print Example", 0);

if ((window = PtCreateWidget(PtWindow, Pt_NO_PARENT,
1, args)) == NULL)

PtExit (EXIT_FAILURE);

/* Create a print context. */
pc = PpCreatePC();

/* Create a label to be printed. */
PtSetArg (&args[0], Pt_ARG_POS, &lbl_pos, 0);
PtSetArg (&args[1], Pt_ARG_TEXT_STRING,

"I am 1 inch high", 0);
PtSetArg (&args[2], Pt_ARG_TEXT_FONT, "swiss72", 0);
PtSetArg (&args[3], Pt_ARG_MARGIN_HEIGHT, 0, 0);
PtSetArg (&args[4], Pt_ARG_MARGIN_WIDTH, 0, 0);
PtSetArg (&args[5], Pt_ARG_BEVEL_WIDTH, 0, 0);
label = PtCreateWidget (PtLabel, window, 6, args);

/* Create the print button. */
PtSetArg(&args[0], Pt_ARG_AREA, &print_area, 0);
PtSetArg(&args[1], Pt_ARG_TEXT_STRING, "Print", 0);
PtSetArg(&args[2], Pt_CB_ACTIVATE, &callbacks[0], 0);
print = PtCreateWidget (PtButton, window, 3, args);

/* Create the quit button. */
PtSetArg(&args[0], Pt_ARG_AREA, &quit_area, 0);
PtSetArg(&args[1], Pt_ARG_TEXT_STRING, "Quit", 0);
PtSetArg(&args[2], Pt_CB_ACTIVATE, &callbacks[1], 0);
quit = PtCreateWidget (PtButton, window, 3, args);

PtRealizeWidget(window);
PtMainLoop();
return (EXIT_SUCCESS);

}

You should also set the source offset, the upper left corner of what’s to be printed. For
example, if you have a button drawn at (20, 20) from the top left of a pane and you
want it to be drawn at (0, 0) on the page, set the source offset to (20, 20). Any other
widgets are drawn relative to their position from this widget’s origin. A widget at (40,
40) will be drawn at (20, 20) on the page. The code is as follows:

PhPoint_t offset = {20, 20};
...
PpSetPC(pc, Pp_PC_SOURCE_OFFSET, &offset, 0);

Once the source size and offset have been set, you can start printing:

480 Chapter 22 • Printing May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Printing the desired widgets

PpStartJob(pc);
PpContinueJob(pc);

PpStartJob() sets up the print context for printing and PpContinueJob() makes the
print context active, causing all Photon draw commands to be redirected to the
destination specified in the print context.

Printing the desired widgets
After you’ve made the print context active, you can start printing widgets and so on.
This can be done by calling any combination of the following:

• Pg* functions

• PpPrintWidget() — you can even print a widget that hasn’t been unrealized.

If you want to print all the contents of a widget that scrolls, you’ll need to do some
special preparations. See “Printing scrolling widgets” below.

Printing a new page
You can force a page break at any point by calling PpPrintNewPage():

PpPrintNewPage(pc);

Note that once you call PpStartJob(), any changes to the print context take effect after
the next call to PpPrintNewPage().

Photon assumes that the page numbers increase by one. If this isn’t the case, manually
set the Pp_PC_PAGE_NUM member of the print context to the correct page number.
Don’t make the page number decrease because the print drivers might not work
properly.

Printing widgets that scroll
If you want to print all the contents of a widget that scrolls, you need some special
processing:

PtList

The only way to make a PtList print (or draw) all the items is by resizing it to be the
total height of all the items. The easiest way is probably by using the resize policy:

This will work only if the total height is smaller than 65K pixels.

1 Open and start the print context.

2 Get the current resize flags (Pt_ARG_RESIZE_FLAGS) for the PtList widget.

3 Change the resize flags to Pt_RESIZE_XY_ALWAYS, to make the list resize to fit
all of its text.

May 13, 2010 Chapter 22 • Printing 481

Printing the desired widgets © 2010, QNX Software Systems GmbH & Co. KG.

4 Call PpPrintWidget() for the widget or parent widget.

5 Reset the resize flags for the PtList widget.

6 Stop and close the print context.

PtMultiText

To print a PtMultiText widget’s entire text, breaking the output into pages:

1 Create another multitext widget — let’s call it the print widget — that isn’t
visible to the user (i.e. hide it behind the user’s multitext widget).

2 Get the printer settings for printing: the orientation, page size, and the margins.

3 Adjust the printer settings for what you want and then use PpSetPC() to set
them.

4 Set the print multitext widget’s margins to match those of the printer that you
just set.

5 Use PpStartJob() to start your print job.

6 Get the user’s multitext widget resources (i.e. text, fonts, number of lines) and
set the print multitext widget’s resources to match them.

7 Go through the user’s multitext and get the attributes for each line (color, font,
tabs, etc) and set the print multitext widget’s attributes accordingly.

8 Once you’ve set all of the attributes to match, specify the top line of the print
multitext widget. This positions the widget to start printing.

9 Get the number of lines that are completely visible in the print multitext widget,
as well as the total number of lines.

10 Use PpContinueJob(), PpPrintWidget(), and PpSuspendJob() to print the current
page.

11 Delete the lines that you just printed from the print multitext widget. Doing this
causes the next group of lines that you want to print to become the visible lines
of the widget.

12 Call PpPrintNewPage() to insert a page break.

13 Continue printing pages and deleting the visible lines until you’ve reached the
end of the text in the print multitext widget.

PtScrollArea

For a PtScrollArea, you need to print its virtual canvas, which is where all widgets
created within or moved to a scroll area are placed:

1 Get a pointer to the virtual canvas by calling:

482 Chapter 22 • Printing May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Suspending and resuming a print job

PtValidParent(ABW_Scroll_area, PtWidget);

2 Get the area (Pt_ARG_AREA) of the virtual canvas, and use its size member as
the source size in the print context.

3 Set the print context’s source offset to:

PtWidgetOffset(PtValidParent(ABW_Scroll_area,
PtWidget));

4 Print the scroll area’s virtual canvas by calling:

PpPrintWidget(pc, PtValidParent(ABW_Scroll_area,
PtWidget),

NULL, NULL, 0);

Suspending and resuming a print job
To suspend a print job and direct all draw events back to the graphics driver at any
point after calling PpStartJob(), call:

PpSuspendJob(pc);

To resume a print job, reactivating the print context, causing draw events to be directed
towards the destination specified in the print context, call:

PpContinueJob(pc);

Ending a print job
When you’re finished printing your widgets, the print context must be deactivated and
closed. This is done by calling:

PpSuspendJob(pc);
PpEndJob(pc);

All draw events will be directed to the graphics driver.

You can reuse the print context for new print jobs, eliminating the need to create and
initialize it again.

Freeing the print context
When printing is complete and you no longer need the print context, you can free it,
which in turn frees any resources used by it.

If you want to remember any information from the print context for future use, save it
by calling PpGetPC() before freeing the print context. For example:

May 13, 2010 Chapter 22 • Printing 483

Example © 2010, QNX Software Systems GmbH & Co. KG.

short const *orientation;
...
PpGetPC(pc, Pp_PC_ORIENTATION, &orientation);

To free a print context, call:

PpReleasePC(pc);

Example
This example creates an application with a main window, and a pane with a few
widgets on it. When you press the Print button, a Print Selection Dialog appears.
When you select this dialog’s Print or Preview button, the pane is “drawn” on the
printer.

#include <stdio.h>
#include <stdlib.h>
#include <Pt.h>

PtWidget_t *pane, *window;
PpPrintContext_t *pc;

int quit_cb (PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{
PpReleasePC (pc);
exit (EXIT_SUCCESS);
return (Pt_CONTINUE);

}

int print_cb (PtWidget_t *widget, void *data,
PtCallbackInfo_t *cbinfo)

{
int action;

/* You could make these calls to PpSetPC() right
after creating the print context. Having it here
lets you reuse the print context. */

PhDim_t size = { 850, 1100 };
PhDim_t size2 = { 200, 150 };

/* Set the source resolution to be proportional to
the size of a page. */

PpSetPC(pc, Pp_PC_SOURCE_SIZE, &size, 0);

/* Uncomment this to set the source size to be the size
of the widget. The widget will be scaled when printed. */

/* PpSetPC(pc, Pp_PC_SOURCE_SIZE, &size2, 0); */

action = PtPrintSelection(window, NULL,
"Demo Print Selector", pc,
Pt_PRINTSEL_DFLT_LOOK);

if (action != Pt_PRINTSEL_CANCEL)
{

/* Start printing the pane. Note that we’re using
the same print context for all print jobs. */

PpStartJob(pc);
PpContinueJob(pc);

484 Chapter 22 • Printing May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

/* Print the widget. */
PpPrintWidget(pc, pane, NULL, NULL, 0);

/* Close the print context. */
PpSuspendJob(pc);
PpEndJob(pc);

}

return (Pt_CONTINUE);
}

int main(int argc, char *argv[])
{

PtArg_t args[4];
PtWidget_t *print, *quit;
PhDim_t win_dim = { 200, 200 };
PhArea_t pane_area = { {0, 0}, {200, 150} };
PhArea_t print_area = { {30, 170}, {60, 20} };
PhArea_t quit_area = { {110, 170}, {60, 20} };
PhArea_t cir_area = { {35, 20}, {130, 110} };
PhArea_t cir2_area = { {67, 40}, {20, 20} };
PhArea_t cir3_area = { {110, 40}, {20, 20} };
PhArea_t cir4_area = { {85, 80}, {30, 30} };
PtCallback_t callbacks[2] = { {print_cb, NULL},

{quit_cb, NULL} };

if (PtInit(NULL) == -1)
PtExit(EXIT_FAILURE);

/* Create the main window. */
PtSetArg (&args[0], Pt_ARG_DIM, &win_dim, 0);
PtSetArg (&args[1], Pt_ARG_WINDOW_TITLE,

"Print Example", 0);
if ((window = PtCreateWidget(PtWindow, Pt_NO_PARENT,

2, args)) == NULL)
PtExit(EXIT_FAILURE);

/* Create a print context. */
pc = PpCreatePC();

/* Create the pane to be printed. */
PtSetArg (&args[0], Pt_ARG_AREA, &pane_area, 0);
pane = PtCreateWidget (PtPane, window, 1, args);

/* put some stuff in the pane to be printed. */
PtSetArg (&args[0], Pt_ARG_AREA, &cir_area, 0);
PtCreateWidget (PtEllipse, pane, 1, args);

PtSetArg (&args[0], Pt_ARG_AREA, &cir2_area, 0);
PtSetArg (&args[1], Pt_ARG_FILL_COLOR, Pg_BLACK, 0);
PtCreateWidget (PtEllipse, pane, 2, args);

PtSetArg (&args[0], Pt_ARG_AREA, &cir3_area, 0);
PtSetArg (&args[1], Pt_ARG_FILL_COLOR, Pg_BLACK, 0);
PtCreateWidget (PtEllipse, pane, 2, args);

PtSetArg (&args[0], Pt_ARG_AREA, &cir4_area, 0);
PtCreateWidget (PtEllipse, pane, 1, args);

/* Create the print button. */
PtSetArg(&args[0], Pt_ARG_AREA, &print_area, 0);
PtSetArg(&args[1], Pt_ARG_TEXT_STRING, "Print", 0);
PtSetArg(&args[2], Pt_CB_ACTIVATE, &callbacks[0], 0);

May 13, 2010 Chapter 22 • Printing 485

Example © 2010, QNX Software Systems GmbH & Co. KG.

print = PtCreateWidget (PtButton, window, 3, args);

/* Create the quit button. */
PtSetArg(&args[0], Pt_ARG_AREA, &quit_area, 0);
PtSetArg(&args[1], Pt_ARG_TEXT_STRING, "Quit", 0);
PtSetArg(&args[2], Pt_CB_ACTIVATE, &callbacks[1], 0);
quit = PtCreateWidget (PtButton, window, 3, args);

PtRealizeWidget(window);
PtMainLoop();
return (EXIT_SUCCESS);

}

486 Chapter 22 • Printing May 13, 2010

Chapter 23

Drag and Drop

In this chapter. . .
Transport mechanism 489
Using drag and drop 490
Registering new transport types 497

May 13, 2010 Chapter 23 • Drag and Drop 487

© 2010, QNX Software Systems GmbH & Co. KG. Transport mechanism

Drag and drop lets you drag arbitrary data within an application or between
applications.

If you simply need to drag graphical objects around, see “Dragging” in the Events
chapter.

Transport mechanism
Photon’s transport mechanism lets you transfer arbitrary data from one application to
another, even if the applications are on different platforms with different endian-ness.
This mechanism is used as the basis for drag and drop, but could be used for other
purposes such as configuration files.

There are two ways to transport data:

Inline The data is packed into a stream and sent to the destination.

By request Descriptions of the data are packed into a stream and sent. The
destination decides which type(s) of data it wants and sends the request
back to the source, which then packs only the data required.

In order to transport data, the transport mechanism must pack data at the source
application or widget and unpack it at the destination. It has to have a means of
recognizing the type of data to determine what packing and unpacking must be done.
This is accomplished via the transport registry.

There are a number of system-registered types that exist after PtInit() or PtAppInit()
initializes the Photon library — this is done automatically for PhAB applications. The
system-registered types are:

• string

• raw

• PhDim

• PhArea

• PhPoint

• PhImage

You can add other data types to the registry, as described in “Registering new transport
types,” later in this chapter.

The transport mechanism works by building a linked list of data to be transported,
packing up the data into a stream, with each block preceded by a header that describes
the data.

May 13, 2010 Chapter 23 • Drag and Drop 489

Using drag and drop © 2010, QNX Software Systems GmbH & Co. KG.

Headers

Data

Header for
entire block
of packed data

Packed data and headers.

When the data arrives at the destination, the headers are extracted to get the unpacking
instructions for the data. The transport mechanism automatically unpacks the data; the
application gets the data in its original form.

Using drag and drop
You can use drag and drop to move data from one widget to another, using Photon’s
transport mechanism. You can transport several types of data at once, giving the
destination the choice of which ones to receive. All of the communication between the
source and destination is nonblocking.

The basic steps (described in more detail in the sections that follow) are:

1 The user holds down the pointer button on the widget that’s to be the source of
the drag-and-drop operation.

2 In its Pt_CB_OUTBOUND callback, the source widget packs up the data to be
dragged, and starts a drag-and-drop operation.

3 The user drags the data and decides to drop it on a widget.

4 In its Pt_CB_DND callback, the destination widget decides which pieces of
dragged data (if any) it will accept. Any data that’s accepted is unpacked
automatically. The data is stored in allocated memory; the destination should
free the memory when it doesn’t need the data any more.

The source widget can also cancel the operation if it wishes.

Starting drag and drop
To start a drag-and-drop operation, the source widget must pack up the data to be
dragged, and then initiate drag-and-drop. This is typically done in one of the widget’s
Pt_CB_OUTBOUND callbacks.

490 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using drag and drop

Pt_CB_OUTBOUND callbacks are invoked only if the widget has Pt_SELECTABLE
set in its Pt_ARG_FLAGS.

The steps to follow are:

1 If the data isn’t of one of the system-defined types of transport data, create a
transport registry entry for it. For more information, see “Registering new
transport types,” below.

2 Create a transport control structure (of type PtTransportCtrl_t) for use with
drag and drop, by calling PtCreateTransportCtrl(). The transport control
structure is freed automatically when the drag-and-drop operation is done.

3 The data to be dragged can be packed inline (i.e. included directly in the
structure passed to the destination) or it can be requestable (i.e. the data isn’t
packed up until the destination asks for it).

• For each piece of data to be packed inline, call PtTransportType().

• For each piece of requestable data, call PtTransportRequestable().
The PtTransportCtrl_t structure has a list of response data, which is
automatically sent if the destination requests it. The source widget can add
data to this queue by calling PtAddResponseType().
If the source widget doesn’t want to pack the requestable data at this point, it
must provide a callback when calling PtTransportRequestable().

4 When all the data is packed, call PtInitDnd() to initiate the drag-and-drop
operation.

Example

Here’s an example of a callback that initiates a drag-and-drop operation for a
PtLabel widget. You can use this callback for the label widget’s
Pt_CB_OUTBOUND callback.

Be sure to set Pt_SELECTABLE in the label’s Pt_ARG_FLAGS.

This callback sets up a drag-and-drop operation involving these pieces of data:

• The label’s text, if any, packed as inline data.

• The label’s image, if any, packed as requestable data. The image isn’t transported
until the destination asks for it, but the callback prepares the data in advance so we
don’t need a request callback.

• Alternate text to use if there’s no image. This string is also requestable data, but we
provide a request callback to pack it up if the destination requests it.

The callback assigns the same grouping number to the image and the alternate text, to
indicate that they’re different forms of the same data.

May 13, 2010 Chapter 23 • Drag and Drop 491

Using drag and drop © 2010, QNX Software Systems GmbH & Co. KG.

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

#define TEXT_GROUP 0
#define IMAGE_GROUP 1

PtTransportReqDataCB_t request_callback;

int start_dnd(PtWidget_t *widget,
ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{

char *widget_text = NULL;
char *label_type;
PhImage_t * image = NULL;
PtRequestables_t *req;
PtTransportCtrl_t *tctrl =

PtCreateTransportCtrl();
int ret;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo;
cbinfo = cbinfo;

/* Get the type of label so we can determine
what data to pack. */

PtGetResource(widget, Pt_ARG_LABEL_TYPE,
&label_type, 0);

if ((*label_type == Pt_Z_STRING) ||
(*label_type == Pt_TEXT_IMAGE))

{
/* Get the widget’s text and pack it inline. */
PtGetResource(widget, Pt_ARG_TEXT_STRING,

&widget_text, 0);
PtTransportType(tctrl, "text", "plain",

TEXT_GROUP, Ph_TRANSPORT_INLINE, "string",
widget_text, 0, 0);

}

/* If there’s an image, add it as requestable
data. Prepare the response data (to allow an
automatic response). */

if ((*label_type == Pt_IMAGE) ||
(*label_type == Pt_TEXT_IMAGE))

{
PtGetResource(widget, Pt_ARG_LABEL_IMAGE,

&image, 0);
if (image)

492 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using drag and drop

{
req = PtTransportRequestable (tctrl,

"image", "an image", IMAGE_GROUP,
Ph_TRANSPORT_INLINE, "PhImage",
NULL, NULL);

PtAddResponseType(tctrl, req, "image",
"an image", Ph_TRANSPORT_INLINE,
"PhImage", image, 0, 0);

}
}

/* Add a requestable string that will be
provided by a callback. */

PtTransportRequestable(tctrl, "text",
"image description", IMAGE_GROUP,
Ph_TRANSPORT_INLINE, "string",
(PtTransportReqDataCB_t *) &request_callback,
"This was requested");

/* Initiate the drag and drop. */

ret = PtInitDnd(tctrl, widget, cbinfo->event,
NULL, 0);

return(Pt_CONTINUE);
}

int unsigned request_callback(int unsigned type,
PtReqResponseHdr_t *req_hdr,
PtRequestables_t *req)

{
if (type == Pt_DND_REQUEST_DATA)
{

/* Respond to the request with the string in
req->rq_callback_data, the last argument
to PtTransportRequestable(). */

PtAddResponseType(req->ctrl, req, "text",
"request", Ph_TRANSPORT_INLINE, "string",
req->rq_callback_data, 0, 0);

return Pt_CONTINUE;
}

/* Deny the request. */
return Pt_END;

}

Receiving drag-and-drop events
To make a widget able to receive drag-and-drop events, attach a Pt_CB_DND callback
to the widget (see PtWidget in the Photon Widget Reference).

A widget doesn’t have to have Pt_SELECTABLE set in its Pt_ARG_FLAGS for its
Pt_CB_DND callbacks to be invoked.

Whenever the widget is involved in a drag-and-drop event in some fashion, its
Pt_CB_DND callback is invoked. In the callback, the cbinfo->reason_subtype
indicates the type of drag-and-drop action that’s occurring.

May 13, 2010 Chapter 23 • Drag and Drop 493

Using drag and drop © 2010, QNX Software Systems GmbH & Co. KG.

The sections below describe the drag-and-drop events that are of interest to the source
and destination widgets. Of course, if a widget can be the source and destination of
(separate) drag-and-drop operations, its Pt_CB_DND callbacks need to have both sets
of events.

For more information about events, see PhEvent_t in the Photon Library Reference.

Source widget

The source widget of a drag-and-drop operation can receive events that describe the
status of the operation. If you don’t want these events, set Pt_DND_SILENT in the
flags argument to PtInitDnd().

Don’t set Pt_DND_SILENT if you’ve included requestable data in the control structure.

The subtypes of a drag-and-drop event that are of interest to the source of the
operation are:

Ph_EV_DND_INIT

The operation has started successfully.

Ph_EV_DND_CANCEL

The operation was canceled (for example, if the drop occurred when not over a
drop zone, or the destination terminated the operation before receiving the drop
or before it finished fetching requestable data).

If the operation is canceled in this way, the library cleans up the data structures
automatically.

Ph_EV_DND_COMPLETE

The drag-and-drop event is enqueued at the destination (the destination hasn’t
seen it yet).

Ph_EV_DND_DELIVERED

The destination has dequeued the drag-and-drop event.

Destination widget

The subtypes of a drag-and-drop event that are of interest to the destination of the
operation are:

Ph_EV_DND_ENTER

Someone has dragged some data into the widget’s region but hasn’t yet released
it. This is the reason_subtype the first time that the drag-and-drop callback is
called.

At this time, your application decides if it will accept the data to be dropped. It
must build an array of PtDndFetch_t structures and pass it to PtDndSelect().

494 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using drag and drop

This array describes the acceptable types, descriptions, and transport methods
for drag-and-drop data to be accepted by a widget. PtDndSelect() returned the
number of selected items from the array. If the event contains data, or references
to data, in an acceptable format, those pieces of the event are selected.

If none of the data is acceptable, this widget isn’t notified of any other events for
the current drag-and-drop operation.

Ph_EV_DND_MOTION

The pointer is moving inside the widget’s region. This type of event is emitted
only if the Pt_DND_SELECT_MOTION bit is set in the select_flags member of
the PtDndFetch_t structure for a piece of selected data.

Ph_EV_DND_DROP

The user has dropped the data.

For this reason_subtype, the callback should retrieve the selected data from the
event. This might involve some automatic, nonblocking communication with the
source of the data — to prevent any communication with the source, specify
Ph_TRANSPORT_INLINE as the only acceptable transport protocol.

If the drop is successful, the memory used by the transport mechanism is
automatically freed.

Ph_EV_DND_LEAVE

The pointer has moved out of the widget’s region, but the user didn’t drop the
data.

Here’s an example that works with the callback given above for a PtLabel widget.
This callback accepts the following from the drag-and-drop data:

• text

• an image

• an alternate string if there’s no image in the data (Pt_DND_SELECT_DUP_DATA is
set in the PtDndFetch_t entry).

The source widget packed the image and the alternate text as requestable data, but the
destination doesn’t have to do anything to request it; the transport mechanism does it
automatically.

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

May 13, 2010 Chapter 23 • Drag and Drop 495

Using drag and drop © 2010, QNX Software Systems GmbH & Co. KG.

/* Local headers */
#include "abimport.h"
#include "proto.h"

static PtDndFetch_t stuff_i_want[] =
{

{"text", "plain", Ph_TRANSPORT_INLINE, },
{"image", NULL, Ph_TRANSPORT_INLINE, },
{"text", "image description",
Ph_TRANSPORT_INLINE,
Pt_DND_SELECT_DUP_DATA, },

};

enum {
PLAIN_TEXT = 0,
IMAGE,
IMAGE_TEXT,

};

int dnd_callback(PtWidget_t *widget,
ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
PtDndCallbackInfo_t *dndcb = cbinfo->cbdata;
int deep_free = 1, num_matches;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo;
cbinfo = cbinfo;

switch (cbinfo->reason_subtype)
{
case Ph_EV_DND_ENTER:

num_matches = PtDndSelect (widget,
stuff_i_want,
sizeof(stuff_i_want) / sizeof(stuff_i_want[0]),
NULL, NULL, cbinfo);

break;

case Ph_EV_DND_DROP:
switch (dndcb->fetch_index)
{

case PLAIN_TEXT:
PtSetResource (widget, Pt_ARG_TEXT_STRING,
dndcb->data, strlen(dndcb->data));

break;

case IMAGE:
PtSetResource (widget, Pt_ARG_LABEL_IMAGE,
dndcb->data, 0);
free (dndcb->data);

deep_free = 0;
break;

case IMAGE_TEXT:
printf (

"No image; the alternate text is: %s\n",
(char *)dndcb->data);

break;
}

496 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Registering new transport types

if (deep_free) {
PhFreeTransportType (dndcb->data,

dndcb->trans_hdr->packing_type);
}
break;

}

return(Pt_CONTINUE);
}

Canceling drag and drop
The source widget can cancel the drag-and-drop operation by calling PtCancelDnd().

The widget must then clean up the transport-control structures and the packed data by
calling PtReleaseTransportCtrl(). (If the drop is successfully done, the control
structures are cleaned up automatically. The destination decides when to free the
dropped data.)

Registering new transport types
To transport data other than the types automatically defined by Photon, you must
define the type and register it with the transport registry, a collection of type
descriptions, each of which includes:

• a type name in the form of a string, e.g. PhImage

• the packing method to be used (one of Ph_PACK_RAW, Ph_PACK_STRING, or
Ph_PACK_STRUCT)

• a list of members within the type that reference data outside the base size of the
type in question (reference or pointer-type members)

• a list of members that are endian-sensitive (these members are endian corrected if
ever unpacked on a machine whose endian-ness differs from that on the machine
where the data was packed)

• a list of members that should be cleared when the type is unpacked (for example, a
pointer to data — such as a password — that you don’t want to be transported).

The source and destination applications must both define the data type in their
transport registries before the data can be successfully transported.

A simple data structure
Let’s consider a simple data structure:

typedef struct simp1 {
int num;
int nums_10[10];
char name[10];

May 13, 2010 Chapter 23 • Drag and Drop 497

Registering new transport types © 2010, QNX Software Systems GmbH & Co. KG.

short vals_5[5];
} Simp1_t;

This structure could easily be packed using the raw type because it doesn’t make any
external references (i.e. it has no pointer members). But that doesn’t protect the
transported data from endian differences between the source and destination. So even
for this simple structure, a type description detailing its endian sensitivity is beneficial.

The type definition starts with an array of int unsigned entries that described the
endian-sensitivity for each member:

static const int unsigned Simp1Endians[] = {
Tr_ENDIAN(Simp1_t, num),
Tr_ENDIAN_ARRAY(Simp1_t, nums_10),
Tr_ENDIAN_ARRAY(Simp1_t, vals_5),
0 /* End of the endian list */

};

Note that this list must end with an entry of 0. The name member isn’t
endian-sensitive, so it isn’t included in the list.

All types or references to types correct the endian-ness of their members based on the
endian array defined for the type. The classifications of endian-sensitive members are:

Tr_ENDIAN(typedef_name, member)

int, long, short, (signed or unsigned). For example, unsigned int

my_scalar.

Tr_ENDIAN_ARRAY(typedef_name, member)

Array of short or int entries. For example, short short_nums[10].

Tr_ENDIAN_REF(typedef_name, member, num)

A reference to endian scalars. For example, int *nums.

Having defined the endian list for our simple data type, let’s create the definition to go
into the transport registry:

static const PhTransportRegEntry_t Simp1TransDef = {
"simp1",
Ph_PACK_STRUCT,
sizeof(Simp1_t),
0,
NULL,
&Simp1Endians,
NULL

};

The PhTransportRegEntry_t structure includes the following members:

char *type The name of the type being registered.

int unsigned packing

The packing method to be used (one of Ph_PACK_RAW,
Ph_PACK_STRING, or Ph_PACK_STRUCT).

498 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Registering new transport types

int unsigned size

The size, in bytes, of the data type.

int unsigned num_fixups

The number of entries in the fixups arrays.

PhTransportFixupRec_t const *fixups

A list of instructions for dealing with references to data outside the
type being defined. We’ll discuss this later.

int unsigned const *endians

The zero-terminated array of endian information described above.

int unsigned const *clear_refs

The zero-terminated array of members that should be cleared (i.e. set
to NULL) when this type is unpacked.

To register this newly defined type, call PhRegisterTransportType():

PhRegisterTransportType(&Simp1TransDef);

This new type, simp1, can now be used with any of the transport functions to pack or
unpack data.

The destination application doesn’t need to concern itself with the endian orientation
of the source. When the destination unpacks this type, the transport mechanism
automatically corrects the endian-ness using the endian definition in the registered
transport type. This is particularly beneficial in a multiplatform, networked
environment. If the transport mechanism is used to write binary configuration files, the
same files can be used by applications regardless of the endian orientation of the
machine they are running on.

A more complicated structure
You’ll frequently need to transport more complex data types that have references to
data external to themselves (pointer members). These members need special handling
when performing packing and unpacking operations. In order for these members to get
the treatment they deserve, they must be described in the fixup member of the entry in
the transport registry.

Here’s a more complicated structure:

typedef struct simp2 {

/* Scalar and reference to a scalar array */
int num_ref_vals;
int *ref_vals;

/* Scalar array */
int nums_10[10];

/* Scalar array (not endian sensitive) */

May 13, 2010 Chapter 23 • Drag and Drop 499

Registering new transport types © 2010, QNX Software Systems GmbH & Co. KG.

char first_name[10];

/* Reference to a string */
char *last_name2;

/* Scalar array */
short vals_5[5];

/* Registered type member */
Simp1_t simp1_instance;

/* Registered type member array */
Simp1_t simp1_array[4];

/* Reference to a registered type */
Simp1_t *simp1_reference;

/* Scalar and reference to a registered
type array */

int num_simps;
Simp1_t *ref_simp1_array;

/* Scalar and reference to a registered
type reference array */

int num_simp_refs;
Simp1_t **ref_simp1_ref_array;

/* Two scalars and a reference to arbitrarily
sized data */

short bm_height;
int bm_bpl;
char *bitmap;

/* Something we don’t want packed, but want
cleared when unpacking */

char *dont_pack_this;

} Simp2_t;

Clear-references list

Here’s the clear_refs list for this structure:

static const int unsigned Simp2ClearRefs[] = {
offsetof(Simp2_t, dont_pack_this),
0 /* End of the clear-refs list */
};

Endian list

Here’s the endian list for this structure:

static const int unsigned Simp2Endians[] = {
Tr_ENDIAN(Simp2_t, num_ref_vals),
Tr_ENDIAN_REF(Simp2_t, ref_vals),
Tr_ENDIAN_ARRAY(Simp2_t, nums_10),
Tr_ENDIAN_ARRAY(Simp2_t, vals_5),
0 /* End of the endian list */
};

500 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Registering new transport types

Here’s the full list of endian manifests for each type of member:

Scalar (char) None

Scalar (short) Tr_ENDIAN(type, member)

Scalar (int) Tr_ENDIAN(type, member)

Scalar Array (char) None

Scalar Array (short)

Tr_ENDIAN_ARRAY(type, member)

Scalar Array (int) Tr_ENDIAN_ARRAY(type, member)

Reference (char) None

Reference (short) Tr_ENDIAN_REF(type, member)

Reference (int) Tr_ENDIAN_REF(type, member)

Reference (char array)

None

Reference (short array)

Tr_ENDIAN_REF(type, member)

Reference (int array)

Tr_ENDIAN_REF(type, member)

Simple structure List each endian-sensitive member of the member structure

Registered type None

Reference to registered type

None

For example, for a Sample_t structure:

int i; Tr_ENDIAN(Sample_t, i)

int array[7]; Tr_ENDIAN_ARRAY(Sample_t, array)

short *short_nums;

Tr_ENDIAN_REF(Sample_t, short_nums)

May 13, 2010 Chapter 23 • Drag and Drop 501

Registering new transport types © 2010, QNX Software Systems GmbH & Co. KG.

int *long_nums; Tr_ENDIAN_REF(Sample_t, long_nums)

struct my_simp ms;

Tr_ENDIAN(Sample_t, ms.width),
Tr_ENDIAN(Sample_t, ms.height)

Fixup list

The Simp2_t structure given earlier includes some entries that reference data outside
the structure. These elements need PhTransportFixupRec_t entries in the fixup list
to tell the transport mechanism how to get the data:

static const PhTransportFixupRec_t
Simp2Fixups[] = {

Tr_REF_ARRAY(Simp2_t, ref_vals,
Tr_FETCH(Simp2_t, num_ref_vals)),

Tr_STRING(Simp2_t, name2),
Tr_TYPE(Simp2_t, simp1_instance),
Tr_TYPE_ARRAY(Simp2_t, simp1_array),
Tr_REF_TYPE(Simp2_t, simp1_reference),
Tr_REF_TYPE_ARRAY(

Simp2_t, ref_simp1_array,
Tr_FETCH(Simp2_t, num_simps)),

Tr_REF_TYPE_REF_ARRAY(
Simp2_t, ref_simp1_ref_array,
Tr_FETCH(Simp2_t, num_simp_refs)),

Tr_ALLOC(Simp2_t, bitmap,
Tr_FETCH(Simp2_t, bm_bpl), ’*’,
Tr_FETCH(Simp2_t, bm_height))

};

When defining a fixup entry, you might need to use information within the structure
that the entry is defining. In these circumstances, use this manifest:

Tr_FETCH(type, member)

This manifest causes the value of the specified member to be used at runtime
when data is being packed or unpacked. Also, any members that are defined via
other registered types are automatically endian corrected using the endian
definition from that type’s transport registry entry.

Here’s the full list of fixup manifests:

Scalar None.

Scalar Array None.

Reference (string) Tr_STRING(type, member)

Reference (scalar array)

Tr_REF_ARRAY(type, member, number_of_elements)

Registered type Tr_TYPE(type, member, type_name)

502 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Registering new transport types

Registered type array

Tr_TYPE_ARRAY(type, member, type_name)

Reference (registered type)

Tr_REF_TYPE(type, member, type_name)

Reference (registered type array)

Tr_REF_TYPE_ARRAY(type, member, num_elements, \
type_name)

Reference(registered type reference array)

Tr_REF_TYPE_REF_ARRAY(type, member, \
num_elements, type_name)

Here are some sample members and their fixup manifests:

char *name; Tr_STRING(Sample_t, name)

int num_nums;
int *int_array; Tr_REF_ARRAY(Sample_t, int_array, \

Tr_FETCH(Sample_t, num_nums))

or if the number is known:

Tr_REF_ARRAY(Sample_t, int_array, 7)

Simp1_t simple_instance

Tr_TYPE(Sample_t, simple_instance, "simp1")

or, as a single instance if it’s just an array of one:

Tr_TYPE_ARRAY(Sample_t, simple_instance, \
"simp1")

Simp1_t simple_array[5]

Tr_TYPE_ARRAY(Sample_t, simple_array, "simp1")

Simp1_t *simp1_ref

Tr_REF_TYPE(Sample_t, simp1_ref, "simp1")

short num_simp1s;
Simp1_t *simp1_ref

Tr_REF_TYPE_ARRAY(Sample_t, simp1_ref, \
Tr_FETCH(Sample_t, num_simp1s), "simp1")

May 13, 2010 Chapter 23 • Drag and Drop 503

Registering new transport types © 2010, QNX Software Systems GmbH & Co. KG.

short num_simp1s;
Simp1_t **simp1_ref ;

Tr_REF_TYPE_REF_ARRAY(Sample_t, simp1_ref, \
Tr_FETCH(Sample_t, num_simp1s), "simp1")

Registry entry

Finally, here’s the registry entry for Simp2_t:

static const PhTransportRegEntry_t
Simp2TransDef = {

"simp2",
Ph_PACK_STRUCT,
sizeof(Simp2_t),
sizeof(Simp2Fixups)/sizeof(Simp2Fixups[0]),
&Simp2Fixups,
&Simp2Endians,
&Simp2ClearRefs
};

Transport functions
This section describes the low-level functions and data types that deal with the
transport mechanism. Some functions are called by the application that’s the source of
the data, some are called by the destination, and some are called by both.

Both applications

Both applications use these:

PhTransportRegEntry_t

Data structure that describes data to be transported

PhRegisterTransportType()

Add a new transport type to the transport registry

PhFindTransportType()

Find a transport type in the transport registry

Source application

The source application uses these, in roughly this order:

PhTransportCtrl_t

Control structure for the Photon transport mechanism

PhCreateTransportCtrl()

Allocate a PhCreateTransportCtrl() structure

504 Chapter 23 • Drag and Drop May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Registering new transport types

PhTransportType()

Pack data into a PhTransportCtrl_t structure

PhTransportFindLink()

Search a linked list of transport data for some specific data

PhTransportLink_t

Entry in a linked list of transport data

PhLinkTransportData()

Add transport data to a linked list

PhGetNextInlineData()

Get the data for the next entry in a linked list of transport data

PhGetTransportVectors()

Build an I/O vector of data to be transported

PhFreeTransportType()

Free data associated with a transport registry entry

PhReleaseTransportCtrl()

Free a PhTransportCtrl_t structure

These are low-level functions that you’ll probably never need to call directly:

PhAllocPackType()

Allocate a buffer and pack transport data into it

PhPackEntry() Pack transport data, given a transport registry entry

PhPackType() Pack transport data, given the type of data

Destination application

The destination application uses these, in roughly this order:

PhGetAllTransportHdrs()

Extract all the headers from a buffer of packed transport data

PhGetTransportHdr()

Extract the header from a buffer of packed transport data

PhGetNextTransportHdr()

Get the next header from a buffer of packed transport data

PhLocateTransHdr()

Look for specific data in a linked list of transport headers

May 13, 2010 Chapter 23 • Drag and Drop 505

Registering new transport types © 2010, QNX Software Systems GmbH & Co. KG.

PhMallocUnpack()

Unpack transport data, using a custom memory-allocation function

PhUnpack() Unpack transport data

PhUnlinkTransportHdr()

Remove an entry from a linked list of transport headers

PhReleaseTransportHdrs()

Free a linked list of headers for packed transport data

506 Chapter 23 • Drag and Drop May 13, 2010

Chapter 24

Regions

In this chapter. . .
Photon coordinate space 509
Region coordinates 509
Regions and event clipping 512
Placement and hierarchy 513
Using regions 517
System information 519

May 13, 2010 Chapter 24 • Regions 507

© 2010, QNX Software Systems GmbH & Co. KG. Photon coordinate space

In Photon, all applications consist of one or more rectangles called regions, which
reside in an abstract, three-dimensional event space. Regions are assigned an
identification number of type PhRid_t.

You can use phview to see what regions exist on your machine. For more
information, see the Utilities Reference.

Photon coordinate space
The Photon coordinate space looks like this:

(-32K, -32K) (+32K, -32K)

(+32K, +32K)(-32K, +32K)

Upper-left

quadrant

Upper-right

quadrant

Lower-left

quadrant

Lower-right

quadrant

VGA

display

(640, 480)

(0, 0)

Photon coordinate space.

Unlike the typical Cartesian layout, the lower-right quadrant is the (+,+) quadrant.

The root region has the same dimensions as the entire coordinate space. As a rule,
graphics drivers map the display screen to the location shown in the above diagram and
place the Photon origin at the upper-left corner of the display screen. (Graphics drivers
equate a single Photon coordinate to a single pixel value on your display screen).

Region coordinates
Region origins

When an application specifies coordinates within a given region, these are relative to
the region’s origin. The application specifies this origin when it opens the region.

May 13, 2010 Chapter 24 • Regions 509

Region coordinates © 2010, QNX Software Systems GmbH & Co. KG.

Initial dimensions and location
The initial dimensions of a region (i.e. rect argument in PhRegionOpen()) are relative
to its origin. These dimensions control the range of the coordinates that the application
can use within the region.

Let’s look at some examples to get an idea of the relationship between a region’s
origin and its initial rectangle coordinates. These examples illustrate how opened
regions are placed in relation to the root region, which has its origin in the center of
the Photon coordinate space.

Origin at (0,0) and initial rectangle at (0,0)

By default, applications use the following approach for regions. (These kinds of
regions are described in “Photon window manager” in the Photon Architecture
appendix.)

Coordinates: Origin = (0,0)

Upper left of initial rectangle = (0,0)

Lower right of initial rectangle = (100,100)

Root region

Parent's origin

Child's origin

(0, 0)

(100, 100)

Origin at (0,0) and initial rectangle not at (0,0)

The following example shows an approach typically used for regions that fill the entire
coordinate space. For example, for the device region and the workspace region, the
upper left is (-32768,-32768) and the lower right is (32767,32767).

Coordinates: Origin = (0,0)

Upper left of initial rectangle = (-50,-50)

Lower right of initial rectangle = (50,50)

510 Chapter 24 • Regions May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Region coordinates

Root region

Parent's origin

Child's origin

(-50, -50)

(50, 50)

Many widgets create regions that have their upper-left corners at negative coordinates,
so that the origin of the widgets’ canvas is at (0, 0):

Region's origin

Widget's region

Widget's canvas

Origin not at (0,0) and initial rectangle not at (0,0)

The following example shows how a child’s origin can differ from its parent’s origin.

Coordinates: Origin = (-50,-50)

Upper left of initial rectangle = (0,0)

Lower right of initial rectangle = (100,100)

May 13, 2010 Chapter 24 • Regions 511

Regions and event clipping © 2010, QNX Software Systems GmbH & Co. KG.

Root region

Parent's origin

Child's origin

(0, 0)

(50, 50) for parent

(100, 100) for child

About child regions
A child region’s origin is specified relative to the parent’s origin. So, when a region is
moved, all its children automatically move with it. Likewise, when a region is
destroyed, its children are destroyed.

If you want to make a region larger than any other of your application’s regions, make
it a child of the root region by calling PhRegionOpen() or PhRegionChange(),
specifying Ph_ROOT_RID as the parent.

Regions and event clipping
A region can emit or collect events only where it overlaps with its parent. For
example, in the following diagram:

• Child 1 can emit or collect events anywhere in its region

• Child 2 can emit or collect events only in the smaller gray area that overlaps with
its parent region

512 Chapter 24 • Regions May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Placement and hierarchy

Root regionParent region 1

Child region 1

Parent region 2

Child region 2

Regions and event clipping.

Because of this characteristic of regions, any portion of a region that doesn’t overlap
its parent is effectively invisible.

Placement and hierarchy
Region hierarchy

In Photon, every region has a parent region. This parent-child relationship results in a
region hierarchy with the root region at the top. The following diagram shows the
hierarchy of a typical Photon system:

Root region

Device region Window Manager

(Workspace region)

Graphics

region

Keyboard

region

Pointer

region

Window Manager

(Focus region)

Window Manager

(Backdrop region)

Window

Frame

region

Application

or Window

region

Window

Frame

region

Application

or Window

region

Widget

region

Hierarchy of regions for a typical Photon system.

May 13, 2010 Chapter 24 • Regions 513

Placement and hierarchy © 2010, QNX Software Systems GmbH & Co. KG.

Parent region
The Photon Manager always places child regions in front (i.e. on the user side) of their
parents:

Root region

Parent region

Child region

When opening a region, an application specifies the region’s parent. If an application
opens a region without specifying its parent, the region’s parent is set to a default —
basic regions become children of the root region and windows become children of the
window manager’s backdrop region.

Brother regions
Besides having a parent, a region may have “brothers,” i.e. other regions who have the
same parent. A region knows about only two of its brothers — the one immediately in
front and the one immediately behind.

The following diagram shows a parent with three children, and the relationship that
child region 2 has with its brothers:

Root region

Parent region

Child regionsBrother behind

Brother in front

Child region 2

When the application opens a region (e.g. child region 2 in the above diagram), it can
specify neither, one, or both immediate brothers. Depending on how the application
specifies these brothers, the new region may be placed according to default rules (see
below) or at a specific location.

514 Chapter 24 • Regions May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Placement and hierarchy

If an application opens a region, specifying both brothers, and this action results in an
ambiguous placement request, the request fails.

Default placement
If an application opens a region without specifying brothers, the Photon Manager
places that region using default placement rules. In most cases, these rules cause a
newly opened region to be placed in front of its frontmost brother, which then
becomes “brother behind” of the new region. (To use different placement rules, you
can specify the Ph_FORCE_FRONT flag.)

For example, in the following diagram, child region 1 is the frontmost region:

Root region

Parent region

Child region 1

When the application opens child region 2 with default placement (next diagram),
region 2 is placed in front of region 1. Region 1 becomes region 2’s brother “behind.”
Region 2 becomes region 1’s brother “in front.”

Root region

Parent region

Child region 1

Child region 2

Ph_FORCE_FRONT flag

An application uses the Ph_FORCE_FRONT flag when it wants a region to remain in
front of any subsequent brothers that rely on the Photon Manager’s default placement.

As mentioned earlier, when a region is opened with default placement, it’s placed
ahead of its frontmost brother. But if any brother has the Ph_FORCE_FRONT flag set,
then the new region is placed behind the farthest brother that has the
Ph_FORCE_FRONT flag set.

For example, let’s see what would happen in the following example if child region 1
had the Ph_FORCE_FRONT flag set:

May 13, 2010 Chapter 24 • Regions 515

Placement and hierarchy © 2010, QNX Software Systems GmbH & Co. KG.

Root region

Parent region

Child region 1

(forced to front)

When child region 2 is opened with default placement (next diagram), it’s placed
behind region 1, and region 1 becomes its “brother in front.” Because region 2 was
placed using default rules, it doesn’t inherit the Ph_FORCE_FRONT setting of region 1:

Root region

Parent region

Child region 2

Child region 1

(forced to front)

Then, if child region 3 is opened with default placement, it’s placed as follows:

Root region

Parent region

Child region 2

Child region 3

Child region 1

(forced to front)

The application can set the Ph_FORCE_FRONT flag when it opens a region (or later)
by changing the region’s flags. The state of this flag doesn’t affect how the region
itself is placed, but rather how subsequent brothers are placed if those brothers are
opened using default placement rules. That is, the Ph_FORCE_FRONT state of existing
brothers doesn’t affect the placement of a new region if it’s opened with specified
brother relations. See the next section, Specific placement.

516 Chapter 24 • Regions May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using regions

Remember that the Ph_FORCE_FRONT flag affects placement only among brother
regions — a child region always goes in front of its parent.

Specific placement
In contrast to default placement, if any brother is specified when a region is opened,
then that specification controls the placement of the new region. We refer to this as
specific placement.

If a “behind” brother is specified, then the newly opened region automatically is
placed in front of that brother.

If an “in front” brother is specified, then the newly opened region is automatically
placed behind that brother.

The Ph_FORCE_FRONT setting of the specified brother is inherited by the new region.
If an application opens a region, specifying both brothers, and this results in an
ambiguous placement request, then the open fails.

Using regions
Opening a region

To open a region, create a PtRegion widget. The PtRegion widget isn’t included in
PhAB’s widget palette; to instantiate it:

• Call PtCreateWidget() in your application.

Or:

• Create a window module, select it, and use the Change Class item in PhAB’s Edit
menu to turn the window into a PtRegion. For more information, see “Changing a
widget’s class” in the chapter on Creating Widgets in PhAB.

For more information on the PtRegion widget, see the Widget Reference.

Placing regions
While a region is always in front of its parent, the region’s placement relative to its
brothers is flexible. See “Placement and hierarchy” for more information about
“default” and “specific” placement.

The PhRegion_t structure (see the Library Reference) contains the following
members. These indicate the relationship of a region with its siblings:

• bro_in_front — indicates the sibling immediately in front

• bro_behind — indicates the sibling immediately behind

To retrieve this information, you can use PhRegionQuery().

May 13, 2010 Chapter 24 • Regions 517

Using regions © 2010, QNX Software Systems GmbH & Co. KG.

Changing region placement

An application can specify a region’s placement when it opens the region, or it can
change the placement later on. To change a region’s placement, the application must
change the relationship between the region and the region’s family.

The application does this by doing any or all of the following:

• setting the parent, bro_front, and bro_behind members of the PhRegion_t
structure

• setting the corresponding fields bits to indicate which members are valid (only
those fields marked as valid will be acted on)

• calling the PhRegionChange() function

Since an application can be sure of the position of only the regions it owns, it shouldn’t
change the position of any other regions. Otherwise, by the time the application makes
a request to change the position of a region it doesn’t own, the information retrieved
by PhRegionQuery() may not reflect that region’s current position. That is, a request to
change a region’s placement may not have the results the application intended.

Changing the parent

You can change a region’s parent in these ways:

• If the region has a parent widget, call PtReparentWidget() to make the region the
child of another widget. Don’t reparent the region directly.

• Specify the parent in the parent member of the child’s PhRegion_t structure. The
child region becomes the frontmost of the parent region’s children.

• Specify a child of another parent as the region’s brother. This makes the region a
child of that parent, but lets you specify where the child region fits in the parent
region’s hierarchy.

The following constants are defined in <photon/PhT.h>:

• Ph_DEV_RID — the ID of the device region.

• Ph_ROOT_RID — the ID of the root region.

Specifying brothers

If you set: Then:

bro_behind The region indicated in the rid member of PhRegion_t moves in
front of the bro_behind region

continued. . .

518 Chapter 24 • Regions May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. System information

If you set: Then:

bro_in_front The region indicated in the rid member of PhRegion_t moves
behind the bro_in_front region

As discussed in “Changing the parent,” a region inherits the parent of any specified
brothers that are children of another parent.

System information
You can get the following information about your system:

• the version of your Photon server

• an estimate of the bandwidth of communication between your window and the
Photon server

• information about regions that intersect your window:

- graphics regions

- keyboard regions

- pointer regions

- input group regions

You don’t get information about each region. Instead, you get the minimum value of
each type of information.

For example, if several graphics-driver regions overlapping your window have
different bandwidths, the bandwidth given is the minimum of them.

There are two functions that you can use to get system information:

PhQuerySystemInfo()

Get the information for a given region.

PtQuerySystemInfo()

Get the information for a widget (usually a window).

PhQuerySystemInfo() sends a message to the server each time that you call it.

PtQuerySystemInfo() calls PhQuerySystemInfo(), but buffers the information. When a
region that intersects your widget changes (for example, it’s moved), the buffer is
marked as invalid. The next time you call PtQuerySystemInfo(), it calls
PhQuerySystemInfo() again. By using the buffer whenever possible,
PtQuerySystemInfo() keeps the number of messages to a minimum.

Both PtQuerySystemInfo() and PhQuerySystemInfo() fill in a structure of type
PhSysInfo_t that your application has allocated. For more information, see the
Photon Library Reference.

May 13, 2010 Chapter 24 • Regions 519

System information © 2010, QNX Software Systems GmbH & Co. KG.

One field that’s of particular interest is the graphics bandwidth, in gfx.bandwidth. This
value can be used to modify the behavior of an interface based on the connection
speed. For example, a simple state change could be substituted for an elaborate
animation if the bandwidth is Ph_BAUD_SLOW or less. It’s also a good idea to see if
shared memory can be used for drawing; the Ph_GCAP_SHMEM flag is set in
gfx.capabilities if all the graphics drivers support the ...mx() functions and they’re all
running on your node.

520 Chapter 24 • Regions May 13, 2010

Chapter 25

Events

In this chapter. . .
Pointer events 523
Emitting events 525
Event coordinates 528
Event handlers — raw and filter callbacks 528
Collecting events 531
Event compression 531
Dragging 531

May 13, 2010 Chapter 25 • Events 521

© 2010, QNX Software Systems GmbH & Co. KG. Pointer events

The interactions between applications, users and the Photon server are represented by
data structures called events.

Event information is stored in structures of type PhEvent_t; see the Photon Library
Reference.

Pointer events
Most of the time, you can use a widget’s callbacks to handle what the user does while
pointing to it. If you’re working with event handlers, you’ll need to know what events
Photon emits.

Pressing a button

When you press the pointer button, Photon emits a Ph_EV_BUT_PRESS event to the
widget that currently has focus.

Releasing a button

When you release the button, Photon emits two Ph_EV_BUT_RELEASE events:

• One with subtype Ph_EV_RELEASE_REAL

• One with subtype Ph_EV_RELEASE_PHANTOM.

The real release hits whatever the mouse points to when you release the button. The
phantom release always goes to the same region (and position) that received the press.

In other words, if your widget saw the press, it also sees the phantom release. And
depending on where the mouse was pointing to, you may or may not get the real
release. If your widget gets both the real and phantom releases, the real one always
comes first.

Multiple clicks

Whenever you press or release the mouse button, the event includes the click count.
How can your application determine that you clicked, instead of double clicked?

There’s a click counter in the event data that’s associated with Ph_EV_BUT_PRESS
and Ph_EV_BUT_RELEASE events; to get this data, call PhGetData(). The data for
these events is a structure of type PhPointerEvent_t (see the Photon Library
Reference for details); its click_count member gives the number of times that you
clicked the mouse button.

If you keep clicking quickly enough without moving the mouse, the counter keeps
incrementing. If you move the mouse or stop clicking for a while, the counter resets
and Photon emits a Ph_EV_BUT_RELEASE event with a subtype of
Ph_EV_RELEASE_ENDCLICK.

In other words, the first click generates a Ph_EV_BUT_PRESS event and a pair of
Ph_EV_BUT_RELEASE events (one REAL and one PHANTOM) with click_count set
to 1. Then, depending on whether the user clicks again soon enough or not, you get
either:

May 13, 2010 Chapter 25 • Events 523

Pointer events © 2010, QNX Software Systems GmbH & Co. KG.

• A Ph_EV_BUT_PRESS event and a pair of Ph_EV_BUT_RELEASE events with
click_count set to 2

Or:

• A Ph_EV_BUT_RELEASE event with a subtype of Ph_EV_RELEASE_ENDCLICK.

After the second click, you either get a third one or an ENDCLICK, and so on. But
eventually you get an ENDCLICK — and the next time the person clicks, the click
count is 1 again.

Modifier keys

If you need to determine what keys were pressed in a pointer event, call PhGetData()
to get the event data that’s included for Ph_EV_BUT_PRESS and
Ph_EV_BUT_RELEASE events. The data for these events is a structure of type
PhPointerEvent_t (described in the Photon Library Reference); check its
key_mods member to determine the modifier keys that were pressed.

For example, this Pt_CB_ACTIVATE callback lists the modifier keys that were
pressed when the pointer button was released:

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "abimport.h"
#include "proto.h"

int
check_keys(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)

{

PhPointerEvent_t *event_data;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

if (cbinfo->event->type != Ph_EV_BUT_RELEASE) {
printf ("Not a Ph_EV_BUT_RELEASE event\n");

} else {
printf ("It’s a Ph_EV_BUT_RELEASE event\n");

event_data = (PhPointerEvent_t *)
PhGetData (cbinfo->event);

if (event_data->key_mods & Pk_KM_Shift)
printf (" Shift\n");

524 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Emitting events

if (event_data->key_mods & Pk_KM_Ctrl)
printf (" Ctrl\n");

if (event_data->key_mods & Pk_KM_Alt)
printf (" Alt\n");

}
return(Pt_CONTINUE);

}

Emitting events
The most general way for your application to emit an event is to call PhEmit():

int PhEmit(PhEvent_t *event,
PhRect_t *rects,
void *data);

The arguments are:

event A pointer to a PhEvent_t structure. The application emitting the event
needs to set the following members:

• type — the type of event.

• subtype — the event subtype (if necessary).

• flags — event modifiers (e.g. direction).

• emitter — a PhEventRegion_t structure; you need to set at least the ID
of the region that’s emitting the event.

• translation — typically set to (0,0) when emitting an event.

• num_rects — the number of rectangles in the function’s rects argument.
If you set num_rects to 0, you must also pass rects as NULL.

• event->collector.rid — if you set the collector ID to zero, the event is
enqueued to every appropriately sensitive region that intersects with the
event.

If you set collector.rid to a region ID, only that region notices the event.

The Photon Manager sets the following members of the event structure after
it has enqueued a copy of the event to an application:

• timestamp — the time when this event was emitted (in milliseconds).

• collector — a PhEventRegion_t structure that includes the ID of the
collecting region.

rects An array of PhRect_t structures (see the Photon Library Reference)
indicating the event’s initial rectangle set. If this argument is NULL, the set
consists of a single rectangle corresponding to the emitting region.

May 13, 2010 Chapter 25 • Events 525

Emitting events © 2010, QNX Software Systems GmbH & Co. KG.

data Valid data for the type of event being emitted. Each type of event has its own
type of data, as described for the PhEvent_t structure in the Photon
Library Reference.

If the event-specific data isn’t in contiguous memory, you may find
PhEmitmx() more useful than PhEmit():

int PhEmitmx(PhEvent_t *event,
PhRect_t *rects,
int mxparts,
struct _mxfer_entry *mx);

The return codes for PhEmit() and PhEmitmx() are:

A nonnegative value

Successful completion.

-1 An error occurred; check the value of errno.

Targeting specific regions
Sometimes an application needs to target an event directly at a specific region, without
making the event travel through the event space before arriving at that region. You can
use an inclusive event or a direct event to ensure that the targeted region sees the event.

Inclusive event

For an inclusive event, do the following:

• Set the emitter’s region ID (i.e. event->emitter.rid) to the ID of the target region —
this causes the event to be emitted automatically from that region.

• Set Ph_EVENT_INCLUSIVE on in the flag member of the event — this causes the
Photon Manager to emit the event to the emitting region before emitting it into the
event space.

If you don’t want an inclusive targeted event to continue through the event space, you
must make the emitting region opaque to that type of event, or use a direct event
instead.

Direct event

For a direct event, do the following:

• Set the emitter’s region ID (i.e. event->emitter.rid) to the ID of your application’s
region.

• Set the collector’s region ID (i.e. event->collector.rid) to the ID of the target
region.

• Set Ph_EVENT_DIRECT on in the flag member of the event — this causes the
Photon Manager to emit the event directly from emitter to collector.

526 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Emitting events

Targeting specific widgets
If you want to send an event to a specific widget, you could call PhEmit() as described
above, but you’ll need to look after a lot of details, including making sure:

• The event is delivered to the right window.

• The widget still has focus — there might be other events enqueued before yours.

It’s easier to call PtSendEventToWidget(). This function gives the event to the specified
widget directly and without delay. It’s much more deterministic and efficient than
PhEmit().

The prototype is:

int PtSendEventToWidget(PtWidget_t *widget,
PhEvent_t *event);

Emitting key events
Sometimes you might need to simulate a key press in your application. Depending on
what exactly you want to achieve, you can choose from several ways of generating key
events:

• Emit a Ph_EV_KEY event from the device region:

event->emitter.rid = Ph_DEV_RID;

The rectangle set should consist of a single pixel — if you’re not using the window
manager, or if PWM is set to use cursor focus, the position of that pixel determines
which window the event will hit.

• If you know which region you want to send the event to, emit a Ph_EV_KEY event
directly to that region:

event->collector.rid = rid;
event->flags |= Ph_EVENT_DIRECT;

In both of these cases, use a PhKeyEvent_t structure as the event data. For more
information, see the Photon Library Reference.

Here’s an example:

static void send_key(long key)
{

struct{
PhEvent_t event;
PhRect_t rect;
PhKeyEvent_t pevent;
} new_event;

PhEvent_t event;
PhKeyEvent_t key_event;

PhRect_t rect;

May 13, 2010 Chapter 25 • Events 527

Event coordinates © 2010, QNX Software Systems GmbH & Co. KG.

rect.ul.x = rect.ul.y = 0;
rect.lr.x = rect.lr.y = 0;

memset(&event , 0, sizeof(event));
memset(&key_event, 0, sizeof(key_event));

event.type = Ph_EV_KEY;
event.emitter.rid = Ph_DEV_RID;
event.num_rects = 1;
event.data_len = sizeof(key_event);
event.input_group = 1;

key_event.key_cap = key;
key_event.key_sym = key;

if (isascii(key) && isupper(key))
{

key_event.key_mods = Pk_KM_Shift;
}

/* Emit the key press. */

key_event.key_flags = Pk_KF_Sym_Valid | Pk_KF_Cap_Valid |
Pk_KF_Key_Down;

PhEmit(&event, &rect, &key_event);

/* Emit the key release. */

key_event.key_flags &= ˜(Pk_KF_Key_Down | Pk_KF_Sym_Valid) ;
PhEmit(&event ,&rect, &key_event);

return;
}

Event coordinates
When an event is emitted, the coordinates of its rectangle set are relative to the
emitting region’s origin. But when the event is collected, its coordinates become
relative to the collecting region’s origin.

The Photon Manager ensures this happens by translating coordinates accordingly. The
translation member of the PhEvent_t specifies the translation between the emitting
region’s origin and the collecting region’s origin.

Event handlers — raw and filter callbacks
The PtWidget widget class provides these callbacks for processing events:

Pt_CB_FILTER Invoked before the event is processed by the widget. They let you
perform actions based on the event before the widget sees it.
They also give you the opportunity to decide if the event should
be ignored, discarded, or allowed to be processed by the widget.

Pt_CB_RAW These callbacks are invoked after the widget has processed the
event, even if the widget’s class methods consume it.

528 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Event handlers — raw and filter callbacks

These callbacks are called every time a Photon event that matches an event mask
(provided by the application) is received. Since all the widget classes in the Photon
widget library are descended from the PtWidget, these callbacks can be used with
any widget from the Photon widget library.

When you attach a raw or filter callback to a widget, the widget library creates a
region, if necessary, that will pick up specific events for the widget. This increases the
number of regions the Photon Manager must manage and, as a result, may reduce
performance.

For this reason, use event handlers only when you have to do something that can’t be
done using standard widget callbacks. If you do use event handlers, consider using
them only on window widgets, which already have regions.

Whenever a Photon event is received, it’s passed down the widget family hierarchy
until a widget consumes it. (When a widget has processed an event and prevents
another widget from interacting with the event, the first widget is said to have
consumed the event.)

In general, the Pt_CB_FILTER callbacks are invoked on the way down the hierarchy,
and the Pt_CB_RAW callbacks are invoked on the way back up. Each widget
processes the event like this:

1 The widget’s Pt_CB_FILTER callbacks are invoked if the event type matches
the callback’s mask. The callback’s return code indicates what’s to be done with
the event:

Pt_CONSUME The event is consumed, without being processed by the
widget’s class methods.

Pt_PROCESS The widget’s class methods are allowed to process the event.

Pt_IGNORE The event bypasses the widget and all its descendants, as if
they didn’t exist.

2 If the widget is sensitive to the event, and the Pt_CB_FILTER callback permits,
the widget’s class method processes the event. The class method might consume
the event.

3 If the widget consumes the event, the widget’s Pt_CB_RAW callbacks are
invoked if the event type matches the callback’s mask. The raw callbacks of the
widget’s parents aren’t called.

4 If the widget doesn’t consume the event, the event is passed to the widget’s
children, if any.

5 If no widget consumes the event, the event is passed back up the family
hierarchy, and each widget’s Pt_CB_RAW callbacks are invoked if the event
type matches the callback’s mask.

May 13, 2010 Chapter 25 • Events 529

Event handlers — raw and filter callbacks © 2010, QNX Software Systems GmbH & Co. KG.

The value returned by a widget’s Pt_CB_RAW callback indicates what’s to be
done with the event:

Pt_CONSUME The event is consumed and no other raw callbacks are
invoked as the event is passed up to the widget’s parent.

Pt_CONTINUE The event is passed up to the widget’s parent.

If a widget is disabled (i.e. Pt_BLOCKED is set in its Pt_ARG_FLAGS), the raw and
filter callbacks aren’t invoked. Instead, the widget’s Pt_CB_BLOCKED callbacks (if
any) are invoked.

Let’s look at a simple widget family to see how this works. Let’s suppose you have a
window that contains a pane that contains a button. Here’s what normally happens
when you click on the button:

1 The window’s Pt_CB_FILTER callbacks are invoked, but don’t consume the
event. The window’s class methods don’t consume the event either.

2 The event is passed to the pane. Neither its Pt_CB_FILTER callbacks nor its
class methods consume the event.

3 The event is passed to the button. Its Pt_CB_FILTER callbacks don’t consume
the event, but the class methods do; the appropriate callback (e.g.
Pt_CB_ACTIVATE) is invoked.

4 The button’s Pt_CB_RAW callbacks are invoked for the event.

5 The pane’s and window’s Pt_CB_RAW callbacks aren’t invoked because the
button consumed the event.

If the pane’s Pt_CB_FILTER callback says to ignore the event:

1 The window processes the event as before.

2 The pane’s Pt_CB_FILTER callbacks say to ignore the event, so the pane and
all its descendants are skipped.

3 There are no more widgets in the family, so the window’s Pt_CB_RAW
callbacks are invoked.

For information on adding event handlers, see:

• “Event handlers — raw and filter callbacks” in the Editing Resources and
Callbacks in PhAB chapter

• “Event handlers” in the Managing Widgets in Application Code chapter.

530 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Collecting events

Collecting events
Most applications collect events by calling PtMainLoop(). This routine processes
Photon events and supports work procedures and input handling.

If your application doesn’t use widgets, you can collect events:

• asynchronously by calling PhEventRead(). You must call PhEventArm() before you
call PhEventRead() for the first time.

• synchronously by calling PhEventNext(). You can check for events without
blocking by calling PhEventPeek().

However, writing your own mainloop function isn’t a trivial matter; it’s easier to create
at least a disjoint widget (such as PtRegion or PtWindow) and then use
PtMainLoop().

PhGetRects() extracts the rectangle set, and PhGetData() extracts the event’s data
portion.

A region can collect a given event only if portions of the region intersect the event, and
the region is sensitive to that type of event.

Event compression
The Photon Manager compresses drag, boundary, and pointer events. That is, if an
event of that type is pending when another event arrives, the new event will be merged
with the unprocessed events. As a result, an application sees only the latest values for
these events and is saved from collecting too many unnecessary events.

Dragging
If you need to capture mouse coordinates, for example to drag graphical objects in
your application, you’ll need to work with events.

If you want to transfer arbitrary data within your application or between applications,
see the Drag and Drop chapter.

There are two types of dragging:

outline dragging The user sees an outline while dragging. When the dragging is
complete, the application repositions the widget.

opaque dragging The application moves the widget as the dragging progresses.

Dragging is done in two steps:

1 Initiating the dragging, usually when the user clicks on something.

May 13, 2010 Chapter 25 • Events 531

Dragging © 2010, QNX Software Systems GmbH & Co. KG.

2 Handling drag (Ph_EV_DRAG) events.

These steps are discussed in the sections that follow.

Initiating dragging
Where you initiate the dragging depends on how the user is meant to drag widgets. For
example, if the user holds down the left mouse button on a widget to drag it, initiate
dragging in the widget’s Arm (Pt_CB_ARM) or Outbound (Pt_CB_OUTBOUND)
callback. Make sure that Pt_SELECTABLE is set in the widget’s Pt_ARG_FLAGS
resource.

Dragging is started by calling the PhInitDrag() function:

int PhInitDrag(PhRid_t rid,
unsigned flags,
PhRect_t *rect,
PhRect_t *boundary,
unsigned int input_group,
PhDim_t *min,
PhDim_t *max,
const PhDim_t *step,
const PhPoint_t *ptrpos,
const PhCursorDescription_t *cursor);

The arguments are used as follows:

rid The ID of the region that rect and boundary are relative to. You can
get this by calling PtWidgetRid().

flags Indicate whether outline or opaque dragging is to be used, and which
edge(s) of the dragging rectangle track the pointer, as described
below.

rect A PhRect_t structure (see the Photon Library Reference) that
defines the area to drag.

boundary Rectangular area that limits the dragging

input_group Get this from the event in the callback’s cbinfo parameter by calling
PhInputGroup().

min, max Pointers to PhDim_t structures (see the Photon Library Reference)
that define the minimum and maximum sizes of the drag rectangle.

step Dragging granularity.

ptrpos If not NULL, it’s a pointer to a PhPoint_t structure (see the Photon
Library Reference) that defines the initial cursor position for the
drag. Applications should take it from the event that makes them
decide to start a drag. If the cursor moves from that position by the
time your PhInitDrag() reaches Photon, your drag is updated
accordingly. In other words, Photon makes the drag behave as if it
started from where you thought the cursor was rather than from
where it actually was a few moments later.

532 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Dragging

cursor If not NULL, defines how the cursor should look while dragging.

If Ph_DRAG_TRACK is included in flags, then opaque dragging is used; if
Ph_DRAG_TRACK isn’t included, outline dragging is used.

The following flags indicate which edge(s) of the dragging rectangle track the pointer:

• Ph_TRACK_LEFT

• Ph_TRACK_RIGHT

• Ph_TRACK_TOP

• Ph_TRACK_BOTTOM

• Ph_TRACK_DRAG—all the above

Outline dragging

The following example shows an Arm (Pt_CB_ARM) callback that initiates outline
dragging:

/* Start dragging a widget */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "globals.h"
#include "abimport.h"
#include "proto.h"

int
start_dragging(PtWidget_t *widget,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
PhDim_t *dimension;
PhRect_t rect;
PhRect_t boundary;

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

/* Set the dragging rectangle to the position and size of
the widget being dragged. */

PtWidgetExtent (widget, &rect);

/* Set the boundary for dragging to the boundary of the

May 13, 2010 Chapter 25 • Events 533

Dragging © 2010, QNX Software Systems GmbH & Co. KG.

window. */

PtGetResource (ABW_base, Pt_ARG_DIM, &dimension, 0);
boundary.ul.x = 0;
boundary.ul.y = 0;
boundary.lr.x = dimension->w - 1;
boundary.lr.y = dimension->h - 1;

/* Initiate outline dragging (Ph_DRAG_TRACK isn’t
specified). */

PhInitDrag (PtWidgetRid (ABW_base),
Ph_TRACK_DRAG,
&rect, &boundary,
PhInputGroup(cbinfo->event),
NULL, NULL, NULL, NULL, NULL);

/* Save a pointer to the widget being dragged. */

dragged_widget = widget;

return(Pt_CONTINUE);
}

The above callback is added to the Arm (Pt_CB_ARM) callback of the widget to be
dragged. It can be used for dragging any widget, so a pointer to the widget is saved in
the global variable dragged_widget.

Opaque dragging

If you want to use opaque dragging, add the Ph_DRAG_TRACK flag to the call to
PhInitDrag():

PhInitDrag(PtWidgetRid (ABW_base),
Ph_TRACK_DRAG | Ph_DRAG_TRACK,
&rect, &boundary,
PhInputGroup(cbinfo->event),
NULL, NULL, NULL, NULL, NULL);

Handling drag events
To handle drag (Ph_EV_DRAG) events, you need to define a Raw (Pt_CB_RAW) or
Filter (Pt_CB_FILTER) callback.

The raw or filter callback must be defined for the widget whose region was passed to
PhInitDrag(), not for the widget being dragged. For the example given, the Raw
callback is defined for the base window.

As described in “Event handlers — raw and filter callbacks” in the Editing Resources
and Callbacks in PhAB chapter, you use an event mask to indicate which events your
callback is to be called for. For dragging, the event is Ph_EV_DRAG. The most
commonly used subtypes for this event are:

Ph_EV_DRAG_START

The user has started to drag.

534 Chapter 25 • Events May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Dragging

Ph_EV_DRAG_MOVE

The dragging is in progress (opaque dragging only).

Ph_EV_DRAG_COMPLETE

The user has released the mouse button.

Outline dragging

If you’re doing outline dragging, the event subtype you’re interested in is
Ph_EV_DRAG_COMPLETE. When this event occurs, your callback should:

1 Get the data associated with the event. This is a PhDragEvent_t structure that
includes the location of the dragging rectangle, in absolute coordinates. For
more information, see the Photon Library Reference.

2 Calculate the new position of the widget, relative to the dragging region. This is
the position of the upper left corner of the dragging rectangle, translated by the
amount given in the event’s translation field.

3 Set the widget’s Pt_ARG_POS resource to the new position.

Remember, the callback’s widget parameter is a pointer to the container (the base
window in the example), not to the widget being dragged. Make sure you pass the
correct widget to PtSetResources() or PtSetResource() when setting the Pt_ARG_POS
resource.

For example, here’s the Raw callback for the outline dragging initiated above:

/* Raw callback to handle drag events; define this
for the base window. */

/* Standard headers */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

/* Toolkit headers */
#include <Ph.h>
#include <Pt.h>
#include <Ap.h>

/* Local headers */
#include "globals.h"
#include "abimport.h"
#include "proto.h"

int
end_dragging(PtWidget_t *widget,

ApInfo_t *apinfo,
PtCallbackInfo_t *cbinfo)

{
PhDragEvent_t *dragData;
PhPoint_t new_pos;

May 13, 2010 Chapter 25 • Events 535

Dragging © 2010, QNX Software Systems GmbH & Co. KG.

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

/* Ignore all events until dragging is done. */

if (cbinfo->event->subtype != Ph_EV_DRAG_COMPLETE)
{

return (Pt_CONTINUE);
}

/* Get the data associated with the event. */

dragData = PhGetData (cbinfo->event);

/* The rectangle in this data is the absolute
coordinates of the dragging rectangle. We want to
calculate the new position of the widget, relative to
the dragging region. */

new_pos.x = dragData->rect.ul.x
+ cbinfo->event->translation.x;

new_pos.y = dragData->rect.ul.y
+ cbinfo->event->translation.y;

printf ("New position: (%d, %d)\n", new_pos.x, new_pos.y);

/* Move the widget. */

PtSetResource (dragged_widget, Pt_ARG_POS, &new_pos, 0);

return(Pt_CONTINUE);

}

Opaque dragging

The callback for opaque dragging is similar to that for outline dragging—the only
difference is the subtype of event handled:

if (cbinfo->event->subtype != Ph_EV_DRAG_MOVE)
{

return (Pt_CONTINUE);
}

536 Chapter 25 • Events May 13, 2010

Chapter 26

Window Management

In this chapter. . .
Window-management flags 539
Notification callback 542
Getting and setting the window state 544
Managing multiple windows 546
Window-manager functions 546
Running a standalone application 547
Modal dialogs 547

May 13, 2010 Chapter 26 • Window Management 537

© 2010, QNX Software Systems GmbH & Co. KG. Window-management flags

Sometimes you’ll need to interact with the Photon Window Manager to make your
windows and dialogs behave the way you’d like.

Remember that PhAB’s window and dialog modules are implemented as PtWindow
widgets. PtWindow has many resources that are used to interact with the Window
Manager.

For information about the Window Manager’s regions, see the appendix on Photon
architecture. For a list of related functions, see “Window Manager” in the Summary of
Functions chapter of the Photon Library Reference.

Window-management flags
The PtWindow widget defines various types of flags:

Pt_ARG_WINDOW_RENDER_FLAGS

Which window decorations appear in the window frame.

Pt_ARG_WINDOW_MANAGED_FLAGS

How the Window Manager operates on the window.

Pt_ARG_WINDOW_NOTIFY_FLAGS

Which Window Manager events your application would like to be notified of.

Pt_ARG_WINDOW_STATE

The current state of the window.

If you change the state of the window after it’s realized, you’ll need to let the Window
Manager know. See “Getting and setting the window state” later in this chapter.

Window-rendering flags
The Pt_ARG_WINDOW_RENDER_FLAGS resource specifies what appears in the
window’s frame.

In PhAB, if you turn these flags off, PhAB provides a border, title, and buttons that
allow you to re-size, move, minimize, and close the window in design mode. The flags
still affect how the window appears when the application is running.

May 13, 2010 Chapter 26 • Window Management 539

Window-management flags © 2010, QNX Software Systems GmbH & Co. KG.

To display: Set this bit: Default:

Border Ph_WM_RENDER_BORDER Yes

Resize handles Ph_WM_RENDER_RESIZE Yes

Title bar Ph_WM_RENDER_TITLE Yes

Menu button Ph_WM_RENDER_MENU Yes

Close button Ph_WM_RENDER_CLOSE

Help button (question mark) Ph_WM_RENDER_HELP

Minimize button Ph_WM_RENDER_MIN Yes

Maximize button Ph_WM_RENDER_MAX Yes

Collapse button Ph_WM_RENDER_COLLAPSE Yes

An extra line inside the standard
borders

Ph_WM_RENDER_INLINE

Using these flags to display a decoration doesn’t cause the Window Manager to do
anything with it. You may need to set the window managed flags and/or notify flags.

Window-managed flags
The Pt_ARG_WINDOW_MANAGED_FLAGS resource specifies what operations you
want the window manager to handle:

To let the window manager: Set this bit: Default:

Close the window Ph_WM_CLOSE Yes

Give focus Ph_WM_FOCUS Yes

Build and control the window menu Ph_WM_MENU Yes

Move the window to the front Ph_WM_TOFRONT Yes

Move the window to the back Ph_WM_TOBACK Yes

Move the window to a new console as the
user switches consoles

Ph_WM_CONSWITCH

Resize the window Ph_WM_RESIZE Yes

Move the window Ph_WM_MOVE Yes

Hide (i.e. minimize) the window Ph_WM_HIDE Yes

Maximize the window Ph_WM_MAX Yes

continued. . .

540 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Window-management flags

To let the window manager: Set this bit: Default:

Display the window as a backdrop Ph_WM_BACKDROP

Restore the window Ph_WM_RESTORE Yes

Provide context-sensitive help Ph_WM_HELP

Make the window force-front Ph_WM_FFRONT

Collapse the window to just the title bar Ph_WM_COLLAPSE

Prevent you from cycling focus to the
window by pressing Alt-Esc, Alt-Shift-Esc,
or Alt-Tab

Ph_WM_NO_FOCUS_LIST

By default, a selection of these flags are set, as defined by
Ph_WM_APP_DEF_MANAGED in <PhWm.h>. You’d turn the management flags off if:

• You don’t want the operation to happen.

• You want the application to handle the operation. In this case, you’ll need to set the
appropriate notify flag as well.

Window-notify flags
The Pt_ARG_WINDOW_NOTIFY_FLAGS resource specifies which
window-manager operations your application should be notified of. This resource uses
the same bits as Pt_ARG_WINDOW_MANAGED_FLAGS:

To be notified when: Set this bit: Default:

The window is to be closed (see below) Ph_WM_CLOSE Yes

The window is to gain/lose focus Ph_WM_FOCUS

The window menu is requested or dismissed Ph_WM_MENU

The window is to be moved to the front Ph_WM_TOFRONT

The window is to be moved to the back Ph_WM_TOBACK

The window is to switch consoles Ph_WM_CONSWITCH

The window is to be resized Ph_WM_RESIZE Yes

The window is to be moved Ph_WM_MOVE

The window is to be hidden or unhidden Ph_WM_HIDE

The window is to be maximized Ph_WM_MAX

The window is to be made into a backdrop Ph_WM_BACKDROP

continued. . .

May 13, 2010 Chapter 26 • Window Management 541

Notification callback © 2010, QNX Software Systems GmbH & Co. KG.

To be notified when: Set this bit: Default:

The window is to be restored Ph_WM_RESTORE

The help button is pressed Ph_WM_HELP Yes

The window is to be made force-front or not
force-front

Ph_WM_FFRONT

The default setting is Ph_WM_RESIZE|Ph_WM_CLOSE| Ph_WM_HELP.

When the requested operations occur, the window’s Pt_CB_WINDOW callback is
invoked. See “Notification callback” below.

If you set the Ph_WM_CLOSE notify flag, your application’s Pt_CB_WINDOW
callback is invoked when someone wants the window to close. Your application
doesn’t have to close the window — it could decide to leave it open.

In contrast, the Pt_CB_WINDOW_CLOSING callback is called when a window is
being unrealized, but before its region is removed. At this point, the application can’t
stop the window from being closed.

If you’ve set the Ph_WM_CLOSE managed flag, the window manager is told to handle
the window’s closing. In this case, the Pt_CB_WINDOW_CLOSING callback is
invoked, but the Pt_CB_WINDOW callback isn’t.

Notification callback
When a window manager operation occurs that’s listed in the window’s notify flags
(Pt_ARG_WINDOW_NOTIFY_FLAGS), the window’s Pt_CB_WINDOW callback is
invoked.

Each callback function listed in this resource is passed a PtCallbackInfo_t
structure (see the Photon Widget Reference) that contains at least the following
members:

reason Pt_CB_WINDOW

reason_subtype 0 (not used).

event A pointer to the event that caused the callback to be invoked.

cbdata A pointer to a PhWindowEvent_t (described in the Photon
Library Reference).

These callback functions should return Pt_CONTINUE.

542 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Notification callback

Example: verifying window closure
Suppose you want to verify that the user really wants to exit the application when the
window is closed. Here’s what you need to do:

• Unset Ph_WM_CLOSE in the Pt_ARG_WINDOW_MANAGED_FLAGS. This tells
the window manager not to close the window.

• Set Ph_WM_CLOSE in the Pt_ARG_WINDOW_NOTIFY_FLAGS. The window
manager will notify you when the user tries to close the window.

• Add a Pt_CB_WINDOW like the following:

int
window_callback(PtWidget_t *widget, ApInfo_t *apinfo,

PtCallbackInfo_t *cbinfo)

{
PhWindowEvent_t *we = cbinfo->cbdata;
char *btns[] = { "&Yes", "&No" };
char Helvetica14[MAX_FONT_TAG];

/* eliminate ’unreferenced’ warnings */
widget = widget, apinfo = apinfo, cbinfo = cbinfo;

if (we->event_f == Ph_WM_CLOSE) {

/* Ask the user if we should really exit. Use
14-point Helvetica for the font if it’s
available. */

switch(PtAlert(ABW_base, NULL, NULL, NULL,
"Do you really want to exit?",
PfGenerateFontName("Helvetica", 0, 14,

Helvetica14),
2, btns, NULL, 1, 2, Pt_MODAL)) {

case 1: /* yes */
PtExit (EXIT_SUCCESS);
break;

case 2: /* no */
return (Pt_CONTINUE);

}
} else {

/* Check for other events. */
}

return(Pt_CONTINUE);

}

There’s a significant difference between the Ph_WM_CLOSE event and the Window
Closing (Pt_CB_WINDOW_CLOSING) callback.

A Pt_CB_WINDOW callback with a Ph_WM_CLOSE event is just a notification from
PWM that the user has clicked on the Close button or chosen Close from the PWM
menu. If the Ph_WM_CLOSE bit is unset in the
Pt_ARG_WINDOW_MANAGED_FLAGS, the library takes no further action.

May 13, 2010 Chapter 26 • Window Management 543

Getting and setting the window state © 2010, QNX Software Systems GmbH & Co. KG.

Window Closing is invoked when the window is about to unrealize for any reason.
This includes transporting to another Photon and explicit calls to PtDestroyWidget() or
PtUnrealizeWidget(). If you want to make sure in a Window Closing callback that the
window is actually being destroyed, check the Pt_DESTROYED flag in
Pt_ARG_FLAGS. You can also use the Pt_CB_DESTROYED callback to know when
a window is marked for destruction, or Pt_CB_IS_DESTROYED to know when it is
being destroyed.

Also note that calling exit() explicitly bypasses all those callbacks.

Getting and setting the window state
The Pt_ARG_WINDOW_STATE resource controls the window’s state:

To do this: Set this bit:

Maximize the window Ph_WM_STATE_ISMAX

Make the window a backdrop Ph_WM_STATE_ISBACKDROP

Minimize the window Ph_WM_STATE_ISHIDDEN

Place the base window in front of the
windows of all other applications

Ph_WM_STATE_ISFRONT

Give keyboard focus to the window if
cursor focus is disabled

Ph_WM_STATE_ISFOCUS

Pass Alt key combinations to the
application

Ph_WM_STATE_ISALTKEY

Block the window Ph_WM_STATE_ISBLOCKED
(read-only)

The default value is Ph_WM_STATE_ISFOCUS.

You can get and set the state of the window at any time by using the
Pt_ARG_WINDOW_STATE resource, but you might get unexpected results if the user
is changing the window state at the same time.

The safest time to use this resource to set the window state is before the window is
realized. For example, you could set it when creating the PtWindow widget or in the
window’s Pt_CB_WINDOW_OPENING callback. The setting will be in effect when
the window is realized.

You can set Pt_ARG_WINDOW_STATE after the window has been realized, basing
your changes on what you think the current window state is, but it’s safer to tell the
window manager how you want to change the state, by calling:

544 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Getting and setting the window state

PtForwardWindowEvent()

Change the state for the window associated with a given region ID

PtForwardWindowTaskEvent()

Change the state for a window associated with a given Photon connection ID

For example, to minimize a window that belongs to your application and is already
open:

PhWindowEvent_t event;

memset(&event, 0, sizeof (event));
event.event_f = Ph_WM_HIDE;
event.event_state = Ph_WM_EVSTATE_HIDE;
event.rid = PtWidgetRid(window);
PtForwardWindowEvent(&event);

In order to change the state of a window that belongs to another application, you need
a connection ID (of type PhConnectId_t) for the application. If you have the region
ID of a region that belongs to the application, you can call PhRegionQuery() and
extract the connection ID from the owner member of the PhRegion_t structure.

If you don’t have a region ID, but you know the application’s process ID, you can call
PhGetConnectInfo() like this to get the connection ID:

PhConnectId_t get_connect_id(pid_t pid)
{

PhConnectInfo_t buf;
PhConnectId_t id = 1;

while ((id = PhGetConnectInfo(id, &buf)) != -1
&& (buf.pid != pid ||

ND_NODE_CMP(buf.nid, ND_LOCAL_NODE)))
++id;

return id;
}

Once you have the connection ID, you can minimize an open window that belongs to
the other application with this code:

PhWindowEvent_t event;

memset(&event, 0, sizeof (event));
event.event_f = Ph_WM_HIDE;
event.event_state = Ph_WM_EVSTATE_HIDE;

PtForwardWindowTaskEvent(connection_id, &event);

May 13, 2010 Chapter 26 • Window Management 545

Managing multiple windows © 2010, QNX Software Systems GmbH & Co. KG.

When you call these functions, you’re asking the window manager to do the specified
action. If the action isn’t set in the managed flags
(Pt_ARG_WINDOW_MANAGED_FLAGS) for the given window, the window
manager doesn’t do it.

Managing multiple windows
If your application has more than one window, you’ll need to take the relationships
between them into account.

By definition, a child window is always in front of its parent. The child windows can
move above and below siblings. For windows to be able to go behind other windows,
they must be siblings. So for a window to be able to move behind the base window,
that window would have to have no parent.

Window-manager functions
The following low-level functions are associated with the window manager, but you
shouldn’t use them in an application that uses widgets:

PhWindowChange() Modify the attributes of a window’s region

PhWindowClose() Close a window

PhWindowOpen() Create a window region

These functions can be called in an application that uses widgets:

PhWindowQueryVisible()

Query a visible extent

PtConsoleSwitch() Switch to another virtual console

PtForwardWindowEvent()

Forward a window event

PtForwardWindowTaskEvent()

Forward a window event to a task

PtWindowConsoleSwitch()

Switch to the console a given window’s displayed on

PtWindowGetFrameSize()

Determine the size of a window’s frame

546 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Running a standalone application

Running a standalone application
If your application is intended to run by itself, you might want to:

• Make your application fill the screen. Set Ph_WM_STATE_ISMAX in the base
window’s Pt_ARG_WINDOW_STATE resource.

• Turn off all the flags in the base window’s Pt_ARG_WINDOW_RENDER_FLAGS
so that the window won’t get a title bar, borders, menu buttons, and so on — there’s
no use having them if there aren’t any other applications running.

Modal dialogs
Sometimes, you want your program to prompt the user for information before
continuing. You usually do this by popping up a dialog; if you don’t want the user to
be able to select any other operations before providing the information, you should use
a modal dialog.

A modal dialog doesn’t allow user input to go to any of the other widgets in the
application. To use a modal dialog to prompt for information, you have to make sure
that events are processed within the callback function.

To create a modal dialog, you have to create a new PtWindow widget, normally as a
child of the main application window.

To activate the modal dialog, you have to realize the dialog widget and block all the
other window widgets in the application. To block the window or windows, call one
of:

PtBlockAllWindows()

Block all windows except the one with a given widget

PtBlockWindow() Block a given window

Both of these routines return a list of blocked widgets, which you’ll need when you
unblock them. Instead of blocking the windows, you can make the dialog modal by
calling PtMakeModal().

After the modal dialog has been activated, call PtModalBlock() to start a modal loop to
process Photon events until a termination condition is met.

When the operation associated with the modal dialog is completed or aborted, you
have to dismiss the dialog. To do so:

1 Call PtModalUnblock() to stop the modal loop. You can specify the value to be
returned by PtModalBlock().

2 Destroy or unrealize the dialog itself.

3 Call PtUnblockWindows() to unblock any window widgets that you blocked
when you created the dialog. You don’t need to do this if you called
PtMakeModal() instead of PtBlockAllWindows() or PtBlockWindow().

May 13, 2010 Chapter 26 • Window Management 547

Modal dialogs © 2010, QNX Software Systems GmbH & Co. KG.

We can easily change our previous example of work procedures so that its progress
dialog behaves as a modal dialog. We’ll add a PtModalCtrl_t structure to the
callback closure, for PtModalBlock() and PtModalUnblock() to use.

The done() callback is altered to call PtModalUnblock() rather than free the closure:

int done(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
CountdownClosure *closure =

(CountdownClosure *)client;

call = call;

if (!closure->done) {
PtAppRemoveWorkProc(NULL, closure->work_id);

}
PtDestroyWidget(closure->dialog->widget);
free(closure->dialog);

/* New: end the modal loop, return the counter’s
value as the response. */

PtModalUnblock(&(closure->modal_control),
(void *) &(closure->value));

return (Pt_CONTINUE);
}

All that remains at this point is to change the push_button_cb() callback function so
that it blocks the window after realizing the progress dialog, starts the modal loop, and
unblocks the windows and frees the closure after the dialog is dismissed.

Here’s the new version of the push_button_cb() callback function:

int push_button_cb(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
PtWidget_t *parent = (PtWidget_t *)client;
WorkDialog *dialog;
PtBlockedList_t * blocked_list;
void * response;

w = w; call = call;

dialog = create_working_dialog(parent);

if (dialog)
{

CountdownClosure *closure =
(CountdownClosure *)
malloc(sizeof(CountdownClosure));

if (closure)
{
PtWorkProcId_t *id;

closure->dialog = dialog;
closure->value = 0;
closure->maxvalue = 200000;
closure->done = 0;
closure->work_id = id =

548 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Modal dialogs

PtAppAddWorkProc(NULL, count_cb, closure);

PtAddCallback(dialog->ok_button, Pt_CB_ACTIVATE,
done, closure);

PtRealizeWidget(dialog->widget);

/* New: Block all the windows except the dialog,
process events until the dialog is closed,
and then unblock all the windows. */

blocked_list = PtBlockAllWindows (dialog->widget,
Ph_CURSOR_NOINPUT, Pg_TRANSPARENT);

response = PtModalBlock(&(closure->modal_control), 0);
printf ("Value reached was %d\n", *(int *)response);
free (closure);

PtUnblockWindows (blocked_list);

}
}
return (Pt_CONTINUE);

}

Here’s the new version of the whole program:

#include <stdlib.h>
#include <Pt.h>

typedef struct workDialog {
PtWidget_t *widget;
PtWidget_t *label;
PtWidget_t *ok_button;

} WorkDialog;

typedef struct countdownClosure {
WorkDialog *dialog;
int value;
int maxvalue;
int done;
PtWorkProcId_t *work_id;

/* New member: */
PtModalCtrl_t modal_control;

} CountdownClosure;

WorkDialog *create_working_dialog(PtWidget_t *parent)
{

PhDim_t dim;
PtArg_t args[3];
int nargs;
PtWidget_t *window, *group;
WorkDialog *dialog =

(WorkDialog *)malloc(sizeof(WorkDialog));

if (dialog)
{

nargs = 0;
PtSetArg(&args[nargs], Pt_ARG_WIN_PARENT, parent, 0);

nargs++;
PtSetParentWidget(NULL);
dialog->widget = window =

May 13, 2010 Chapter 26 • Window Management 549

Modal dialogs © 2010, QNX Software Systems GmbH & Co. KG.

PtCreateWidget(PtWindow, parent, nargs, args);

nargs = 0;
PtSetArg(&args[nargs], Pt_ARG_GROUP_ORIENTATION,

Pt_GROUP_VERTICAL, 0); nargs++;
PtSetArg(&args[nargs], Pt_ARG_GROUP_VERT_ALIGN,

Pt_GROUP_VERT_CENTER, 0); nargs++;
group = PtCreateWidget(PtGroup, window, nargs, args);

nargs = 0;
dim.w = 200;
dim.h = 100;
PtSetArg(&args[nargs], Pt_ARG_DIM, &dim, 0); nargs++;
PtSetArg(&args[nargs], Pt_ARG_TEXT_STRING,

"Counter: ", 0); nargs++;
dialog->label = PtCreateWidget(PtLabel, group,

nargs, args);

PtCreateWidget(PtSeparator, group, 0, NULL);

nargs = 0;
PtSetArg(&args[nargs], Pt_ARG_TEXT_STRING, "Stop", 0);

nargs++;
dialog->ok_button = PtCreateWidget(PtButton, group,

1, args);
}
return dialog;

}

int done(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
CountdownClosure *closure =

(CountdownClosure *)client;

call = call;

if (!closure->done) {
PtAppRemoveWorkProc(NULL, closure->work_id);

}
PtDestroyWidget(closure->dialog->widget);
free(closure->dialog);

/* New: end the modal loop, return the counter’s
value as the response. */

PtModalUnblock(&(closure->modal_control),
(void *) &(closure->value));

return (Pt_CONTINUE);
}

int
count_cb(void *data)
{

CountdownClosure *closure =
(CountdownClosure *)data;

char buf[64];
int finished = 0;

if (closure->value++ == 0 || closure->value %
1000 == 0)

{
sprintf(buf, "Counter: %d", closure->value);

550 Chapter 26 • Window Management May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Modal dialogs

PtSetResource(closure->dialog->label,
Pt_ARG_TEXT_STRING, buf, 0);

}

if (closure->value == closure->maxvalue)
{

closure->done = finished = 1;
PtSetResource(closure->dialog->ok_button,

Pt_ARG_TEXT_STRING, "Done", 0);
}

return finished ? Pt_END : Pt_CONTINUE;
}

int push_button_cb(PtWidget_t *w, void *client,
PtCallbackInfo_t *call)

{
PtWidget_t *parent = (PtWidget_t *)client;
WorkDialog *dialog;
PtBlockedList_t * blocked_list;
void * response;

w = w; call = call;

dialog = create_working_dialog(parent);

if (dialog)
{

CountdownClosure *closure =
(CountdownClosure *)
malloc(sizeof(CountdownClosure));

if (closure)
{
PtWorkProcId_t *id;

closure->dialog = dialog;
closure->value = 0;
closure->maxvalue = 200000;
closure->done = 0;
closure->work_id = id =

PtAppAddWorkProc(NULL, count_cb, closure);

PtAddCallback(dialog->ok_button, Pt_CB_ACTIVATE,
done, closure);

PtRealizeWidget(dialog->widget);

/* New: Block all the windows except the dialog,
process events until the dialog is closed,
and then unblock all the windows. */

blocked_list = PtBlockAllWindows (dialog->widget,
Ph_CURSOR_NOINPUT, Pg_TRANSPARENT);

response = PtModalBlock(&(closure->modal_control), 0);
printf ("Value reached was %d\n", *(int *)response);
free (closure);

PtUnblockWindows (blocked_list);

}
}
return (Pt_CONTINUE);

May 13, 2010 Chapter 26 • Window Management 551

Modal dialogs © 2010, QNX Software Systems GmbH & Co. KG.

}

int main(int argc, char *argv[])
{

PhDim_t dim;
PtArg_t args[3];
int n;
PtWidget_t *window;
PtCallback_t callbacks[] = {{push_button_cb, NULL
}
};
char Helvetica14b[MAX_FONT_TAG];

if (PtInit(NULL) == -1)
exit(EXIT_FAILURE);

dim.w = 200;
dim.h = 100;
PtSetArg(&args[0], Pt_ARG_DIM, &dim, 0);
if ((window = PtCreateWidget(PtWindow, Pt_NO_PARENT,

1, args)) == NULL)
PtExit(EXIT_FAILURE);

callbacks[0].data = window;
n = 0;
PtSetArg(&args[n++], Pt_ARG_TEXT_STRING, "Count Down...", 0);

/* Use 14-point, bold Helvetica if it’s available. */

if(PfGenerateFontName("Helvetica", PF_STYLE_BOLD, 14,
Helvetica14b) == NULL) {

perror("Unable to generate font name");
} else {

PtSetArg(&args[n++], Pt_ARG_TEXT_FONT, Helvetica14b, 0);
}
PtSetArg(&args[n++], Pt_CB_ACTIVATE, callbacks,

sizeof(callbacks)/sizeof(PtCallback_t));
PtCreateWidget(PtButton, window, n, args);

PtRealizeWidget(window);

PtMainLoop();
return (EXIT_SUCCESS);

}

If your modal dialog is self-contained and you just need to wait for it, you might find
this function useful:

ApModalWait() Process Photon events until a given widget is destroyed

552 Chapter 26 • Window Management May 13, 2010

Chapter 27

Programming Photon without PhAB

In this chapter. . .
Basic steps 555
Compiling and linking a non-PhAB application 555
Sample application 556
Connecting application code to widgets 558
Complete sample application 559

May 13, 2010 Chapter 27 • Programming Photon without PhAB 553

© 2010, QNX Software Systems GmbH & Co. KG. Basic steps

We strongly recommend that you use PhAB to develop Photon applications—this
chapter is for those who insist on not using PhAB.

Basic steps
All applications using the Photon widget library follow the same basic sequence:

1 Include <Pt.h>, the standard header file for the widget library.

2 Initialize the Photon widget toolkit by calling PtInit() (or PtAppInit(), which
also creates the main window).

3 Create the widgets that make up the UI by calling PtCreateWidget() . This
function can make the new widgets into children of a given widget or the current
container, or with no parent.

4 Register any callback functions in the application with the appropriate widgets
using PtAddCallback() or PtAddCallbacks().

5 Realize the widgets by calling PtRealizeWidget(). This function needs to be
called only once by the application.

The realize step actually creates any Photon regions that are required and maps
them to the screen. Until this step is performed, no regions exist, and nothing is
displayed on the screen.

6 Begin processing photon events by calling PtMainLoop().

At this point, the Photon widget toolkit takes control over the application and
manages the widgets. If any widgets are to call functions in your application,
they must have been registered as callbacks before this.

Compiling and linking a non-PhAB application
To compile and run an application that uses the Photon widget library, you must link
against the main Photon library, ph. There are both static and shared versions of this
library.

CAUTION:

The libphoton.so.1 library is for applications created with version 1.14 of the
Photon microGUI only. Don’t combine this library with the current libraries or header
files, or your application won’t run properly.

!

We recommend that you always link against the shared library. This lets you keep
your applications smaller and allows them to inherit new features that are added to the
widget library when new releases of the shared library are installed.

The Photon library includes most of the function and widget definitions. If your
application uses Al (translation) or Px (extended) functions, you’ll also need to link

May 13, 2010 Chapter 27 • Programming Photon without PhAB 555

Sample application © 2010, QNX Software Systems GmbH & Co. KG.

with the phexlib library. If your application uses Ap (PhAB) functions, you’ll also
need to link with the Ap library.

The names of the shared and static libraries are the same. By default, qcc links against
the shared library; to link against the static library, specify the -Bstatic option for
qcc.

For example, if we have an application called hello.c, the command to compile and
link against the shared libraries is:

qcc -o hello hello.c -lph

To link against the static libraries, the command is:

qcc -o hello hello.c -Bstatic -lph -lfont

Sample application
The following example illustrates a very simple application using the widget library.
The program creates a window that contains a single pushbutton.

/*
* File: hello.c
*/

#include <Pt.h>

int main(int argc, char *argv[])
{

PtWidget_t *window;
PtArg_t args[1];

if (PtInit(NULL) == -1)
PtExit(EXIT_FAILURE);

window = PtCreateWidget(PtWindow, Pt_NO_PARENT, 0, NULL);

PtSetArg(&args[0], Pt_ARG_TEXT_STRING,
"Press to exit", 0);

PtCreateWidget(PtButton, window, 1, args);
PtRealizeWidget(window);

PtMainLoop();
return (EXIT_SUCCESS);

}

What’s going on
Although this is a simple application, a lot of work is being done by each of these calls.

PtInit()

PtInit() calls PhAttach() to attach a channel to the Photon server, and then initializes
the widget libraries.

556 Chapter 27 • Programming Photon without PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Sample application

PtCreateWidget() — first call

The first call to PtCreateWidget() creates a window widget that interacts with the
window manager and serves as the parent for other widgets created in the application.
The arguments are:

• the class of widget to create (PtWindow in this case)

• the window’s parent (Pt_NO_PARENT because the window doesn’t have one)

• the number of elements in the argument list

• an argument list of initial values for the widget’s resources.

PtCreateWidget() returns a pointer to the widget created.

For more information, see “Creating widgets” in the Managing Widgets in Application
Code chapter. For more information about widgets and their resources, see the Photon
Widget Reference.

PtSetArg()

The PtSetArg() macro sets up an argument list that’s used to initialize the button’s
resources when it’s created. For more information, see the Manipulating Resources in
Application Code chapter.

PtCreateWidget() — second call

All the widgets in the application — except the top-level window — have a container
widget as a parent. Container widgets may have other containers within them.
Creating the widgets in the application produces a hierarchy called the widget family.

The second call to PtCreateWidget() creates a pushbutton widget as a child of the
window widget, using the argument list to initialize the button’s resources. You can
pass Pt_DEFAULT_PARENT as the parent to make the widget the child of the most
recently created container widget; in this case, the results are the same.

PtRealizeWidget()

PtRealizeWidget() displays the widget and all its descendants in the widget family.
Our sample application calls PtRealizeWidget() for the top-level window, so all the
widgets in the application are displayed.

When a widget is realized, it uses the values of its resources to determine how big it
must be to display its contents. Before realizing a widget, you should set any of the
resources that may affect its size. You may change some of the resources after the
widget has been realized, but it’s up to the widget to determine if it can or will resize
to accommodate the change in the resource’s value.

You can set resize flags that the widget uses to determine whether or not to adjust its
size in response to such changes, but note that if the widget exceeds the dimensions
allocated to it by its parent, it’s clipped to the parent’s size. There’s no mechanism for
the widget to negotiate with its parent to obtain more space. See the Geometry
Management chapter for more information.

May 13, 2010 Chapter 27 • Programming Photon without PhAB 557

Connecting application code to widgets © 2010, QNX Software Systems GmbH & Co. KG.

If a Photon region is required to display the widget correctly, it’s created each time the
widget is realized. A region is required under any of the following conditions:

• The widget sets a cursor.

• The widget needs to get events that aren’t redirected to it by its parent container
(e.g. boundary, pointer-motion events)

• The Pt_REGION flag is set in the widget’s Pt_ARG_FLAGS resource (see
PtWidget in the Widget Reference).

You can unrealize a widget by calling PtUnrealizeWidget(). This affects the visibility
of the widget and its descendants, but not the rest of the widget family hierarchy. You
can redisplay the widget later by calling PtRealizeWidget().

You can prevent a widget and its descendants from being realized when the widget’s
ancestor is realized. To do this, set Pt_DELAY_REALIZE in the widget’s
Pt_ARG_FLAGS resource. If you set this flag, it’s your responsibility to call
PtRealizeWidget() on the widget when you want it to appear.

PtMainLoop()

Calling PtMainLoop() transfers control of the application to the Photon widget library.

The widget library waits for Photon events and passes them on to the widgets to
handle them. Application code is executed only when callback functions that the
application has registered with a widget are invoked as a result of some event.

Connecting application code to widgets
If you compile, link, and run the sample application, you’ll see that a window appears
with a button in it. If you push the button, nothing happens because no application
code has been associated with it.

The Photon widget library is designed so that the UI code can be kept distinctly
separate from the application code. The UI is composed of the code to create and
manipulate the widget family hierarchy, and must call the application code in response
to particular events or user actions. The connection between the application code and
the UI that allows it to use the application code is the single point where these two
parts have intimate knowledge of each other.

Connections are made between the UI and the application code using callbacks and
event handlers.

A callback is a special type of widget resource that allows the application to take
advantage of existing widget features. Using a callback, the application can register a
function to be called by the widget library later in response to a particular occurrence
within the widget.

Event handlers (raw and filter callbacks) are normally used to add capabilities to a
widget. For example, you could add behavior to a button press inside a widget that has
no callbacks associated with button-press events.

558 Chapter 27 • Programming Photon without PhAB May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Complete sample application

Callbacks
A callback resource is used to notify the application that a specific action has occurred
for a widget (e.g. you’ve selected a button). Every callback resource represents some
user action that we thought your application might be interested in.

As with all resources, a widget has its callback resources defined by its widget class,
and it inherits the callback resources defined by all the ancestors of its class. This
means that a widget may have several user actions that it can notify the application
about.

The value of a callback resource is a callback list. Each element of the list is an
application function to be called in response to the behavior and client data associated
with the callback. Client data is a pointer to any arbitrary data that your application
may need to provide to the callback function for it to work correctly.

For information about callbacks, see “Callbacks” in the Managing Widgets in
Application Code chapter.

Event handling
When we create a widget class, we can’t possibly anticipate all of your application’s
needs. Your application may want to be notified of some occurrence on a widget that
doesn’t have an associated callback resource. In such cases, your application can
define event-handling functions.

For information about event handlers, see “Event handlers” in the Managing Widgets
in Application Code chapter.

Complete sample application
We can now use our newly acquired knowledge of resources and callbacks to create a
more functional version of the sample application given earlier.

Using resources, we can give the pushbutton widget the same dimensions as the
window, and specify which font to use for the label’s text. We can also define the
callback to be executed when the pushbutton is pressed. We’ll make the callback
function display a simple message and exit.

Here’s the complete source code for our sample program with these changes:

#include <stdio.h>
#include <stdlib.h>
#include <Pt.h>

int main(int argc, char *argv[])
{

PtArg_t args[3];
int n;
PtWidget_t *window;
int push_button_cb(PtWidget_t *, void *,

PtCallbackInfo_t *);
PtCallback_t callbacks[] = {{push_button_cb, NULL}};
char Helvetica14[MAX_FONT_TAG];

May 13, 2010 Chapter 27 • Programming Photon without PhAB 559

Complete sample application © 2010, QNX Software Systems GmbH & Co. KG.

if (PtInit(NULL) == -1)
PtExit(EXIT_FAILURE);

window = PtCreateWidget(PtWindow, Pt_NO_PARENT, 0, NULL);

n = 0;
PtSetArg(&args[n++], Pt_ARG_TEXT_STRING,

"Press to exit", 0);

/* Use 14-point, bold Helvetica if it’s available. */

if(PfGenerateFontName("Helvetica", 0, 14,
Helvetica14) == NULL) {

perror("Unable to generate font name");
} else {

PtSetArg(&args[n++], Pt_ARG_TEXT_FONT, Helvetica14, 0);
}
PtSetArg(&args[n++], Pt_CB_ACTIVATE, callbacks,

sizeof(callbacks)/sizeof(callbacks[0]));
PtCreateWidget(PtButton, window, n, args);

PtRealizeWidget(window);
PtMainLoop();
return (EXIT_SUCCESS);

}

int
push_button_cb(PtWidget_t *w, void *data,

PtCallbackInfo_t *cbinfo)
{

printf("I was pushed\n ");
PtExit(EXIT_SUCCESS);

/* This line won’t be reached, but it keeps
the compiler happy. */

return(Pt_CONTINUE);
}

560 Chapter 27 • Programming Photon without PhAB May 13, 2010

Appendix A

Photon Architecture

In this appendix. . .
Event space 563
Events 564
Regions 565
Event types 568
How region owners are notified of events 568
Device region 569
Photon drivers 570
Photon window manager 572

May 13, 2010 Appendix: A • Photon Architecture 561

© 2010, QNX Software Systems GmbH & Co. KG. Event space

This appendix provides a technical overview of Photon’s architecture.

Event space
The essential characteristic of Photon is the way in which graphical applications are
represented. All Photon applications consist of one or more rectangles called regions.
These regions reside in an abstract, three-dimensional event space; the user is outside
this space looking in.

Event space

Root region

Application region

Child application region

Regions can emit and collect objects called events. These events can travel in either
direction through the event space (i.e. either toward or away from the user). As events
move through the event space, they interact with other regions — this is how
applications interact with each other. The process maintaining this simple architecture
is the Photon Manager.

All the services required for a windowing system — window managers, drivers, and
applications — can easily be created using regions and events. And because processes
whose regions are managed by the Photon Manager needn’t reside on the same
computer as the Photon Manager, it’s also easy to implement network-distributed
applications.

Regions and events
Photon programs use two basic objects: regions and events. Regions are stationary,
while events move through the event space.

A region is a single, fixed rectangular area that a program places in the event space. A
region possesses attributes that define how it interacts with events.

May 13, 2010 Appendix: A • Photon Architecture 563

Events © 2010, QNX Software Systems GmbH & Co. KG.

An event is a set of nonoverlapping rectangles that can be emitted and collected by
regions in either direction in the event space. All events have an associated type. Some
event types also possess corresponding data.

Events
As an event flows through the event space, its rectangle set intersects with regions
placed in the event space by other applications. As this occurs, the Photon Manager
adjusts the event’s rectangle set according to the attributes of the regions with which
the event intersected.

Initial rectangle set
An emitted event’s default initial rectangle set contains a single rectangle whose
dimensions are usually the size of the emitting region. As the event moves through the
event space, its interactions with other regions may cause some portions of this
rectangle to be removed. If this happens, the rectangle will be divided into a set of
smaller rectangles that represent the remaining portions:

Region
A

Region
B

Region
C

Region
D

Tile
1

Tile
2

Tile
3

Tile
4

Event received by
Region D

An event’s rectangle set.

Certain event types (e.g. button presses) have no need for their initial rectangle set to
have the dimensions of the emitting region. For such events, the rectangle set consists
of a single rectangle whose size is a single point. A single-point rectangle set is called
a point source.

Collected rectangle set
The rectangle set of a “collected” event contains the rectangles resulting from the
event’s interaction with prior regions in the event space. If an event is completely
occluded by other regions such that it results in a set containing no rectangles, then
that event ceases to exist.

For a list of the event types, see the “Event types” section.

564 Appendix: A • Photon Architecture May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Regions

Regions
A process may create or use any number of regions and may place them anywhere in
the event space. Furthermore, by controlling the dimensions, location, and attributes of
a region (relative to the other regions in the event space), a process can use, modify,
add, or remove services provided by other regions.

Photon uses a series of regions, ranging from the Root region at the back of the Photon
event space to the Graphics region at the front. Draw events start at an application’s
region and move forward to the Graphics region. Input events start at the
Pointer/Keyboard region and travel towards the Root region.

Root

Device

Graphics

Workspace (PWM)

Backdrop (PWM)

Focus (PWM)

Input Group

Pointer/Keyboard

Application

Window (PWM)

Exploded view of Photon’s regions.

The following constants are defined in <photon/PhT.h>:

• Ph_DEV_RID — the ID of the device region.

• Ph_ROOT_RID — the ID of the root region.

A region’s owner and the Photon Manager can reside on different computers.

A region has two attributes that control how events are to be treated when they
intersect with a region:

• sensitivity

• opacity

You can set these independently for each different type of event.

May 13, 2010 Appendix: A • Photon Architecture 565

Regions © 2010, QNX Software Systems GmbH & Co. KG.

Sensitivity
If a region is sensitive to a particular type of event, then the region’s owner collects a
copy of any event of that type that intersects with the region. If other regions are
sensitive to this same event type and the event intersects with them, they’ll also collect
a copy of the event — but with a potentially different rectangle set.

Although many regions can collect a copy of the same event, the rectangle set for the
event may be adjusted and will therefore be unique for each region that collects the
event. The rectangle set reflects the event’s interaction with other regions in the event
space before arriving at the collecting region.

If a region isn’t sensitive to an event type, the region’s owner never collects that type
of event.

The sensitivity attribute doesn’t modify the rectangle set of an event, nor does it affect
the event’s ability to continue flowing through the event space.

Opacity
Opaque regions block portions of an event’s rectangle set from traveling further in the
event space. The opacity attribute controls whether or not an event’s rectangle set is
adjusted as a result of intersecting with a region.

If a region is opaque to an event type, any event of that type that intersects with the
region has its rectangle set adjusted in order to “clip out” the intersecting area. This
changes the rectangle set such that it includes smaller rectangles. These new
rectangles describe the portions of the event that remain visible to regions beyond this
region in the event space.

If a region isn’t opaque to an event type, then events of that type never have their
rectangle set adjusted as a result of intersecting with that region.

Attribute summary
The following table summarizes how a region’s attributes affect events that intersect
with that region:

If the region is: Then the event is: And the rectangle set is:

Not sensitive, not opaque Ignored Unaffected

Not sensitive, opaque Ignored Adjusted

Sensitive, not opaque Collected Unaffected

Sensitive, opaque Collected Adjusted

566 Appendix: A • Photon Architecture May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Regions

Event logging
By placing a region across the entire event space, a process can intercept and modify
any event passing through that region. If a region is sensitive to all events, but not
opaque, it can transparently log all events.

Event modification
If a region is sensitive and opaque, it can choose to reemit a modified version of the
event. For example, a region could collect pointer events, perform handwriting
recognition on those events, and then generate the equivalent keyboard events.

Parent/child relationships
All regions have parent/child relationships. A child region is always placed in front of
the parent region (i.e. closer to the user), and its coordinates are relative to the parent’s
region.

Photon coordinate space
All regions reside within the Photon coordinate space, whose dimensions are as
follows:

(-32K, -32K) (+32K, -32K)

(+32K, +32K)(-32K, +32K)

Upper-left

quadrant

Upper-right

quadrant

Lower-left

quadrant

Lower-right

quadrant

VGA

display

(640, 480)

(0, 0)

Root region
A special region called the root region is always the region furthest away from the
user. All other regions descend in some way from the root region. Once an event
traveling away from the user reaches the root region, it ceases to exist.

The root region’s dimensions are the width of the entire Photon coordinate space. As a
result of the parent/child relationship of all regions, any region’s location is ultimately
related to the root region’s dimensions.

May 13, 2010 Appendix: A • Photon Architecture 567

Event types © 2010, QNX Software Systems GmbH & Co. KG.

A region can be located anywhere in the event space and still have the root region as
its parent.

Event types
Events are emitted for the following reasons:

• key presses, keyboard state information

• button presses and releases

• pointer motions (with or without button pressed)

• boundary crossings

• regions exposed or covered

• drag operations

• drag-and-drop operations

• drawing functions

For more information on event types, see PhEvent_t in the Photon Library
Reference.

How region owners are notified of events
Region owners can be notified of events by the Photon Manager in three different
ways:

• polling

• synchronous notification

• asynchronous notification

Polling
To poll, the application calls a function that asks the Photon Manager to reply
immediately with either an event or a status indicating no event is available.

Normally you should avoid polling, but you may find it beneficial on occasion. For
example, an application rapidly animating a screen can poll for events as part of its
stream of draw events. An application can also use polling to retrieve an event after
asynchronous notification.

568 Appendix: A • Photon Architecture May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Device region

Synchronous notification
For synchronous notification, the application calls a function that asks the Photon
Manager to reply immediately if an event is pending, or to wait until one becomes
available before replying.

With synchronous notification, an application can’t block on other sources while it’s
waiting for the Photon Manager to reply. You should find this behavior acceptable in
most cases since it causes the application to execute only when the desired events
become available. But if for some reason the possibility of blocking on the Photon
Manager isn’t acceptable, you may consider asynchronous notification.

Asynchronous notification
For asynchronous notification, the application calls a function that sets up a
notification method (e.g. a signal or a pulse) that the Photon Manager activates when
an event of the desired type is available. The application can then retrieve the event by
polling.

With asynchronous notification, an application can block on multiple sources,
including processes that aren’t Photon applications.

Device region
The device region is owned by the Photon Manager, which divides the event space into
two sections:

• driver regions, which reside on the user’s side of the device region

• application regions, which reside on the other side of the device region

The Photon Manager uses the device region to focus pointer and keyboard events as
well as to manage drag events.

Pointer focus
As with other windowing systems, Photon has the concept of a pointer (i.e. screen
cursor). This pointer is graphically represented on the screen and tracks the
movements of the pointing device (e.g. a mouse or touchscreen). Drivers for pointing
devices emit pointer events toward the root region.

A pointer event emitted from a driver is unfocused, or raw, until it arrives at the device
region, where the Photon Manager intercepts it and then assigns it a location in the
Photon coordinate space.

Assigning this location — which is known as focusing the event — controls which
regions will collect the event. The Photon Manager then reemits the event with the
focused location.

Because Photon emits focused, or cooked, pointer motion events in both directions
from the device region, application programs as well as driver programs can be

May 13, 2010 Appendix: A • Photon Architecture 569

Photon drivers © 2010, QNX Software Systems GmbH & Co. KG.

informed of pointer actions. For example, when the graphics driver collects focused
pointer events, it updates the location of the pointer’s graphical image on the screen.

Keyboard focus
The keyboard driver is similar to pointing device drivers, except it emits keyboard
events. As with pointer events, keyboard events are unfocused until they arrive at the
device region, where the Photon Manager assigns them a location (i.e. focuses them)
in the Photon coordinate space.

By default, the device region sets the same focus location for both keyboard events
and pointer events. Therefore, regions directly behind the screen pointer will collect
focused keyboard events.

The window manager supplements the keyboard focus methods. For more
information, see the section on the Photon window manager.

Drag events
An application initiates dragging by emitting a drag event to the device region. Once
this event is collected at the device region, the Photon Manager takes care of the
interaction with the pointer (i.e. drag rectangle) until the drag operation is complete.
Once completed, the device region emits a drag event to the application.

Drag-and-drop events
During a drag-and-drop operation, a series of events is emitted to advise the widgets
involved of the operation’s status. Some of these events are emitted to the source of
the operation, and others to the destination. For more information, see the Drag and
Drop chapter.

Photon drivers
In Photon, drivers aren’t inherently different from other applications. They’re simply
programs that use regions and events in a particular way to provide their services.
Depending on its function, a driver is either an input driver or an output driver.

For example, the mouse and keyboard drivers are input drivers because they emit, and
are the source of, hardware actions. Graphics drivers, on the other hand, are output
drivers because they collect events that cause them to take action with hardware
devices.

Input drivers
Mouse driver

The mouse driver places a region on the user’s side of the device region. It gets
information from the mouse hardware and builds Photon raw pointer events that it then
emits toward the root region.

570 Appendix: A • Photon Architecture May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon drivers

When the device region collects a raw pointer event, the Photon Manager focuses it
and then emits cooked events in both directions in the event space.

Keyboard driver

The keyboard driver also places a region on the user’s side of the device region. The
driver gets information from the keyboard hardware and builds Photon keyboard
events that it then emits toward the root region.

When the device region collects keyboard events, the Photon Manager focuses those
events and then reemits them toward the root region.

The window manager supplements the default focus method provided by the device
region.

Since Photon makes no assumptions as to what type of keyboard is being used, the
keyboard driver could acquire its event data on any hardware or even from another
process.

Photon allows multiple input drivers and multiple output drivers to be associated with
each other as an input group. This group of devices will be treated distinctly from
other input groups by Photon.

To determine the current input group, call PhInputGroup(), passing to it the current
event, if any.

Output drivers
Graphics driver

A graphics driver places a region sensitive to draw events onto the user’s side of the
device region. As the driver collects draw events, it renders the graphical information
on the screen. Because the collected event’s rectangle set contains only those areas
that need to be updated, the driver can optimize its update. (This is especially efficient
if the graphics hardware can handle clipping lists directly.)

The Photon drawing API accumulates draw requests into batches that are emitted as
single draw events.

Multiple graphic drivers

The region a graphics driver uses can have dimensions that represent an area smaller
than the entire Photon coordinate space. As a result, multiple graphics drivers can
share the coordinate space by each handling different portions of it and displaying
their events on different screens. And since region owners don’t have to be on the
same node as the Photon Manager, those graphics drivers can display their portion of
the coordinate space on screens located on other computers in the network.

May 13, 2010 Appendix: A • Photon Architecture 571

Photon window manager © 2010, QNX Software Systems GmbH & Co. KG.

Drivers using separate regions

From an application’s perspective, the Photon coordinate space always looks like a
single, unified graphical space, yet it allows users to drag windows from one physical
screen to another.

For example, let’s say an operator in a factory control environment has a small
handheld computer. If this computer were connected to network via a wireless link,
the operator could walk up to a computer with a large-screen control application and
drag a window from that screen onto the screen of the handheld unit. Taking the
handheld computer, the operator could then walk out onto the plant floor and continue
to interact with the control application to monitor and adjust equipment.

Drivers using overlapping regions

In another type of example, instead of having driver regions with exclusive portions of
the coordinate space, you could have drivers using overlapping regions. This approach
would let you replicate the same draw events on multiple screens, which would be
ideal for support or training environments.

Encapsulation drivers

Since graphics drivers for Photon are really just applications, they can display the
graphical output of Photon inside another windowing system (for example, the X
Window System). A Photon driver could also take the keyboard and mouse events it
collects from the X system and regenerate them within Photon, allowing the Photon
window in the X system to be fully functional, both for graphical display and for
keyboard/mouse input.

Photon window manager
The window manager is an optional Photon application that manages the appearance
and operation of menus, buttons, scrollbars, and so on. It provides the windowing
system with a certain “look and feel” (e.g. Motif).

The window manager also manages the workspace, supplements the methods for
focusing keyboard events, and lets you display a backdrop. To provide all these
services, the window manager places several regions in the event space:

• Window-frame regions

• Focus region

• Workspace region

• Backdrop region

Window-frame regions
Most applications rely on the windowing system to provide the user with the means to
manipulate their size, position, and state (i.e. open/iconified). In order for the user to
perform these actions, the window manager puts a frame around the application’s

572 Appendix: A • Photon Architecture May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon window manager

region and then places controls in that frame (e.g. resize corners, title bars, buttons).
We refer to these controls as window services.

To indicate it can provide window services, the window manager registers with the
Photon Manager. When an application opens a window, the window manager sets up
two regions on its behalf: a window frame region and an application region (or
window region). The window frame region is slightly larger than the application
region and is placed just behind it.

The window manager uses the window frame region for its controls, while the
application uses its own region. But the application isn’t aware of the controls. If the
user uses the controls to move the application, the application notices only that its
location has changed. The same goes for resizing, iconifying, and so on.

Focus region
As mentioned earlier, the device region focuses keyboard events to regions directly
behind the screen pointer. But by placing a region of its own (i.e. the focus region) just
behind the device region, the window manager intercepts these keyboard events as
they’re emitted from the device region and implements an alternate focus method.

The window manager can redirect keyboard events to regions not directly beneath the
screen pointer. For example, it can focus events toward the last window the user
“clicked” on (i.e. the active window). The window manager can direct keyboard
events to that active region even if the region gets covered by another region.

Workspace region
From the user’s perspective, the workspace is the empty space surrounding the
windows on the screen. The window manager places a workspace region just in front
of the root region to capture pointer events before they get to the root region and thus
disappear. When the user presses a pointer button and no region collects the event, the
window manager brings up a workspace menu that lets the user select a program to
run.

Backdrop region
Users often like to have an ornamental backdrop image displayed behind the windows
on the screen. To display such a bitmap, the window manager places a backdrop
region in the event space.

May 13, 2010 Appendix: A • Photon Architecture 573

Appendix B

Widgets at a Glance

May 13, 2010 Appendix: B • Widgets at a Glance 575

© 2010, QNX Software Systems GmbH & Co. KG.

The following table lists the Photon widget classes and the icons used in PhAB’s
widget palette. For more information on specific widget classes, see the Photon Widget
Reference.

PhAB Icon Class Description

PtArc An elliptical arc

PtBarGraph Bar graph

PtBasic A superclass of basic resources for most widgets

PtBezier Bézier curve

PtBkgd Background of tiled images, gradients, or
bitmaps

PtButton A button for initiating an action

PtCalendar Calendar

N/A PtClient Superclass for client widgets — not normally
instantiated

PtClock Analog, digital, or LED clock

PtColorPanel A color panel

PtColorPatch A widget for selecting a hue and shading or tint

N/A PtColorSel Superclass for color-selector widgets—not
normally instantiated

PtColorSelGroup A group of color selectors

PtColorWell A rectangle that displays a color and lets you
change it

PtComboBox Text-entry field with a list of choices

N/A PtCompound Superclass for compound widgets—not normally
instantiated

PtContainer Superclass for container widgets

N/A PtDisjoint Superclass for disjoint widgets—not normally
instantiated

PtDivider Widget that divides a given space among its
child widgets and allows resizing

continued. . .

May 13, 2010 Appendix: B • Widgets at a Glance 577

© 2010, QNX Software Systems GmbH & Co. KG.

PhAB Icon Class Description

PtEllipse Ellipse

PtFileSel A tree widget for selecting files and directories

PtFontSel A widget for selecting font attributes

N/A PtGauge Superclass for gauge-like widgets—not normally
instantiated

N/A PtGenList Superclass for list widgets—not normally
instantiated

N/A PtGenTree Superclass for tree widgets—not normally
instantiated

N/A PtGraphic Superclass for graphical widgets—not normally
instantiated

PtGrid Grid pattern

N/A PtGroup Group—use PhAB’s Group Together button to
create this

PtImageArea An area for viewing an image

PtLabel A text, bitmap, or image label

PtLine Straight line (single segment)

PtList List of text items

N/A PtMenu Menu—use a Menu module instead

PtMenuBar Menubar that’s placed at the top of a window

PtMenuButton Button that pops up a menu, or an item in a menu

PtMeter Meter widget

PtMTrend Medical trend widget

PtMultitext Multiple-line stylized text field

N/A PtNumeric Numeric field superclass—not normally
instantiated

PtNumericFloat Floating-point numeric field

PtNumericInteger Integer field

continued. . .

578 Appendix: B • Widgets at a Glance May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

PhAB Icon Class Description

PtOnOffButton Button that’s either on or off

PtOSContainer Offscreen-context container, useful for drawing
flicker-free images and animations

PtPane Container that manages its children

PtPanelGroup Container that manages panels

PtPixel Set of points

PtPolygon Set of connected line segments

PtPrintSel Compound widget for choosing printing options

PtProgress Progress bar

PtRaw Widget in which you can use low-level Pg
drawing functions

PtRawList Raw list

PtRawTree raw tree

PtRect Rectangle

N/A PtRegion Photon region—must be created with
PtCreateWidget()

N/A PtScrollArea Superclass for scrolling widgets—not normally
instantiated

PtScrollBar Scrollbar

PtScrollContainer A viewport for viewing a large virtual area

PtSeparator Separator

N/A PtServer Server widget — must be created with
PtCreateWidget()

PtSlider Numerical input mechanism with a range

PtTab Terminal emulator

PtTerminal Terminal emulator

PtText Single-line text field

continued. . .

May 13, 2010 Appendix: B • Widgets at a Glance 579

© 2010, QNX Software Systems GmbH & Co. KG.

PhAB Icon Class Description

PtTimer Timer

PtToggleButton Toggle button

PtToolbar Superclass for toolbar widgets

PtToolbarGroup A group of toolbars

PtTree Hierarchy tree

PtTrend Display of connected points that shift in a
specified direction at the rate in which data is fed

PtTty Terminal device

PtUpDown Increment/decrement button

PtWebClient Widget for displaying web pages

N/A PtWidget Widget superclass—not normally instantiated

N/A PtWindow Window—use a Window module instead

580 Appendix: B • Widgets at a Glance May 13, 2010

Appendix C

Unicode Multilingual Support

In this appendix. . .
Wide and multibyte characters 583
Unicode 583
UTF-8 encoding 584
Conversion functions 585
Other encodings 586
Keyboard drivers 587
Photon compose sequences 588

May 13, 2010 Appendix: C • Unicode Multilingual Support 581

© 2010, QNX Software Systems GmbH & Co. KG. Wide and multibyte characters

Photon is designed to handle international characters. Following the Unicode standard,
Photon provides developers with the ability to create applications that can easily
support the world’s major languages and scripts.

Unicode is modeled on the ASCII character set, but uses a 32-bit encoding to support
full multilingual text. There’s no need for escape sequences or control codes when
specifying any character in any language. Note that Unicode encoding conveniently
treats all characters — whether alphabetic, ideographs, or symbols — in exactly the
same way.

In designing the keyboard driver and the character handling mechanisms, we referred
to the X11 keyboard extensions and ISO standards 9995 and 10646-1.

Wide and multibyte characters
ANSI C includes the following concepts:

wide character A character represented as a value of type wchar_t, which
typically is larger than a char.

multibyte character

A sequence of one or more bytes that represents a character,
stored in a char array. The number of bytes depends on the
character.

wide-character string

An array of wchar_t.

multibyte string A sequence of multibyte characters stored in a char array.

Unicode
Unicode is a 32-bit encoding scheme:

• It packs most international characters into wide-character representations (two
bytes per character).

• Codes below 128 define the same characters as the ASCII standard.

• Codes between 128 and 255 define the same characters as in the ISO 8859-1
character set.

• There’s a private-use area from 0xE000 to 0xF7FF; Photon maps it as follows:

May 13, 2010 Appendix: C • Unicode Multilingual Support 583

UTF-8 encoding © 2010, QNX Software Systems GmbH & Co. KG.

Glyphs Range

Nondisplayable keys 0xF000 – 0xF0FF

Cursor font 0xE900 – 0xE9FF

For Unicode character values, see /usr/include/photon/PkKeyDef.h. For more
information about Unicode, see the Unicode Consortium’s website at
www.unicode.org.

UTF-8 encoding
Formerly known as UTF-2, the UTF-8 (for “8-bit form”) transformation format is
designed to address the use of Unicode character data in 8-bit UNIX environments.
Each Unicode value is encoded as a multibyte UTF-8 sequence.

Here are some of the main features of UTF-8:

• The UTF-8 representation of codes below 128 is the same as in the ASCII standard,
so any ASCII string is also a valid UTF-8 string and represents the same characters.

• ASCII values don’t otherwise occur in a UTF-8 transformation, giving complete
compatibility with historical filesystems that parse for ASCII bytes.

• UTF-8 encodes the ISO 8859-1 character set as double-byte sequences.

• UTF-8 simplifies conversions to and from Unicode text.

• The first byte indicates the number of bytes to follow in a multibyte sequence,
allowing for efficient forward parsing.

• Finding the start of a character from an arbitrary location in a byte stream is
efficient, because you need to search at most four bytes backwards to find an easily
recognizable initial byte. For example:

isInitialByte = ((byte & 0xC0) != 0x80);

• UTF-8 is reasonably compact in terms of the number of bytes used for encoding.

The actual encoding is this:

• For multibyte encodings, the first byte sets 1 in a number of high-order bits equal to
the number of bytes used in the encoding; the bit after that is set to 0. For example,
a 2-byte sequence always starts with 110 in the first byte.

• For all subsequent bytes in a multibyte encoding, the first two bits are 10. The value
of a trailing byte in a multibyte encoding is always greater than or equal to 0x80.

The following table shows the binary form of each byte of the encoding and the
minimum and maximum values for the characters represented by 1-, 2-, 3-, and
4-byte encodings:

584 Appendix: C • Unicode Multilingual Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Conversion functions

Length First byte Following bytes Min. value Max. value

Single byte 0XXXXXXX N/A 0x0000 0x007F

Two bytes 110XXXXX 10XXXXXX 0x0080 0x07FF

Three bytes 1110XXXX 10XXXXXX 0x0800 0xFFFF

Four bytes 11110XXX 10XXXXXX 0x10000 0x10FFFF

• The actual content of the multibyte encoding (i.e. the wide-character encoding) is
the catenation of the XX bits in the encoding. A 2-byte encoding of 11011111
10000000 encodes the wide character 11111000000.

• Where there’s more than one way to encode a value (such as 0), the shortest is the
only legal value. The null character is always a single byte.

Conversion functions
In our C libraries, “wide characters” are assumed to be Unicode, and “multibyte” is
UTF-8 in the default locale. The wchar_t type is defined as an unsigned 32-bit type,
and wctomb() and mbtowc() implement the UTF-8 encoding in the default locale.

Multibyte characters in the C library are UTF-8 in the default locale; in different
locales, multibyte characters might use a different encoding.

You can use the following functions (described in the QNX Neutrino Library
Reference) for converting between wide-character and multibyte encodings:

mblen() Compute the length of a multibyte string in characters

mbtowc() Convert a multibyte character to a wide character

mbstowcs() Convert a multibyte string to a wide-character string

wctomb() Convert a wide character to its multibyte representation

wcstombs() Convert a wide-character string to a multibyte string

Photon libraries use multibyte UTF-8 character strings: any function that handles
strings should be able to handle a valid UTF-8 string, and functions that return a string
can return a multibyte-character string. This also applies to widget resources. The
graphics drivers and font server assume that all strings use UTF-8.

The main Photon library, ph, provides the following non-ANSI functions (described in
the Photon Library Reference) for working with multibyte UTF-8 and wide characters:

utf8len() Count the bytes in a UTF-8 character

utf8strblen() Find the number of UTF-8 characters in part of a string

May 13, 2010 Appendix: C • Unicode Multilingual Support 585

Other encodings © 2010, QNX Software Systems GmbH & Co. KG.

utf8strchr() Search for a UTF-8 character in a string

utf8strichr() Search for a UTF-8 character in a string, ignoring case

utf8strirchr() Search backwards for a UTF-8 character in a string, ignoring case

utf8strlen() Find the length of a UTF-8-character string

utf8strnchr() Search for a UTF-8 character in part of a string

utf8strncmp() Compare part of a UTF-8-character string

utf8strndup() Create a copy of part of a UTF-8-character string

utf8strnichr() Search for a UTF-8 character in part of a string, ignoring case

utf8strnlen() Find the number of bytes used by a UTF-8-character string

utf8strrchr() Search backwards for a UTF-8 character in a string

utf8towc() Convert a UTF-8 character to a wide-character code

wctolower() Return the lowercase equivalent of a wide character

wctoutf8() Convert a wide-character code into a UTF-8 character

These functions are defined in <utf8.h> (notice it isn’t <photon/utf8.h>), and
use UTF-8 encodings no matter what the current locale is. UTF8_LEN_MAX is
defined to be the maximum number of bytes in a UTF-8 character.

Other encodings
If your application needs to work with other character encodings, you’ll need to
convert to and from UTF-8. Character sets are defined in the file
/usr/photon/translations/charsets, and include:

• Big5 (Chinese)

• Cyrillic (KOI8-R)

• Japanese (EUC)

• Japanese (Shift-JIS)

• Korean (EUC)

• Western (ISO 8859-1)

The following translation functions are provided, and are described in the Photon
Library Reference:

PxTranslateFromUTF()

Translate characters from UTF-8

586 Appendix: C • Unicode Multilingual Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Keyboard drivers

PxTranslateList() Create a list of all supported character translations

PxTranslateSet() Install a new character-set translation

PxTranslateStateFromUTF()

Translate characters from UTF-8, using an internal state buffer

PxTranslateStateToUTF()

Translate characters to UTF-8, using an internal state buffer

PxTranslateToUTF()

Translate characters to UTF-8

PxTranslateUnknown()

Control how unknown encodings are handled

These functions are supplied only in static form in the Photon library phexlib. The
prototypes are in <photon/PxProto.h>.

In short, Photon supports any Unicode encoded TrueType font. However, Photon does
not support complex languages such as Hebrew or Arabic. In order to provide support
for complex languages, you must obtain a third-party font rendering engine.

Keyboard drivers
The keyboard driver is table-driven; it handles any keyboard with 127 or fewer
physical keys.

A keypress is stored in a structure of type PhKeyEvent_t (described in the Photon
Library Reference).

Example: text widgets
The text widgets use the key_sym field for displayable characters. These widgets also
check it to detect cursor movement. For example, if the content of the field is Pk_Left,
the cursor is moved left. The key_sym is Pk_Left for both the left cursor key and the
numeric keypad left cursor key (assuming NumLock is off).

Dead keys and compose sequences
QNX Neutrino supports “dead” keys and “compose” key sequences to generate
key_syms that aren’t on the keyboard. The key_sym field is valid only on a key press
— not on a key release — to ensure that you get only one symbol, not two.

For example, if the keyboard has a dead accent key (for example, ‘) and the user
presses it followed by e, the key_sym is an “e” with a grave accent (è). If the e key
isn’t released, and then another group of keys (or more compose or dead key
sequences) are pressed, the key_syms would have to be stacked for the final releases.

May 13, 2010 Appendix: C • Unicode Multilingual Support 587

Photon compose sequences © 2010, QNX Software Systems GmbH & Co. KG.

If an invalid key is pressed during a compose sequence, the keyboard drivers generate
key_syms for all the intermediate keys, but not an actual press or release.
For a list of compose sequences, see below.

Photon compose sequences
Photon comes equipped with standard compose sequences. If your keyboard doesn’t
include a character from the standard ASCII table, you can generate the character
using a compose sequence. For example, ó can be generated by pressing the Alt key,
followed by the ’ key, followed by the o key.

These aren’t keychords; press and release each key one after the other.

The following keys can be used for generating accented letters:

Key Accent Example sequence Result

’ acute Alt ’ o ó

, cedilla Alt , c ç

ˆ circumflex Alt ˆ o ô

> circumflex Alt > o ô

" diaeresis Alt " o ö

‘ grave Alt ‘ o ò

/ slash Alt / o ø

˜ tilde Alt ˜ n ñ

If your keyboard doesn’t have the following symbols, you can create them by pressing
the Alt key, followed by the first key in the sequence, followed by the second key in the
sequence.

Symbol Description Unicode value Sequence

æ small letter ae (ligature) E6 Alt e a

Æ capital letter ae (ligature) C6 Alt E A

Ð capital letter eth D0 Alt D -

ð small letter eth F0 Alt d -

ß small letter sharp s (German
scharfes s)

DF Alt s s

continued. . .

588 Appendix: C • Unicode Multilingual Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon compose sequences

Symbol Description Unicode value Sequence

µ micro sign B5 Alt / U

Alt / u

þ small letter thorn FE Alt h t

Þ capital letter thorn DE Alt H T

number sign 23 Alt + +

@ commercial at 40 Alt A A

© copyright sign A9 Alt C 0

Alt C O

Alt C o

Alt c 0

Alt c O

Alt c o

® registered trademark sign AE Alt R O

[left square bracket 5B Alt ((

] right square bracket 5D Alt))

{ left curly bracket 7B Alt (-

} right curly bracket 7D Alt) -

» right-pointing double angle
quotation mark

BB Alt > >

« left-pointing double angle
quotation mark

AB Alt < <

ˆ circumflex accent 5E Alt > space

’ apostrophe 27 Alt ’ space

` grave accent 60 Alt ‘ space

| vertical bar 7C Alt / ˆ

Alt V L

Alt v l

\ reverse solidus (backslash) 5C Alt / /

Alt / <

˜ tilde 7E Alt - space

continued. . .

May 13, 2010 Appendix: C • Unicode Multilingual Support 589

Photon compose sequences © 2010, QNX Software Systems GmbH & Co. KG.

Symbol Description Unicode value Sequence

no-break space A0 Alt space space

° degree sign B0 Alt 0 ˆ

¡ inverted exclamation mark A1 Alt ! !

¿ inverted question mark BF Alt ? ?

¢ cent sign A2 Alt C /

Alt C |

Alt c /

Alt c |

£ pound sign A3 Alt L -

Alt L =

Alt l -

Alt l =

¤ currency sign A4 Alt X 0

Alt X O

Alt X o

Alt x 0

Alt x O

Alt x o

¥ yen sign A5 Alt Y -

Alt Y =

Alt y -

Alt y =

¦ broken (vertical) bar A6 Alt ! ˆ

Alt V B

Alt v b

Alt | |

§ section sign A7 Alt S !

Alt S 0

Alt S O

continued. . .

590 Appendix: C • Unicode Multilingual Support May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Photon compose sequences

Symbol Description Unicode value Sequence

Alt s !

Alt s 0

Alt s o

¨ diaeresis or umlaut A8 Alt " "

· middle dot B7 Alt . .

Alt . ˆ

¸ cedilla B8 Alt , space

Alt , ,

¬ not sign AC Alt - ,

soft hyphen AD Alt - -

¯ macron AF Alt - ˆ

Alt _ ˆ

Alt _ _

± plus-minus sign B1 Alt + -

1 superscript one B9 Alt 1 ˆ

Alt S 1

Alt s 1

2 superscript two B2 Alt 2 ˆ

Alt S 2

Alt s 2

3 superscript three B3 Alt 3 ˆ

Alt S 3

Alt s 3

¶ pilcrow sign (paragraph sign) B6 Alt P !

Alt p !

ª feminine ordinal indicator AA Alt A _

Alt a _

º masculine ordinal indicator BA Alt O _

Alt o _

continued. . .

May 13, 2010 Appendix: C • Unicode Multilingual Support 591

Photon compose sequences © 2010, QNX Software Systems GmbH & Co. KG.

Symbol Description Unicode value Sequence
1
4 vulgar fraction one quarter BC Alt 1 4

1
2 vulgar fraction one half BD Alt 1 2

3
4 vulgar fraction three quarters BE Alt 3 4

÷ division sign F7 Alt - :

× multiplication sign D7 Alt x x

592 Appendix: C • Unicode Multilingual Support May 13, 2010

Appendix D

Photon in Embedded Systems

In this appendix. . .
Assumptions 595
Introduction 595
The basics 597
Caveats 602
Example 603
Example: Using the IDE’s System Builder 611
Advanced topics 614

May 13, 2010 Appendix: D • Photon in Embedded Systems 593

© 2010, QNX Software Systems GmbH & Co. KG. Assumptions

Assumptions
This appendix makes the following assumptions:

• You understand the process of building an embedded system for QNX Neutrino.
For more information, see Building Embedded Systems.

• You have your target hardware booting into Neutrino, and can run a shell and
commands such as pidin.

• You know what graphics hardware you will be using, and its parameters (such as
the Vendor and Device IDs for a PCI graphics card).

• You’ll be using a QNX Neutrino development system to build your embedded
Photon target from the command line, or using the System Builder in the IDE.

Introduction
The Photon microGUI is an embedded Graphical User Interface (GUI). This GUI is
made up of numerous processes that use Neutrino message passing in order to create a
highly responsive user experience. Photon is made up of these main components:

• QNX Graphics Framework server (io-display)

• Photon server (the graphical kernel photon)

• graphics subsystem manager and hardware driver (io-graphics and associated
graphics driver)

• font support (phfont.so and plugin DLLs)

• input support (a devi-* input driver)

• user applications.

QNX Graphics framework server
The io-display manager provides support for direct rendering to graphics devices
using the QNX Graphics Framework and OpenGL ES.

Photon Server
The Photon server is the core server process for the GUI. This process must be the
first graphical process run in the system. It is responsible for handling region creation
and destruction, clipping, and managing the Photon event space.

Graphics subsystem
This process, io-graphics, handles the Photon draw stream and loads the hardware
driver. This process runs before any user application processes. The graphics
subsystem queries the QNX graphics framework (io-display) for the display’s
settings rather than its own command-line settings.

May 13, 2010 Appendix: D • Photon in Embedded Systems 595

Introduction © 2010, QNX Software Systems GmbH & Co. KG.

Font support
This process (phfont.so) and associated libraries are used to render and gather
metrics about fonts. Photon can render the following types of fonts:

• Adobe Type 1 (.pfa)

• Adobe Type 2 (.cff)

• Bitstream Speedo — public encryption only (.spd)

• Bitstream Stroke (.ffs)

• Bitstream T2K (.t2k)

• Bitstream TrueDoc (.pfr)

• Photon bitmap (.phf)

• TrueType (.ttf)

• TrueType collections (.ttc)

Photon can render any Unicode encoded TrueType font. However, Photon does not
provide support for complex languages such as Hebrew or Arabic. In order to render
fonts for complex languages, you must obtain a third-party font rendering engine. For
more information about supported fonts, see Appendix: Unicode Multilingual Support.

Input support
This process (devi-*) is responsible for handling user input from a mouse, keyboard,
or touchscreen. This process communicates with your input hardware and then emits
Photon events, which are collected and delivered to graphical processes in the system.

User applications
Once all of the other processes are running you can start user applications.

Steps to boot into Photon
Here’s an outline of the steps required to start Photon yourself, in the context of an
embedded, closed system:

1 Start the graphics framework server.

2 Export (at a minimum) the PHOTON_PATH environment variable.

3 Start the Photon server.

4 Configure your fonts.

5 Start the graphics driver.

6 Start the input driver.

596 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. The basics

7 Start the window manager, if required.

8 Start your application(s).

Each of these steps requires certain files be installed in your target system. By
predetermining exactly what graphics hardware you have and what fonts your
application needs, you can keep the number of files (and size of the image) to an
absolute minimum. This reduction in size may in turn have a positive impact on your
system’s startup time.

We’ll go through all the steps in detail and discuss the files needed for each step. At
the end of this process, you should know exactly what Photon files you’ll need to run
your embedded application.

The basics
Step 1. Start the QNX graphics framework server

The QNX graphics framework server must be loaded before the graphics driver.

For more information about the QNX graphics framework server refer to
io-display.

Step 2. Export environment variables

The PHOTON_PATH environment variable points to the base directory of the Photon
installation. By default, this directory is /usr/photon. This location is expected to
hold at least the following subdirectories:

font_repository

Photon font files and configuration files used by the font server
(platform-independent).

palette graphics palettes (platform-independent). These palettes are
required only when you’re running your graphics driver(s) with a
color depth of 8 bits.

translations Photon language translations (platform-independent) These files
are required only if your application(s) handles non-UTF8
character encodings via the PxTranslate*() API.

You should set the PHOTON_PATH environment variable in the buildfile where you
set other environment variables such as PATH:

PHOTON_PATH=/usr/photon

The LD_LIBRARY_PATH points the default system search path for libraries. The
procnto process uses its setting of LD_LIBRARY_PATH to initialize the
privileged configuration string _CS_LIBPATH, which limits the paths that programs
running as root can load libraries from.

May 13, 2010 Appendix: D • Photon in Embedded Systems 597

The basics © 2010, QNX Software Systems GmbH & Co. KG.

CAUTION: To avoid problems starting phfont, LD_LIBRARY_PATH must be set
properly on the procnto line. This is especially true when using the IDE.
LD_LIBRARY_PATH needs to be set on the procnto line in the project properties.

!

The PATH environment variable points to the default system search path for binaries.
You should set it to include the directories in your build image that contain binaries.
These settings apply to any boot image.

Step 3. Start the Photon server

If you don’t need to pass any command-line arguments to the Photon server, you can
start it as follows:

Photon

If you start Photon as a background process (that is, with the ampersand & after the
command) you can tell that Photon started correctly by checking that /dev/photon
appears in the filesystem. Use waitfor /dev/photon in your buildfile to check that
the directory exists.

If your boot image is too large because you’ve included Photon or other executables,
you can place them in another filesystem that you can mount at boot-time. For more
information, see mkifs in the QNX Neutrino Utilities Reference.

If you do include any of the Photon executables in your boot image, you should also
include /usr/photon/bin in MKIFS_PATH so mkifs can find them.

Files needed
/usr/photon/bin/Photon

Step 4. Configure fonts

If you’re working on a board that has network access and can mount a network
filesystem on your host machine, we recommend that you mount
${QNX_TARGET}/usr/photon/font_repository as
/usr/photon/font_repository via NFS or CIFS. Although this approach uses
the full Photon font system, it simplifies development significantly, and you can
customize the embedded fonts later using the information in “Configuring Fonts” in
the “Advanced topics” section.

For information about using NFS and CIFS to mount a network filesystem, see “CIFS
filesystem” and “NFS filesystem” in the Working with Filesystems chapter of the
Neutrino User’s Guide.

Include the following libraries in your build file; io-graphics will load the font
libraries for you when it starts:

/lib/dll/phfont.so

Font manager plugin.

598 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. The basics

/lib/libfont.so

Font manager API library.

/lib/dll/font/ttfFFcore.so, /lib/dll/font/FCcore.so, and
/lib/dll/font/PHFcore.so

Rendering plugins.

These plugins are used to render specific fonts on the system. Use the use utility to
view specific support information for these plugins, and to determine which font
families are rendered by this plugin. If you don’t plan to use any of the fonts that this
plugin supports, then you can remove this plugin to decrease the footprint of your
installation.

/usr/lib/libblkcache.so

Disk block cache library, used by ttfFFcore.so, FCcore.so, and
PHFcore.so.

/usr/lib/libFF-T2K.so

Bitstream FontFusion rendering library, used by ttfFFcore.so and
FCcore.so.

/usr/lib/libFF-T2K-fm.so

Bitstream FontFusion font management library for font collections (.pfr and
ttc), used by FCcore.so. This library has been deprecated. Use
libFF-T2K.so instead.

/usr/lib/libFF-T2K-cache.so

Bitstream FontFusion font cache management library, used by FCcore.so and
ttfFFcore.so. This library has been deprecated. Use libFF-T2K.so instead.

/usr/lib/libfontutils.so

Step 5. Start the graphics driver

The graphics subsystem consists of io-graphics, a hardware-specific driver DLL,
and a collection of helper libraries. You need the following components to run the
graphics subsystem on the target:

/usr/photon/bin/io-graphics

Graphics subsystem executable.

/usr/lib/libphrender.so

Photon rendering routines.

/lib/libfont.so

Font manipulation library (also required by Photon applications).

May 13, 2010 Appendix: D • Photon in Embedded Systems 599

The basics © 2010, QNX Software Systems GmbH & Co. KG.

/lib/dll/phfont.so

Font server plugin.

/usr/photon/palette/file

A Photon palette file for the target display.

/usr/lib/libgf.so

Advanced graphics library.

/usr/lib/libph.so

Photon graphics library.

/usr/lib/libdisputil.so

Display utilities library.

Additionally, you need a hardware-specific library (or graphics driver). By convention,
graphics driver names begin with devg-, for example, devg-rage.so.

Most graphics drivers depend on the following shared libraries:

/usr/lib/libffb.so.2

Software fallback routines for graphics drivers.

/usr/lib/libdisputil.so.2

Miscellaneous utilities for graphics drivers.

Make sure that all required libraries are accessible by the dynamic loader before you
start io-graphics. Use the LD_LIBRARY_PATH environment variable or
_CS_LIBPATH configuration string to point to the location of the shared libraries.

Step 5. Start the input driver

Normally in a desktop environment, you use the inputtrap utility to automatically
generate the correct command line and to invoke the appropriate devi-* driver. For
example, it might invoke devi-hirun like this:

devi-hirun kbd fd -d/dev/kbd msoft fd &

See devi-hirun in the Neutrino Utilities Reference for more examples.

You typically run inputtrap because you don’t know in advance what the
appropriate command line should be.

In an embedded system, however, you typically specify the command line to the
devi-* driver manually. This is because the input devices are often found at unusual
locations, are incapable of PnP identification, or are simply not supported by an
existing devi-* driver. In addition, the inputtrap utility tends to be quite large and
could waste precious storage and memory in a constrained environment. If figuring
out the appropriate command to run proves difficult, you can temporarily install

600 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. The basics

inputtrap in your image (or mount a networked filesystem that contains the binary)
and use it to generate the correct command line. See inputtrap and its query option
in the Neutrino Utilities Reference.

If none of the shipped input drivers are able to work with your input hardware, you can
customize the input drivers by using the Input Driver Development Kit (Input DDK).
For example, you can change the size of the memory footprint, or you can create a
custom module to support new devices.

Files needed
The appropriate devi-* driver in /usr/photon/bin

The appropriate .kbd keyboard mapping file in /usr/photon/keyboard

Step 6. Start the window manager

The Photon window manager (pwm) is an optional component that provides your
system with windowing functionality you may not need. If your application user
interface consists of one (or more than one) program that always fills the screen, uses a
“card” or “slide” paradigm (that is, a UI composed of a series of stacked cards or
slides that the program flips through), or uses dialogs that your application controls
itself, then you probably don’t require the window manager. On the other hand, if your
UI is built using one (or more than one) program that relies on windowing behavior
(such as windows or dialogs that you don’t want to manage yourself), then pwm is
probably a good fit for your system.

Files needed
/usr/photon/bin/pwm

Step 7. Start your application

If your application is a single executable and doesn’t require the window manager, you
may link statically against the Photon-related libraries (such as libAp.a, libph.a,
and libphexlib.a). Linking statically avoids the need to include the corresponding
shared components in your image, and will pull in only the symbols needed by your
program, making the overall image smaller. Also, linking statically has an added
benefit of slightly reducing runtime overhead. If you have multiple applications in
your image (including pwm), you should always link against the shared libraries and
include them in your image.

You can use the pidin utility on a host system to view the libraries that an application
or OS component requires. For example, if you wanted to see the libraries required by
phcalc, run it on a host system, and then run pidin -p phcalc mem.

The QNX IDE includes a tool called the Dietician that shrinks shared libraries by
analyzing the executables in your system and removing the symbols that aren’t
needed. This realizes most of the benefits of linking statically while still allowing the
libraries to be shared. However, if your system only consists of one application (and
no window manager), linking statically is probably the better way to go.

May 13, 2010 Appendix: D • Photon in Embedded Systems 601

Caveats © 2010, QNX Software Systems GmbH & Co. KG.

Files needed
• Your application files

• If linking shared, you require /usr/lib/libph.so

• If you’re using executables created in PhAB, you need /usr/lib/libAp.so.

• You also may need /libphexlib.so if you load images or do language
translation.

The libraries in /usr/photon/lib (*.so.1) are provided for runtime
compatibility with Photon for QNX Neutrino 6.0 (x86 only). The libraries for QNX
Neutrino 6.1 and later are located in /usr/lib.

Caveats
The following are observations that some customers have encountered when moving
Photon to an embedded system.

Flash filesystems
The following flash filesystem properties affect how you configure Photon:

Compression and Speed

PhAB executables, by default, have their resources bound into the executable
file at the end of the binary data. Since the flash filesystem is slower when it’s
seeking in a compressed file, you’ll probably want to keep the resource records
in a separate file, instead of including them at the end of the binary. To do this,
change the makefile so that the resources are bound to a separate file. For
example, change the following dependency:

$(ABOBJ) $(MYOBJ)
$(LD) $(LDFLAGS) $(ABOBJ) $(MYOBJ) -M -o mine
usemsg mine ../Usemsg
phabbind mine $(ABMOD)

to:

$(ABOBJ) $(MYOBJ)
$(LD) $(LDFLAGS) $(ABOBJ) $(MYOBJ) -M -o mine
usemsg mine ../Usemsg
phabbind mine.res $(ABMOD)

When your executable is launched, the PhAB library (libAp.so) automatically
finds the resource file, provided the following criteria are met:

1 The resource file has the same basename as the binary, with the extension
.res

2 The resource file is in the same directory as the binary.

If you want to group your resource files in a separate directory, you can. Place
them in the directory specified by the exported AB_RESOVRD environment
variable, and the PhAB library will look for them there. The naming of the
resource files must meet the first criterion, listed above.

602 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

Graphics
Many embedded systems lack components that are typical on an x86 desktop machine,
such as BIOS ROMs. Because many of the modeswitchers that Photon supports
require a video BIOS to allow them to switch graphics modes, you might need a BIOS
on the board. Check with us to see if a non-BIOS version is available.

Miscellaneous
Here are some other considerations:

CPU Speed For some embedded systems, the CPU performance will be slower
than the desktop. You’ll want to consider this when you design your
Photon applications for the embedded environment.

Scrolling If the scrolling area pages down more than one page at a time when
you click in the trough, try increasing the value of the mouse repeat
delay in Photon. For example:

Photon -D1000 &

Input You can set the throttling parameters on both the Input and the Photon
Server. By reducing the speed at which mouse events are emitted, you
can reduce the traffic through the Photon system. On slower 486
platforms, it’s common practice to lower the throttling on input to 10
or 20 ms.

Phindows and Phditto

If your target application needs to support remote diagnostics from
either Phindows or phditto, you’ll also need to install phrelay, a
render library, and the services configuration file.

Example
Let’s look at the steps involved in embedding Photon for use in an embedded system
by creating a simple buildfile that contains a few simple Photon applications.

Our goal is to build a Photon system with the following minimal capabilities that
satisfies our system’s requirements:

• scalable TrueType fonts — the smallest set available required for your applications

• the minimum files needed to run the graphics driver

• input support for a mouse and keyboard

• a window manager to handle multiple Photon applications.

May 13, 2010 Appendix: D • Photon in Embedded Systems 603

Example © 2010, QNX Software Systems GmbH & Co. KG.

Note that a window manager isn’t strictly required for an embedded system, but we’ll
include one to make our example easier to use.

We’ll follow these steps:

• Analyzing required binaries

• Analyzing required libraries (.so)

• Analyzing required fonts

• Putting it all together

• Troubleshooting

Required binaries
The first step involves figuring out all the binaries required to run Photon. You can see
everything that’s running on a full system. Run Photon on your PC, and look at the
output of the pidin arg command.

From that list, you need only a few of the programs:

• Photon — the process that implements the windowing kernel

• phfont and phfont.so — font server

• io-graphics — graphics rendering subsystem

• pwm — provides window management

• devi-hirun — mouse/touchscreen and keyboard driver; see “Input drivers
(devi-*)” in the summary of the QNX Neutrino Utilities Reference.

Save the argument list for your system in a file. We’ll need that output later.

Required libraries
On this embedded system you want only the components listed above, plus you’ll run
a couple of simple applications:

• phcalc — the calculator

• pterm — a terminal application

Run the applications, then look at the output of the pidin mem command. The
resulting listing tells you every library that you need to make available to the
embedded system. For a graphics driver, you’ll use the generic SVGA driver
(devg-svga.so).

So you need the following libraries (at least):

• ldqnx.so.2 (ldqnx.so.3 for MIPS) — an alias for libc.so

• libph.so.3

604 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

• libphexlib.so.3

• libphrender.so.2

• libffb.so.2

• libdisputil.so.2

• libAp.so.3

• libm.so.2

• devg-svga.so

Required fonts
Now let’s look at fonts. Sometimes an application expects a specific font, and codes
directly to that font. If this is the case, you need to explicitly include every font that
your application needs. If you standardize on a certain family/style of fonts or if you
don’t care what exact font you have (as long as the size is okay), then you can cut
down on the number of fonts and use one font to replace several other families of
fonts. For example, you can use Times as a replacement for Helvetica and Courier.

In this example, because you’re using a few simple applications, and because you’re
trying to create the smallest image possible, you need only two fonts: a monospace
and regular TrueType version of Prima Sans.

Now’s a good time to create a play area on your system to begin testing the embedded
system, and collecting required files.

Create a subdirectory called phembed in your home directory (or whichever directory
you wish to keep your source files). Within that directory, create these subdirectories:

• phembed/bin

• phembed/lib

• phembed/font_repository

Now back to the fonts. In this example, you want to use the primasansmonobts
TrueType font for everything. You’ll also want to use a mouse, so you’ll include the
phcursor.phf file.

Here are the files you need:

• fontdir (automatically generated by the mkfontdir utility)

• fontmap

• fontext

• fontopts

• phcursor.phf

May 13, 2010 Appendix: D • Photon in Embedded Systems 605

Example © 2010, QNX Software Systems GmbH & Co. KG.

• tt2009m_.ttf

Copy these files (except fontdir) from /usr/photon/font_repository to
/phembed/font_repository, then change directories to
/phembed/font_repository.

You need to modify the fontmap and fontopts files to reflect the fonts, options and
mappings you want for your embedded system. You can edit these files by hand (see
phfont for more information on the structure of these files). In our case lets make
sure that the fontmap file contains:

? = primasansmonobts

This ensures that all unknown fonts will be replaced with the primasansmonobts font,
provided in the tt2009m_.ttf file.

To generate fontdir, use the mkfontdir like this:

mkfontdir -d /phembed/font_repository

Make sure that the LD_LIBRARY_PATH string in your build file contains the string
/lib/dll.

Putting it all together
Now let’s put all the pieces you need in place and create a buildfile for your embedded
Photon system. Run mkifs to create an image.

• For a sample buildfile that includes more Photon components, such as the
background manager bkgmgr, see Getting Photon on your board in the Working
with a BSP chapter of the Building Embedded Systems guide.

• In a real buildfile, you can’t use a backslash (\) to break a long line into shorter
pieces, but we’ve done that here, just to make the buildfile easier to read.

[image=0x88010000]
[virtual=shle/binary +compress] .bootstrap = {

startup-sdk7785 -Dscif..115200.1843200.16 -f600000000 -v

[+keeplinked] PATH=/proc/boot:/bin:/sbin:/usr/bin:/opt/bin: \

/usr/sbin:/usr/photon/bin \
LD_LIBRARY_PATH=/proc/boot:/lib::/usr/lib:/lib/dll:/opt/lib: \
/usr/photon/lib:/usr/photon/dll \

PHOTON_PATH=/usr/photon procnto -v
}

[+script] .script = {

procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

display_msg Welcome to QNX Neutrino 6.4.0 on the Renesas SDK7785

##
SERIAL driver
##

display_msg Starting serial driver
devc-sersci -e -F -x -b115200 -c1843200/16 scif1 &
waitfor /dev/ser1

606 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

reopen /dev/ser1

slogger

pipe

##

NOR FLASH driver SDK 7785
##
Flash only recognized as a single bank 4*2 array. Single driver

Used to access both banks. Care must be taken when toggling
bank select as the base address will switch between banks.
##

devf-edosk7780 -s0x0,128M

##

NETWORK driver SDK 7785
##
display_msg "Starting the core network stack..."

io-pkt-v4 -dsmc9118 ioport=0x15800000,irq=6 -ptcpip
waitfor /dev/socket 15
waitfor /dev/io-net/en0

if_up -r 10 -p en0
display_msg "Setting ip address to XXX.XX.X.XX..."
ifconfig en0 XXX.XX.X.XX up netmask 0xffffff00

if_up -a en0 lo0

display_msg Starting fs-nfs2

setconf DOMAIN domain.name.com

##
PCI server
##

display_msg "Starting pci-edosk7780..."
pci-edosk7780

display_msg "Starting devc-pty..."
devc-pty
waitfor /dev/ptyp0 4

waitfor /dev/socket 4
qconn port=8000

display_msg "Setting enviroment variables..."
SYSNAME=nto
TERM=qansi

HOSTNAME=gsdk7785
HOME=/root
PATH=:/proc/boot:/bin:/sbin:/opt/bin:/usr/sbin:/usr/bin:/usr/photon/bin

LD_LIBRARY_PATH=:/proc/boot:/lib:/usr/lib:/lib/dll:/opt/lib:/usr/photon/ \
lib:/usr/photon/dll
PHOTON=/dev/photon

PHOTON_PATH=/usr/photon
PHOTON_PATH2=/usr/photon
PHFONT=/dev/phfont
MMEDIA_MIDI_CFG=/etc/config/media/midi.cfg

display_msg "Starting io-display..."

io-display -dvid=0x10cf,did=0x201e
waitfor /dev/io-display

display_msg "Starting Photon..."
Photon &
waitfor /dev/photon 10

display_msg "Starting io-graphics..."
io-graphics &

waitfor /dev/phfont 10

display_msg "Starting Window Manager..."

pwm &

May 13, 2010 Appendix: D • Photon in Embedded Systems 607

Example © 2010, QNX Software Systems GmbH & Co. KG.

devc-pty &

display_msg "Starting Terminal"
pterm /proc/boot/ksh &

inetd &

[+session] ksh &
}

[type=link] /bin/sh=/proc/boot/ksh
[type=link] /dev/console=/dev/ser1

[type=link] /tmp=/dev/shmem

libc.so

libc.so.2
libm.so

###
uncomment for NETWORK driver
###

devn-smc9118.so
devnp-shim.so
libsocket.so

[data=c]

devc-sersci
setconf
###

uncomment for NOR FLASH driver
###
devf-edosk7780

flashctl

###

uncomment for PCI server
###
pci-edosk7780

pci
pipe

###
uncomment for NETWORK driver
###

io-pkt-v4
ping
cat

ifconfig
netstat
nicinfo

sleep

###

uncomment for REMOTE_DEBUG (gdb or Momentics)
###
devc-pty
qconn

/usr/bin/pdebug=pdebug

###

general commands
###
ls

ksh
pipe
pidin

uname
slogger
sloginfo

slay
fs-nfs3
fs-nfs2

if_up

608 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example

fs-cifs
mount
umount

###

uncomment for GF io-display
###
/sbin/io-display=io-display

/etc/system/config/display.conf=/usr/qnx640/target/qnx6/etc/system/config/ \
display.conf

/etc/system/config/img.conf=/usr/qnx640/target/qnx6/etc/system/config/ \
img.conf

###
uncomment for GF libraries

###
/lib/dll/devg-soft3d.so=devg-soft3d.so
/lib/dll/devg-coral.so=devg-coral.so

/lib/libFF-T2K.a=libFF-T2K.a
/lib/libFF-T2K.so.2=libFF-T2K.so.2
/lib/libimg.so=libimg.so

/usr/lib/libGLES_CM.so.1=libGLES_CM.so.1
/usr/lib/libffb.so.2=libffb.so.2
/usr/lib/libgf.so=libgf.so

###
uncomment for GF image support

###
/lib/dll/img_codec_bmp.so=img_codec_bmp.so
/lib/dll/img_codec_gif.so=img_codec_gif.so

/lib/dll/img_codec_jpg.so=img_codec_jpg.so
/lib/dll/img_codec_png.so=img_codec_png.so
/lib/dll/img_codec_sgi.so=img_codec_sgi.so

/lib/dll/img_codec_tga.so=img_codec_tga.so

###
uncomment for GF binaries
###

/bin/egl-gears=egl-gears
/bin/vsync=vsync

/lib/dll/font/ttfFFcore.so = ${QNX_TARGET}/shle/lib/dll/font/ttfFFcore.so
/lib/dll/font/PHFcore.so = ${QNX_TARGET}/shle/lib/dll/font/PHFcore.so
/lib/dll/font/FCcore.so = ${QNX_TARGET}/shle/lib/dll/font/FCcore.so

libfontutils.so
libblkcache.so
libFF-T2K.so

libfont.so
phfont.so

######################################
Photon LIbs
######################################
Photon

[+raw] /usr/photon/bin/pterm = pterm
[+raw] /usr/photon/bin/phcalc = phcalc

io-graphics
pwm
libph.so

libAp.so
libphexlib.so
libdisputil.so

libffb.so
libphrender.so

##
font config

##

May 13, 2010 Appendix: D • Photon in Embedded Systems 609

Example © 2010, QNX Software Systems GmbH & Co. KG.

/usr/photon/font_repository/tt2009m_.ttf = \
/usr/photon/font_repository/tt2009m_.ttf
/usr/photon/font_repository/phcursor.phf = \

/usr/photon/font_repository/phcursor.phf
/usr/photon/font_repository/pcterm12.phf = \
/usr/photon/font_repository/pcterm12.phf

/usr/photon/font_repository/fontopts = /usr/photon/font_repository/fontopts
/usr/photon/config/wm/wm.menu = /usr/photon/config/wm/wm.menu

/usr/photon/font_repository/fontdir = {
;
; fontdir config file

;
pcterm12,.phf,PC Terminal,12,,0000-00FF,Nf,6x12,13K
phcursor,.phf,Photon Cursor,0,,E900-E921,Np,32x32,3K

primasansmonobts,0@tt2009m_.ttf,PrimaSansMono BT,0,,0020-F002,f,79x170,109K
}

/usr/photon/font_repository/fontext = {
;
; fontext config file

;
+normal = primasansmonobts, phcursor
}

/usr/photon/font_repository/fontmap = {
;
; fontmap config file

;
? = primasansmonobts
}

/usr/photon/config/coral.conf=${QNX_TARGET}/usr/photon/config/coral.conf

/etc/system/config/crtc-settings=/etc/system/config/crtc-settings
/usr/photon/palette/default.pal=/usr/photon/palette/default.pal

allow pterm to save its configuration to RAM, if the user changes it.
[type=link] /.ph/pterm = /dev/shmem
[type=link] /.ph/wm/wm.cfg = /dev/shmem

Note the following about the buildfile:

• You set up the environment variables PATH, LD_LIBRARY_PATH, and
PHOTON_PATH. Passing LD_LIBRARY_PATH to procnto sets the
privileged configuration string _CS_LIBPATH.

• You link libc.so.3 and ldqnx.so.2 (ldqnx.so.3 for MIPS), because they’re
the same library.

• You invoke Photon, then wait for /dev/photon to indicate that the Photon server
is running.

• You use inputtrap to detect input devices and configure devi-hirun. This
makes the buildfile compatible with most input devices. For a smaller boot image,
determine the correct arguments for the input driver, and start it directly.

• After the system starts io-graphics, you check that the font server is running
correctly (waitfor /dev/phfont).

• You specify where libraries and binaries should be put on the target (by default
they’re put in /proc/boot).

610 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example: Using the IDE’s System Builder

• Some libraries are from the customized library directory in the phembed directory
(./lib), while others are from the host system (such as
/usr/lib/libdisputil.so.2).

• You use the [+raw] directive for the PhAB applications so that mkifs doesn’t
remove necessary resource information from these files.

Once you’ve built your image using mkifs, you can transfer it to a test machine to see
how it works. See “Transferring an OS image onto your board” in the Working with a
BSP chapter of Building Embedded Systems for more information.

Troubleshooting
1 When I start io-graphics, it seems to be running, but nothing appears on the

screen.

Check the system log; io-graphicsmay have sent error messages to the
system logger, slogger. In order to debug the problem, make sure slogger is
running before starting the graphics driver. Use sloginfo to display the system
log messages.

2 When I start an application, it exits with the message Ap: Unable to

locate Photon.

Make sure both the Photon server and the font manager are running. You can
determine if they’re running by making sure that /dev/photon and
/dev/phfont exist.

3 When I start an application, it exits with the message Ap: Unable to open

resource file.

If you include an application that was built by PhAB in an image created by
mkifs, some information will be stripped out, since mkifs does a very
aggressive binary strip. You can avoid this by using the +raw attribute; see the
mkifs documentation for more information. Since setting the attribute will
cause the application not to be stripped, you may want to use the strip utility
to manually strip the binary before building the image, to reduce the image size.

Example: Using the IDE’s System Builder
Building an embedded OS image that includes Photon using the IDE is similar to
writing a buildfile and using the command line. You need to perform the same analysis
(described in the example above) of the required binaries, libraries and fonts. The
difference is that you don’t write a buildfile; instead you create a project in the IDE’s
System Builder.

This example assumes that you’re familiar with the IDE’s System Builder. See the
Building OS and Flash Images chapter in the IDE User’s Guide for more information.

May 13, 2010 Appendix: D • Photon in Embedded Systems 611

Example: Using the IDE’s System Builder © 2010, QNX Software Systems GmbH & Co. KG.

Instead of building a new System Builder project from scratch, you can import the
buildfile from the command-line example above. You can then modify the resulting
System Builder project to suit your needs.

Here are the general steps required to make a System Builder project that’s identical to
the previous buildfile example:

1 Create a new System Builder project. You’ll need to select the target platform.
Note that the project contains libc.so and the link to ldqnx.so.2 already.

2 Add these binaries:

• devc-pty

• ksh

• slogger

• sloginfo

• Photon

• io-graphics

• io-display

• devi-hirun

• pwm

• /usr/photon/bin/pterm

• /usr/photon/bin/phcalc

You need to use the equivalent of [+raw] on pterm and phcalc by selecting
them, and setting the Strip File property to No.

3 Next, add the required libraries. You’ll find that some of them are already in the
project, as the System Builder identifies libraries required by binaries, and adds
them automatically.

Standard libraries:

• libm.so

Advanced Graphics libraries:

• libffb.so

• libdisputil.so

• devg-XXXXX.so

• libgf.so

• libGLES_CM.so

• libimg.so

• img_codec_XXXXX.so

Photon libraries:

612 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Example: Using the IDE’s System Builder

• libph.so

• libAp.so

• libphexlib.so

Graphics libraries:

• libphrender.so

• libdisputil.so

• libffb.so

Font libraries:

• libfontutils.so

• libblkcache.so

• libFF-T2K.so

• libFF-T2K-cache.so

• libFF-T2K-fm.so

• libfont.so

• phfont.so

4 Now add the DLLs:

• devg-svga.so

• /lib/dll/font/ttfFFcore.so

• /lib/dll/font/PHFcore.so

• /lib/dll/font/Fcore.so

5 Add these required files.

Fonts and the font configuration files:

• /usr/photon/font_repository/tt2009m_.ttf

• /usr/photon/font_repository/phcursor.phf

• /usr/photon/font_repository/fontmap

• /usr/photon/font_repository/fontopts

• /usr/photon/font_repository/fontdir

• /usr/photon/font_repository/fontext

Other required configuration files:

• /etc/system/config/crtc-settings

• /usr/photon/palette/default.pal

• /usr/photon/keyboard/en_US_101.kbd

6 Finally set up these symbolic links:

• /bin/sh = /proc/boot/ksh

• /dev/console = /dev/ser1

• /tmp = /dev/shmem

You can now build the image, transfer it to your target, and run it.

May 13, 2010 Appendix: D • Photon in Embedded Systems 613

Advanced topics © 2010, QNX Software Systems GmbH & Co. KG.

Advanced topics
This section covers some of the more advanced topics in embedding Photon. It covers:

• Configuring fonts

Configuring fonts
Configuring fonts and installing the font server components in the correct location is
the most difficult part of embedding Photon.

To configure the font system, you need to:

1 decide whether to run an internal or external font server

2 determine which fonts your system requires

3 determine the font binaries required

4 set up the font configuration files.

Internal or external?

The first decision you must make about the font service is how the server is started. It
can run as a stand alone process (we refer to this as an external server) or as a plugin
to io-graphics (which we call an internal server).

We recommend to run an external server in these conditions:

• Your system will not run io-graphics.

• Your system will be used as a server for remote photon sessions.

• Your system will be restarting io-graphics.

To run an external font server, start phfont before io-graphics. To run an internal
font server, simply start io-graphics using the -f local option.

Required fonts

When building an embedded system, you also need to make careful decisions about
the level of font support, including which fonts you need, and whether or not you need
scalable fonts, since extra fonts make for a larger image size and potentially longer
startup time.

Unlike bitmap fonts, scalable fonts are defined mathematically, and can be rendered at
any font size. Scalable fonts elminate the need to store large numbers of glyphs that
are required to render bitmap fonts at different font sizes.

The first step is to decide which fonts you need:

• You’re very likely to need the cursor font, phcursor.phf, as the graphics driver
requires it to render the standard Photon cursors.

614 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Advanced topics

• If your embedded system includes pterm, you need the terminal support fonts, PC
Terminal (pcterm*.phf), PC Serif (pcs*.phf), and PC Sanserif (pcss*.phf)
font families. You probably also need a $HOME/.photon/pterm.rc file, or a
$PHOTON_PATH/config/pterm.rc file to configure the terminal font.

• Most widget-based applications expect these aliases to be defined by being
appropriately mapped in the fontmap file (see below):

- TextFont

- MenuFont

- FixedFont

- BalloonFont

- TitleFont

• A web browser requires these types of fonts:

- body font (e.g. PrimaSans BT, Dutch 801 Rm BT)

- heading font (e.g. Swis721 BT)

- nonproportional font (e.g. Courier10 BT, PrimaSansMono BT)

Check the browser’s configuration to see which fonts are expected, and use those
fonts, modifying the configuration to reflect what you’ve installed, or use the
fontmap file to map them at runtime.

You can map, or substitute, font names by using the fontmap file. For more
information on the format of fontmap and other font configuration files, see phfont
in the QNX Neutrino Utilities Reference.

Required fonts binaries

You may be able to reduce the number of binaries required by the Photon font system,
depending on the types of fonts you need to render on your target. Each font type has
an associated plugin that supports that type, and each plugin in turn requires additional
libraries. Each plugin requires libblkcache.so and libc.so. The following table
summarizes additional, plugin-specific, requirements:

Fonts supported Plugin Required libs

Bitstream TrueDoc (.pfr)
TrueType collections (.ttc)

FCcore.so libFF-T2K.so

Photon bitmap (.phf) PHFcore.so libfontutils.so

TrueType (.ttf), Adobe Type1 (.pfa),
Adobe Type2 (.cff), Bitstream Stroke
(.ffs), Bitstream Speedo (.spd, public
encryption only), Bitstream T2K (.t2k)

ttfFFcore.so libFF-T2K.so

continued. . .

May 13, 2010 Appendix: D • Photon in Embedded Systems 615

Advanced topics © 2010, QNX Software Systems GmbH & Co. KG.

You can use the -b commandline option for phfont or io-graphics to generate a
font usage report. The report file contains information about font names and font files
used by your application while the font server was running. This allows you to put the
only required fonts and DLLs on your target system. Note that the font usage report
doesn’t contain a record of dynamically loaded fonts (see the PfDynamicLoad*() set
of functions).

Configure the font server

The font system is configured with various files. The minimum configuration requires:

• fontdir — a directory of known fonts. This file should list every font in your
embedded system.

Recommended additional configuration files are:

• fontmap — a set of font-mapping rules

• fontext — missing/dropout characters rules

• fontopts — configuration options

For more information about the format of each of these files, see phfont.

You can configure the fonts on the embedded system itself, but it’s easier to use your
development system to configure the fonts to mimic the desired configuration for the
embedded system, then assemble the font data and configuration files in the
appropriate Embedded File System (EFS) build image directory.

If you’re using a self-hosted development system to mimic your target, then the font
server can aid in determining which fonts you need by logging failed requests for fonts
that aren’t mapped (explicitly or otherwise). See phfont for more information.

In an embedded system with only a few applications, chances are you’ll need far fewer
fonts than a desktop system requires. In this situation, you can provide minimal
configuration files (all located in /usr/photon/font_repository):

fontdir This file needs to list only the fonts you’re installing in
/usr/photon/font_repository. You can edit this file in one of
two ways:

• Edit the default existing fontdir file by hand, removing all the lines
that refer to fonts you’re not including in your image.
Or:

• Generate this file using the mkfontdir utility (on all hosts).

fontext Make a copy of the default file and edit it.

616 Appendix: D • Photon in Embedded Systems May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Advanced topics

fontmap Make a copy of the default file and edit it.

This file can consist of a single line:

?=primasansbts

(If you aren’t including PrimaSans BT in your image, change this to the
name of the font you want to use as a default).

May 13, 2010 Appendix: D • Photon in Embedded Systems 617

Appendix E

Using PhAB under Microsoft Windows

In this appendix. . .
Photon in a single window 621
Exiting PhAB 621
Advanced options 621
PHINDOWSOPTS 622
Using the clipboard 622
Transferring PhAB projects 622
Debugger launch line 623
Custom widget development and PhAB 623
Using custom TrueType fonts and PhAB 625
Photon Hook DLLs 625
Running multiple copies of PhAB 626

May 13, 2010 Appendix: E • Using PhAB under Microsoft Windows 619

© 2010, QNX Software Systems GmbH & Co. KG. Photon in a single window

This appendix describes the main differences between the Windows and native QNX
Neutrino versions of PhAB.

Photon in a single window
Like the native QNX Neutrino version of PhAB, the Windows version uses Photon
and the Photon Window Manager (pwm) to manage its windows and dialogs. The main
difference is that under Windows, Photon runs within a single window.

When you launch PhAB, it first starts a console window that it uses only for status
messages. Next, the main Photon window is created. All PhAB windows and dialogs
appear within this main window, and any sub-applications launched by PhAB stay
within this window. Note that you can run multiple PhAB sessions within this single
Photon window.

You can minimize application windows within the Photon window, but since there’s
no shelf application running, the right mouse button has been set up to list all
running applications and to let you bring them to the foreground. To do this, simply
click the right mouse button on a blank area of the main Photon window, then select
the application you wish to bring to the foreground.

Exiting PhAB
When you exit PhAB, it attempts to shut down all Photon components as well, unless
there are other applications still running within the Photon window (such as a second
PhAB session or the language editor).

If all Photon components don’t shut down automatically, or if you just want to force
everything to exit in the event that the system is having problems, you should
manually close the Console for PhAB window. If this does not work, type:

ph -kill

from a Windows command prompt.

Advanced options
If you wish to specify command-line options to pwm or to the photon server, you can
use these environment variables:

• PWMOPTS

• PHOTONOPTS

You set these environment variables using the Environment tab (in the System
program of the Windows Control Panel).

For details on the command-line options for any QNX Neutrino utility, see the
Utilities Reference.

May 13, 2010 Appendix: E • Using PhAB under Microsoft Windows 621

PHINDOWSOPTS © 2010, QNX Software Systems GmbH & Co. KG.

PHINDOWSOPTS
You can use the PHINDOWSOPTS environment variable to pass extra options to the
special version of Phindows that’s used as the display driver for PhAB for Windows.
For example, if your Neutrino target is using an 8-bit 256 color mode with a
nondefault palette, then to allow the PhAB display on the Windows host to show the
colors as they’ll appear on the target, you can do the following:

1 Set the Windows display mode to 256 colors.

In Windows XP, unlike Windows NT/2000, you do this on a per-application
basis, by using the Compatibility tab on the properties for the application’s
shortcut or executable.

2 Set the PHINDOWSOPTS environment variable to specify the same palette file
as will be used on the target. For example, if the palette file is called grey.pal,
you might set this variable to
-P%QNX_TARGET%/usr/photon/palette/grey.pal. In this case, the
direction of the slashes doesn’t matter.

To set environment variables globally, you can use the Environment Variables button
in the Advanced tab of the System program in the Windows Control Panel. To set a
variable temporarily, use set variable= in a Command Prompt window, and then type
phab to run the Photon Application Builder with that environment variable set.

Using the clipboard
To use the clipboard in PhAB under Windows, you must have permission to write to
the directory specified by the HOME environment variable. (If HOME isn’t set,
PhAB uses HOMEDRIVE followed by HOMEPATH).

If none of these environment variables are set under Windows, or your user account
doesn’t have permission to write to the directory specified, PhAB’s clipboard function
(cutting and pasting widgets) won’t work.

If you have HOME set, and it doesn’t exist, PhAB won’t be able to launch.

Transferring PhAB projects
When transferring PhAB projects between QNX Neutrino and Windows it is
important to preserve the exact contents of all files. In other words, each file should be
treated as binary, not ASCII, and the case of all filenames should be preserved. The
easiest way to ensure this is to create a zip archive at the source, transferring the single
binary zip file, and then extracting the contents of the archive at the destination.

Note that tar files can be used to transfer PhAB projects, but if you use Winzip to
extract the contents of a tar archive on Windows it will by default treat files as ASCII
and change their line endings. To prevent this you must deselect the TAR file smart
CR/LF conversion option in Winzip.

622 Appendix: E • Using PhAB under Microsoft Windows May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Debugger launch line

Debugger launch line
You can launch the GDB debugger from within PhAB. Edit the project properties to
specify the debug command that PhAB should use (for more information, see the
Generating, Compiling, and Running Code chapter). The default debug command and
arguments used by PhAB on Windows is:

gdb_phab.bat -debugger nto$TPR-gdb --symbols

This runs the commands in the gdb_phab.bat batch file.

PhAB automatically sets the TPR environment variable before issuing the debug
command. It contains the name of the current target processor, as determined by the
last build performed. Possible values are currently x86, ppc, mips, sh and arm.
Having this variable in the debug command automatically selects the correct debugger
executable to use.

Finally, since the Windows version of PhAB is never used for self-hosting, PhAB
passes the --symbols option to GDB by default. This is like the symbol GDB
command, and makes gdb load symbols from the PhAB executable without making it
the program executed when you use the run command. This lets you run the
executable on the remote target. Here are the initial commands from a typical debug
session after you start GDB using the default launch line:

(gdb) target qnx com1
(gdb) upload myprog
(gdb) run myprog
(gdb) break main
(gdb) continue

For the above, we assume that we’re connected to the target machine via serial port
com1 and that the pdebug remote debug agent is already running on the target.

If you want to use a graphical debugger, use the IDE that’s part of QNX Momentics.
Create a Photon Appbuilder project within the IDE and launch PhAB from there.

Custom widget development and PhAB
Photon lets you create applications using widgets that you’ve built yourself or
obtained from a third party. You can build these custom widget libraries into your
application and run it on your intended target.

For documentation on writing source code for custom widgets, getting them to run
within your application on the target, and getting PhAB to recognize your custom
widgets, see Building Custom Widgets. The process for doing these things is
essentially the same on all host platforms.

PhAB can dynamically load custom widgets and display them properly as you develop
your application on the host machine.

To make PhAB display custom widgets correctly on the host as you develop your
application, you need to take some extra steps to recompile and link the custom widget

May 13, 2010 Appendix: E • Using PhAB under Microsoft Windows 623

Custom widget development and PhAB © 2010, QNX Software Systems GmbH & Co. KG.

source code for the host platform and processor. This means building shared libraries
that PhAB dynamically loads at runtime. If you do not do this, you can set dimensions
and specify resources and callbacks, but these settings won’t take effect and be
displayed until you run your application on the target.

For the following procedure, we assume that you’ve already performed the steps that
aren’t specific to the host platform, namely:

• Obtain the custom widget source code.

• Build target libraries from your custom widget sources.

• Add appropriate entries in PhAB’s palette definition files.

• Create icon image and resource defaults files in the templates directory.

After you’ve done all the above, you can begin to use the custom widget class in
PhAB. To make PhAB display custom widgets correctly as you use them, follow these
additional Windows-specific steps:

1 Download and install the Cygwin development environment from
www.cygwin.com. This is an open-source UNIX like system that offers a
gcc-based development environment under Windows. We recommend Cygwin
version 1.5.5 or later.

2 After installation, start a Cygwin Bash shell to perform the following compile
and link steps.

3 Compile your custom widget functions using Cygwin’s gcc:

gcc -c -nostdinc \
-I /usr/lib/gcc-lib/i686-pc-cygwin/‘gcc -dumpversion‘/include \
-I$QNX_HOST/usr/include -I/usr/include \
-I$QNX_TARGET/usr/include MyWidget.c

4 Link your custom widget object files to create a shared library:

ld -shared -e _dll_entry@12 MyWidget.o \
-o MyWidget.dll -L$QNX_HOST/usr/lib -lph \
-lcygwin -lkernel32

5 Place your shared object (in this example MyWidget.dll) in a directory
specified by the PATH environment variable. Note that LD_LIBRARY_PATH
is not recognized by Windows.

The next time you start PhAB after completing these steps, you should be able to see
custom widgets displayed correctly as you work with them. If not, consult the PhAB
console window for error messages.

624 Appendix: E • Using PhAB under Microsoft Windows May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Using custom TrueType fonts and PhAB

Using custom TrueType fonts and PhAB
You can configure PhAB for Windows to use TrueType fonts that you supply, in
addition to the standard font set installed with QNX Momentics. To do this:

1 Install the font in Windows using the control panel. See the Windows help for
more information on this step.

2 Copy the font’s .ttf file to the Photon font repository directory,
%QNX_TARGET%\usr\photon\font_repository.

3 Run mkfontdir on the directory to register the new TrueType font in the
fontdir file.

For example: mkfontdir -d

%QNX_TARGET%\usr\photon\font_repository

The font is now available when you run PhAB standalone or in the IDE.

Photon Hook DLLs
Photon supports a special method to change the look and feel of widgets at runtime
called “Photon hook DLLs”. This method can be used to “skin” an application without
recompiling it. For more information about Photon hook DLLs, see the Widget styles
section of the Managing Widgets in Application Code chapter.

To make PhAB display widgets correctly on a Windows host as you develop your
application, the Photon hook DLL needs to be built under Windows using the
following steps:

1 Download and install the Cygwin development environment from
www.cygwin.com. This is an open-source UNIX like system that offers a
gcc-based development environment under Windows. We recommend Cygwin
version 1.5.5 or later.

2 After installation, start a Cygwin Bash shell to perform the following compile
and link steps.

3 Compile your Photon hook DLL source code using Cygwin’s gcc, for example:

gcc -c -nostdinc \
-I /usr/lib/gcc-lib/i686-pc-cygwin/‘gcc -dumpversion‘/include \
-I$QNX_HOST/usr/include -I/usr/include \
-I$QNX_TARGET/usr/include hook.c

4 Link the actual shared library, for example:

ld -shared -e _dll_entry@12 hook.o -o PtHook.dll \
-L$QNX_HOST/usr/lib -lph -lcygwin -lkernel32

The above steps create a Photon hook DLL called PtHook.dll. To use this DLL,
place it in the search path (specified by $PATH) before running PhAB.

May 13, 2010 Appendix: E • Using PhAB under Microsoft Windows 625

Running multiple copies of PhAB © 2010, QNX Software Systems GmbH & Co. KG.

Alternatively, you can use a version of the PtMultiHook sample code as the
PtHook.dll (see the Widget styles section of the Managing Widgets in Application
Code chapter). This DLL can be found at
$QNX_HOST/usr/photon/bin/pt_multihook.dll, and should be renamed to
PtHook.dll before use. This code looks for the PHOTON_HOOK environment
variable, and loads the DLL it points to. If it points to a directory, it loads all the DLLs
in the directory. It then executes the PtHook() function in any loaded DLLs.

For example, if your hook DLL is placed in C:\my_photon_hooks\, you can type
the following two commands from a Windows command prompt:

set PHOTON_HOOK=c:/my_photon_hooks
appbuilder

Or you can type the following from bash:

export PHOTON_HOOK=c:/my_photon_hooks
appbuilder

To set the environment variable permanently, use the System option on the Windows
Control Panel.

Running multiple copies of PhAB
On Windows XP, multiple users might want to run PhAB. In this case, each instance
of the PhAB application has to have a unique TCP/IP port for the Photon server and
the PhFont server.

The default port numbers are 4871 for Photon and 4870 for PhFont. A Windows XP
user who wants to run PhAB in isolation of other users needs to select unique, unused
port numbers by setting the environment variables PHOTON and PHFONT. For
example, the following two settings could be used:

set PHOTON=tcp:127.0.0.1:4873
set PHFONT=tcp:127.0.0.1:4872

The port numbers are at the end of the strings, and can be set to any unused TCP/IP
port.

626 Appendix: E • Using PhAB under Microsoft Windows May 13, 2010

Appendix F

PhAB Keyboard Shortcuts

May 13, 2010 Appendix: F • PhAB Keyboard Shortcuts 627

© 2010, QNX Software Systems GmbH & Co. KG.

Quick Reference
This Appendix contains a quick reference guide to Photon Application Builder’s
keyboard shortcuts. The following types of shortcuts are available:

• Project management

• Editing

• Adding items

• Building

• Widget management

• Other shortcuts

Project management shortcuts
Command Shortcut

New project Ctrl-N*

Open project Ctrl-O*

Save project Ctrl-S*

Save project as Ctrl-Shift-S*

Print Ctrl-P

Exit Ctrl-X

*These commands aren’t available in the IDE-hosted version of PhAB.

Editing shortcuts
Command Shortcut

Undo last action Ctrl-Z

Redo last undo Ctrl-Shift-Z

Cut Ctrl-X, Shift-Delete

Copy Ctrl-C

Paste Ctrl-V, Shift-Insert

Move a widget into a container Ctrl-T

Delete Del

Select all Ctrl-A

Select All Children Ctrl-Shift-A

continued. . .

May 13, 2010 Appendix: F • PhAB Keyboard Shortcuts 629

© 2010, QNX Software Systems GmbH & Co. KG.

Command Shortcut

Deselect current selection Ctrl-D

Find Ctrl-Shift-F

Add a widget class Ctrl-W

Edit templates Ctrl-M

Edit preferences Ctrl-Shift-P

Adding items shortcuts
Command Shortcut

Add window Ctrl-Shift-W

Add dialog Ctrl-Shift-D

Add menu Ctrl-Shift-M

Add picture module Ctrl-Shift-U

Internal links F4

Project properties F2

Building shortcuts
Command Shortcut

Build and run F6*

Build and debug F5*

Rebuild all F3*

Build F7*

Make clean Shift-F3*

Generate UI Shift-F7

Run arguments Shift-F6*

Manage targets F11*

*These commands aren’t available in the IDE-hosted version of PhAB.

Widget management shortcuts

630 Appendix: F • PhAB Keyboard Shortcuts May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

Command Shortcut

Move to front Ctrl-F

Move to back Ctrl-B

Group Ctrl-G

Ungroup Ctrl-Shift-G

Change class Ctrl-H

Define template Ctrl-L

Select next widget in module tree F10

Multiple-select the current and next
widget in the module tree

Shift-F10

Select previous widget in module tree F9

Multiple-select the current and previous
widget in the module tree

Shift-F9

Toggle the nudge mode through move,
shrink, and expand

Ctrl-5*

Move, shrink or expand the selected
widget by one pixel

Ctrl-1 to Ctrl-9* (excluding Ctrl-5) and
Ctrl-arrow

*These shortcuts are on the numeric keyboard only.

View and window shortcuts
Command Shortcut

Zoom in Ctrl-+

Zoom out Ctrl--

Close current window Ctrl-Alt-L

Close all windows Ctrl-Alt-A

Show/hide the resources tab F12

Show/hide the callbacks tab Shift-F12

May 13, 2010 Appendix: F • PhAB Keyboard Shortcuts 631

© 2010, QNX Software Systems GmbH & Co. KG.

Other shortcuts
Command Shortcut

Help F1

632 Appendix: F • PhAB Keyboard Shortcuts May 13, 2010

Appendix G

What’s New

In this appendix. . .
What’s new in Photon for QNX Neutrino 6.5.0 635
What’s new in Photon for QNX Neutrino 6.4.1 635
What’s new in Photon for QNX Neutrino 6.4 635
What’s new in Photon for QNX Neutrino 6.3 635
What’s new in Photon for QNX Neutrino 6.2.1 636
What’s new in Photon for QNX Neutrino 6.2.0 637
What’s new in Photon for QNX Neutrino 6.0 637

May 13, 2010 Appendix: G • What’s New 633

© 2010, QNX Software Systems GmbH & Co. KG. What’s new in Photon for QNX Neutrino 6.5.0

This chapter describes what’s new and changed in the Photon Programmer’s Guide.

What’s new in Photon for QNX Neutrino 6.5.0
New content

• The Photon in Embedded Systems appendix has been updated to reflect minor path
changes. Some additonal information about fonts and font support has been added.

• The Working with Applications and Editing Resources and Callbacks in PhAB
chapters now contain a note about editing 24-bit per pixel JPEG images using the
pixmap editor.

What’s new in Photon for QNX Neutrino 6.4.1
New content

• The Understanding Encodings, Fonts, Languages and Code Tables chapter has been
added to help answer some common misconceptions about fonts and encodings.

• The language code table in the International Language Support chapter has been
updated.

What’s new in Photon for QNX Neutrino 6.4
New content

• The Photon graphics architecture on embedded systems has changed. For more
information, refer to the io-display utility chapter in the Neutrino Utilities
Reference for more information.

• The Photon in Embedded Systems appendix describes how to use the io-display
utility to embed photon on an embedded device. When you want to run both
GF/OpenGL ES and Photon applications, you must start io-display before
starting the Photon graphics server, io-graphics.

• The Fonts chapter has been updated to describe how fonts are handled under the
io-display graphics framework.

• The Widgets chapter contains a paragraph that describes how to use Shift-drag to
move a widget by its resize handle. This is new functionality for 6.4.

For information on migrating from previous versions of QNX Neutrino, refer to the
product release notes.

What’s new in Photon for QNX Neutrino 6.3

May 13, 2010 Appendix: G • What’s New 635

What’s new in Photon for QNX Neutrino 6.2.1 © 2010, QNX Software Systems GmbH & Co. KG.

New content
• The PhAB’s Environment — PhAB’s interface has changed, including an updated

menu and simplified toolbar.

• The Geometry Management chapter now describes how to use layouts to manage
widget placement.

• The directory structure for PhAB projects has changed, and is described in How
application files are organized.

• The Generating, Compiling and Running Code chapter now describes how you can
Manage targets.

• The Raw Drawing and Animation chapter now describes how you can use layers.

• The Fonts chapter is updated with information about the new font library.

• The Photon in Embedded Systems appendix has a new example of creating a floppy
containing Photon and some applications, and is updated with new font library
information pertinent to embedded systems.

What’s new in Photon for QNX Neutrino 6.2.1
New content

• Listed the supported platforms; see “Versions and platforms” in the Introduction.

• The Interprocess Communication chapter has a better description of how to use
Photon connections.

• There’s a new section, “Layers,” in the Raw Drawing and Animation chapter.

• Added a description of the PHINDOWSOPTS environment variable to the Using
PhAB under Microsoft Windows appendix.

Errata
• The libraries in /usr/photon/lib are provided for runtime compatibility with

Photon for QNX Neutrino 6.0 (x86 only). The current libraries are in /usr/lib.
For more information about the libraries, see “Photon libraries” in the Introduction.

• Corrected the call to ionotify() in “Sending the pulse message to the deliverer” in
the Interprocess Communication chapter.

• The instructions for printing a PtMultiText widget have been corrected.

• The order of the options to the on command have been corrected in “Putting it all
together” in the Photon in Embedded Systems appendix.

• If you want to use a graphical debugger when developing in Windows, use the IDE
that’s part of QNX Momentics.

636 Appendix: G • What’s New May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. What’s new in Photon for QNX Neutrino 6.2.0

What’s new in Photon for QNX Neutrino 6.2.0
New content

• The Edit menu now includes Undo and Redo commands. For more information,
see the chapter on PhAB’s Environment.

• PhAB can’t import QNX Windows picture files any more.

• You can now specify a list of library callback functions when you start PhAB. For
more information, see appbuilder in the QNX Neutrino Utilities Reference.

• “Making a DLL out of a PhAB application” in the Generating, Compiling, and
Running Code chapter

• “Widget styles” in the Managing Widgets in Application Code chapter

• “Offscreen locks” in the Raw Drawing and Animation chapter.

• Using PhAB under Microsoft Windows appendix

What’s new in Photon for QNX Neutrino 6.0
This section doesn’t try to describe all the changes to PhAB’s user interface; most
you’ll discover by trying it yourself or by scanning this manual. Instead, this section
lists only the major changes.

Introduction
• The geometry of a widget has changed slightly; it now includes the widget’s border.

For more information, see “Widget geometry.”

PhAB’s Environment
• You no longer need to press Enter after giving an instance name to a widget.

Working with Applications
• It’s no longer possible to override the standard Photon mainloop function.

Working with Modules
• PtWindow widgets (which are used to instantiate Window modules) no longer

include an icon resource. You must now use PhAB to associate an icon with the
window.

• You can no longer create “other” modules (file selectors or messages) in PhAB,
although they’re still supported for existing applications. Instead of the file selector,
use one of:

- PtFileSel

- PtFileSelection()

Instead of the message module, use one of:

- PtAlert()

May 13, 2010 Appendix: G • What’s New 637

What’s new in Photon for QNX Neutrino 6.0 © 2010, QNX Software Systems GmbH & Co. KG.

- PtMessageBox()

- PtNotice()

- PtPrompt()

For more information, see the Photon Library Reference.

Creating Widgets in PhAB
• You can now create templates, or customized widgets, to use as the basis when

creating other widgets.

Geometry Management
• In the current version of the Photon microGUI, widgets are anchored immediately

upon creation. In earlier versions, anchoring is done when the widgets are realized.

• If the resize policy conflicts with the anchors, the Pt_ARG_RESIZE_FLAGS
override Pt_ARG_ANCHOR_OFFSETS and Pt_ARG_ANCHOR_FLAGS.

Working with Code

New sections:

• Timers

Manipulating Resources in Application Code

New sections:

• Setting image resources

• Setting one resource

• Getting image resources (pointer method)

• Getting one resource

Other changes:

• When setting string resources, the fourth argument to PtSetArg() is the number of
bytes to copy; if it’s 0, strlen() is used to determine the length of the string.

• Changes to the widget’s state may invalidate the pointers returned by
PtGetResources(); use them promptly.

Managing Widgets in Application Code

New sections:

• Ordering widgets

638 Appendix: G • What’s New May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. What’s new in Photon for QNX Neutrino 6.0

Context-Sensitive Help
• The PxHelp* functions are now named PtHelp* and are in the main Photon library,

ph.

Interprocess Communication

New sections:

• Connections — the best method of IPC for Photon applications.

Other changes:

• As described in “Adding an input handler,” an input handler must return one of the
following:

Pt_CONTINUE The input handler doesn’t recognize the message. If there are
other input handlers attached to the same process ID, they’re
called. If there are no input handlers attached specifically to this
process ID, or if all input handlers attached specifically to this
process ID return Pt_CONTINUE, the library looks for input
handlers attached to pid 0. If all the input handlers return
Pt_CONTINUE, the library replies to the message with an
ENOSYS.

Pt_END The message has been recognized and processed and the input
handler needs to be removed from the list. No other input
handlers are called for this message.

Pt_HALT The message has been recognized and processed but the input
handler needs to stay on the list. No other input handlers are
called for this message.

This creates several incompatibilities with earlier versions of the Photon microGUI:

- If an input handler replies to the message and returns Pt_CONTINUE (or if the
message is from a proxy/pulse), everything should be OK. The current library
tries and fails to reply again, but that’s harmless. Still, it’s a good idea to change
the code to return Pt_HALT; this prevents the library from calling other input
handlers or replying.

- If an input handler returns Pt_CONTINUE without replying to the message, the
old library doesn’t reply either, but the current one does. You need to change the
code to return Pt_HALT.

- If an input handler returns Pt_END (which is the most obvious value other than
Pt_CONTINUE), the only situation that can cause a problem is when you have
multiple input handlers attached to the same process ID.

- If an input handler returns a value other than Pt_CONTINUE or Pt_END, the old
library removes it from the list but the new library doesn’t. You need to change
the code to return Pt_END.

May 13, 2010 Appendix: G • What’s New 639

What’s new in Photon for QNX Neutrino 6.0 © 2010, QNX Software Systems GmbH & Co. KG.

Parallel Operations

New sections:

• Threads

Raw Drawing and Animation

New sections:

• Direct mode

• Video memory offscreen

• Alpha blending support

• Chroma key support

• Extended raster operations

• Video modes

• Gradients

Other changes:

• If you use PxLoadImage() to load an transparent image, set PX_TRANSPARENT in
the flags member of the PxMethods_t structure. If you do this, the function
automatically makes the image transparent; you don’t need to create a transparency
mask. See “Transparency in images.”

Fonts

New chapter.

Printing

The entire API has been made simpler. Applications that call the old routines should
still work, but you should reread this chapter.

Drag and Drop

New chapter.

Events

New sections:

• Pointer events

• Event handlers

640 Appendix: G • What’s New May 13, 2010

Glossary

May 13, 2010 Glossary 641

© 2010, QNX Software Systems GmbH & Co. KG.

accelerator

See hotkey.

activate

A widget is usually activated when you release a mouse button while pointing at an
armed widget.

active window

The window that currently has focus.

anchor offset

The distance between the edges of a widget and the parent widget it’s anchored to.

anchor

A constraint mechanism used to manage what happens to a widget when its parent is
expanded or contracted. For example, a pane that’s anchored to the sides of a window
expands or contracts as the window’s size is changed.

application region

A region that belongs to a Photon application (as opposed to a Photon system process,
such as the window manager, graphics drivers, etc.). An application region is usually
placed behind the device region. Also called a window region.

argument list

An array of type PtArg_t used when setting and getting widget resources.

arm

A widget is usually armed when you press a mouse button while pointing at it.

backdrop

An image that’s displayed as a background on your screen.

backdrop region

A region placed behind all windows to display a background image.

balloon

A small box that pops up to define or explain part of the user interface. A balloon is
displayed when the pointer pauses over a widget.

bitmap

A color picture consisting of one or more bitplanes.

May 13, 2010 Glossary 643

© 2010, QNX Software Systems GmbH & Co. KG.

bitplane

An array of bits representing pixels of a single color in a bitmap.

blit

An operation that moves an area of a graphics context (e.g. the screen) to another area
on the same or a different context.

callback

A callback function or a callback resource.

callback function

Code connecting an application’s user interface to its code. For example, a callback is
invoked when you press a button.

callback resource

A resource that specifies a list of functions and their client data to be called when a
certain action occurs.

canvas

The part of a widget that’s used for drawing. For PtWidget, this is the area inside the
widget’s borders. For PtBasic and its descendants, the canvas is the area inside the
widget’s border and margins. Other widgets, such as PtLabel, may define additional
margins.

class

See widget class.

class hierarchy

The relationships between all of the widget classes.

client data

Any arbitrary data the application may need to provide to a callback function.

clipping list

An array of rectangles used to restrict output to a particular area.

clipping rectangle

A rectangle used to restrict output to a particular area.

CMY value

A color expressed as levels of cyan, magenta, and yellow.

644 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

CMYK value

A color expressed as levels of cyan, magenta, yellow, and black.

code-type link callback

In a PhAB application, an application function that’s called when a widget’s callback
list is invoked.

color depth

The number of bits per pixel for a screen or pixmap.

Common User Access

See CUA.

compose sequence

A sequence of key presses that can be used to type a character that might not appear
on the keyboard.

console

One of nine virtual screens on the desktop. Also called a workspace.

consume

When a widget has processed an event and prevents another widget from interacting
with the event, the first widget is said to have consumed the event.

container

A widget that can have other widgets as children. For example, PtWindow, PtGroup,
and PtOSContainer.

cooked event

A key or pointer event that has been assigned a location in the Photon event space.
Also called a focused event.

CUA

Common User Access — a standard that defines how you can change focus by using
the keyboard.

current item

The item in a list or tree widget that will be selected (or perhaps unselected) when you
press Enter or Space. It’s typically drawn with a blue dotted line around it when its
widget has focus.

May 13, 2010 Glossary 645

© 2010, QNX Software Systems GmbH & Co. KG.

cursor

An indicator of a position on a screen, such as a pointer or an insertion point in a text
field.

damaged

Whenever a widget needs to be redisplayed due to a change in the window (e.g. the
widget is changed, moved, or realized), it’s said to be damaged.

dead key

A key that, when pressed, doesn’t produce a symbol, but initiates a compose
sequence.

default placement

The placement of a region when no siblings are specified. The opposite of specific
placement.

desktop

The virtual screen, consisting of nine consoles or workspaces.

device region

The region located in the middle of the event space, with application regions behind
it and driver regions in front of it (from the user’s point of view).

dialog module

A PhAB module similar to a window module, except that a dialog module can have
only one instance per process.

direct-color

A color scheme in which each pixel is represented by an RGB value. Contrast
palette-based.

disjoint parent

A disjoint widget that’s the ancestor of another widget.

disjoint widget

A widget that can exist without a parent. If a disjoint widget has a parent, it can exist
outside its parent’s canvas. For example, PtWindow, PtMenu, and PtRegion are
disjoint widgets, but PtButton, PtBkgd, and PtRect aren’t.

A disjoint widget owns regions that aren’t children of its parent’s regions. Any
clipping set by the parent of a disjoint widget isn’t applied to the disjoint widget. The
regions of disjoint widgets are sensitive and opaque to expose events.

646 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

dithering

A process whereby pixels of two colors are combined to create a texture or a blended
color.

draw context

A structure that defines the flow of the draw stream. The default draw context emits
draw events to graphics drivers. Print contexts and memory contexts are types of
draw contexts.

draw stream

A series of tokens that are dispatched via draw events and can be collected by a
rendering engine such as a graphics driver.

driver region

A region created by a driver, usually placed in front of the device region.

encapsulation driver

A program that displays Photon graphical output inside another windowing system
such as the X Window System.

event

A data structure that represents an interaction between you and an application or
between applications. Events travel through the event space either toward you or away
(i.e. toward the root region).

event compression

The merging of events such that the application sees only their latest values. The
application doesn’t have to process many unnecessary events.

event handler

A callback function that lets an application respond directly to Photon events, such as
dragging events.

event mask

A set of event types that are of interest to an event handler. When one of these events
occurs, the event handler is invoked.

event space

An abstract, three-dimensional space that contains regions — from the root region at
the back to the graphics region at the front. You sit outside the event space, looking in
from the front. Events travel through the event space either toward the root region or
toward you.

May 13, 2010 Glossary 647

© 2010, QNX Software Systems GmbH & Co. KG.

exported subordinate child

A widget created by a container widget (as opposed to an application) whose
resources you can access only through the parent.

exposure

Typically occurs when a region is destroyed, resized, or moved. Expose events are
sent to applications to inform them when the contents of their regions need to be
redisplayed.

extent

A rectangle that describes the outermost edges of a widget.

File Manager

The Photon File Manager (PFM), an application used to maintain and organize files
and directories.

focus

A widget that has focus will receive any key events collected by its window.

focus region

A region placed just behind the device region by the Photon Window Manager that
lets it intercept key events and direct them to the active window.

focused event

A key or pointer event that has been assigned a location in the Photon event space.
Also called a cooked event.

folder

In the Photon File Manager, a metaphor for a directory.

GC

See graphics context.

geometry negotiation

The process of determining the layout for a widget and its descendants, which depends
on the widget’s layout policy, any size set for the widget, and the dimensions and
desired positions of each of the widget’s children.

global header file

A header file that’s included in all code generated by PhAB for an application. The
global header file is specified in PhAB’s Application Startup Information dialog.

648 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

graphics driver

A program that places a region that’s sensitive to draw events on the user’s side of the
device region, collects draw events, and renders the graphical information on the
screen.

graphics context (GC)

A data structure that defines the characteristics of primitives, including foreground
color, background color, line width, clipping, etc.

Helpviewer

A Photon application for viewing online documentation.

hotkey

A special key or keychord that invokes an action (such as a menu item) without
actually selecting a widget. Also called an accelerator. Contrast keyboard shortcut.

hotspot

The part of the pointer that corresponds to the coordinates reported for the pointer (e.g.
the intersection of crosshairs, or the tip of the arrow of the basic pointer).

HSB

Hue-Saturation-Brightness color model.

HSV

Hue-Saturation-Value color model.

icon module

A PhAB module that associates icons with an application.

image

A rectangular array of color values, where each element represents a single pixel. See
also direct-color and palette-based.

initialization function

In a PhAB application, a function that’s called before any widgets are created.

input driver

A program that emits, and is the source of, key and/or pointer events.

input group

A set of input and output devices. There’s typically one input group per user.

May 13, 2010 Glossary 649

© 2010, QNX Software Systems GmbH & Co. KG.

input handler (or input-handling function)

A function that’s hooked into Photon’s main event-processing loop to handle messages
and pulses sent to the application by other processes.

instance

A concrete example of an abstract class; for example, “Lassie” is an instance of the
class “dog.” In Photon, an instance is usually a widget instance; for example, a
pushbutton is an instance of the PtButton widget class. When an instance of a
widget is created, the initial values of its resources are assigned.

instance name

In PhAB, a string that identifies a particular instance of a widget so that you can access
the instance in your application’s code.

instantiation

The action of creating an instance of a widget class in an application.

internal link

A PhAB mechanism that lets a developer access a PhAB module directly from an
application’s code.

Image Viewer

A Photon application (pv) that displays images.

key modifier

A flag in a key event that indicates the state of the corresponding modifier key when
another key was pressed.

keyboard driver

A program that gets information from the keyboard hardware, builds Photon key
events, and emits them towards the root region.

keyboard shortcut

A key that selects a menu item. The shortcut works only if the menu is displayed.
Contrast hotkey.

language database

A file that contains the text strings used in a PhAB application; a language database
makes it easier to create multilingual applications with PhAB’s language editor.

link callback

A mechanism that connects different parts of a PhAB application. For example, a link
callback can be invoked to display a dialog when a button is pressed.

650 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

margin

The area between a widget’s border and canvas.

memory context

A draw context in which Photon draw events are directed to memory for future
displaying on the screen, as opposed to a printer (print context) or to the screen
directly (the default draw context).

menu module

A PhAB module used to create a menu.

method

A function that’s internal to a widget class and invoked under specific conditions (e.g.
to draw the widget). Methods are provided as pointers to functions in widget class
records.

modifier key

A key (such as Shift, Alt, or Ctrl) used to change the meaning of another key.

module

An object in PhAB that holds an application’s widgets. PhAB modules include
windows, menus, icons, pictures, and dialogs.

module-type link callback

A link callback that displays a PhAB module.

mouse driver

A program that gets information from the pointer hardware, builds Photon raw pointer
events, and emits them towards the root region.

opaque

The state of a region with regard to events. If a region is opaque to an event type, any
event of that type that intersects with the region has its rectangle set adjusted to clip
out the intersecting area. The region prevents the event from passing through.

palette

An array of colors. A hard palette is in hardware; a soft palette is in software.

palette-based

A color scheme in which each pixel is represented by an index into a palette. Contrast
direct-color.

May 13, 2010 Glossary 651

© 2010, QNX Software Systems GmbH & Co. KG.

PDR

See Press-drag-release.

PFM

See Photon File Manager.

PhAB

Photon Application Builder. Visual design tool that generates the code required to
implement a user interface.

phditto

A utility that accesses the Photon workspace on a remote node. See also ditto.

Phindows

Photon in Windows. An application that accesses a Photon session from a Microsoft
Windows environment.

Photon File Manager (PFM)

An application used to maintain and organize files and directories.

Photon Manager or server

The program that maintains the Photon event space by managing regions and events.

Photon Terminal

An application (pterm) that emulates a character-mode terminal in a Photon window.

Photon Window Manager (PWM)

An application that manages the appearance of window frames and other objects on
the screen. For example, the window manager adds the resize bars, title bar, and
various buttons to an application’s window. The window manager also provides a
method of focusing keyboard events.

picture module

A PhAB module that contains an arrangement of widgets that can be displayed in
another widget or used as a widget database.

pixmap

A bitmap or image.

plane mask

A mask used to restrict graphics operations to affect only a subset of color bits.

652 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

point source

A single-point rectangle set used as the source of an event.

pointer

An object on the screen that tracks the position of a pointing device (e.g. a mouse,
tablet, track-ball, or joystick). Photon has several pointers indicating various states:
Basic, Busy, Help, Move, Resize, I-beam, No-input.

Press-drag-release (PDR)

A method of selecting a menu item by pressing down a mouse button while pointing to
a menu button, dragging until the desired item is highlighted, and releasing the mouse
button.

print context

A draw context in which Photon draw events are directed to a file, as opposed to the
screen (the default draw context) or to memory (memory context).

printer driver

A program that converts Photon draw stream format into a format suitable for a
printer, including PostScript, Hewlett-Packard PCL, and Canon.

procreated widget

A widget created by another widget (as opposed to an application), such as the
PtList and PtText created by a PtComboBox. Also known as a subordinate child.

pterm

A Photon Terminal; an application that emulates a character-mode terminal in a
Photon window.

pulse

A small message that doesn’t require a reply; used for asynchronous communication
with a Photon application.

pv

See Image Viewer.

PWM

See Photon Window Manager.

raw event

An input event that hasn’t been assigned a location in the Photon event space. Also
called an unfocused event.

May 13, 2010 Glossary 653

© 2010, QNX Software Systems GmbH & Co. KG.

raw callback

A function that lets an application respond directly to Photon events such as dragging
events. Also called an event handler.

realize

To display a widget and its descendants, possibly making them interactive.

rectangle set

An array of nonoverlapping rectangles associated with an event.

region

A rectangular area within the Photon event space that’s used by an application for
collecting and emitting events.

resize policy

A rule that governs how a widget resizes itself when its contents change.

resource

An attribute of a widget, such as fill color, dimensions, or a callback list.

root region

The region at the very back of the Photon event space.

sensitive

The state of a region with regard to events. If a region is sensitive to a particular type
of event, the region’s owner collects a copy of any such event that intersects with the
region.

setup function

A function that’s called after a PhAB module is created.

shelf

An application that attaches areas to the outside edge of the screen. You can add
plugins to customize these areas, such as a taskbar, launcher, clock, and magnifier.

Snapshot

A Photon application for capturing images of the screen.

specific placement

The placement of a region when one or more siblings are specified. The opposite of
default placement.

654 Glossary May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG.

subordinate child

A widget created by another widget (as opposed to an application), such as the
PtList and PtText created by a PtComboBox. Also known as a procreated widget.

table-of-contents (TOC) file

In the Photon Helpviewer, a file that describes a hierarchy of help topics.

taskbar

A shelf plugin that displays icons representing the applications that are currently
running.

tile

A data structure used to build linked lists of rectangles, such as a list of the damaged
parts of an interface.

topic path

Help information identified by a string of titles that are separated by slashes.

topic root

A topic path that’s used as a starting point for locating help topics.

topic tree

A hierarchy of help information.

translation file

A file containing translated strings for a PhAB application. There’s one translation file
per language supported by the application.

unfocused event

See raw event.

Unicode

The ISO/IEC 10646 16-bit encoding scheme for representing the characters used in
most languages.

UTF-8

The encoding for Unicode characters, where each character is represented by one,
two, or three bytes.

widget

A component (e.g. a pushbutton) in a graphical user interface.

May 13, 2010 Glossary 655

© 2010, QNX Software Systems GmbH & Co. KG.

widget class

A template for widgets that perform similar functions and provide the same public
interface. For example, PtButton is a widget class.

widget database

In PhAB, a module containing widgets that can be copied at any time into a window,
dialog, or other container.

widget family

A hierarchy of widget instances. For example, a window and the widgets it contains.

widget instance

See instance.

window frame region

A region that PWM adds to a window. It lets you move, resize, iconify, and close the
window.

Window Manager

See Photon Window Manager.

window module

A PhAB module that’s instantiated as a PtWindow widget.

window region

A region that belongs to an application window.

work procedure

A function that’s invoked when there are no Photon events pending for an application.

workspace

See console.

workspace menu

A configurable menu that’s displayed when you press or click the right mouse button
while pointing at the background of the desktop.

656 Glossary May 13, 2010

Index

!

.ldb extension 342

.wgtd extension 115, 122

.wgtm extension 115, 123

.wgtp extension 115, 130

.wgtw extension 115, 121
/usr/bin/photon 350
/usr/photon/lib 18
:: in function names 262
@ in function names 261
@ in instance names 135, 340
_CS_LIBPATH configuration string 597
_NTO_CHF_COID_DISCONNECT 368
_NTO_CHF_DISCONNECT 368
<PhWm.h> 541
<PkKeyDef.h> 281
<Pt.h> 555
<utf8.h> 586

A

AB_ITEM_DIM 269
AB_ITEM_NORMAL 269
AB_ITEM_SET 269
AB_OPTIONS 264
abapp.dfn 240
abcpal.cfg 168
abdefine.h 257
abdefine.h 236
abevents.h 236
abimport.h 236, 238
ABLANG 348
abLfiles 236

ablinks.h 236
ABLPATH 342, 347, 349, 350
ABM_... manifests 260, 329
abmain.c, abmain.cc 237
ABN_... manifests 125, 257, 258, 269, 270
About PhAB (Help menu) 73
abplatform 237
ABR_CANCEL 266
ABR_CODE 266
ABR_DONE 266
ABR_POST_REALIZE 265
ABR_PRE_REALIZE 265
abSfiles 236
abvars.h 257
abvars.h 237
ABW_... manifests 257, 258
abWfiles 236
abwidgets.h 237
accelerators See hotkeys
Activate callbacks 129, 181, 271, 299

modifier keys 524
active region 573
Actual Size (View menu) 72
Add Dialog (Project menu) 69
Add Menu (Project menu) 69
Add Picture Module (Project menu) 69
Add Window (Project menu) 69
adding widgets 155
AlClearTranslation() 347
AlCloseDBase() 347
AlGetEntry() 347
AlGetSize() 347
Align (Widget menu) 71, 140
Alignment (Widget menu) 75
AlOpenDBase() 347

May 13, 2010 Index 657

Index © 2010, QNX Software Systems GmbH & Co. KG.

alpha blending
map 432

AlReadTranslation() 347
AlSaveTranslation() 347
AlSetEntry() 347
anchoring 204–207

and resize flags 196, 205
flags 206
offset 204, 207

anchoring widgets 75
animation 422

cycling through snapshots 423
eliminating flicker 424
graphics bandwidth 519
loading images from a file 423
widget database 422

Ap library 16, 17, 555
ApAddClass() 253, 332
ApAddContext() 251
ApCloseDBase() 332
ApCloseMessageDB() 343
ApCopyDBWidget() 333
ApCreateDBWidget() 333
ApCreateDBWidgetFamily() 333
ApCreateModule() 265, 327, 329
ApCreateWidget() 333
ApCreateWidgetFamily() 333
ApDeleteDBWidget() 333
ApError() 122
ApGetDBWidgetInfo() 333
ApGetImageRes() 333, 417, 420–422
ApGetInstance() 259
ApGetItemText() 270
ApGetMessage() 343
ApGetTextRes() 339
ApGetWidgetPtr() 259
apinfo 265, 266
ApInfo_t 265, 266
ApInstanceName() 107
ApLoadMessageDB() 342
ApModalWait() 552
ApModifyItemAccel() 270
ApModifyItemState() 190, 269
ApModifyItemText() 270
ApModuleFunction() 329
ApModuleLocation() 329

ApModuleParent() 329
ApName() 258
ApOpenDBase() 329, 332, 422
ApOpenDBaseFile() 332, 422
Appbuilder See PhAB
application

resources 292
Application menu

Convert to Eclipse Project 70
Internal Links 69, 327
Language editor 69
Properties 70

applications
accessing help information 355
Alt combinations, passing to 544
bilingual 341
blocking 569
closing 100
command-line options 247

processing 263
compiling 245, 251, 555
context (PtAppContext_t) 367,

372–374, 376, 383
creating 95

tutorial 27
debugging 247
directory 240, 241
DLL, turning into 251
drawing 395
exiting, verifying 543
files 239

non-PhAB, including 249, 250
Generate options

defaults for PhAB applications 105
initialization function 104, 261, 262
languages

@ in instance names 135, 340
choosing 348
databases 342
design considerations 337
distributing 349
font size 339
help resources 347
hotkeys 346
justification 338
message databases 339

658 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

running 347
text widgets 337
translating text 345
translation files 344, 345, 347

lengthy operations 381
modal dialogs 547
visual feedback 381
work procedures 381–383, 386

linking 245, 251, 555
mainloop function 237, 555, 558
making 245, 251
multilingual See application languages
non-PhAB 555
opening 97
overwriting 99
parallel operations 381
performance, improving 136, 168, 275
region 569, 573
renaming 98
running 246

tutorial 28
saving 98, 99
standalone 547
startup windows 101, 103
timers 267
version control 237

ApRemoveClass() 253, 334
ApRemoveContext() 252
ApSaveDBaseFile() 332
ApWidget() 265
arcs 410
areas

PhArea_t 267
PhRect_t 267
PhTile_t 267, 398

argument lists (PtArg_t) 279
Arm callbacks 129, 181, 532, 533
ARM, support for 18
Arrange (Widget menu) 71
Arrange Icons (Window menu) 72, 121
Arrange Modules (Window menu) 121
ASCII 583, 584

B

backdrop region 518, 573
backdrops 544
background processing 381
beveled boxes 407
bitmaps 415
Blocked callbacks 530
border, widget 11, 12
Browse Files palette 242, 244
Build (Build menu) 70
Build & Run dialog 20
Build Debug (Build menu) 70
Build menu 20, 70, 233

Build 70
Build Debug 70
Build Run 70
Generate UI 70, 71, 236
Make Clean 70
Rebuild All 70

Build Run (Build menu) 70

C

C++
class member functions 262
main program 237
prototypes 238

callbacks See also work procedures
Activate 129, 181, 271, 299

modifier keys 524
adding 183, 299
Arm 129, 181, 532, 533
Blocked 530
Cancel 182, 186, 266
client data 300–302, 559
code-type link 182, 185, 186, 266
defined 9, 181, 558, 559
Disarm 181
Done 182, 186, 266
editing 182
examining in your code 302
filenames 261
Filter 181, 190, 528, 534, 558
hotkeys 181, 186, 187

May 13, 2010 Index 659

Index © 2010, QNX Software Systems GmbH & Co. KG.

disabling 189
keycap 188
label 187
menu items 125, 187
modifier keys 187
multilingual applications 188, 346
PkKeyDef.h 188
processing 189

information
ApInfo_t 265, 266
PtCallbackInfo_t 265, 266, 271,

301
PtContainerCallback_t 229

link 181
tutorial 42

lists
PtCallback_t 300
PtCallbackList_t 302
traversing 302

Lost Focus 298
Menu 181
menu item 271
module-type link 182, 184
Outbound 532
parameters 266, 300
preattaching 331
Raw 181, 190, 528, 534, 558
raw
PtRawCallback_t 303
PtRawCallbackList_t 303

reason 301
removing 183, 301
Repeat 181
Resize 229
return value 266
time-consuming work 381, 388

Callbacks (View menu) 82
Callbacks panel 81
canvas 11, 199
Cascade (Window menu) 72
cbinfo 265, 266, 271
Change Class (Widget menu) 71, 152
characters

conversion functions 585, 586
encodings other than Unicode 586
international 175, 281, 583

multibyte 583, 584
Unicode encodings 584
wide 583

child region 512, 513
chords 410
chroma key 418, 433, 437
circles 410
client data 305
clipboard 148, 149

permissions 622
clipping area See canvas
Close (File menu) 67, 100
Close (Window menu) 73
Close All (Window menu) 73
code

accessing help information 355
callbacks 266

filename 261
compiling 245, 555

tutorial 28
creating 244
deleting 243
editing 233, 242, 245, 261
filename 261
files 236, 239

non-PhAB, including 249, 250
generating 233, 235, 236

tutorial 28
initialization function 104, 261, 262

filenames 261
lengthy operations 381

modal dialogs 547
visual feedback 381
work procedures 381–383, 386

linking 245, 555
mainloop function 237, 555, 558
making 245
menu setup 269, 270

creating submenus 272
parallel operations 381
setup functions 185, 264
timers 267
version control 237
viewing 243

code-type link callbacks 182, 185
color editor

660 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

custom palette 168
colors

editor 167
models 401
palette

global 416
hard 416
physical 417
soft 416, 417

PgColor_t, PgColorHSV_t 401
resize handles 89

command-line options
defaults for PhAB applications 105
processing 263
specifying 247

Common User Access (CUA) 142–144
common.mk 236
compose key sequences 587, 588
condvars 389
configuration strings

_CS_LIBPATH 597
connection IDs, finding 545
connections 360

local 362
connectors 360

naming conventions 360
container widgets See also PtGroup

absolute positioning 199
aligning children 141
damaging 275
defined 133, 195
duplicating 150
flux 275
focus 142, 143
geometry management 195
manipulating in PhAB 133
moving children between containers 147
PhAB modules 115
picture modules 130, 327
positioning children 12, 140, 146, 195
Pt_CB_RESIZE 229
Resize callbacks 229
resize flags 198, 199
resize policy 196
selecting children 133
widget databases 330

contexts
application (PtAppContext_t) 367,

372–374, 376, 383
direct (PdDirectContext_t) 426
offscreen (PdOffscreenContext_t)

428
print (PpPrintContext_t) 477

control panels 76
about 27
Callbacks 81, 140, 182, 191
displaying 76
editing callback resources 182
editing menu items 123
editing raw callbacks 191
finding 76
instance name 81, 133
Module Links 84
Module Tree 82, 136, 137, 139, 140, 145
next and previous buttons 81, 139, 140, 146
positioning 76
Resources 80, 140, 161, 200
resources

colors 167
displayed 117, 161
fonts 170
lists 171
names 81, 89
not displayed 81
pixmaps 162
text 173

resources displayed 138
selecting widgets 81, 137, 139, 140, 146,

200
control surfaces 315
conventions

typographical xxviii
Convert to Eclipse Project (Application menu)

70
coordinate space 509, 510, 567, 571, 572
Copy (Edit menu) 68, 74, 149
create mode 79, 136
CUA (Common User Access) 142–144
custom widgets

on Microsoft Windows 623
Cut (Edit menu) 68, 74, 148
CVS 238

May 13, 2010 Index 661

Index © 2010, QNX Software Systems GmbH & Co. KG.

D

damage 7, 267, 398
damping factor 90
data types

ApInfo_t 265, 266
FontDetails 463
PdDirectContext_t 426
PdOffscreenContext_t 428
PgColor_t, PgColorHSV_t 401
PgDisplaySettings_t 435
PgLayerCaps_t 443
PgScalerCaps_t 438
PgScalerProps_t 438
PgSpan_t 412
PgVideoChannel_t 438
PhArea_t 267
PhDim_t 267
PhEvent_t 523, 525
PhEventRegion_t 525
PhImage_t 416, 417, 423
PhKeyEvent_t 527, 587
PhPoint_t 267
PhPointerEvent_t 523, 524
PhRect_t 267
PhRegion_t 517, 545
PhRid_t 509
PhSysInfo_t 519
PhTile_t 267, 398
PhTransportFixupRec_t 499, 502
PhTransportLink_t 505
PhTransportRegEntry_t 498, 504
PhWindowEvent_t 542
PpPrintContext_t 477
PtAppContext_t 367, 372–374, 376,

383
PtArg_t 279
PtCallback_t 300
PtCallbackInfo_t 265, 266, 271, 301
PtCallbackList_t 302
PtContainerCallback_t 229
PtDndFetch_t 494
PtFdProc_t 377
PtInputCallbackProc_t 367
PtInputCallbackProcF_t 368
PtLinkedList_t 290

PtPulseMsg_t 371
PtRawCallback_t 303
PtRawCallbackList_t 303
PtSignalProc_t 377
PtTransportCtrl_t 491, 504
PtWidget_t 266
PtWorkProc_t 383
PtWorkProcId_t 383
PxMethods_t 419
sigevent 371

databases, language See language databases
databases, message 342
databases, widget See widget database
dead keys 587
debugging 247
Define Template (Widget menu) 72, 153
Delete (Edit menu) 68, 149, 150
Deselect (Edit menu) 68
development platforms

multiple 240, 250
single 241, 250

device regions 510, 569–571, 573
dialogs

modal 547
example 548

module 122, 539
predefined 122
Project Properties 238
resizing 122
Search 86, 140
Select New Platform 234
tutorial 49

dimensions (PhDim_t) 267
direct context (PdDirectContext_t) 426
direct mode 4, 425
direct-color image See images
Disarm callbacks 181
display settings (PgDisplaySettings_t)

435
Distribute (Widget menu) 71
distributing widgets 141
DLLs, turning applications into 251
drag and drop

acceptance list (PtDndFetch_t) 494
canceling 497
events 570

662 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

receiving 493
packing data 490

dragging 531–536
events 190, 531, 534–536, 569, 570
initiating 532
opaque

defined 531
handling events 536
initiating 534
specifying 533

outline
defined 531
handling events 535
initiating 533
specifying 533

preferences 90
draw buffer 4

PtRaw 395
draw context 425, 477
draw events 565

accumulating 571
direct mode 426
graphics driver 571
multiple displays 572
printing 477, 483

draw primitives 17, 405
arc 410
attributes 402
beveled box 407
bitmap 415
chord 410
circle 410
ellipse 410
flags 405
flickerless animation 424
image 416

caching 418
creating 417
direct color 416, 417
displaying 419
format 416
gradient color 416, 417
palette-based 416
releasing 420
remote processes 418
shared memory 419, 421

transparency 418
line 412
overlapping polygon 409
pie 410
pixel 412
polygon 408
rectangle 406
rounded rectangle 406
span 412
text 413

draw stream 4, 477
drivers

encapsulation 572
graphics 17, 509, 569–572

multiple 571
input 570
keyboard 570, 571, 583, 587
mouse 569, 570
output 570
regions 569

overlapping 572
separate 572

E

Eclipse Project applications 250
Eclipse project format 242
edit command, specifying 89
Edit menu 68

Copy 68, 74, 149
Cut 68, 74, 148
Delete 68, 149, 150
Deselect 68
Edit Templates 157
Find 68, 87
Move Into 68, 74, 147
Paste 68, 74, 149
Preferences 88
Redo 68
Select All 68
Select All Children 68
Split Apart 203
Templates 156
To Back 145
To Front 145

May 13, 2010 Index 663

Index © 2010, QNX Software Systems GmbH & Co. KG.

Undo 68
Edit Mode (Project menu) 69, 75
Edit Templates (Edit menu) 157
ellipses 410
encapsulation drivers 572
environment variables

ABLANG 348
ABLPATH 342, 347, 349, 350
LD_LIBRARY_PATH 597
PATH 598
PHOTON_PATH 597
PHOTONOPTS 621
PWMOPTS 621
TPR 623

even-odd rule 409
events

boundary 531
callbacks 301, 528
click count 523
clipping 512
collecting 531
compression 531
consuming 305, 529
coordinates 528
data 305, 523, 524, 563
defined 4, 563
drag 190, 531, 534–536, 569, 570
drag-and-drop 570

receiving 493
draw 565

accumulating 571
direct mode 426
graphics driver 571
multiple displays 572
printing 477, 483

emitting 525
key 527
to a specific widget 527

filter callbacks 181, 190
focusing 569
handlers 181, 190, 528, 534, 558

adding 303
invoking 305
removing 304

handling 555, 558, 559
information 431

intersection with regions 564
key (PhKeyEvent_t) 527, 587
keyboard 567, 569–573
logging 567
mask 190, 191, 303, 304, 528, 534
modifier keys 524
modifying 567
notification 568

asynchronous 569
polling 568
synchronous 569

PhEvent_t 523, 525
PhEventRegion_t 525
point source 564
pointer 531, 558, 567, 569, 570, 573

buttons 523
cooked (focused) 569
PhPointerEvent_t 523, 524
raw (unfocused) 569

raw callbacks 181, 190
rectangle set 531, 564, 566

collected 564
regions 529, 531, 558

nonopaque 566
opaque 565, 566
root 567
sensitive 303, 565, 566

resize 229
space 3, 509, 563, 565
targeting regions 526
translation 528
types 568
window (PhWindowEvent_t) 542

Exit (File menu) 67
exit() 391, 544
Export Files (File menu) 67
extended library 555

F

fd handler 377
file extension

.ldb 342

.wgtd 115, 122

.wgti 115

664 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

.wgtm 115, 123

.wgtp 115, 130

.wgtw 115, 121
File menu 67

Close 67, 100
Exit 67
Export Files 67
Import Files 67, 109, 110
New 67, 95
Open 67, 74, 97
Revert 67
Save 67, 74, 99
Save As 67, 98, 99

files
mixed-case names under Microsoft

Windows 622
non-PhAB, including in your application

249, 250
fill attributes 403, 404
Filter callbacks 190, 528, 534, 558
Find (Edit menu) 68, 87
Fit in Window (View menu) 72
flag editor 168
flickering, reducing 168, 275, 422, 424
flux count 275
focus 142, 143, 298, 570

functions 143
region 573

FontDetails 463
FontName 463
fonts

available, determining 462
names 462, 463
proportional, repairing 470
symbol metrics 459
widget resources, editing 170

foundry names 462
frame, window 572
functions

editor 175
prototypes 238

potential problems 239

G

Generate Language Database (Project menu,
Language Editor submenu) 342

Generate Report (Project menu) 69
Generate UI (Build menu) 70, 71, 236
geometry

data types 267
negotiation 195
widget 11

getopt() 264
global header file 104, 236, 260
gradients 436

application-level 437
driver-level 436
image 416

graphics drivers 17, 509, 569–572
multiple 571

graphics files, importing 110, 152
Grid (Preferences) 90
grid, PhAB’s 90
grids, drawing 412
Group (Widget menu) 71, 75, 200
groups

creating 71, 75, 200
realizing 201
splitting 71, 75, 203

H

header file, global 104, 236, 260
help

accessing from code 355
displaying

in a balloon 354
in the Helpviewer 354

topic path 353–355
topic root 354–356
Universal Resource Locator

(URL) 353–355
restriction on scope 353
root 355, 356

Help menu 73
About PhAB 73
PhAB Concepts 73

May 13, 2010 Index 665

Index © 2010, QNX Software Systems GmbH & Co. KG.

PhAB Library API 73
Tools + Techniques 73
Tutorials 73
Welcome to PhAB 73

high color 401
Hints 226
hold count 275
HOME

under Windows 622
hooks

Photon 309
hotkeys

callbacks 181, 186, 187
disabling 189
keycap 188
label 187
menu items 125, 187
modifier keys 187, 189
multilingual applications 188, 346
PkKeyDef.h 188
processing 189

I

I/O 377
image-loading methods (PxMethods_t) 419
images 416

caching 418
creating 417
direct color 416, 417
displaying 419
gradient color 416, 417
importing 110
palette-based 416
PhImage_t 416, 417, 423
releasing 420
remote processes 418
shared memory 419, 421
transparency 418

Import Files (File menu) 67, 109, 110
indHfiles 250
indLfiles 237
indOfiles 250
indSfiles 237, 250
initialization function 104, 261, 262

filename 261
input groups

defined 571
determining 571

input handlers 366
adding 367
removing 369
types
PtInputCallbackProc_t 367
PtInputCallbackProcF_t 368

instance names 81, 125, 133, 149, 150
generated by PhAB 135, 341
in widget databases 332
including in widgets 106
language databases 135, 340
starting with @ 135, 340

internal links 260, 327, 331
accessing picture modules 327
creating 327
creating a module 327
manifests 329
opening widget databases 327
setup functions 328

Internal Links (Application menu) 69, 327
international characters 175, 281, 583
interprocess communication (IPC)

asynchronous 371
messages 365
pulses 371
signals 376
synchronous 365

ionotify() 373

K

key presses, simulating 527
keyboard

compose sequences 588
drivers 570, 571, 583, 587
events 567, 569–573

emitting 527
focus 142, 570
shortcuts 125, 127, 270

keycaps 188
keys, modifier 187, 524

666 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

L

Language editor (Application menu) 69
Language Editor (Project menu) 342, 343
languages

@ in instance names 135, 340
bilingual applications 341
changing 247
choosing 348
common strings 341
databases 135, 337, 340, 342–347, 350
design considerations 337
distributing an application 349
editor 343

in PhAB 343
standalone 344, 349

font size 339
help resources 347
hotkeys 346
international characters 346
justification 338
message databases 339
running a multilingual application 347
text widgets 337
translating text 345
translation files 344, 345, 347

languages.def 344, 349
Launcher plugin 115
layers 441

capabilities (PgLayerCaps_t) 443
surfaces 441
viewports 442

Layouts 208
types 208

layouts
editor 176

LD_LIBRARY_PATH environment variable
597

lengthy operations 381
modal dialogs 547
visual feedback 381
work procedures 381, 382

adding 382
example 383
preemption 386
removing 383, 386

libraries 16, 244
adding 251
Ap 16, 17, 555
extended 555
locking 387
multithreading 387
of user functions 262
ph 17, 555, 585
phexlib 16, 17, 555, 587
photon 18, 555
phrender 17
platforms 18
shared 17, 244, 555
static 17, 244, 555
version numbers 18

lines 412
link_instance 265
linked lists (PtLinkedList_t) 290
list editor 171
Location dialog 119, 184
lock 75, 146
Lock (Widget menu) 71
Lost Focus callbacks 298

M

mainloop function 237, 555, 558
Make Clean (Build menu) 70
make command 245, 246
Makefile

dependency on header files 261
Makefile

adding libraries 251
DLL, generating 251
generated by PhAB 236
multiplatform applications 240, 241

including non-PhAB files 250
renaming the application 99
restrictions on modifying 245, 246
running make 245, 246
single-platform applications 241

including non-PhAB files 250
manifests

ABM_... 260, 329
ABN_... 125, 257, 258, 269, 270

May 13, 2010 Index 667

Index © 2010, QNX Software Systems GmbH & Co. KG.

ABW_... 257, 258
widget database 333
window, multiple instances of 258

margins, widget 11
Match (Widget menu) 71
Match Advanced (Widget menu) 71
MAX_FONT_TAG 463
mblen() 585
mbstowcs() 585
mbtowc() 585
MC See memory contexts
memory contexts 425, 477
Menu callbacks 181
menubar

creating 43
PhAB 26, 67
tutorial 42
widget 43, 129

menus
displaying 129
editing 123
hotkeys 125, 187, 188
items 123

commands 126
disabling and enabling 269
functions 128, 270, 272
generating at runtime 128, 270
instance names 125
moving 129
separators 127
submenus 127
submenus, creating at runtime 272
text, changing 270
text, getting 270
toggles 127, 269

module 123
resizing 126
shortcuts 125, 270
tutorial 42

message databases 342
message queues 374
messages 359

receiving 366
sending 365

Microsoft Windows, running PhAB on 621
MIPS, support for 18

modal dialogs 547
example 548

modal operations
threads 390

modifier keys 187, 524
Module Links (View menu) 85
Module Links panel 84
module selector 118
Module Tree (View menu) 83
Module Tree panel 82, 136
module types 118
module-type link callbacks 182, 184
modules

accessing with an internal link 327
as container 115
creating 118
creating within application code 327
deleting 118, 150
Dialog 122, 539
file extensions 115
finding 121
iconifying 118
icons

moving 119
importing 110
instance name 116, 257
Menu 123
minimizing 118
parentage 184, 327, 329
Picture 130
selecting 117
setup functions 184, 264, 328

filenames 261
return value 265

specifying a location 119, 184
Test mode 145
types 115
usage 115
Window 121, 539
Window menu 117
Work menu 116, 118

mouse capture 531
mouse drivers 569, 570
Move Into (Edit menu) 68, 74, 147
mqueues 374
MsgDeliverEvent() 376

668 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

MsgRead() 371
MsgReceive() 366, 382
MsgReply() 365
MsgSend() 365
MsgSendv() 373
multibyte characters 583, 584

conversion functions 585
multiline text editor 173
multilingual applications See languages
multiplatform development 240, 250
multithreaded programs 387
MYHDR 250
MYOBJ 250
MYSRC 250

N

name_attach() 368
New (File menu) 67, 95
NFS and PhAB 98
non-PhAB code, including in your application

249, 250
normal mode 4, 425
number editor 172

O

offscreen context (PdOffscreenContext_t)
428

offscreen locks 431
offscreen-context container 424
Open (File menu) 67, 74, 97
Options menu

Preferences 69, 81
options, command-line See command-line

options
Outbound callbacks 532
overlapping polygons 409

P

palette-based image See images

palettes (View menu) 154
parallel operations 381
parent region 512–514
Paste (Edit menu) 68, 74, 149
PATH environment variable 598
pathname delimiter in QNX

documentation xxix
PC See print contexts
PdCreateDirectContext() 426
PdCreateOffscreenContext() 428, 429
PdCreateOffscreenLock() 432
PdDestroyOffscreenLock() 432
PdDirectContext_t 426
PdDirectStart() 426
PdDirectStop() 426
PdDupOffscreenContext() 428
PdGetDevices() 426
PdGetOffscreenContextPtr() 428, 431
PdIsOffscreenLocked() 432
PdLockOffscreen() 432
PdOffscreenContext_t 428
PDR (press-drag-release) method 129
PdReleaseDirectContext() 427
PdSetOffscreenTranslation() 428
PdSetTargetDevice() 427, 428, 435
PdUnlockOffscreen() 432
PfExtentTextCharPositions() 470
PfGenerateFontName() 463
Pg_ARC 411
Pg_ARC_CHORD 411
Pg_ARC_PIE 411
Pg_BACK_FILL 413, 415
Pg_CLOSED 408
Pg_CM_PRGB 401
Pg_DRAW_FILL 405, 407
Pg_DRAW_FILL_STROKE 405, 407
Pg_DRAW_STROKE 405, 407
Pg_DRIVER_STARTED 431
Pg_ENTERED_DIRECT 431
Pg_EXITED_DIRECT 431
Pg_IMAGE_DIRECT_888 425
Pg_IMAGE_PALETTE_BYTE 425
Pg_LAYER_ARG_LIST_BEGIN 443
Pg_LAYER_ARG_LIST_END 443
Pg_POLY_RELATIVE 408
Pg_VIDEO_MODE_SWITCHED 431

May 13, 2010 Index 669

Index © 2010, QNX Software Systems GmbH & Co. KG.

PgAlphaOff() 433
PgAlphaOn() 433
PgAlphaValue() 402, 433
PgARGB() 402, 433
PgBackgroundShadings() 402
PgBevelBox() 437
PgBlueValue() 402
PgCalcColorContrast() 437
PgChromaOff() 433
PgChromaOn() 433
PgCMY() 402
PgColor_t 401
PgColorHSV_t 402
PgColorMatch() 402
PgConfigScalerChannel() 437
PgContextBlit() 428, 429
PgContextBlitArea() 428
PgContrastBevelBox() 437
PgCreateLayerSurface() 442
PgCreateVideoChannel() 437
PgDefaultFill() 404
PgDefaultMode() 403
PgDefaultStroke() 404
PgDefaultText() 403
PgDestroyVideoChannel() 437
PgDisplaySettings_t 435
PgDrawArc() 410
PgDrawArrow() 408
PgDrawBevelBox() 407
PgDrawBeveled() 407
PgDrawBezier() 412
PgDrawBeziermx() 412
PgDrawBitmap() 415
PgDrawBitmapmx() 415
PgDrawEllipse() 410
PgDrawGradient() 436
PgDrawGradientBevelBox() 437
PgDrawGrid() 412
PgDrawILine() 412
PgDrawImage() 419
PgDrawImagemx() 419
PgDrawIPixel() 412
PgDrawIRect() 406
PgDrawLine() 412
PgDrawMultiTextArea() 413
PgDrawPhImage() 419

PgDrawPhImagemx() 419
PgDrawPhImageRectmx() 419
PgDrawPixel() 412
PgDrawPixelArray() 412
PgDrawPixelArraymx() 412
PgDrawPolygon() 410
PgDrawPolygonmx() 410
PgDrawRect() 406
PgDrawRepBitmap() 415
PgDrawRepBitmapmx() 415
PgDrawRepImage() 419
PgDrawRepImagemx() 419
PgDrawRepPhImage() 419
PgDrawRepPhImagemx() 419
PgDrawRoundRect() 406
PgDrawString() 413
PgDrawStringmx() 413
PgDrawText() 413
PgDrawTextArea() 413
PgDrawTextChars() 413
PgDrawTextmx() 413
PgDrawTImage() 419
PgDrawTImagemx() 419
PgDrawTrend() 412
PgDrawTrendmx() 412
PgExtentMultiText() 413
PgExtentText() 413
PgGetColorModel() 402
PgGetGraphicsHWCaps() 435
PgGetLayerCaps() 442
PgGetOverlayChromaColor() 437
PgGetPalette() 402
PgGetScalerCapabilities() 437
PgGetVideoMode() 435
PgGetVideoModeInfo() 435
PgGetVideoModeList() 435
PgGray() 402
PgGrayValue() 402
PgGreenValue() 402
PgHSV() 402
PgHSV2RGB() 402
PgLayerCaps_t 443
PgLockLayer() 443
PgNextVideoFrame() 437
PgRedValue() 402
PgRGB() 402

670 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

PgRGB2HSV() 402
PgScalerCaps_t 438
PgScalerProps_t 438
PgSetAlpha() 433
PgSetAlphaBlend() 433
PgSetChroma() 433
PgSetClipping() 426
PgSetColorModel() 402
PgSetDrawMode() 403, 434
PgSetFillColor() 404, 416
PgSetFillDither() 404
PgSetFillTransPat() 404
PgSetFillXORColor() 404
PgSetFont() 403
PgSetLayerArg() 443
PgSetLayerSurface() 442
PgSetPalette() 402
PgSetPlaneMask() 403
PgSetStrokeCap() 404
PgSetStrokeColor() 404
PgSetStrokeDash() 404
PgSetStrokeDither() 404
PgSetStrokeFWidth() 404
PgSetStrokeTransPat() 404
PgSetStrokeWidth() 404
PgSetStrokeXORColor() 404
PgSetTextColor() 403
PgSetTextDither() 403
PgSetTextTransPat() 403
PgSetTextXORColor() 403
PgSetTranslation() 397, 426
PgSetUnderline() 403, 413
PgSetVideoMode() 435
PgShmemCreate() 419, 421
PgSpan_t 412
PgSwapDisplay() 428
PgUnlockLayer() 443
PgVideoChannel_t 438
PgWaitHWIdle() 428
Ph_DEV_RID 518, 527, 565
Ph_DRAG_TRACK 533, 534
Ph_EV_BUT_PRESS 523

click count 523
modifier keys 524

Ph_EV_BUT_RELEASE 523
click count 523

modifier keys 524
Ph_EV_DND_CANCEL 494
Ph_EV_DND_COMPLETE 494
Ph_EV_DND_DELIVERED 494
Ph_EV_DND_DROP 495
Ph_EV_DND_ENTER 494
Ph_EV_DND_INIT 494
Ph_EV_DND_LEAVE 495
Ph_EV_DND_MOTION 495
Ph_EV_DRAG 190, 534
Ph_EV_DRAG_COMPLETE 535
Ph_EV_DRAG_MOVE 535, 536
Ph_EV_DRAG_START 534
Ph_EV_INFO 431
Ph_EV_KEY 527
Ph_EV_RELEASE_ENDCLICK 523
Ph_EV_RELEASE_PHANTOM 523
Ph_EV_RELEASE_REAL 523
Ph_EVENT_DIRECT 526
Ph_EVENT_INCLUSIVE 526
Ph_FORCE_FRONT 515, 517
Ph_LIB_VERSION 18
Ph_OFFSCREEN_INVALID 431
Ph_PACK_RAW 497, 498
Ph_PACK_STRING 497, 498
Ph_PACK_STRUCT 497, 498
Ph_RELEASE_GHOST_BITMAP 420
Ph_RELEASE_IMAGE 420
Ph_RELEASE_PALETTE 420
Ph_RELEASE_TRANSPARENCY_MASK 420
Ph_ROOT_RID 512, 518, 565
Ph_TRACK_BOTTOM 533
Ph_TRACK_DRAG 533
Ph_TRACK_LEFT 533
Ph_TRACK_RIGHT 533
Ph_TRACK_TOP 533
Ph_TRANSPORT_INLINE 495
Ph_WM_APP_DEF_MANAGED 541
Ph_WM_BACKDROP 540, 541
Ph_WM_CLOSE 391, 540–543
Ph_WM_COLLAPSE 540
Ph_WM_CONSWITCH 540, 541
Ph_WM_FFRONT 540, 541
Ph_WM_FOCUS 540, 541
Ph_WM_HELP 354, 355, 540–542
Ph_WM_HIDE 540, 541

May 13, 2010 Index 671

Index © 2010, QNX Software Systems GmbH & Co. KG.

Ph_WM_MAX 540, 541
Ph_WM_MENU 540, 541
Ph_WM_MOVE 540, 541
Ph_WM_NO_FOCUS_LIST 540
Ph_WM_RENDER_BORDER 539
Ph_WM_RENDER_CLOSE 539
Ph_WM_RENDER_COLLAPSE 539
Ph_WM_RENDER_HELP 354, 539
Ph_WM_RENDER_INLINE 539
Ph_WM_RENDER_MAX 539
Ph_WM_RENDER_MENU 539
Ph_WM_RENDER_MIN 539
Ph_WM_RENDER_RESIZE 539
Ph_WM_RENDER_TITLE 539
Ph_WM_RESIZE 540–542
Ph_WM_RESTORE 540, 541
Ph_WM_STATE_ISALTKEY 544
Ph_WM_STATE_ISBACKDROP 544
Ph_WM_STATE_ISBLOCKED 544
Ph_WM_STATE_ISFOCUS 544
Ph_WM_STATE_ISFRONT 544
Ph_WM_STATE_ISHIDDEN 544
Ph_WM_STATE_ISMAX 544, 547
Ph_WM_TOBACK 540, 541
Ph_WM_TOFRONT 540, 541
ph library 17, 555, 585
PhAB

balloon help 73
clipboard 148, 149, 622
context-sensitive help 73
control panels 76

about 27
Callbacks 81, 140, 182, 191
color resources 167
displaying 76
editing callback resources 182
editing menu items 123
editing raw callbacks 191
finding 76
font resources 170
instance name 81, 133
list resources 171
Module Links 84
Module Tree 82, 136, 137, 139, 140, 145
next and previous buttons 81, 139, 140,

146

pixmap resources 162
positioning 76
resource names 81, 89
Resources 80, 140, 161, 200
resources displayed 117, 138, 161
resources not displayed 81
selecting widgets 81, 137, 139, 140, 146,

200
text resources 173

copyright information 73
customizing 87
dialogs

Search 140
exiting 67, 621
grid 90
help 73
menubar 26, 67
Microsoft Windows, running on 621
NFS, use with 98
Search dialog 86
SMB, use with 98
starting 25
toolbars 26, 73
version number 73
widget palette 27, 77
work area 27, 118

PhAB Concepts (Help menu) 73
PhAB Library API (Help menu) 73
phablang 344, 349
PhabMsg 343
PhAddMergeTiles() 399
PhAllocPackType() 505
PhArea_t 267
PhAreaToRect() 267
PhAttach() 556
PhChannelAttach() 368
PhClipTilings() 399
PhCoalesceTiles() 399
PhConnectId_t 545
PhCopyTiles() 399
PhCreateImage() 417
PhCreateTransportCtrl() 504
PhDCRelease() 429
PhDeTranslateRect() 267
PhDeTranslateTiles() 399
PhDim_t 267

672 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

phditto 418
PhDragEvent_t 535
PhEmit() 525
PhEmitmx() 526
PhEvent_t 523, 525
PhEventArm() 531
PhEventNext() 531
PhEventPeek() 531
PhEventRead() 531
PhEventRegion_t 525
phexlib library 16, 17, 555, 587
PhFindTransportType() 504
PhFreeTiles() 399
PhFreeTransportType() 505
PhGetAllTransportHdrs() 505
PhGetConnectInfo() 545
PhGetData() 305, 523, 524, 531
PhGetNextInlineData() 505
PhGetNextTransportHdr() 505
PhGetRects() 531
PhGetTile() 399
PhGetTransportHdr() 505
PhGetTransportVectors() 505
PhImage_t 423

creating 417
image types 416

phindows 418
PHINDOWSOPTS 622
PhInitDrag() 532
PhInputGroup() 571
PhIntersectTilings() 399
PhKeyEvent_t 527, 587
PhLibVersion() 18
PhLinkTransportData() 505
PhLocateTransHdr() 505
PhMakeTransBitmap() 419
PhMakeTransparent() 418
PhMallocUnpack() 506
PhMergeTiles() 399
PHOTON_PATH environment variable 597
Photon coordinate space 509, 510, 567, 571,

572
Photon hook 309
photon library 18, 555
Photon Manager 514, 515, 525, 526, 528, 529,

531, 563, 565, 568–571, 573

Photon pulses See pulses
Photon Window Manager 120, 184, 514, 557,

570–573
taskbar 247, 248
workspace menu 573

PHOTONOPTS 621
PhPackEntry() 505
PhPackType() 505
PhPoint_t 267
PhPointerEvent_t 523, 524
PhQuerySystemInfo() 519
PhRect_t 267
PhRectIntersect() 267
PhRectsToTiles() 399
PhRectToArea() 267
PhRectUnion() 267
PhRegion_t 517, 545
PhRegionChange() 512, 518
PhRegionOpen() 510, 512
PhRegionQuery() 517, 518, 545
PhRegisterTransportType() 499, 504
phrelay 418
PhReleaseImage() 421
PhReleaseTransportCtrl() 505
PhReleaseTransportHdrs() 506
phrender library 17
PhRid_t 509
PhSortTiles() 399
PhSysInfo_t 519
PhTile_t 267, 398
PhTilesToRects() 399
PhTimerArm() 268
PhTranslateRect() 267
PhTranslateTiles() 399
PhTransportCtrl_t 504
PhTransportFindLink() 505
PhTransportFixupRec_t 499, 502
PhTransportLink_t 505
PhTransportRegEntry_t 498, 504
PhTransportType() 505
PhUnlinkTransportHdr() 506
PhUnpack() 506
PhWindowChange() 546
PhWindowClose() 546
PhWindowEvent_t 542
PhWindowOpen() 546

May 13, 2010 Index 673

Index © 2010, QNX Software Systems GmbH & Co. KG.

PhWindowQueryVisible() 546
PiConvertImage() 420
PiCropImage() 420, 421
pictures

as widget database 130, 422
displaying 130
modules 130, 330, 331, 341

accessing and displaying 327
resizing 130

PiDuplicateImage() 420, 421
pies 410
PiFlipImage() 420, 421
PiGetPixel() 420
PiGetPixelFromData() 420
PiGetPixelRGB() 420
pipes 377
PiResizeImage() 420
PiSetPixel() 420
PiSetPixelInData() 420
pixels 412
pixmap editor 162
PkKeyDef.h 584
PkKeyDef.h 188
platforms supported 18
plugins

Launcher 115
Shelf 115

PmMemCreateMC() 425
PmMemFlush() 425
PmMemReleaseMC() 425
PmMemSetChunkSize() 425
PmMemSetMaxBufSize() 425
PmMemSetType() 425
PmMemStart() 425
PmMemStop() 425
point (PhPoint_t) 267
point-and-click selection method 137
pointer

buttons, multiple clicks 523
events 558, 567, 569, 570, 573

buttons 523
cooked (focused) 569
raw (unfocused) 569

focus 569
polygons 408

overlapping 409

PowerPC, support for 18
PpContinueJob() 480, 483
PpCreatePC() 478
PpEndJob() 483
PpFreePrinterList() 478
PpGetCanvas() 478
PpGetPC() 477, 478
PpLoadDefaultPrinter() 478
PpLoadPrinter() 478
PpLoadPrinterList() 478
PpPrintContext_t 477
PpPrintNewPage() 481
PpPrintWidget() 481
PpReleasePC() 484
PpSetCanvas() 478
PpSetPC() 477, 478
PpStartJob() 480
PpSuspendJob() 483
Preferences

Grid 90
Preferences (Edit menu) 88
Preferences (Options menu) 69, 81
press-drag-release (PDR) method 129
print command, specifying 89
print contexts

creating 478
example 484
freeing 483
modifying 478
PpPrintContext_t 477
printing 478

printing
about 477
available printers 478
closing 483
example 484
new page 481
nonprintable margins 478
print context

freeing 483
print contexts 477

creating 478
data type 477
modifying 478

resuming 483
source

674 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

offset 480
size 478

starting 478
suspending 483
widgets 481

PpPrintWidget() 481
PtList 481
PtMultiText 482
PtScrollArea 482
scrolling widgets 481

Project menu 69
Add Dialog 69
Add Menu 69
Add Picture Module 69
Add Window 69
Edit Mode 69, 75
Generate Report 69
Language Editor

Generate Language Database 342
Run Language Editor 343

Project Properties 100, 106
Properties 238
Test Mode 69, 75
Zoom Mode 69, 75

Project Properties (Project menu) 100, 106
Project Properties dialog 100, 238
Properties (Application menu) 70
Properties (Project menu) 238
proto.h 235, 237, 238

potential problems 239
prototypes 238

potential problems 239
Pt_ARG_ACCEL_KEY 187

multilingual applications 346
Pt_ARG_ANCHOR_FLAGS 206
Pt_ARG_ANCHOR_OFFSETS 207
Pt_ARG_AREA 13, 81
Pt_ARG_BASIC_FLAGS 11
Pt_ARG_BEVEL_WIDTH 11, 281
Pt_ARG_BUTTON_TYPE 272
Pt_ARG_CBOX_FLAGS 283
Pt_ARG_CONTAINER_FLAGS 142, 187, 189
Pt_ARG_CURSOR_OVERRIDE 291
Pt_ARG_DIM 11, 81, 147, 199
Pt_ARG_EFLAGS 354
Pt_ARG_EXTENT 13, 81

PT_ARG_FILL_LAYOUT_INFO
editing 176

Pt_ARG_FLAGS 11, 142, 187, 189, 190, 287,
381, 491, 493, 530, 532, 543, 558

PT_ARG_GRID_LAYOUT_DATA
editing 180

PT_ARG_GRID_LAYOUT_INFO
editing 178

Pt_ARG_GROUP_FLAGS 202
Pt_ARG_GROUP_ORIENTATION 201
Pt_ARG_GROUP_ROWS_COLS 201
Pt_ARG_GROUP_SPACING 201, 202
Pt_ARG_HELP_TOPIC 354
Pt_ARG_ITEMS 282
Pt_ARG_LABEL_IMAGE 282, 418, 419, 422
Pt_ARG_LABEL_TYPE 110, 418, 419, 422
Pt_ARG_MARGIN_HEIGHT 12
Pt_ARG_MARGIN_WIDTH 12
Pt_ARG_MENU_FLAGS 272
Pt_ARG_POINTER 283, 400
Pt_ARG_POS 12, 81, 199, 535
Pt_ARG_RAW_CALC_OPAQUE_F 395
Pt_ARG_RAW_CONNECT_F 395
Pt_ARG_RAW_DRAW_F 395, 396
Pt_ARG_RAW_EXTENT_F 395
Pt_ARG_RAW_INIT_F 395
Pt_ARG_RESIZE_FLAGS 195, 196, 198
PT_ARG_ROW_LAYOUT_DATA

editing 179
PT_ARG_ROW_LAYOUT_INFO

editing 177
Pt_ARG_STYLE 307
Pt_ARG_TERM_ANSI_PROTOCOL 284
Pt_ARG_TEXT_STRING 281, 288
Pt_ARG_TIMER_INITIAL 268, 423
Pt_ARG_TIMER_REPEAT 268, 423
Pt_ARG_USER_DATA 282, 400
Pt_ARG_WINDOW_HELP_ROOT 354
Pt_ARG_WINDOW_MANAGED_FLAGS 354,

391, 539–541, 543, 546
Pt_ARG_WINDOW_NOTIFY_FLAGS 539,

541–543
Pt_ARG_WINDOW_RENDER_FLAGS 354,

539, 547
Pt_ARG_WINDOW_STATE 539, 544, 547
Pt_ARG() 279

May 13, 2010 Index 675

Index © 2010, QNX Software Systems GmbH & Co. KG.

Pt_AS_REQUIRED 199
Pt_BLOCK_CUA_FOCUS 142
Pt_BLOCKED 381, 530
Pt_BOTTOM_ANCHORED_BOTTOM 206
Pt_BOTTOM_ANCHORED_TOP 206
Pt_BOTTOM_IS_ANCHORED 207
Pt_CB_ACTIVATE 129, 181, 271, 299

modifier keys 524
Pt_CB_ARM 129, 181, 532, 533
Pt_CB_BLOCKED 530
Pt_CB_DESTROYED 10, 297, 543
Pt_CB_DISARM 181
Pt_CB_DND 493
Pt_CB_FILTER 191, 528, 534

adding 191, 303
removing 304

Pt_CB_GOT_FOCUS 143
Pt_CB_HOTKEY 125, 187

multilingual applications 346
Pt_CB_IS_DESTROYED 10, 543
Pt_CB_LOST_FOCUS 143, 298
Pt_CB_MENU 181
Pt_CB_OUTBOUND 490, 532
Pt_CB_RAW 191, 528, 534

adding 191, 303
removing 304

Pt_CB_REALIZED 10
Pt_CB_REPEAT 181
Pt_CB_RESIZE 229
Pt_CB_TIMER_ACTIVATE 268, 423
Pt_CB_UNREALIZED 10
Pt_CB_WINDOW 542, 543
Pt_CB_WINDOW_CLOSING 542, 543
Pt_COMBOBOX_STATIC 283
Pt_CONSUME 529, 530
Pt_CONTINUE 185, 265, 266, 368, 530
Pt_DEFAULT_PARENT 271, 297, 557
Pt_DELAY_EXIT 391
Pt_DELAY_REALIZE 558
Pt_DESTROYED 543
Pt_DND_SELECT_DUP_DATA 495
Pt_DND_SELECT_MOTION 495
Pt_DND_SILENT 494
Pt_ENABLE_CUA 143
Pt_ENABLE_CUA_ARROWS 143
Pt_END 265, 305, 368, 369, 377, 386

Pt_EVENT_PROCESS_ALLOW 389, 390
Pt_EVENT_PROCESS_PREVENT 390
Pt_FOCUS_RENDER 142
Pt_GETS_FOCUS 142, 187, 189
Pt_GHOST 189
Pt_GROUP_EQUAL_SIZE 202
Pt_GROUP_EQUAL_SIZE_HORIZONTAL 202
Pt_GROUP_EQUAL_SIZE_VERTICAL 202
Pt_GROUP_EXCLUSIVE 202
Pt_GROUP_HORIZONTAL 201
Pt_GROUP_NO_KEY_WRAP_HORIZONTAL 202
Pt_GROUP_NO_KEY_WRAP_VERTICAL 202
Pt_GROUP_NO_KEYS 202
Pt_GROUP_NO_SELECT_ALLOWED 202
Pt_GROUP_STRETCH_FILL 203
Pt_GROUP_STRETCH_HORIZONTAL 203
Pt_GROUP_STRETCH_VERTICAL 202
Pt_GROUP_VERTICAL 201
Pt_HALT 266, 368
Pt_HIGHLIGHTED 11
Pt_HOTKEY_TERMINATOR 189
Pt_HOTKEYS_FIRST 189
Pt_HOTKEYS_FIRST 187
Pt_IGNORE 529
Pt_IMAGE 110, 418, 419, 422
Pt_INITIAL 199
Pt_INTERNAL_HELP 354
Pt_LEFT_ANCHORED_LEFT 206
Pt_LEFT_ANCHORED_RIGHT 206
Pt_LEFT_IS_ANCHORED 207
Pt_LINK_DELETE 284
Pt_LINK_INSERT 284
Pt_MENU_CHILD 272
Pt_MENU_DOWN 272
Pt_MENU_RIGHT 272
Pt_NO_PARENT 297, 557
Pt_PROCESS 529
Pt_REGION 558
Pt_RESIZE_X_ALWAYS 196
Pt_RESIZE_X_AS_REQUIRED 197
Pt_RESIZE_X_BITS 199
Pt_RESIZE_X_INITIAL 197
Pt_RESIZE_XY_ALWAYS 197
Pt_RESIZE_XY_AS_REQUIRED 197
Pt_RESIZE_XY_BITS 199
Pt_RESIZE_XY_INITIAL 197

676 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

Pt_RESIZE_Y_ALWAYS 197
Pt_RESIZE_Y_AS_REQUIRED 197
Pt_RESIZE_Y_BITS 199
Pt_RESIZE_Y_INITIAL 197
Pt_RIGHT_ANCHORED_LEFT 206
Pt_RIGHT_ANCHORED_RIGHT 206
Pt_RIGHT_IS_ANCHORED 207
Pt_SELECT_NOREDRAW 187
Pt_SELECTABLE 187, 189, 190, 491, 493, 532
Pt_STYLE_ACTIVATE 306
Pt_STYLE_CALC_BORDER 306
Pt_STYLE_CALC_OPAQUE 306
Pt_STYLE_DATA 306
Pt_STYLE_DEACTIVATE 306
Pt_STYLE_DRAW 306
Pt_STYLE_EXTENT 306
Pt_STYLE_NAME 306
Pt_STYLE_SIZING 306
Pt_TEXT_IMAGE 418, 419, 422
Pt_TOP_ANCHORED_BOTTOM 206
Pt_TOP_ANCHORED_TOP 206
Pt_TOP_IS_ANCHORED 207
PtAddCallback() 271, 299, 300, 555
PtAddCallbacks() 299, 300, 555
PtAddClassStyle() 306
PtAddEventHandler(), PtAddEventHandlers()

303
PtAddFilterCallback(), PtAddFilterCallbacks()

303
PtAddHotkeyHandler() 190
PtAddResponseType() 491
PtAlert() 123

multilingual applications 339
PtAllowExit() 391
PtAppAddFd() 377
PtAppAddFdPri() 377
PtAppAddInput() 367
PtAppAddSignalProc() 376
PtAppAddWorkProc() 382
PtAppContext_t 367, 372–374, 376, 383
PtAppCreatePulse() 372
PtAppDeletePulse() 374
PtAppInit() 489, 555
PtAppPulseTrigger() 373
PtAppRemoveInput() 369
PtAppRemoveSignal() 377

PtAppRemoveWorkProc() 383
PtAppSetFdMode() 377
PtArg_t 279
PtBasic 12, 181
PtBezier 136
PtBkgdHandlerProcess() 381, 382, 397
PtBlockAllWindows() 547
PtBlockWindow() 547
PtButton 299, 418, 419, 422
PtCalcCanvas() 397
PtCalcSurface() 318
PtCalcSurfaceByAction() 318
PtCalcSurfaceById() 318
PtCallback_t 300
PtCallbackInfo_t 265, 266, 271, 301
PtCallbackList_t 302
PtCancelDnd() 497
PtCheckSurfaces() 318
PtChildType() 298
PtClipAdd() 398
PtClipRemove() 398
PtComboBox 280
PtCondTimedWait() 389, 391
PtCondWait() 389, 391
PtConnectionAddEventHandlers() 361
PtConnectionAddMsgHandlers() 361
PtConnectionClient_t 361
PtConnectionClientDestroy() 361
PtConnectionClientGetUserData() 361
PtConnectionClientSetError() 361, 369
PtConnectionClientSetUserData() 361
PtConnectionFindId() 361
PtConnectionFindName() 361
PtConnectionFlush() 361
PtConnectionNotify() 361, 362
PtConnectionReply(), PtConnectionReplymx()

361
PtConnectionResizeEventBuffer() 361
PtConnectionSend(), PtConnectionSendmx()

361, 362
PtConnectionServer_t 361
PtConnectionServerDestroy() 361
PtConnectionServerGetUserData() 361
PtConnectionServerSetError() 361, 369
PtConnectionServerSetUserData() 361
PtConnectionTmpName() 360

May 13, 2010 Index 677

Index © 2010, QNX Software Systems GmbH & Co. KG.

PtConnectionWaitForName() 361
PtConnectorCreate() 360
PtConnectorDestroy() 361
PtConnectorGetId() 360
PtConsoleSwitch() 546
PtContainer 195, 199
PtContainerCallback_t 229
PtContainerGiveFocus() 298
PtContainerHold() 275
PtContainerRelease() 275
PtCRC() 418
PtCRCValue() 418
PtCreateActionSurface() 317
PtCreateClassStyle() 306
PtCreateSurface() 317
PtCreateTransportCtrl() 491
PtCreateWidget() 270, 271, 279, 297, 300, 555,

557
PtDamageSurface() 318
PtDamageSurfaceByAction() 318
PtDamageSurfaceById() 318
PtDamageWidget() 397
PtDestroyAllSurfaces() 317
PtDestroySurface() 317
PtDestroyWidget() 10, 543
PtDisableSurface() 319
PtDisableSurfaceByAction() 319
PtDisableSurfaceById() 319
PtDndFetch_t 494
PtDndSelect() 494
PtDupClassStyle() 306
PtEnableSurface() 319
PtEnableSurfaceByAction() 319
PtEnableSurfaceById() 319
PtEndFlux() 275
PtEnter() 387, 391
PtExit() 49, 391
PtExtentWidget(), PtExtentWidgetFamily() 13
PtFdProc_t 377
PtFileSelection() 123, 382
PtFillLayout 210

example 210
PtFindClassStyle() 306
PtFindDisjoint() 298
PtFindFocusChild() 298
PtFindGuardian() 298

PtFindSurface() 319
PtFindSurfaceByAction() 319
PtFlush() 276, 368, 378, 382
PtFontSelection() 123
PtForwardWindowEvent() 545, 546
PtForwardWindowTaskEvent() 545, 546
PtGetParent() 272, 298
PtGetParentWidget() 298
PtGetResource() 291
PtGetResources() 279, 286–291, 302
PtGetStyleMember() 307
PtGetWidgetStyle() 307
PtGridLayout 216

example 216
PtGroup 200, 203

flags 202
PtHelpQuit() 355
PtHelpSearch() 355
PtHelpTopic() 355
PtHelpTopicRoot() 355
PtHelpTopicTree() 355
PtHelpUrl() 355
PtHelpUrlRoot() 355
PtHideSurface() 319
PtHideSurfaceByAction() 319
PtHideSurfaceById() 319
PtHold() 275
PtHook() 309
PtHook.so 309
pthread_cond_wait() 389
pthread_exit() 391
PtInit() 387, 489, 555, 556
PtInitDnd() 491, 494
PtInputCallbackProc_t 367
PtInputCallbackProcF_t 368
PtInsertSurface() 320
PtInsertSurfaceById() 320
PtIsFluxing() 275
PtLabel 110, 173, 418, 419, 422
PtLeave() 387, 391
PtLinkedList_t 290
PtList 171

printing 481
PtMainLoop() 388, 389, 531, 555, 558
PtMakeModal() 547
PtMenu 272

678 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

PtMenuBar 43, 129
PtMenuButton 129, 270

hotkeys 188
PtMessageBox() 123
PtModalBlock() 389, 390, 547
PtModalCtrl_t 548
PtModalUnblock() 390, 547
PtMultiText 173

printing 482
PtNextTopLevelWidget() 298
PtNotice() 123

multilingual applications 339
PtOSContainer 424
PtPanelGroup 77
PtPassword() 123
PtPolygon 136
PtPreventExit() 391
PtPrintPropSelect() 123, 478
PtPrintSel 478
PtPrintSelect() 123, 478
PtPrintSelection() 123, 478
PtProcessEvent() 382, 387, 389
PtPrompt() 123

multilingual applications 339
PtPulseArm() 372
PtPulseMsg_t 371
PtQuerySystemInfo() 519
PtRaw 17, 175, 395, 424

canvas 397
clipping 398
damage tiles 398
drawing function 396

examples 400
dynamic contents 400
translating coordinates 397

PtRawCallback_t 303
PtRawCallbackList_t 303
PtRealizeWidget() 10, 297, 555, 557, 558
PtRelease() 275
PtReleaseTransportCtrl() 497
PtRemoveCallback(), PtRemoveCallbacks()

301
PtRemoveEventHandler(),

PtRemoveEventHandlers() 304
PtRemoveFilterCallback(),

PtRemoveFilterCallbacks() 304

PtRemoveHotkeyHandler() 190
PtReparentWidget() 297
PtRowLayout 212

example 212
PtScrollArea

printing 482
PtScrollbar

control surfaces 315
PtSendEventToWidget() 527
PtSetArg() 207, 270, 279, 281–284, 286–291,

300, 302, 557
PtSetClassStyleMethods() 307
PtSetParentWidget() 271, 272, 297, 333
PtSetResource() 9, 199, 285
PtSetResources() 9, 270, 279, 281–285, 300
PtSetStyleMember() 307
PtSetStyleMembers() 307
PtSetWidgetStyle() 307
PtShowSurface() 319
PtShowSurfaceByAction() 319
PtShowSurfaceById() 319
PtSignalProc_t 377
PtSpawnWait() 382
PtStartFlux() 275
PtSuperClassDraw() 396
PtSurfaceActionId() 317
PtSurfaceAddData() 320
PtSurfaceAddDataById() 320
PtSurfaceBrotherBehind() 320
PtSurfaceBrotherInFront() 320
PtSurfaceCalcBoundingBox() 318
PtSurfaceCalcBoundingBoxById() 318
PtSurfaceExtent() 318
PtSurfaceExtentById() 318
PtSurfaceGetData() 320
PtSurfaceGetDataById() 320
PtSurfaceHit() 318
PtSurfaceId() 317
PtSurfaceInBack() 320
PtSurfaceInFront() 320
PtSurfaceIsDisabled() 319
PtSurfaceIsEnabled() 319
PtSurfaceIsHidden() 320
PtSurfaceIsShown() 320
PtSurfaceRect() 318
PtSurfaceRectById() 318

May 13, 2010 Index 679

Index © 2010, QNX Software Systems GmbH & Co. KG.

PtSurfaceRemoveData() 320
PtSurfaceRemoveDataById() 320
PtSurfaceTestPoint() 318
PtSurfaceToBack() 320
PtSurfaceToBackById() 320
PtSurfaceToFront() 320
PtSurfaceToFrontById() 320
PtText 173
PtTimer 268, 423
PtTimerArm() 268
PtTransportCtrl_t 491
PtTransportRequestable() 491
PtTransportType() 491
PtUnblockWindows() 547
PtUnrealizeWidget() 10, 543, 558
PtUpdate() 275
PtValidParent() 298, 482
PtWidget 528
PtWidget_t 266
PtWidget.h 199
PtWidgetActiveSurface() 319
PtWidgetBrotherBehind() 299
PtWidgetBrotherInFront() 299
PtWidgetChildBack() 299
PtWidgetChildFront() 299
PtWidgetClassStyle_t 307
PtWidgetExtent() 13
PtWidgetFamily() 299
PtWidgetInsert() 298
PtWidgetParent() 299
PtWidgetRid() 532
PtWidgetSkip() 299
PtWidgetToBack() 298
PtWidgetToFront() 298
PtWidgetTree() 299
PtWidgetTreeTraverse() 299
PtWindow 199, 539

managed flags 354, 540, 546
notify flags 540–542
render flags 354, 539, 547
state 544, 547

PtWindowConsoleSwitch() 546
PtWindowGetFrameSize() 546
PtWorkProc_t 383
PtWorkProcId_t 383
pulses 371

arming 372
creating 372
delivering

from a Photon application 375
to yourself 373

destroying 374
PtPulseMsg_t 371
receiving 372

example 374
registering an input handler 373
sending to the deliverer 373
sigevent 371

PWM 120, 184, 514, 539, 557, 570–573
Microsoft Windows 621
options 621
taskbar 247, 248
workspace menu 573

PWMOPTS 621
PX_TRANSPARENT 419
PxLoadImage() 417, 419–421, 423
PxMethods_t 419
PxRotateImage() 420
PxTranslateFromUTF() 586
PxTranslateList() 587
PxTranslateSet() 587
PxTranslateStateFromUTF() 587
PxTranslateStateToUTF() 587
PxTranslateToUTF() 587
PxTranslateUnknown() 587

Q

qcc 556

R

radio buttons 202
Raw callbacks 190, 528, 534, 558
realizing 10, 14, 16, 19, 103, 195, 196, 198,

199, 201, 205, 265, 328, 555, 557, 558
delaying 558

realtime 389
Rebuild All (Build menu) 70

680 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

rectangles
data types
PhArea_t 267
PhRect_t 267
PhTile_t 267, 398

draw primitives
beveled 407
rounded 406
simple 406

Red-Green-Blue (RGB) representation 401
Redo (Edit menu) 68
regions 3, 563, 565

active 573
application 569, 573
backdrop 518, 573
brother 514

behind 515, 517
in front 515, 517
specifying 518

child 512, 513, 567
coordinates 509
creating 555, 557
defined 509, 563
destroying 512
device 510, 569–571, 573
driver 569
event clipping 512
event notification 568

asynchronous 569
polling 568
synchronous 569

events 303, 529, 531
focus 573
hierarchy 513
ID (PhRid_t) 509
initial dimensions 510
initial locations 510
keyboard events 570
location 567
moving 512
notification of events 568

asynchronous 569
polling 568
synchronous 569

opacity 526, 565–567
opening 517

origin 509–511, 528
parent 512–514, 567

changing 518
PhRegion_t 517, 545
placement 514, 517

changing 518
default 515
specific 517

querying 517, 545
root 509, 510, 512–514, 518, 567,

569–571, 573
defined 567

sensitivity 565–567
system information 519–520
PhSysInfo_t 519

targeting events 526
window 573
window frame 518, 572, 573
workspace 510, 573

Repeat callbacks 181
Resize callbacks 229
resize events 229
resize handles, changing color 89
resize policy 195, 196

and anchor flags 196, 205
resources

application 292
editing 161

colors 34, 167
editor buttons 161
flags 32, 33, 168
fonts 32, 170
functions 175
layouts 176
lists 37, 171
numbers 31, 172
pixmaps 35, 162
text, multiline 36, 173
text, single line 173

getting 285
argument list 279
one 291

manifests 89
modifying values 287
names 89
not displayed in PhAB 81

May 13, 2010 Index 681

Index © 2010, QNX Software Systems GmbH & Co. KG.

setting 280, 557
argument list 279
one 285

types 279, 287
Resources (View menu) 80
Resources panel 80
Revert (File menu) 67
RGB representation 401
root region 509, 510, 512–514, 518, 567,

569–571, 573
defined 567

rounded rectangles 406
RtTimerCreate() 269
RtTimerDelete() 269
RtTimerGetTime() 269
RtTimerSetTime() 269
Run Language Editor (Project menu, Language

Editor submenu) 343

S

Save (File menu) 67, 74, 99
Save As (File menu) 67, 98, 99
scaling 442
scrolling 442
Search dialog 86
Select All (Edit menu) 68
Select All Children (Edit menu) 68
select mode 79, 136
Select New Platform dialog 234
Send To Back (Window menu) 73
setup functions See modules, setup function
SH-4, support for 18
shapes, complex (PgSpan_t) 412
shared libraries 17, 244, 555
shared memory 419, 421
Shelf plugin 115
shortcuts, keyboard 125, 127, 270
Show Grid (View menu) 72
Show Selection (View menu) 72
Show* (Window menu) 73
sigaddset() 377
sigemptyset() 377
sigevent 371
signals 376

Photon’s signal handler 376
processing function 376

adding 376
prototype 377
PtSignalProc_t 377
removing 377

single-platform development 241, 250
size (PhDim_t) 267
SMB and PhAB 98
Snap to Grid (View menu) 72
spans (PgSpan_t) 412
Split Apart (Edit menu) 203
src directory 240, 241
startup windows 101, 103
static libraries 17, 244, 555
stem names 462
stroke (line) attributes 404
structures See data types
styles 305
submenus 127
support xxx
support, technical xxx
surfaces 441
symbol metrics 459
system information 519–520

PhSysInfo_t 519

T

taskbar 247, 248
technical support xxx
templates

about 153
creating 153
deleting 157
editing 156
tutorial 39

Templates (Edit menu) 156
Test mode 145
Test Mode (Project menu) 69, 75
text

attributes 403
draw primitive 413
international characters 175, 281, 583
multiline editor 173

682 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

single-line editor 173
threads 387

condvars 389
event readers 389
exiting 391
modal operations 390
realtime 389
work procedures and 392

timers 267, 423
To Back (Edit menu) 145
To Back (Widget menu) 75
To Front (Edit menu) 145
To Front (Widget menu) 75
toolbars 26, 73
Tools + Techniques (Help menu) 73
TPR 623
Tr_ENDIAN_ARRAY() 498, 501
Tr_ENDIAN_REF() 498, 501
Tr_ENDIAN() 498, 501
Tr_FETCH() 502
Tr_REF_ARRAY() 502
Tr_REF_TYPE_ARRAY() 503
Tr_REF_TYPE_REF_ARRAY() 503
Tr_REF_TYPE() 503
Tr_STRING() 502
Tr_TYPE_ARRAY() 503
Tr_TYPE() 502
transferring

PhAB projects 622
transport mechanism 489

control structure (PtTransportCtrl_t)
491, 504

data (PhTransportLink_t) 505
PhTransportFixupRec_t 499, 502
registry 489

entry (PhTransportRegEntry_t)
498, 504

system-registered types 489
transport types, creating 497

true color 401
tutorials

applications, creating 27
callbacks 42
code, generating, compiling and running

28
dialogs 49

link callbacks 42
menus and menubars 42
PhAB overview 25
resources, editing

colors 34
flags 32, 33
fonts 32
lists 37
numerical 31
pixmaps 35
text 36

templates 39
windows 56

Tutorials (Help menu) 73
typographical conventions xxviii

U

Undo (Edit menu) 68
Ungroup (Widget menu) 71, 75
Unicode 583, 585

character values 584
Universal Resource Locator (URL) 353–355

restriction on scope 353
root 355, 356

unlock 75, 146
unrealizing 10, 16, 558
updates, delaying 275
Usemsg 236
Using hints 226
/usr/photon 597
UTF-8 584–586
UTF8_LEN_MAX 586
utf8len() 585
utf8strblen() 585
utf8strchr() 586
utf8strichr() 586
utf8strirchr() 586
utf8strlen() 586
utf8strnchr() 586
utf8strncmp() 586
utf8strndup() 586
utf8strnichr() 586
utf8strnlen() 586
utf8strrchr() 586

May 13, 2010 Index 683

Index © 2010, QNX Software Systems GmbH & Co. KG.

utf8towc() 586

V

version control 237
video memory offscreen 428
video modes 435
video overlay 437

channels (PgVideoChannel_t) 438
scaler capabilities (PgScalerCaps_t)

438
scaler properties (PgScalerProps_t)

438
view command, specifying 89
View menu 72

Actual Size 72
Callbacks 82
control panels 76
Fit in Window 72
Module Links 85
Module Tree 83
palettes 154
Resources 80
Show Grid 72
Show Selection 72
Snap to Grid 72
Widgets 78
Zoom 72

viewports 442

W

wcstombs() 585
wctolower() 586
wctomb() 585
wctoutf8() 586
Welcome to PhAB (Help menu) 73
wgt directory 117
wgt directory 241
wgtd extension 115, 122
wgtm extension 115, 123
wgtp extension 115, 130
wgtw extension 115, 121

wide characters 583
conversion functions 585

Widget menu
Align 71, 140
Alignment 75
Arrange 71
Change Class 71, 152
Define Template 72, 153
Distribute 71
Group 71, 75, 200
Lock 71
Match 71
Match Advanced 71
To Back 75
To Front 75
Ungroup 71, 75

widgets
absolute positioning 199
aligning

horizontally 201, 338
in rows and columns 201
to a parent widget 141
to another widget 141
using groups 200
vertically 201, 339

anchoring 75, 204–207
flags 206

blocked 530
border 11
canvas 11, 199
class 155
class methods 7

processing events 529
classes 7

changing 152
containers See also PtGroup

absolute positioning 199
aligning children 141
defined 133, 195
duplicating 150
focus 142, 143
geometry management 195
manipulating in PhAB 133
moving children between containers 147
PhAB modules 115
picture modules 130, 327

684 Index May 13, 2010

© 2010, QNX Software Systems GmbH & Co. KG. Index

positioning children 12, 140, 146, 195
Pt_CB_RESIZE 229
Resize callbacks 229
resize flags 198, 199
resize policy 196
selecting children 133
widget databases 330

copying 148
creating 10, 135

from code 297
custom

on Microsoft Windows 623
cutting 148
damaging 7, 275
databases 6, 19, 130, 262, 327, 330, 339

animation 422
creating 331
dynamic 332
functions 332
instance names 332
preattaching callbacks 331

defined 6
deleting 150
destroying 10, 16, 297
distributing 141
dragging 145
duplicating 150
events

handler 528
sending to 527

extent 13
family

container-class widgets 133
defined 8
functions dealing with 298
geometry negotiation 195
PtCreateWidget() 297, 555, 557

finding hidden 140
focus 142, 143, 298
focus callbacks 143
geometry 11, 557
grouping 200, 203
hierarchy 7
icon in PhAB 577
image 282
images 419

releasing 421
instance names 81, 110, 133, 149, 150, 257

generated by PhAB 135, 341
language databases 135, 340
starting with @ 135, 340

instances 9
instantiating 10, 14, 16, 557

from code 297
life cycle 9
locking 75, 146
margins 11
methods 305
moving 76, 145
moving between containers 147
nudging 76
ordering 144, 298
origin 12
palette 27, 77, 154
parent

default 297
reparenting 297

pasting 149
position 12, 147

constraints 229
positioning with a grid 90
printing 481

PpPrintWidget() 481
PtList 481
PtMultiText 482
PtScrollArea 482
scrolling widgets 481

PtWidget_t 266
realizing 10, 14, 16, 195, 196, 198, 199,

201, 297, 555, 557, 558
delaying 558

resize policy 195, 196
resizing 76, 147
resources 9

editing 161
manifests 89
names 89

selecting 136
bounding-box method 138
extended selection method 139
in control panels 137–139
Module Tree 137

May 13, 2010 Index 685

Index © 2010, QNX Software Systems GmbH & Co. KG.

multiple 138
parent container 137
point-and-click method 137
Shift–click method 138, 139
within a group 139

size constraints 229
styles 305
templates

about 153
creating 153
deleting 157
editing 156
tutorial 39

unlocking 75, 146
unrealizing 10, 16, 558
updates, delaying 275
user data 282, 283

Widgets (View menu) 78
window manager 120, 184, 514, 539, 557,

570–573
Microsoft Windows 621
options 621
standalone application 547
taskbar 247, 248
workspace menu 573

Window menu 72
Arrange Icons 72, 121
Arrange Modules 121
Cascade 72
Close 73
Close All 73
module names 117
Send To Back 73
Show* 73

windows
Alt combinations, passing to application

544
backdrop 544
blocking 544, 547
closing, verifying 543
focus, giving 544
frame

buttons 539
region 518, 572, 573

manifest 258
maximizing 544

minimizing 544
module 121, 539
placing in front 544
region 573
resizing 122
services 572
startup 101, 103
tutorial 56

Windows (Microsoft), running PhAB on 621
Winzip 622
work area 27, 118
work procedures 381, 382

function type (PtWorkProc_t) 383
ID (PtWorkProcId_t) 383
threads and 392

workspace
menu 573
region 510, 573

X

x86, support for 18
XBM images

importing 110

Z

zip 622
Zoom (View menu) 72
Zoom Mode (Project menu) 69, 75

686 Index May 13, 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

