Using JTAG Hardware Debuggers with the QNX
Neutrino RTOS

by Sheridan Ethier
1. Introduction

This document describes how to use JTAG hardware debuggers with the QNX Neutrino real-time operating
system for embedded software development. With QNX Neutrinos microkernel architecture, you rarely
have to use a hardware debugger. On those occasions when you need to use one, you’ll use it in a different
manner from on other operating systems. This article describes how JTAG hardware debuggers fit into the
QNX development cycle, what capabilities they provide, and what’s required in order to use them with the
QNX Neutrino RTOS. Finally, an example is provided that demonstrates debugging a QNX target using a
commercially available JTAG hardware debugger.

2. Software vs. Hardware Debuggers (pdebug vs. JTAG)

This section examines fundamental differences between QNX Neutrino and conventional RTOSs, and how
these differences affect debugging embedded software.

The QNX Neutrino RTOS architecture differs significantly from more traditional monolithic operating
systems, and as a result, it enhances the software development and debugging processes.

Traditional embedded software development often requires hardware debuggers connected through a JTAG
interface. This is necessary for development of drivers, and possibly user applications, because they’re
linked into the same memory space as the kernel. If a driver or application crashes, the kernel and system
may crash as a result. This makes using software debuggers difficult, because they depend on a running
system.

Debugging target systems with the QNX Neutrino RTOS is different because its architecture is
significantly different from other embeddable RTOSs. All QNX applications (including drivers) run in their
own memory-protected virtual address space. This has the advantage that the software is more reliable and
fault tolerant. However, conventional hardware debuggers rely on decoding physical memory addresses,
making them incompatible with debugging user applications based in a virtual memory environment.
Furthermore, QNX Neutrino lets you develop multi-threaded applications, which hardware debuggers
generally don’t support.

QNX provides a software debugging agent called pdebug that makes it easier for you to debug system
drivers and user applications. The pdebug agent runs on the target system and communicates with the host
debugger over a serial or Ethernet connection. It can debug virtual-memory-based and multi-threaded
applications. Even more, because all applications run in their own memory-protected address space, using a
software debugger is much more reliable than on traditional embedded RTOSs. In the event that a driver or
user application crashes, the system is protected and can be recovered by simply restarting the process. In
addition, you can stop and restart drivers and applications as required on a running system, making the
debugger easy to use and highly reliable.

Using pdebug for debugging applications and drivers is extremely reliable because crashing applications
don’t crash the kernel. However, the major constraint of using pdebug is that the kernel must already be
running on the target.

A Board Support Package (BSP) is the software responsible for initializing the system in preparation for
the kernel. Each target board requires its own BSP, which includes the Initial Program Loader (IPL) and

© 2004, 2007, QNX Software Systems. All rights reserved.

Startup program. The role of the IPL is to find where the QNX Neutrino image is located and then set up an
environment so that the Startup program (present in the image) can run. The role of the Startup program is
to configure the processor and hardware, detect system resources, and start the OS.

The IPL and Startup must run properly, so that the kernel and pdebug can run, and drivers and user
applications can be developed. In the case of BSP development, a software debug agent such as pdebug
isn’t available. However, the IPL and Startup program run with the CPU in physical mode, allowing them
to be debugged with conventional hardware debuggers. This is the primary function of the JTAG debugger
throughout the QNX software development phase. You use the hardware debugger to debug the QNX BSP
(IPL and Startup), and pdebug to debug drivers and applications once the kernel is running. You can also
use a hardware debugger to examine registers and view memory while the kernel and applications are
running, if you know the physical addresses.

Some hardware debuggers have built-in QNX Neutrino RTOS Awareness, which lets you use a JTAG to
debug applications. These debuggers can interpret kernel information as well as perform the necessary
translation between virtual and physical memory addresses to view application data. Currently, Lauterbach
provides QNX Neutrino RTOS integration support for their Trace32 hardware debugger, and Applied
Microsystems Corporation (AMC) is working on integrating PowerTAP and WireTAP products with QNX
Neutrino.

3. Producing Debug Symbol Information for IPL and Startup

You can use hardware debuggers to debug QNX IPL and Startup programs without any extra information.
However, in this case, you’re limited to assembly-level debugging, and assembler symbols such as
subroutine names aren’t visible. To perform full source-level debugging, you need to provide the hardware
debugger with the symbol information and C source code.

This section describes the steps necessary to generate the symbol and debug information required by a
hardware debugger for source-level debugging. The steps described are based on the PPC (PowerPC)
Board Support Package available for QNX Neutrino 6.2 for both IPL and Startup of the Motorola
Sandpoint hardware reference platform. The steps below are described for a QNX 6.2 self-hosted
environment, but the commands are similar under other development platforms. These examples assume
that you’re logged in on the development host with root privileges.

To generate symbol information for the IPL, you must recompile both the IPL library and the Sandpoint
IPL with debug information.

The general procedure is as follows:

Modify the IPL source.

Build the IPL library and Sandpoint IPL.

Burn the IPL into the flash memory of the Sandpoint board using a flash burner or JTAG.
Modify the sandpoint.Ink file to output ELF format.

Recompile the IPL library and Sandpoint IPL source with debug options.

Load the Sandpoint IPL ELF file containing debug information into the hardware
debugger.

oukrwnNE

Note: Be sure to synchronize the source code, the IPL burned into flash, and the IPL debug symbols.

To build the IPL library with debug information:

cd /usr/src/bsp-6.2.0/1libs/src/hardware/ipl/lib/ppc/a.be
make clean
make CCOPTS=-g

© 2004, 2007, QNX Software Systems. All rights reserved.

cp libipl.a /usr/src/bsp-6.2.0/ppc/sandpoint/scratch/ppcbe/lib
make install

The above steps recompile the PowerPC IPL library (libipl.a) with DWARF debug information and copy
this library to the Sandpoint scratch directory. The Sandpoint BSP is configured to look for this library first
in its scratch directory. The make install is optional, and copies libipl.a to /ppcbe/usr/lib.

Note: If you’re using the AMC hardware debugger, use the STABS format instead of DWARF, by
specifying -gstabs+ instead of the -g option.

The Sandpoint BSP has been set up to work with SREC format files. However, to generate debug and
symbol information to be loaded into the hardware debugger, you must generate ELF-format files.

Modify the sandpoint. 1nk file to output ELF format:
cd /usr/src/bsp-6.2.0/ppc/sandpoint/src/hardware/ipl/boards/sandpoint
Edit the file sandpoint.Ink, changing the first lines from:

TARGET (elf32-powerpc)
OUTPUT FORMAT (srec)
ENTRY (entry vec)

to:

TARGET (elf32-powerpc)
OUTPUT_ FORMAT (elf32-powerpc)
ENTRY (entry vec)

You can now rebuild the Sandpoint IPL to produce symbol and debug information in ELF format.
To build the Sandpoint IPL with debug information:

cd /usr/src/bsp-
6.2.0/ppc/sandpoint/src/hardware/ipl/boards/sandpoint/ppc/be
make clean

make CCOPTS=-g

The ipl-sandpoint file is now in ELF format with debug symbols from both the IPL library and Sandpoint
IPL.

Note: To rebuild the BSP, you need to change the sandpoint.Ink file back to outputting SREC format. It’s
also important to keep the IPL that’s burned into the Sandpoint flash memory in synch with the generated
debug information; if you modify the IPL source, you need to rebuild the BSP, burn the new IPL into flash,
and rebuild the IPL symbol and debug information.

You can use the objdump utility to view the ELF information.

To view the symbol information contained in the ipl-sandpoint file:

objdump -t ipl-sandpoint | less

© 2004, 2007, QNX Software Systems. All rights reserved.

You can now import the ipl-sandpoint file into a hardware debugger to provide the symbol information
required for debugging. In addition, the hardware debugger needs the source code listings found in the
following directories:

e /usr/src/bsp-6.2.0/ppc/sandpoint/src/hardware/ipl/boards/sandpoint
o Jusr/src/bsp-6.2.0/libs/src/hardware/ipl/lib
e /usr/src/bsp-6.2.0/libs/src/hardware/ipl/lib/ppc

To generate symbol information for Startup, you must recompile both the Startup library and Sandpoint
Startup with debug information.

The general procedure is as follows:
Modify the Startup source:

Build the Startup library and Sandpoint Startup with debug information.

Rebuild the image and symbol file.

Load the symbol file into the hardware debugger program.

Transfer the image to the Sandpoint target (burn into flash, transfer over a serial
connection).

rprwONPE

To build the Startup library with debug information:

cd /usr/src/bsp-6.2.0/1libs/src/hardware/startup/lib/ppc/a.be

make clean

make CCOPTS=-g

cp libstartup.a /usr/src/bsp-6.2.0/ppc/sandpoint/scratch/ppcbe/lib
make install

HHHHFH

The above steps recompile the PowerPC Startup library (libstartup.a) with DWARF debug information and
copy this library to the Sandpoint scratch directory. The Sandpoint BSP is configured to look for this
library first in its scratch directory. The make install is optional, and copies libstartup.a to /ppcbe/usr/lib.

Note: Once again, if you’re using the AMC hardware debugger, use the STABS format instead of
DWAREF, by specifying -gstabs+ instead of the -g option.

To build the Sandpoint Startup with debugging information:

cd /usr/src/bsp-
.2.0/ppc/sandpoint/src/hardware/startup/boards/sandpoint/ppc/be
make clean

make CCOPTS=-g

make install

HHH O H*

The above steps generate the file startup-sandpoint with symbol and debug information. Again, you can
use the gstabs+ debug option instead of -g. The make install is necessary, and copies startup-sandpoint
into the Sandpoint scratch directory, /usr/src/bsp6.2.0/ppc/sandpoint/scratch/ppche/boot/sys.

Note: You can’t load the startup-sandpoint ELF file into the hardware debugger to obtain the debug
symbols, because the mkifs utility adds an offset to the addresses defined in the symbols according to the
offset specified in the build file.

Modify the build file to include the +keeplinked attribute for Startup:

© 2004, 2007, QNX Software Systems. All rights reserved.

cd /usr/src/bsp-6.2.0/ppc/sandpoint/images
Modify the startup line of your build file to look like:

[image=0x10000]

[virtual=ppcbe,binary +compress] .bootstrap = {
[+keeplinked] startup-sandpoint -vvv -D8250
PATH=/proc/boot procnto-600 -vv

The +keeplinked option makes mkifs generate a symbol file that represents the debug information
positioned within the image filesystem by the specified offset.

Rebuild the image to generate symbol file:

cd /usr/src/bsp-6.2.0/ppc/sandpoint/images
make clean
make all (if you’re using one of the provided .build filesg)

or:
mkifs v r ../scratch myfile.build image

These commands create the symbol file, startup-sandpoint.sym. You can use the objdump utility to view
the ELF information.

To view the symbol information contained in the startup-sandpoint. sym file:
objdump -t startup-sandpoint.sym | less

You can now import the startup-sandpoint.sym file into a hardware debugger to provide the symbol
information required for debugging startup. In addition, the hardware debugger needs the source code
listings found in the following directories:

lusr/src/bsp-6.2.0/libs/src/hardware/startup/lib
lusr/src/bsp-6.2.0/libs/src/hardware/startup/lib/public/ppc
lusr/src/bsp-6.2.0/libs/src/hardware/startup/lib/public/sys
lusr/src/bsp-6.2.0/libs/src/hardware/startup/lib/ppc
lusr/src/bsp-6.2.0/ppc/sandpoint/src/hardware/startup/boards/sandpoint

If you have access to the kernel source files, you can use a hardware debugger to debug the QNX Neutrino
kernel. Follow a similar procedure as described above, modifying the build file to use the keeplinked
attribute on procnto:

Modify the build file to include the +keeplinked attribute for procnto:

[image=0x10000]

[virtual=ppcbe,binary +compress] .bootstrap = {
[+keeplinked] startup-sandpoint -vvv -D8250
[+keeplinked] PATH=/proc/boot procnto-600 -vv

4. Example using AMC PowerTAP JTAG and MWX-ICE

© 2004, 2007, QNX Software Systems. All rights reserved.

This section describes how to use a JTAG hardware debugger to debug QNX IPL and Startup programs for
the Motorola Sandpoint reference platform. The example is based on the AMC MWX-ICE debugger
connected to a PowerTAP JTAG.

We assume that you’ve installed the AMC PowerTAP and MWX-ICE debugger on the host and configured
them properly for the Sandpoint board, and that the target is connected and powered. This example also
assumes that the IPL already has been burned into flash memory.

Launch the MWX-ICE debugger, shown below:

o aloii
Fie [t Dmplen Motsbooks Actiors Wew Sircow Help

(2]] P (o e e o e o v o R e e o = [

Forca 0F Dowmlawd: (Tan 7 Ba

Coviliafidl 401 Fai Hadulel RINED hll!-l LB
Not In Source Hodule

el e — R
BOUTE: Stactup file: atastup.ins, nat Smmd, cootimsisg om
lugEer Teady for ComBarS, ..

Figure 1 - MWX-ICE Debugger main window.
Across the top of the main window is a row of buttons that you’ll use in the steps described below.

With the Connections window in focus, choose Actions—Define Ethernet Connection from the main
menu. Enter a name for the connection, and the IP address that the PowerTAP is configured to on the
network. After selecting OK, choose Actions—Connect to connect to the PowerTAP and target.
The output is displayed in the Command window.

You need to configure the MWX-ICE debugger for the particular target being used; consult AMC for
details. For this example, we’ve entered the following configuration commands in the Command window:

size read 4
mem_rd_del 0x500
pcimap mapb
bptype onchip

You can also use the Emulator Config window (Displays—Emulator Config) to set these values.

Note: This isn’t an exhaustive list of configurations required for this target. Also, AMC recommends the
memory read delay be between 0x500 and 0xF00.

© 2004, 2007, QNX Software Systems. All rights reserved.

Symbolic Name: I-.y_;pqu\gﬂ;..p

Host Mame: |1u.3n.9u.95

Gl B

PR AR 00 HLA5) - Do

BITE: Sraroup £Lle] srartap, s, mot Cownd, COnUINULNG o0 =
Debugpes candy foc commands...

» canfig wy powsctsp, ETHIREET, L0.30.30.835

» cannect wy_powsctap

Initialining the GeDuQEEr...

Opening CRhecnet smulstor nsasd 10.38.30.9%

File found is €1%\FowerTAM AR ipoweLTap enilofy, daT
Desmloading JTAG Eile C:)PowecTAMascipowertap\B1201. jtag
ATAG file dosnload cospleved

Tiet INITREGE walues Bawe hees read from the flle
PC: A Powes TAN sac\povec tag i LoagatdOev. dat™.
Iniciakizarion Finissed., .

E

Figure 2 The Define Ethernet Connection and Command windows.

At this point, the MWX-ICE debugger should be configured and ready to begin debugging the Sandpoint
reference platform via the PowerTAP.

This section describes how to debug the QNX IPL using the symbol information generated using the
Sandpoint BSP.

First, you must import the IPL symbols into the debugger.

From the main menu, choose File—Load to display the Load window.

Under List Files of type, select All Files [*.*].

Select the ipl-sandpoint ELF file generated in the previous section, and click OK.

After loading the symbol information, the debugger likely displays the Append new Directory
popup to request the location of the source files.

Select the directory where the IPL library source is located.

6. Repeat this for each of the IPL-related source directories listed at the end of the Generating IPL
Debug Symbols section, by selecting File—Append Source Path.

el N

o

SMWXPOWERTAP - Enter File bo Losd:

© 2004, 2007, QNX Software Systems. All rights reserved.

MWXPOWERTAP - Append new Directbory: K 2lx

Dhrechony M ame Fokdes:
cAgmxsdiihostpaind e\ bbaaschhardware plb
Help I

Figure 3 The Load Symbols and Append Directory windows.

The debugger is now ready to debug the IPL. To reset the target, click the Reset button.

To view the main() function from the Sandpoint IPL source code, bring the Code window in focus, set the
Mode to Source, type main in the text box, and click the Display button.

Beda: 1V Jourge © Aovsssly Biplay: |fuasn =

© HWEPTETH TAR] 10903095 - Code s Inlﬂ
Commard 603 Fam Eodulel EAIN Filel mais.c =
LB unsigred ing dmsge;

18 int matnivaid)

21 1

- =
23 4/ Init mpecld so the sezial ports will wesk

FL I

23 tnik_tcmcha[h:

26 tniR_naBTI08] 2

FLIE

28 /¢ locats the image
0 /¢ Image 13 locwted at OxgEBI0000
n

0 o

Figure 4 Viewing the source for the main() function.

The Code window displays the C source code for the main() function. In the Code window, right-click on
the line number in main() that you wish to break at, and select Go To Here from the popup menu. The
debugger runs the IPL program, and breaks on this line.

AP ER T AR 1.3, 30,95] - Conle: R = =
Cramardd &13 Tam Eodulm: EAIN File: maim.c _ﬂ
19 ine malnivsdd)
m
i
N
33 47 Imdv superld so the sexial ports will wegn =
M A
13 AnAE_ideehe ()1

] inie B3 dweed0dNi, LLED8O0, MO&MIDE, LEjs

© 2004, 2007, QNX Software Systems. All rights reserved.

AT H TAS] NS4] - Cade

Misdalel MATH Filen waif.o

19 int asinivaid)

21 [
2 M
23 MV Init mupexld so the secisl pocts will wack _l
24 M

p
2% iniE_nabI308() ;

FL

29 M7 locate tha image

0 #F Image i3 lecwted af CxELEO0000
n

13 inie_B2S0(dxfed0O3LE, L1SI00, LBAIOD, 16):

R 2=
Y =]
* DEBEE
* EAFT maLn
> g0 VAAINZ5R0 =
[Teap] Brask moduls RAIN Line 23 -
“ O

Figure 5 Running the IPL and breaking on the first line in main().

You can use the Stepin Src button, to step into the init_icache() function, and the Stepout
button, to step back out of it.

Coamard LT Rodule: TMIT_ICACHE File: inik Scecha.c -
LT veid anit_icschecwady |
] un g spT_hadon
L¥
an
il spr_hidd = gec_spe(FFOSO0_IFR_HIDO))
aE
n 47 Tumn on T-cache
a4 set_apr (FRCE03_EFR_HERO, spo_hadD | FFOSON_3FR_HIDO_ICE i
as L T S T T S
Fid
an ## Flush it
Fid set_apr (FRCE03_EFR_HERO, spo_hadD | FFOSOO_SFR_HIDO_ICE | FFOSD
F] L T S T T S
i
1] AF Leswe BT on =
i set_apr (FRCE0E_EFR_HEPO, spr_hadD | FFOSOY_SFR_HIDO_ICE)
i3] Ee T S T T S
M _[ﬂ
Al Jp|
S
Coamand LT Rodule: MATH File: main.c |
1% 1nt wadniwaid)
a0
i i
xS
23 4/ Iniv superld so the serial ports will work
FT
as AN G e (] -
Fid fi [kl i
n
aw Sy
9 47 lovene The Lwage
S Twege da Leceted ac DwdEE00000
n o
i
I e _B2E0 (hefedidkik, L15D00, Le4kild, 146)r
a4
i part_beyve {DdeD00ded, B
i1 bt byve fDwdei0idid, fatia b=
Al Jp|

Figure 6 Stepping in and out of the init_icache() function.

You can also debug the source code in the IPL library. For example, in the Code window, type
init_8250 inthe text box and push the Display button to view this function.

© 2004, 2007, QNX Software Systems. All rights reserved.

|:loll= 7 Fource © Assebiy Biupliy: | [inic_szio =

: =
Conmand &0 Fam Badulaz m.lz_mln_usu Fila: l.l.v_m_ﬂ
S woid inkc_ RIS (unsigred eddress, unsigned baed, wneigned ok, wnslme
&5 el med lag = O
25 el gned valugn
&1
E*) L
5 i
L5] £ This mounirs will iniviadiee che seleoned BIS0 serial
6l A om0 BMl pALANETELE,
B2 I
8
W "
(1] £ Ber Baud pane
5] i
61
(=] widug = L (baad * @il
2
-]
=l
[Temp] Brask mcdule EAIN line 26
e -_I
» Lisk init BIS0 p
Al _-d

Figure 7 Viewing IPL library source code.

To set a breakpoint in the init 8250() function, right-click over a line number and select Set Break
from the popup menu. The breakpoint is now indicated. You can also open the breakpoint display window
(Displays—Breakpoints) to see the breakpoint.

SN EPIST R TAF 10,90, 30.95] - Code i
Coamard B0 Fam Eodule: IRAGT DOVNLOAD B25D B !.l.q‘_-b-.'l_ﬂ

&3

&4 i

L] £ Bev Baud rave

L] i

&%

1] walue = oli/{bad & diwisoris -l

pese=RI0_LE, LLF_DLAE, LOE_DLAE|s
pesseREG_BLO, Swif, walue ¢ dwdihr
peseeREG BL1, Swif, walue > #jr
peseeRIG_LE, LEF_DLAR, Gjr

il i

W £ Ben dava bits oo &

T i =
Al J)
[ot TAHALI03095]- Coske R = |

Croamard 203 Tam Eodule: IMAGE DOWNLOAD 825D Filae: !.l.q-_-b-.'l_ﬂ
] &3

* 4 i

.] A4 Bex Baud Tate

* & i

- &%

b4 L] walue = olid{bad & dwisoris -l

[1]

H

1 ser_porsdeddresssREG_LE, LOR_DLAE, LLR_DLAE)a

T st _pordeddresssREG_BLO, dwif, walue ¢ dwdihr

Th ser_porsdeddresssRE0_DLL, dwif, walue >> @)

4 ser_porsdeddresssREG_LE, LOR_DLAE, Ojr

]]

il i

" £ Ben dava bita e &

T i =
Al 0|

Figure 8 Setting and viewing a breakpoint in the init_8250() function.

© 2004, 2007, QNX Software Systems. All rights reserved.

BT =Imi x|
e Tepe Spahol Srmm
*ORTRART Tamir WTOARE_BPAPVLMAS_AESAY iob o SEARLEAR Y THARE_DOMMLE AN _£X50ydkzi

Al A

Figure 9 The Breakpoints window.

You can click the Go button, to let the program run until it reaches the breakpoint. Once the debugger
has stopped on the breakpoint, you can print data values by right-clicking on top of a variable and
selecting Print.

et T A 1030, H.95] - Casle '.:ﬂ_._ =10 =
Coamarsd £03 Fam Eodule: IMAGE TOWNLOAD 8250 Filae: !lm_m_ﬂ
b} L+
L &4 i
.] 44 Bev Baud Tate
* i
L
4 s [walue = g1/ (paud © dlvigor) s -
L1
W
7 ser_portisddresasRIG_LL, LER_DLAE, LCR_DLAE|)
£F set_portdsddresssFEG_DLO, SwEf, walue & DMEEh)
T3 set_portdsddresssBEG_DLL, Swif, walue »> 8)7
74 set_portdsddresssFIG_LL, LOR_DLAR, O))
1]
£ i

W A4 Ber data Bivs e &

A =10l x|
Cramand £09 Fam Eodule: IMAGE SOWNLOAD 850 File: image_sswnla|
= 2
* 64 i
b] /¢ Ben Bad Tane
b] e
.
+ o
1 SET_POrTieddress pamen ER_DLAE|
] 2T POTTIolIIEs pris frc B oo Dweehs
) set porsieddies? poyuen Y
14 set_portisddress oo !
-3
2% " Frink &
™ I s G B T
" i et npi |
(2l L]
S T
15 =
PRI —— A L] e
» print clk Sat Jruty Bregh
1843500 St Inaly Break fekdr
» print baud 1

115200 =

Figure 10 Hitting the breakpoint, and printing variable data.

Processors have a limited number of hardware breakpoints. After stopping at the hardware breakpoint, you
should disable it because some stepping commands (such as stepping over or stepping out of source)
require the use of breakpoints. To disable, place the cursor over the breakpoint in either the Code or
Breakpoint window, right-click, and select Disable Break from the pop-up menu.

© 2004, 2007, QNX Software Systems. All rights reserved.

: Breakpoints i =Bl _?ﬂ
Address Type Symbol Commard
Instr VIMAGE _DOWNLOAD 8Z50vinit B2Z50N\F6H

Figure 11 Disabling breakpoints.

The MWX-ICE debugger provides many useful debugging tool displays, including Registers, Memory,
Stack, and Trace. For example, to view the IP and other common CPU registers, select
Displays—Registers—General Purpose. Through this interface, the debugger lets you modify the
contents of the registers - you can even modify the CPUs instruction pointer.

To view target memory, select Displays—Memory. The Memory window lets you enter an address to
view system memory. This interface also lets you modify the contents of memory.

EEEB0ETS HER
ELEansnd CTR | DO000000
DROBO0E E-

IF
1K
=]

EEE30d84 Ri& |EedPidie
D0N1ET RI7 [aTTEded
efE2EETY RAS| |78
gandnisl RIF | TEEEET2
O30Le208 R0 |ELPdffre
D31= 3300 RI1 | Hefeed
03030318 R3E| |MEEDELTE
DIOI0AGL RIT [EdEfidis
ELELECES R34 |SLEATEES
[lear ko] RI% |efa5eded
3 | pO0X0I3E R4 |DODO0000
F1L| | deldiilEs RI7 [BPEECECS
B12| |AfESEfe3 R34 | Ee0OCAER
B1Y | €T RIS | fOidd

Fl4 | afdffdfd R3O | Efedarey

EEREERERRZERIER

Pt Addresn: |n|r¢r;os“ ﬂ Dlllw.luli columny
BE

Semery s
bddress O I ¥ 3 4 8 6 FT & * A B C B ETF =l
FFTODS44 84 11 FF B0 PE) 08 02 A6 9% AL 00 14 93 €1 00 14
FITO0654 B3 K1) 03) UC B3 00 03 24 4@ FT T 53 4 FT TN RS
FITODSEE 30 40 IE| 00 630 &3 03 P 30 80 00 0L &0 B4 CX 0
FFTO0ETA 30| AD 03] KC 63 LS 20 90 38 C0 00 10 48 00 07 (0 N
FITO04B4 30 40 IE| 00 60) 43 03 1 38 80 00 44 48 00 OF TD
FITa0654 30 60 | 30 630 &3 03 F 38 B0 00 6F 48 00 0k D
FITOD4A4 5C) 40 FE 00 &3 43 O F8 38 80 OO T7 48 0O OF 53D
FFFQUSER4 30 600 | 30 63 63 03 P 30 B0 0O 6E 48 00 OF &
FITODSC4A 30| &0 FE 00 &0 &3 O3 F3 38 80 OO £C 48 00 OF 3D ﬂ

Figure 12 The General Purpose Register and Memory Display windows.

This example shows assembly-level debugging of the IPL from the reset vector.

© 2004, 2007, QNX Software Systems. All rights reserved.

In the Code window, set the mode to Assembly. Click the Reset button, to reset the target and cause
the debugger to jump to the first assembly line instruction executed on reset labeled as entry vec
at address 0OxFFF00100.

Note: You might need to select View—Scope to PC to see the assembly instructions. The assembly
source may not be viewable if you didn’t set the memory read delay command, mem rd del 0x500, as
described earlier.

SOWEPLIreER TAP] | LS8 HLO5] - Codke i ™ (=1 |
Coamard 755 Mccule: MALH File: main.c |
CECOIEan (i IRVLE
SESR0L (00 S0 It FYITER [EPs
CEEOOLD4n Bl e o000l
CECOOLIAN Todnines BEWSE 5]
CEEOOLDan BoE0ffee LT 04,0, MEEOEEEEE
CECO0L10n édBdftor L [d,pdu Of Ol
CEEOOL14n Tokdbns L] r3el,ad o
CECOOLIAN TodnDlid BLRSE 1]
CEEO0Llan Sel0ilia LAY
CECOOLI0N Toldidas L
CEEO0L 240 Boadfecd L) o80T 0L el
CEEOOLIAN Bocdbeed L) o6 0 IMEE 0L Beed
CEEO0LIan B000ed LT oh 0 I E O el
CECOOL30N 320000 LT C8: 00w
CEEO0L 34 Tdllddes BLEE apral.oh
. CECO0L 3N Tobddded BLEGE Seral. b . ‘i

Figure 13 Debugging Assembly instructions, starting from target reset.
You can step through the assembly instructions by selecting the Stepin Asm button.
For example, you can step through the initial assembly code into the IPLs main() function. In the Code
windows text box, type tlbinval and click Display. The tlbinval() assembler routine contains the

branch instruction to the IPL main() function. To run the debugger up to the last instruction, right-click at
the very left of the last line of tibinval() and select Go To Here from the popup menu.

Note: Ensure that you’ve disabled the breakpoint set in the previous section.

Boda: [Source {7 hesssbly [ty | Ty =

TR AP 18N 3008 - Code _.]n.l_ﬂi
Covnadid 85 Fodulen INIT_ICACHE Filen indv_ioache,o =l
EEE0O1AE: JEECO000 asds 3,0, 0l
EEE0018c: TedDletd tlbia £l
$EL00130: TcOl08ar yne
EEE0O194: JBENLOG0 asds £, 23, D 1006)
SEE001PE: TcO34800 cRpw £l,z9
EEE0]19c: AJADEEED blt Elbiraml
EEE00lal: JEQOO0O0 asds i, d, Ot
fEE001ad: Jc200000 addis el, 0,00 _I
fEE001al: S0212000 aci el, 1, Ox 2000
fEE001ac: PH01LEBE s e, <D D084 [21]
EEE001b0: ARGONEI% bl Do EEEODE 34
2 * Copyright 2001, QM{ Scfewnce Tprtaay Ltd. Urpublished Mexk ALl Righ
1 * Rraerved.
4 ®
L] " Thiz sdurcd ccde contairn confidential infacmation cf QX F:EEHEIFJ;I
1' I L1 B

© 2004, 2007, QNX Software Systems. All rights reserved.

P A L8 HL45] - Cadde R ol =
=

Commard 758 Eodule: INIT_ICACHE File: init icache.c
EEEO0LES BHEI0HY aldy (EPLM L]
EEEODLBan Tobdlabd chbig 5]
EEEODLSd Toldider L
EEEODLR4 BEEN1000 aldy £, rd, Bl 000
EEEQDLSE Toldas0 mp e
EEEO0LRan ALBIELEY bl clvisval
EEEODLadn BHOB0HE aldy (L]
CLE00Ladn BodOidd aldis £l 0,00
CLE00Ladn GOLDMY L1351 £l .l Bwini)]
CLEd0len) S40LECHE [l ol - Swl0 & ()

ELEDOLE0T SA030455 bl SWEEEOEE &4
* 1 ot Brask pdoubin bk} 1T fcRoEE sresessesniases

+ UE Beftwaxe Syevems Lud, Uspabilshed Werk AL Righ

gt ConTAlSS cenfldtntial AnformaTion of OK{ Jefteare
€ % brds (0BEL). Aoy e, DEprodUCTion, BifiowTion, disclesare, distr
T % or tEsnafer of Chis seCvANe, of AN SOLTRALE which LEcludts of "’_'j

Al J)

Figure 14 Displaying the tlbinval() subroutine and running to the branch instruction.

If you click the Stepin Asm button, the debugger jumps to the main() function assembly code. If you’ve
set the debuggers LINES=ON option, the C source code is intermixed with assembly code in the Assembly
window.

AW EPrSER AP 1030, ML95] - Codle R aloix
Commard 755 Eodule: INIT _ITACHE File: init icache.c _ﬂ
ELEO0LER A53000) addy £3,0, 00
ELEdOLBan Toldlabd hbie £]
ELEOOLS0n Tohdids: FTE
ELEO0LRd BA531000 aldy £33, i 000
ELEO0LSSn Toldgand [s T (£ M 5]
ELEd0LRen ALBIELED bit clibisval
ELEDOLadn A0 el £0,0, 0l
ELEOOLadl Bod00d0d aldis £l 0,0l
ELEOOLadn SOZLI0Y L1418 £l el i) =l
ELE00Laon S40LECHS 1] £, -Swi0da i)
bl T]
L e
I * Copyrighs 2901, O Safrware Sysvens Lud, Unpabiished Werx ALl Righ
3 * Reservel.
q
5 % This soumce code CoSTAIRS confldtstial Enformstion of OKY Joftware
6 % Lrd, (083L). AN use, DEproduCTion, edifiowtion, disclesare, disnc
L]

* or ceansfer of chis sefcware, of any solTwars which inoludes oC I.!_'j

I | I

WP AR §L50,30.95] - Casde aloi=l
Command T8 Eodule: EAIN File: saxin.c _ﬂ
¥ inv makndvsdd)

2l i

1= Ll Tt i)]

EEEODS3An To0s0l &l (1413 iyl

EEEODESzn RIakDdld 1= riF, S0l 4 i)

EEEGDERdn RIoLDI1E 1= (e R LT A

EEEGDSEda RlekDdle 1= Al Ewl0iafri]

EEEODS A SOOLOTEd 1= £l O OBEErL)

iz & _l

I3 47 Imic superDd so the serial ports will weon

i &

s LRk E_doaehe | 1

[adacc Lo T BE bE LnAT_iceche

% (N L T

[adarle 1o PR T d i B0 bE ARAT_nadTid

i

i i

I% 47 Lovane ThE LEAgE -
Al _rI'J,g,

Figure 15 Stepping into the main() function.

If you set the mode to Source in the Code window, the debugger displays the C source code for the main()
function and lets you step through the source as previously described.

© 2004, 2007, QNX Software Systems. All rights reserved.

This section describes how to begin debugging the QNX Startup program using the symbol information
generated using the Sandpoint BSP. We assume that you’ve already connected the debugger to the
PowerTAP, as described in previous sections.

To start, you must import the Startup symbols into the debugger. From the main menu, select File—Load
to display the Load window. Under List Files of type, select All Files [*.*]. Select the sandpoint-
startup.sym file described previously and choose OK.

After loading the symbol information, the debugger likely displays the Append new Directory popup to
request the location of the source files. Select the directory where the Startup library source is located. You
need repeat this for each of the Startup-related source directories listed at the end of the Generating
Startup Debug Symbols section by choosing File—Append Source Path...

MWAPOWERTAP - Enter File to Load: f =l
i e =
[siarlw-:an;borﬂ mm e

Cancel

sandstait gz B = -

sockel bl B qm
sockatipill a gz Hedp
ot 0 ecipazamp m.._..._.h.......J

shaslLip-s O3 3 sandstartup
bahup-sandpani_ &
ilzlﬁim_?mbs;[O sanchiaielh [
List fbes of tvpe: Diives:
[re 1 =] [@e =

Diectony Mame Fodders:

[eAanxdstartuplib egristatuplh

et =1
= oM i

=

Driyes:

CE =

Figure 16 The Load Symbols and Append Directory windows.

To display the _main() function in the Startup library, select the Code window
(Displays—Code). Set the Mode to Source, type _main in the text box, then click the Display button.
This loads the source into the Code window:

© 2004, 2007, QNX Software Systems. All rights reserved.

Mo [t Duplen Notobook Vew Windos el

o v P 3 a1 s 31 3P |
[| e —|

L waid
1L _mainii |

Loz waid Thase;

1]

104 bazs = do_patapll;

LOS

Lk cpu_ptartupll;

107

Lo Sicanp ayspage ssazcs ocut et Bottom of sack leftaz scgfem o

L baxe = (vaid ¥IRDOME [bare, sizesdfuinchd_ctib;

L3 dndt_ryrpage_mssory(base, Oufld);

b

Lz maAR(_NEgs. _amgv, erevl;

13 -
T |

L
£l

e

[T

= 1348 _main

Figure 17 Displaying the _main() function.
You can now set a breakpoint in the _main() function.

Note: Ensure that you’ve set the command bptype onchip, and that you’ve disabled any previous
breakpoints.

To set a hardware breakpoint on _main(), bring the Code window to the front, right-click over the line
number associated with the start of _main(), and choose Set Break.

SewEPrER AR 10,30, M0.95] - Code

108 FITENp FPSDAR: STALTS SUL AT Detrom of srack [afrer aTgienw g

108 Base = [wold *j RN (base, sipeof (wlmréd_thil

1Lo LTAT_Fyepaze_wewdoy(base, Swiil])

11

1Lz ALD_AEE0, _ALgY, EwE)

1y

=

Al L1]|

© 2004, 2007, QNX Software Systems. All rights reserved.

bt i T A L85, W45 - Casde i :;;':f-; aloi =
Camand £33 Fam Eodule: MATN Fils: _main.c |
H! %
* 0 weld [&
% 11 _main) (
0% wold “basel
193
104 base = do_serup ()l
193
106 Sp_aTAETup [} 1
197
108 JFTENp FEFPAe BLAILS SUT AT beUtom of Srack [afner arpienw &
0% base = [woud *jROUND (base, Sumedf palnUEA_TH]L
e AnLT_Fypape_wewirybase, Dwiil)
1kl
[TH] WALD_AEQD, _SIqW, s)
13 -
1L J P

Figure 18 Setting and viewing a breakpoint in the _main() function.

To begin debugging the Startup, click the Reset,

and Run,

buttons. If you've burned the Startup into the Sandpoints flash memory along with the IPL, the
debugger stops at the breakpoint. If you have to download the image over a serial connection (via
the sendnto utility or the Sandpoint ROM monitor), the debugger breaks on this instruction once
the image has been loaded into RAM and executed. It's also possible for you to trace through the
IPL program to the point where it transfers control over to the Startup.

e MW ILE ebasger aloi =]
e [de Dmpley Motebools Yew Windos (i

(Bl [P [0[] [e e [53 1] v [pel][F =[e3][[[=]
I

cpu_ptatoupil;

Lo JITENG FYNPEGE BTASCE ouT AF BoLtom of sTack (aftaT sCgiem g
Lo bape = (vaid "IROOMD [Base, sizesdiuinchd g
L ARAT_Fyrpage_masory{bese, o0}
kL
1z ®AIR[_SIgE, _AEPY. Erevli
L
LI |
EErEEs 0 aoix
» bd 1l
» Clasr LE

® bi 4 _RAINVAIDL:D
> reast

» g0
Bresk f L on inste wadule RAIN Line 191

Figure 19 Debugger stopped on the _main() function.

© 2004, 2007, QNX Software Systems. All rights reserved.

You can use the debugger to debug the Startup source code in the same ways described in the Debugging
the Sandpoint IPL section. For instance, you can let the debugger run to the Sandpoint Startup main()
function, and then step into the source.

AP ER TP 1036, H1.95] - Codle
Commard £03 Fas Eodule: MAIE Fils: _main.c |

k1]
100 woud

191 | | AN ﬂ

s okl "hastl

103

104 base = 33 _SeUig ()i

0%

10¢ (5 ELE T AT T

107

198 fftemp SYSpait Statts SUb At botiim of Jtafk (alt<c a&Cglen¥ £
109 base = [Woikd TpPOUND (base, SuiSedl Mulatéd th):

1 inlt syspegt meRdsy (Base, OE0d]

ERE

1L aalni_asgd, ALgE, e=T):
Sl Brag.

lotal veraiom of the syates paget ¥o've bullt to €
age lefatiom we allsceied in indt_syates poivetsi)

1
1
1
1
1
1 o _ssmocyil §
1

o

~ o

[07 o[P e sl [l sl [E [T [l [[l

¥ =10l x|

Commard 513 Fam Eodule: EAIN File: sain.c .|-_I

5L

53 int

54 hainding aro, cher TTarev, char *remen ||

5% LnT 1]

56 unsigned ALY

57

58 i Sandpaing leawes TEAnALatiom o6

55 A " EFT] Lleymet i)

[11] WAL = ET_WAL(H

61 set_War(war & =[MAE_ENR _BR | FFC_RTR_TE))r EiL

[+ asm [~ Layne] o

L]

L L] AF DEEGDE LNAN, bRl T dLsalle Sara ORoleE

[PRCsa0_indt_ceches{l)

2]

&7 add_callour_arcey(calleuts, sipesf|callowrs))r

L]

(1] whiklel{opr = QETAPT D@0, argv, COERON_OFTIORS_STRINGI) ‘= -]

H Il oo _Bptien 0BTl

1 ¥

T
b _-_I‘J

Figure 20 Stepping into the Sandpoint Startup main() function.

Once Startup completes initializing the environment, it transfers control over to the QNX Neutrino
microkernel, procnto. Then, the kernel switches on the CPUs MMU, transferring the system over to virtual
memory mode. From this point on, you can use a standard hardware debugger such as the AMC MWX-ICE
to step through the kernels instructions, examine registers, etc., but you can’t look at kernel or application
data, because this memory is accessed in virtual memory mode. At this point however, the target board is
up and running, and you can develop and debug user applications (including drivers) by using the standard
QNX software debugging agent, pdebug, in conjunction with the standard QNX development tools.

The IPL program is responsible for basic setup of the CPU, including the memory controller, and copies the
QNX Neutrino image into RAM. It’s also possible for you to circumvent the IPL by using a hardware
debugger. Hardware debuggers let you transfer an image in ELF or SREC format directly to target

memory. In order to transfer a QNX Neutrino image (which includes the Startup program) to a target and
run the RTOS, you must first configure the CPU and environment similar to the steps performed by the
IPL. This is often done using a script that programs CPU registers and the memory controller before the
image is downloaded and executed.

© 2004, 2007, QNX Software Systems. All rights reserved.

The pdebug software debugger requires a free serial port or Ethernet connection on the target board. There
are a number of alternatives to debug user applications on deeply embedded targets without free
communication ports:

e ROM Emulator - Some ROM emulators provide the capability of communication through
the emulated ROM. For example, a virtual serial driver is available for QNX targets based
on the AMC NetROM, letting you debug applications by using pdebug through this virtual
serial port.

e Serial Through JTAG - A driver is available for the AMC PowerTAP and WireTAP,
creating a virtual serial port connection between the host and target hardware over a
JTAG connection to be used for debugging.

¢ QNX Neutrino RTOS Aware JTAG - Some hardware debuggers are available with
knowledge of the QNX Neutrino RTOS, allowing for debugging of user applications.
Contact AMC and Lauterbach for more details.

5. Summary

The software development and debugging process differs between QNX Neutrino and conventional
embedded RTOSs. The QNX virtual memory based microkernel architecture protects the system from
unstable applications and drivers. The modular QNX Neutrino architecture allows for reliable software
debugging. You can start and stop QN X applications and drivers as desired on a running system, and you
can debug them using the software debug agent pdebug. Hardware debuggers can also be valuable tools in
the development of embedded systems, but are generally used differently than with other embedded
RTOSs. Hardware debuggers are most useful in debugging software that’s running in physical memory
mode, such as QNX IPL, Startup, and kernel callouts.

6. References

1. System Architecture, QNX Software Systems.

2. Building Embedded Systems, QNX Software Systems.

3. The New Business Imperative: Achieving Shorter Development Cycles while Improving
Product

Quality, Paul N. Leroux, QNX Software Systems.

4. Embedded Systems Design An Introduction to Processes, Tools, & Techniques, Arnold S.
Berger, CMP Books.

5. An Embedded Software Primer, David E. Simon, Addison Wesley.

© 2004, 2007, QNX Software Systems. All rights reserved.

	Using JTAG Hardware Debuggers with the QNX Neutrino RTOS
	1. Introduction
	2. Software vs. Hardware Debuggers (pdebug vs. JTAG)
	3. Producing Debug Symbol Information for IPL and Startup
	4. Example using AMC PowerTAP JTAG and MWX-ICE
	5. Summary
	6. References

