
Shared Objects
by John Fehr

Shared objects (SO) can be your best friend, or your worst enemy, depending on how you use them. If you
use them simply as shared libraries linked with your application, everything is fine. If your shared libraries
assume that certain symbols will be found at load time, your application will be searched for the missing
symbols and the holes will be plugged. You can even override functions in the shared library if you define
them in your application.

How about if you need to load the SO dynamically using dlopen()? Unfortunately, the linker doesn't
resolve symbols from a dlopen()ed shared library using your application's symbols. This is because the
symbols aren't in its dynamic symbol table. All of the symbols in the SO have to be resolvable without
using your application's code. So what do you do if your shared library needs to call functions in your
application?

Solution 1: Linker options

If you link your app with the --export-dynamic (or -E) option, the linker will place all of the application's
symbols in the dynamic symbol table. This will make them available to your dlopen()ed shared library.

There are a few problems with this. The first is that if you strip your app, it'll most likely strip those
symbols away. The second is that all of your symbols will be put in the dynamic symbol table. You might
not want to give the shared object access to all of your symbols. Finally, exporting all of your symbols may
result in a large increase in application size (which is a bad thing).

Solution 2: Function pointers

One solution is to have a set of global function pointers in the shared library that you set to the application's
corresponding functions. This can be done either by doing a bunch of dlsym()s, searching for the function
pointers in the library, and then setting them. Or it can be done by putting your application's functions in a
structure of function pointers and then calling a special function in your shared library that copies the
appropriate pointers where they're needed.

This solution works for the most part, but it also has a few problems. First, calling functions via function
pointers is much slower than calling functions directly, since the CPU won't be able to do branch
prediction. Second, it's hard to make changes to the structure of function pointers if you need to later,
without breaking code. Also, if you decide to link the library later as a shared library (instead of opening
with dlopen), you'll have to make a lot of changes to both the shared object and the application.

Is there a better solution?

Solution 3: Fooling the linker

Let's think again how the runtime linker works. Let's say you have a library, liba.so, that contains the
function a(). In your application you call the a() function and link with liba.so. When you run the
application, the a() function in liba.so gets called, just as you'd expect.

 --------------------- Makefile ----------------------------
 all: liba.so testso
 liba.so: liba.c
 qcc -shared -fPIC liba.c -o liba.so

© 2004, 2007, QNX Software Systems. All rights reserved.

 testso: testso.c liba.so
 qcc testso.c -o testso -L. -la

 ---------------------- liba.c -----------------------------
 #include
 void a(void)
 {
 printf("a() in liba.son");
 }

 --------------------- testso.c ----------------------------
 #include
 extern void a(void);
 main()
 {
 a();
 }

If you try this out, you'll see 'a() in liba.so' printed to your terminal. Seems pretty normal? Now, write your
own a() function in testso.c:

 --------------------- testso.c ----------------------------
 #include
 void a(void)
 {
 printf("a() in testso.cn");
 }
 main()
 {
 a();
 }

If you've read my “Doing Your Best without Crashing the Rest” article, you won't be surprised that there
are no linking problems, and when run, it prints 'a() in testso.c' to your terminal. How can this behavior
help you with your dlopen()ed problem?

More on the linker

When you dlopen() a shared object, the linker needs to be able to resolve all the symbols in the object. If
there are any undefined symbols, it tries to find them in any other shared libraries that are already loaded
into your application's memory space. If it's unable to find them there the dlopen() fails.

However, when any shared library is loaded into memory at run time, any symbols that are common to the
shared library and the application are replaced inside the shared library. (The shared library and the
application will both use the application's symbols.)

The shared library is linked (and symbols are resolved/replaced) before the dlopen() for your shared object
is called. And, since the linker resolves unresolved symbols in the dlopen()ed shared object against
symbols in any loaded shared library, your net result is that the unresolved symbols in the dlopen()ed
shared library resolve against your application's functions!

© 2004, 2007, QNX Software Systems. All rights reserved.

In English, please?

This sounds a bit confusing, perhaps. Let's walk through exactly what you want to happen:

• You have a shared object, coolobj.so, that has a function b() that needs to call a function a() in
whatever application it's loaded into.

• You have your application, testso, that contains a function a() and needs to call a function b() in a
dlopen()ed shared object. Function b() needs to call the application's a() function.

• You have a shared library, liba.so, that contains a dummy function a().
• You create testso and link it with liba.so.
• You run testso. Your testso application loads liba.so, but since testso contains the a() symbol it

replaces the pointer for symbol a() in liba.so with the a() function pointer in testso.
• After it's loaded into memory, testso dlopen()s coolobj.so. The linker sees that a() isn't defined

internally in coolobj.so so it attempts to find it in any other shared libraries that have already been
loaded. It will, of course, find the a() symbol in liba.so which has been replaced by a() in testso
and it will resolve to that a() symbol.

• When b() in coolobj.so is called, it will call your application's a() function.

Here's a new Makefile, testso.c, and coolobj.c:

 --------------------- Makefile ----------------------------
 all: liba.so testso coolobj.so
 liba.so: liba.c
 qcc -shared -fPIC liba.c -o liba.so
 testso: testso.c liba.so
 qcc testso.c -o testso -L. -la
 coolobj.so: coolobj.c
 qcc -shared -fPIC coolobj.c -o coolobj.so

 --------------------- testso.c ----------------------------
 #include
 #include
 void a(void)
 {
 printf("a() in testso.cn");
 }
 main()
 {
 void *obj=dlopen("coolobj.so",RTLD_GLOBAL);
 void (*b)(void);
 b=dlsym(obj,"b");
 b();
 dlclose(obj);
 }

 --------------------- coolobj.c ---------------------------
 #include
 extern void a(void);
 void b(void)
 {
 printf("b() in coolobj.son");
 a();

© 2004, 2007, QNX Software Systems. All rights reserved.

 }

If you build and try out testso, you'll get:

b() in coolobj.so
a() in testso.c

Which is exactly the behavior you want!

On second thought...What if you decide later that you want to use coolobj.so as a real shared library after
all and link against it at compile time?

All you'd have to do is get rid of the dl* function calls and simply call the extern function b() instead. No
changes would have to be made in your coolobj.so source code at all!

Of course, you might find it easier to first develop coolobj.so as a normal shared library and later convert it
to a dlopen()ed shared object. Again, you won't need to make any changes to coolobj.so, just to the
application.

So is it faster?

I wrote two simple little sample programs/shared objects that illustrate the speed difference between using
our little dummy shared library and setting/using function pointers which you can download at:
http://www.altbits.com/jfehr/art/dummylib.zip

I've also included a version that doesn't use dlopen at all, but simply links with the shared object. The
speed difference isn't astounding (about 10%), but it clearly shows which method is faster. Even more
surprising, at least on my machine, the dummy shared library method is 5% faster then the method that
doesn't use dlopen at all!

Best of all, you've overcome the problems of solutions 1 and 2:

• Stripping won't make your application stop working with your shared object.
• You only give the shared object access to the functions in the app that you want.
• The added size of the dummy shared library isn't nearly as great as the added size of the

application would have been if we had linked our application with the -E option instead of using
the dummy shared library.

• There's no function pointer passing and no slowdown due to branch prediction.
• You don't have to worry about structures changing.
• It's easy to link as a shared library if you decide you don't want the shared object dlopen()ed, but

instead linked to your application.

You be the judge!

© 2004, 2007, QNX Software Systems. All rights reserved.

http://www.altbits.com/jfehr/art/dummylib.zip

	Shared Objects
	Solution 1: Linker options
	Solution 2: Function pointers
	Solution 3: Fooling the linker
	More on the linker
	In English, please?
	So is it faster?

