
Doing Your Best Without Crashing the Rest
by John Fehr

So you've written this amazing shared library that you're using in many of your critical services and apps.
One day, you discover that you could have written one of the internal functions in the shared library much
more efficiently. (This could be in terms of network usage, memory usage, disk usage, etc.) However, since
the shared library is now being used by critical components of your system, you can't just replace it with
your new and improved shared library. If you've made an error somewhere in your new code, it will affect
all those components which at best will render your system unusable. So what's the best way to test how
well this new code gets along with the rest of the shared library?

The answer is actually quite simple. By default, shared libraries resolve their symbols at load time, not at
link time. So when the shared library uses a function, say foo(), it first searches the application's code for
this function, and then its own. All we have to do is define this function in our own code, and it will be
used instead of the shared library's function, even internally within the shared library!

Here's an example:

Let's say you have a shared library called libcoolstuff.so. In this library, there's a function called
copystrings(), which copies a given number of strings of a maximum length of 100 from one location to
another. This copystrings() function also uses another function, copystring(), which copies a single string
from one location to another. The second function also exists inside the coolstuff library, but is generally
not called from outside the coolstuff library. Here's our coolstuff.c file:

 void copystring(char *src,char *dst)
 {
 strcpy(src,dst);
 sleep(1);
 }
 void copystrings(char src[][100],char dst[][100],int nstrings)
 {
 int i;
 for (i=0;i<nstrings;i++)
 copystring(src[i],dst[i]);
 }

Now consider an application that uses the coolstuff library. We'll call it coolapp.c:

 #include <stdio.h>
 void copystrings(char src[][100],char dst[][100],int nstrings);
 main()
 {
 char src[32][100];
 char dst[32][100];
 int i;
 for (i=0;i<32;i++) sprintf(src[i],"String %d",i);
 copystrings(src,dst,32);
 for (i=0;i<32;i++)
 if (strcmp(src[i],dst[i])!=0)
 printf("src[%d]='%s', dst[%d]='%s'n",i,src[i],i,dst[i]);
 }

© 2004, 2007, QNX Software Systems. All rights reserved.

Here's a makefile you can use to compile this, so you can test it:

 all: libcoolstuff.so coolapp

 libcoolstuff.so: coolstuff.o
 $(CC) -shared coolstuff.o -o libcoolstuff.so

 coolapp: coolapp.o libcoolstuff.so
 $(CC) -o coolapp coolapp.o -L. -lcoolstuff

 %.o: %.c
 $(CC) -c $< -fpic -o $@

Type make at the command line, and run coolapp. You'll notice that it takes about 32 seconds to finish.
There is a way to speed this up, but we don't want to cause other applications using this shared library to
crash, particularly if we have a bug in our new code. So, let's add our experimental copystring() function in
the coolapp.c file! Try this:

 void copystring(char *src,char *dst)
 {
 strcpy(src,dst+1);
 }
Now re-make, and run coolapp again. Luckily, this version of copystring() isn't in our shared library, or
our other applications that are using it wouldn't have worked correctly! Let's change the function to:
 void copystring(char *src,char *dst)
 {
 strcpy(src,dst);
 }

Again, re-make, and run coolapp. This time, it finishes much faster, and doesn't report any errors.

Such behavior can, however, lead to some unpredictable and unexpected results if you don't already know
that certain functions exist in a shared library you are using. For example, let's say you were using the
coolstuff shared library, but you only knew about the copystrings function. You decide that your program
needs a function to copy a string contained after the first n in another string, and you call it copystring:

 #include <stdio.h>
 void copystring(char *src,char *dst)
 {
 char *start=strchr(src,'n');
 if (start)
 strcpy(dst,start+1);
 else
 strcpy(dst,"");
 }
 main()
 {
 char src[32][100];
 char dst[32][100];
 char second[100];
 int i;
 for (i=0;i<32;i++) sprintf(src[i],"String %dnSecond line.",i);
 copystrings(src,dst,32);

© 2004, 2007, QNX Software Systems. All rights reserved.

 for (i=0;i<32;i++)
 if (strcmp(src[i],dst[i])!=0)
 printf("src[%d]='%s', dst[%d]='%s'n",i,src[i],i,dst[i]);
 copystring(src[0],second);
 printf("second string of '%s' is '%s'n",src[0],second);
 }

If you knew nothing about the existing copystring() function in our shared library, you would most likely
be quite puzzled as to what was happening. In this example, it wouldn't be too difficult to figure it out, but
in a real (useful) shared library and application, things are usually not this straightforward.

There are four possible solutions:

1) If you have the original source code to the shared library, rebuild it as a static library, and link
against that instead. That way, it will tell you about any duplicate symbols, and you can change
your function name so it no longer matches.

2) If you don't want this kind of behavior (where the application can override the internal functions
of your shared library), then link your application with the -Bsymbolic option. (Or -Wl,-
Bsymbolic if you compile using qcc.) That option tells the linker to resolve all your symbols
internally at link time instead of at runtime. In this case, all of your symbols will have to be
defined in the object files and shared libraries you specify on the linker command. (For example, if
your shared library uses Photon, you'll have to have -lph on your linker command, so it knows
where to resolve Photon functions.)

3) Make your internal functions static. Of course, that also means the static function has to be in the
same source file as the functions that use it. This is probably a better solution for those internal
functions that aren't used in many different source files.

4) Make your internal function names so random and confusing that even you can't figure out what
functions do what.

A good idea might be to build and release a shared library with option #2 for your customers, and build
another one without option #2 for your own internal testing and modification. That way, your customers
won't accidentally shoot themselves in the foot, and you can still test new code without harming your other
running applications.

Happy and safe coding!

© 2004, 2007, QNX Software Systems. All rights reserved.

	Doing Your Best Without Crashing the Rest

