
QNX Aviage Multimedia Suite 1.2.0
MME Developer’s Guide

For QNX Neutrino 6.4.x

 2009, QNX Software Systems GmbH & Co. KG.

 2007–2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web:http://www.qnx.com/

Electronic edition published April 30, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About this Reference xi
Typographical conventions xiv

Note to Windows users xv

Technical support options xv

Control Contexts, Zones and Output Devices 11
About control contexts, zones and output devices 3

Control contexts 3

Zones 5

Output devices 6

Configuring the MME for multi-zone support 6

Sample configurations 6

Configuring the MME for multi-node support 7

Getting media on a remote node 7

Outputting to a remote node 8

Runtime control of zones and output devices 8

Adding and removing zones and output devices 8

Making output devices “permanent” 9

Managing output attributes 9

Starting Up and Connecting to the MME 112
Connecting to the MME 13

The MME connection handle 14

Making the connection 15

Disconnecting from the MME 15

Shutting down the MME 15

Using the MME notification interface 16

Registering for events 16

MME event classes 18

Getting events 19

Unregistering for events 19

MME and QDBslog codes 19

April 30, 2009 Contents iii

 2009, QNX Software Systems GmbH & Co. KG.

Working with the MME Database and SQL 213
Time values in the MME database 23

Solutions for database deadlock issues 23

Different database file attached orders 23

Using a QDB client to verify attached order 24

Separating deadlock issues from performance issues 24

Handling of corrupt database 25

Optimizing your SQL 25

Design for size and limit queries 26

Use Indexes 26

UseJOINs carefully 26

Filtering out unavailable tracks 27

Working with Mediastores 294
Detecting mediastores 31

Mediastore states 31

CD detection and presentation 34

Recommended method for detecting mediastores 35

Manually requesting device and mediastore detection 35

Mediastore identifiers 35

Mediastore and device capabilities 37

Mapping mediastore filesystem paths to device locations 37

Associating devices and mediastores in theslots table 38

Handling external disk changers 38

Handling removed mediastores 39

Handling reloaded mediastores 39

“Manually” updating thelibrary table 39

Synchronizing Media 415
The synchronization process 43

Synchronizer selection 43

Multiple synchronization passes 44

The synchronization pass process 45

Tracking mediastore synchronization status 45

Nonblocking synchronization function calls 46

Pending synchronizations 46

Optimization of synchronization for starting playback on slow devices 46

Ignoring specified file types 46

Database clean up during synchronization 47

Folder synchronization 47

Synchronizing playlists 49

iv Contents April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

Types of synchronization 49

Full, recursive synchronization 50

Directed synchronization 50

File synchronization 50

Updated database tables 51

Media information and metadata 51

Custom information and metadata 51

Working with synchronizations 51

Determining if resynchronization is needed 52

Skipped synchronizations 52

Setting a priority folder 52

Removing file entries from the MME tables 54

Repairing inconsistencies 54

Determining if a file should be shown 55

Gracenote classical music support 55

Playing Media 576
About playing media with the MME 59

Working with track sessions 59

Creating track sessions 61

Setting track sessions 64

Clearing track sessions 66

Deleting track sessions 66

Monitoring and managing playback 67

Setting the playback notification interval 67

Knowing when playback has ended 68

Using random and repeat modes 68

Starting playback from a specific track 69

Pausing playback 70

Stopping and resuming playback 70

Using fast forward and reverse 74

Using seek to time, play at offset, and scan 75

Gapless playback 75

Viewing “previous” and “next” tracks 75

Using play frequency statistics 75

Bookmarking tracks 76

Managing track sessions during playback 76

Managing track changes across multiple mediastores 76

Managing track sessions when a mediastore is removed 76

Switching playback to another track session 77

April 30, 2009 Contents v

 2009, QNX Software Systems GmbH & Co. KG.

Playlists 797
Supported playlist formats 81

iTunes files 82

Creating track sessions from playlists 82

Excluding missing playlist files from track sessions 83

Combining playlists into a track session 83

Examining playlists 83

Creating playlists 84

Deleting a playlist 84

Unsynchronized Media 878
Exploring unsynchronized mediastores 89

Using directed synchronization to browse mediastores 92

Metadata and Artwork 939
Getting metadata 95

Getting metadata for synchronized media 95

Getting metadata for unsynchronized media 96

Getting metadata from thenowplaying table 97

Getting metadata from a remote source 98

Metadata ratings 98

Getting artwork 99

Functions and data structures 100

libxml2.so library and headers 100

Feature limitations 101

Using the metadata extraction API 101

Image pre-processing 102

Playing and Managing Video and DVDs 10510
Playing and managing video 107

Playing video files 107

Managing video attributes 107

Playing and managing DVDs 108

DVD synchronization 108

Playing DVDs 109

Setting the default preferred media language 110

Managing DVD access 110

DVD-video player 110

Required drivers and binaries 110

Playing DVDs 111

Configuring the MME for software DVD playback 113

vi Contents April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

Encrypted DVDs 113

Configuring the MME for video support 114

Adding modifiers to a video output device URL 114

Example: Defining a video output device 116

Playback Errors 11711
CD drive timeout 119

Playback buffering 119

Playback read error recovery 120

Stopping playback after repeated playback failures 121

Marking unplayable files 121

What files are marked as “unplayable” 122

Skipping “unplayable” files 122

Handling damaged media 122

Copying and Ripping Media 12512
About media copying and ripping 127

The copying and ripping process 127

Monitoring progress and playback 127

Priority background ripping 127

Copying and ripping media 128

Setting the copy or ripping mode 129

Copy folder paths and ripping templates 130

Building the copy queue 132

Starting media copying or ripping 133

Stopping media copying or ripping 134

Behavior when media copying or ripping encounters an error 134

Behavior when a mediastore is removed 134

Managing the copy queue 134

Modifying media metadata 135

External Devices, CD Changers and Streamed13
Media 137

Getting and setting device options 139

Device option configuration API 139

Getting and setting device configuration values 139

Determining the iPod connection and capabilities 142

Working with external CD changers 143

Working with internet streamed media 143

RTP streamed media 143

Configuring the MME to support streamed media 144

April 30, 2009 Contents vii

 2009, QNX Software Systems GmbH & Co. KG.

Playing streamed media 145

Audio input playback 145

Configuring the MME to recognize audio input “mediastores” 146

Playing media from an audio input “mediastore” 147

Working with iPods 14914
Installing MME components for external media players 151

Connecting to and using iPods 151

Required components 152

Authenticating iPods 152

Connecting to iPods 154

Detecting iPods 161

Removing iPods 161

Synchronizing iPods 162

Playing media on iPods 163

Video support 169

Displaying information from an iPod 170

Uploading splash screens to iPods 171

HD radio tagging 171

Link kit for iPod authentication 172

About the iPod authentication link kit 173

The sample iPod ACP module 173

Using the iPod ACP module 175

Working with PFS Devices 17715
Installing MME components for external media players 179

Starting PFS devices 179

Zune device startup 179

Detecting and synchronizing PFS devices 180

PFS.alb objects 180

Playing media on PFS devices 181

Playing DRM content 181

Decryption of DRM content 182

Retrieving artwork from Zune devices 182

Devices that don’t supportGetPartialObject 183

Working with Bluetooth Devices 18516
Integrating Bluetooth audio devices into the MME 187

Creating a Bluetooth device representation to the MediaFS specification 188

Theio-fs-media module example 188

What theio-fs-media module example does 189

viii Contents April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

avrcp_devctl() 190

avrcp_mount() 190

avrcp_options() 190

avrcp_timer() 190

The mount process 190

Theavrcpexample.h header file 191

Modifying theio-fs-media module example 192

Adding device-specific code to the module 192

Building the module 192

Using theio-fs-media module 193

Messages for controlling Bluetooth devices 193

Playback messages 194

Metadata messages 195

Using Bluetooth devices with the MME 195

Configuring the MME for Bluetooth support 195

Playing media on Bluetooth devices 196

Glossary 199

Index 205

April 30, 2009 Contents ix

About this Reference

April 30, 2009 About this Reference xi

 2009, QNX Software Systems GmbH & Co. KG.

TheMME Developer’s Guideaccompanies the QNX Aviage multimedia suite. It is
intended for application developers who use the suite’s MultiMedia Engine (MME) to
develop multimedia applications.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

The table below may help you find what you need in this book:

For information about: See:

Understanding and using control
contexts, zones and output devices

Control Contexts, Zones and Output
Devices

Connecting to the MME and registering
for events

Starting Up and Connecting to the MME

Working with the MME database Working with the MME Database and
SQL

Working with mediastores Working with Mediastores

Synchronizing media Synchronizing Media

Playing audio media files Playing Media

Working with playlists Playlists

Exploring and playing unsynchronized
media

Unsynchronized Media

Metadata and artwork Metadata and Artwork

Playing and managing video and DVD
mediastores

Playing and Managing Video and DVDs

Playback errors and how to manage
them

Playback Errors

Copying and ripping media Copying and Ripping Media

Working with internet streamed media,
and with CD changers

External Devices, CD Changers and
Streamed Media

Working with iPods devices Working with iPods

Working with PFS devices Working with PFS Devices

Working with Bluetooth devices Working with Bluetooth devices

Terminology used in this guide Glossary

For an overview of the MME architecture and instructions on how to get the MME
started and playing media, seeIntroduction to the MME. For information about the

April 30, 2009 About this Reference xiii

Typographical conventions 2009, QNX Software Systems GmbH & Co. KG.

QDB database engine used by the MME and client applications, see theQDB
Developer’s Guide.
Other MME documentation available to application developers includes:

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Utilities Utilities used by the MME.

MME Configuration Guide How to configure the MME.

MME Technotes MME technical notes.

MediaFS Developer’s Guide Developer’s guide for implementing MediaFS.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

continued. . .

xiv About this Reference April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Technical support options

Reference Example

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface componentsCancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item underPerspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter inall pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options
To obtain technical support for any QNX product, visit theSupport + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

April 30, 2009 About this Reference xv

Chapter 1

Control Contexts, Zones and Output
Devices

In this chapter. . .
About control contexts, zones and output devices 3
Configuring the MME for multi-zone support 6
Configuring the MME for multi-node support 7
Runtime control of zones and output devices 8

April 30, 2009 Chapter 1 • Control Contexts, Zones and Output Devices 1

 2009, QNX Software Systems GmbH & Co. KG. About control contexts, zones and output devices

This chapter describes how to use control contexts, zones and output devices in the
MME. For more detailed information about how to start the MME and how to connect
to it, see the chapter Starting Up and Connecting to the MME in this guide, and the
“MME Quickstart Guide” in theIntroduction to the MME.

About control contexts, zones and output devices
To use the MME, you need to define at least one control context in the
controlcontexts table in the MME database. With one control context defined,
you can connect to the MME. To play media, you also need to define at minimum one
output zone and one output device.

• Control contexts

• Zones

• Output devices

Control contexts
A client application works with the MME in acontrol context. The MME is a resource
manager, and control contexts are the mount points to the MME resource manager.
They are responsible for managing requests from the client applications, and for
directing other components in the MME andio-media to complete these requests.

The client application connects to an MME control context in order to be able to
create, set and play track sessions, synchronize mediastores, copy and rip files, play
tracks, and perform other operations with the MME.

Control contexts are defined statically in the MME database table before the MME
starts up. They exist regardless of whether or not clients are connected, and regardless
of how many clients are connected. Each control context in the MME has its own
thread, so the MME is capable of scaling with as many control contexts as required.

Client application connections to a control context

Multiple client application connections can be made to a single control context, but a
control context will manage only one track session at a time, and will control only one
io-media instance at a time. Theio-media that is controlled by the control context
will output to only one output zone at a time.

The figure below shows:

• the one-to-many relationships between an MME process and control contexts, a
control context and client application connections, and between an output zone and
output devices.

• the one-to-one relationship between a control context and an instance of
io-media, and an instance ofio-media and an output zone.

Note that there is also a one-to-one relationship between control contexts and output
zones.

April 30, 2009 Chapter 1 • Control Contexts, Zones and Output Devices 3

About control contexts, zones and output devices 2009, QNX Software Systems GmbH & Co. KG.

Clients

MME

Control contexts

MME
process

io-media

Output zone

Output devices

Client, control context, MME process, io-media, output zone and output device relationships.

The MME’s design allows client applications to be built to use only one connection to
the MME, or to use multiple connections, with, for example, one connection,
“frontseat”, to perform all operations, and another connection,“backseats”, functioning
as a passive output connection that outputs media controlled and played by “frontseat”.

The figure on the next page illustrates an implementation of MME with two control
contexts in an automobile.

Other possible implementations might be in a home entertainment system where
multiple clients connect to a single control context from different interfaces in the
house, or an implementation for an aircraft entertainment system that would run the
MME in a central location and a control context with an instance ofio-media at
every seat to offer passengers play-on-demand music and video.

4 Chapter 1 • Control Contexts, Zones and Output Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. About control contexts, zones and output devices

MME process

HMI
(Steering
wheel)

HMI
(Front
panel)]

ControlContext
(Front seats)

Zone
(Main speakers)

Front
speakers

Rear
speakers

io-media

HMI
(Left

headrest)

ControlContext
(Rear left seat)

Zone
(Rear left)

Bluetooth
headset

(1)

io-media

TrackSession
(1)

io-media
Graph handle

TrackSession
(2)

io-media
Graph handle

Illustration of MME implementation with two control contexts.

Setting the maximum number of control contexts

The maximum number of control contexts is configured in the MME configuration file
mme.conf. For more information, see “Global settings” in theMME Configuration
Guide.

Zones
Zonesare passive output containers through which the MME sends played media to
output devices. Zones can be:

• created at start up

• created or removed as required while the MME is running

• attached to a control context or detached from a control context while the MME is
running

For more information, see “Example configurations” and “Runtime control of zones
and output devices” below.

April 30, 2009 Chapter 1 • Control Contexts, Zones and Output Devices 5

Configuring the MME for multi-zone support 2009, QNX Software Systems GmbH & Co. KG.

The MME sends playback from a control context only to the zones attached to that
control context. For example, in an automobile with two zones: “driver” and
“passengers”, the zone “passengers” could be attached to a control context playing a
video, while the zone “driver” would not be attached. A DVD-video played back in
the control context would be available only in the zone “passengers”, but not in the
zone “driver”.

Output devices
An output device is a device to which media content can be output. Three classes of
output can be sent to devices:

• audio content

• video content

• encoded content, which is sent to a remoteio-media for decoding

Configuring the MME for multi-zone support
The MME uses combinations of control contexts, zones and output devices to play
media and direct output to the output locations requested by end-users:

• Control contexts are permanent; they cannot be created or removed while the MME
is running. Your MME start up routines should therefore create all the control
contexts your implementation will need.

• Zones can be created at start up, but can also be added or removed by calls to the
MME API, as required while the MME is running.
Since you need a zone to which you can send media output, you need to create at
least one zone at start up. The only exception to this rule is if you willonly be
routing analog output from an iPod directly to an output device, without passing it
through the MME.

• Output devices can be added and removed through the MME API, so you do not
need to add them at startup. It is good, practice, however, to attach one output
device per zone so that the system is ready for playback and output when it has
completed its startup routines.

Since there is a one-to-one relationship between control contexts and zones, a
common approach at start up is to create all the control contexts required, a zone for
each control context, and attach at least one output device to each zone.

Sample configurations
The examples below show how to set up control contexts, zones and output devices at
startup.

6 Chapter 1 • Control Contexts, Zones and Output Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Configuring the MME for multi-node support

Example: Defining one control context, zone and output device

The example below shows how to define, in themme database schema, a single control
context and one zone with a single output device.

INSERT INTO zones(zoneid, name) VALUES (1,’Zone1’);

INSERT INTO outputdevices(type, permanent, name, devicepath)
VALUES(1, 1, ’defaultoutput’, ’/dev/snd/pcmC0D1p’);

INSERT INTO zoneoutputs(zoneid, outputdeviceid)
SELECT 1, outputdeviceid FROM outputdevices
WHERE name=’defaultoutput’;

INSERT INTO renderers(path)
VALUES(’/dev/io-media’);

INSERT INTO controlcontexts(zoneid, rendid, name)
VALUES(1, 1, ’default’);

Example: Defining multiple control contexts, zones and output devices

The example below shows how to define in themme database schema, two control
contexts and two output zones with one output device per zone.

INSERT INTO zones(zoneid, name) VALUES (1,’Zone1’);

INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’output1’, ’/dev/snd/pcmC0D1p’);

INSERT INTO zoneoutputs(zoneid, outputdeviceid)

SELECT 1, outputdeviceid FROM outputdevices

WHERE name=’output1’;

INSERT INTO renderers(path) VALUES(’/dev/io-media’);

INSERT INTO controlcontexts(zoneid, rendid, name)

VALUES(1, 1, ’cc1’);

INSERT INTO zones(zoneid, name) VALUES (2,’Zone2’);

INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’output2’, ’/dev/snd/pcmC0D2p’);

INSERT INTO zoneoutputs(zoneid, outputdeviceid)

SELECT 2, outputdeviceid FROM outputdevices

WHERE name=’output2’;

INSERT INTO controlcontexts(zoneid, rendid, name)

VALUES(2, 1, ’cc2’);

After you have defined your output zones, you must create them in your control
context and attach your output to them. For instructions, see “Runtime control of
zones and output devices” below.

For more information about how to configure the MME, see theMME Configuration
Guide.

Configuring the MME for multi-node support
The MME can get media and send output to a remote node, as required.

Getting media on a remote node
The MME uses the MCD (Media Content Detector) utility to detect media content.
This utility supports media content detection across a network. To access media on
remote devices, you must configure:

April 30, 2009 Chapter 1 • Control Contexts, Zones and Output Devices 7

Runtime control of zones and output devices 2009, QNX Software Systems GmbH & Co. KG.

• the MCD to detect media at the remote location of your device

• configure the MME’sslots table with these remote devices and their paths

For information on how to configure the MCD for multi-node support, see
“Configuring multi-node support” in the chapter Configuring Device Support of the
MME Configuration Guide. For more detailed information about the MCD, see the
MME Utilities Reference.

For more information about configuring the slots table for supported devices, see
“Configuring theslots table for supported devices” in the chapter Configuring
Device Support of theMME Configuration Guide.

Outputting to a remote node
The MME supports output to devices across a network. To output to a device on a
remote network node, you need to:

• set the path to the device on the remote node in theoutputdevices table

• configure theslots table for supported devices

• attach that device and its zone to the control context with the playback

You can use an output device that is accessible over Qnet by specifying the full path to
the device in your client application, or by setting the device path in the
mme_data.sql. For example, by changing/dev/snd/pcmC0D1p (for a local output
device) to/net...full path .../dev/snd/pcmC0D1p for a remote output device:

INSERT INTO outputdevices(type, permanent, name, devicepath)
VALUES(1, 1,’defaultoutput’, ’/net/edosk7780/dev/snd/pcmC0D1p’);

Runtime control of zones and output devices
This section describes how to manage zones and output devices at runtime.

Adding and removing zones and output devices
You must set a zone for the control context where you will play media in order to
output the playback to an output device. If a zone is no longer required, you can
remove it.

Adding zones to a control context

To create and use a zone, use the following functions:

• To create a zone, callmme_zone_create()with the MME connection handle, and
the name you want to give the zone.

• To set the output zone for the control context, callmme_play_set_zone().

• To find out which output zone is set for your control context, call
mme_play_get_zone().

8 Chapter 1 • Control Contexts, Zones and Output Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Runtime control of zones and output devices

Removing a zone

To remove a zone that is no longer required, simply callmme_zone_delete()
specifying the ID of the zone you want to remove.

Attaching and detaching output devices

You should also attach output devices to zones, so that the control context will use
these devices for playback. To attach a new output device to a zone, use
mme_play_attach_output(); to detach an output device from a zone, use
mme_play_detach_output().

Making output devices “permanent”
You may wish to mark some output devices, such as built-in car speakers, as
permanent, and others, such as removable headphones, as not permanent. To mark an
output device as permanently attached to an output zone, call
mme_output_set_permanent()with thepermanentargument set to 1 (one). To tell the
MME that a device is not permanent, call the same function, with thepermanent
argument set to 0 (zero).

Managing output attributes
To get output attributes, such as volume, balance, mute, or GF/video layer, call
mme_play_get_output_attr(). To set these attributes, use
mme_play_set_output_attr().

April 30, 2009 Chapter 1 • Control Contexts, Zones and Output Devices 9

Chapter 2

Starting Up and Connecting to the MME

In this chapter. . .
Connecting to the MME 13
Shutting down the MME 15
Using the MME notification interface 16
MME and QDBslog codes 19

April 30, 2009 Chapter 2 • Starting Up and Connecting to the MME 11

 2009, QNX Software Systems GmbH & Co. KG. Connecting to the MME

The information and instructions in this chapter assume that you have installed the
MME, and that you have a target system with the MME configured and running. On
this target system you need, as a minimum:

• qdb, with the base MME databases created (mme_temp, mme, andusb).

• io-media-generic

• io-fs-media and its modules

• io-audio and the correct drivers

• mcd

• mme

For more information about starting the MME, see the chapter MME Quickstart Guide
in Introduction to the MME.

In everyday discussions of electronic media, the terms “file” and “track” are often
used interchangeably. In this document, “file” refers to all non-media files (the MME
configuration file, for instance) and to media files that are being read or otherwise
manipulated for a purpose other than playing them. The term “track” refers to media
files that are being played or read and otherwise accessed or manipulated for playing.
For example, the MME synchronizes folders and thefiles inside them, but it reads the
tracksfrom a playlist and places them in a track session.

Connecting to the MME
The MME is designed to make communications with client applications both simple to
implement and efficient in its execution. To communicate and work with the MME, a
client application needs only to connect to the MME and register for the types of
events it requires for that connection.

The figure below illustrates the flow of activities from first connection to the MME to
disconnection.

Connection
handle

Connect
Register

for events

Playback,
synchronizations,

copying and ripping,
etc.

Disconnect

Client application workflow with MME from connection to disconnection

April 30, 2009 Chapter 2 • Starting Up and Connecting to the MME 13

Connecting to the MME 2009, QNX Software Systems GmbH & Co. KG.

You may also want to set the preferred language for media output. For more
information, see “Setting the preferred playback language” in the chapter Configuring
Internationalization of theMME Configuration Guide.

• For information about control contexts and how to define them, see “Control
Contexts” in the chapter Control Contexts, Zones and Output Devices.

• For information about detecting mediastore states at startup, see “Understanding
mediastore states at startup” in the chapter Working with Mediastores.

The MME connection handle
Each client application connected to the MME has its own unique connection handle.
The connection handle information is stored in the opaque structuremme_hdl_t.
Valid connection handles are created bymme_connect(). The MME fills in all needed
information to create the connection handle; all calls to MME functions require a valid
connection handle.

The functionmme_disconnect()releases connection handles. Function calls made
with a connection handle after it has been released will cause an error.

Safety

All MME functions are thread-safe. The client application can create multiple
connections, and the MME handles thread safety for all threadswhen each thread uses
a different connection handle.

However, if you use the same connection handle for more than one thread in your
client application, you must use mutexes, semaphores, or some other method to
maintain thread safety.

About connections, validation and blocking

The MME allows you to set a timeout period for blocking functions. If you set a
timeout period, when the timeout period expires, the function returns, unblocking the
client application. To enable the MME’s unblocking capabilies, you need to set the
<Unblock> configuration element attribute totrue. For more information, see
“Enabling the unblock capability” in the theMME Configuration Guide, and
mme_set_api_timeout()andmme_get_api_timeout_remaining()in the chapter MME
API.

For information about setting the MME’s behavior when making a connection
(synchronous or asynchronous, and blocking or non-blocking) seemme_connect().
For blocking and validation information for specific functions, see the descriptions of
the functions in theMME API Library Reference.

14 Chapter 2 • Starting Up and Connecting to the MME April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Shutting down the MME

Making the connection
Before it can start using the MME API, your client application must:

• useqdb_connect()to connect to the MME database

• usemme_connect()to connect to at least one MME control context

For more information about QDB, see theQDB Developer’s Guide.

The functionmme_connect()requires:

• a control context device path for your connection (which maps directly to a device
path)

• settings for theflagsvariable

For more information, seemme_connect()in theMME API Reference.

Disconnecting from the MME
When the client application has finished all the work it needs to do on an MME
connection, it should disconnect from the MME and the QDB. To disconnect from the
MME and the QDB, call the functionsmme_disconnect()andqdb_disconnect()with
the appropriate connection handles.

The sample below shows how a client application disconnects from the MME and the
QDB:

// disconnect from the servers.
mme_disconnect(mme);
qdb_disconnect(qdb);

Disconnecting from the MME doesn’t shut down the MME. It simply disconnects the
client application from the device path to which it was connected in a control context.

Shutting down the MME
To shut down the MME:

1 Call mme_shutdown()to prepare the MME for shutdown.

2 Call mme_disconnect()to disconnect from the MME.

3 Kill the mme process, or shut down the system.

A call to mme_shutdown():

• stops and disables:

- playback on all control contexts

- synchronizations on all control contexts

- any other MME operations that write to the MME database

April 30, 2009 Chapter 2 • Starting Up and Connecting to the MME 15

Using the MME notification interface 2009, QNX Software Systems GmbH & Co. KG.

• delivers to all control contexts, the eventsMME_EVENT_SHUTDOWNwhen the
MME begins shutting down threads in the background, and
MME_EVENT_SHUTDOWN_COMPLETEDwhen all threads have shut down

Because the MME shuts down threads in the background, the client application may
receive events from other operations after it receivesMME_EVENT_SHUTDOWNand
before it receivesMME_EVENT_SHUTDOWN_COMPLETED.

After calling mme_shutdown(), you can:

1 Call mme_disconnect()to disconnect the client application from the MME.

2 Shut down the system by, for instance, turning off the power.

A call to mme_shutdown()disables the MME. The MME must be killed and restarted
before a client application can use it again.

If you want to shut down the MME without turning off the system, after calling
mme_shutdown()your client application needs to kill the MME process.

Before callingmme_shutdown(), make sure that your client application completes
necessary operations and, if necessary, informs the users that it is shutting down.

Using the MME notification interface
The MME uses events to communicate with client applications. Client applications
should be designed to use these events to trigger processes, from responding to
end-user input to handling errors.

In order to receive events from the MME, the client application must:

• register for events, specifying the classes of events it wants to receive

• request the events at the appropriate times

Registering for events
To receive events after connecting to the MME, a client application must use
mme_register_for_events()to register for events, specifying the class or classes of
events it wants to receive.

The client application must register after each connection. This feature allows the
client application to register different connections for different classes of events. For
example, a connection used to handle synchronizations can register for
synchronization events, but ignore playback events.

Each event class has a differentsigevent. When it has registered for an event class,
the client application has told the MME whichsigevents it wants to receive. When
it has a relevant event, the MME will:

16 Chapter 2 • Starting Up and Connecting to the MME April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Using the MME notification interface

• place it in its event queue

• send thesigevent automatically to the client application.

For information about , seesigevent in theNeutrino Library Reference.

The client application can then decide from thesigevent if it needs to see the
associated event.

The code snippet below provides an example of how to register for events in a Photon
environment. It shows the steps required to set up the client application and the MME
so that the MME delivers playback events (MME_EVENT_CLASS_PLAY) to the client
application. These steps are:

• creating a pulse

• attaching the client application’s input handler functionmy_input_handler()to the
pulse

• filling the structuremme_event with the relevant event data

• instructing the MME to place the event data for each playback event in its event
queue

The client application now needs only to callmme_get_event()to retrieve playback
events with their data.

#include <mme/mme.h>
#include <qdb/qdb.h>

...

// Set up the MME input handler.
if(0 == (pulse = PtAppCreatePulse(NULL, -1))) {

perror("PtAppCreatePulse()");
exit(EXIT_FAILURE);

}

if(NULL == PtAppAddInput(NULL, pulse, my_input_handler, NULL)) {
perror("PtAppAddInput()");
exit(EXIT_FAILURE);

}

PtPulseArm(NULL, pulse, &mme_event);

// Let the mme know that we need events for this class.
if(-1 == mme_register_for_events(

mme, MME_EVENT_CLASS_PLAY, &mme_event)) {
perror("mme_register_for_events()");
exit(EXIT_FAILURE);

}

The code snippet below shows how the MME’s command-line toolmmecli registers
for events.

// Connect to the mme for the event thread
mme_ev_hdl = mme_connect(controlcontextdevice, O_SYNC);
if (mme_ev_hdl == NULL) {

April 30, 2009 Chapter 2 • Starting Up and Connecting to the MME 17

Using the MME notification interface 2009, QNX Software Systems GmbH & Co. KG.

fprintf(stderr,
"Could not connect to %s\n", controlcontextdevice);

exit(EXIT_FAILURE);
}

// We need a channel to receive the pulse notification on.
chid = ChannelCreate(0);

// And we need a connection to that channel for the pulse
// to be delivered on.
coid = ConnectAttach(0, 0, chid, _NTO_SIDE_CHANNEL, 0);

// fill in the event structure for a pulse
SIGEV_PULSE_INIT(&event, coid,

SIGEV_PULSE_PRIO_INHERIT, MY_PULSE_CODE, 0);

// Setup the timer; we want first event right away.
timer_create(CLOCK_REALTIME, &event, &timer_id);
itime.it_value.tv_sec = 0;
itime.it_value.tv_nsec = 0;
itime.it_interval.tv_sec = 0;
itime.it_interval.tv_nsec = 0;
itime.it_interval.tv_sec = 0;

// Register for all events from the MME
if (mme_register_for_events(mme_ev_hdl,

registeredclasses, &event) == -1) {
fprintf(stderr,
"Could not register for events of type ALL. errno = %d\n", errno);

finish(0);
}

MME event classes
The MME event classes are bit masks. You can combine them with anOR operator to
register for several events at once. The structuremme_event_classes_t defines the
different MME event classes as bit masks. These classes are:

• MME_EVENT_CLASS_PLAY — Playback events.

• MME_EVENT_CLASS_SYNC — Synchronization events.

• MME_EVENT_CLASS_COPY— Copying and ripping events.

• MME_EVENT_CLASS_GENERAL — Events not specified in the other classes.

• MME_EVENT_CLASS_ALL — All events.

To register forplaybackandsynchronizationevents callmme_register_for_events()as
follows:

mme_register_for_events(hdl,
MME_EVENT_CLASS_PLAY | MME_EVENT_CLASS_SYNC,
event);

18 Chapter 2 • Starting Up and Connecting to the MME April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. MME and QDB slog codes

Getting events
To see the events in the MME’s event queue, your client application needs to call
mme_get_event(). The example below shows part of a routine used by a client
application to get events from the MME:

for(;;) {

if(-1 == mme_get_event(mme, &event)) {
perror("mme_get_event()");
return Pt_CONTINUE;

}

if(event.type == MME_EVENT_NONE) {
break; // no more events, exit the loop.

}
}

For a complete list of events delivered by the MME, see the chapters on events in the
MME API Library Reference.

Unregistering for events
To stop receiving a class of events, the client application must unregister for that event
class. To unregister for an event class, callmme_register_for_events()with the
event_classset to the event class for which you want to stop receiving events, and the
argumenteventset to NULL.

If the client application has registered for several or all event classes, it can unregister
for any event class without affecting the registration for the other event classes. The
example below shows a registration to receive all event classes, and a registration to
stop receiving media copy and ripping events:

mme_register_for_events(hdl, MME_EVENT_CLASS_ALL, &event);

// Do some work here.

mme_register_for_events(hdl, MM_EVENT_CLASS_COPY, NULL);

MME and QDB slog codes
The MME and QDB slog codes have permanent values, as follows:

• _SLOGC_QDB — 26

• _SLOGC_MME — 27

April 30, 2009 Chapter 2 • Starting Up and Connecting to the MME 19

Chapter 3

Working with the MME Database and SQL

In this chapter. . .
Time values in the MME database 23
Solutions for database deadlock issues23
Handling of corrupt database 25
Optimizing your SQL 25

April 30, 2009 Chapter 3 • Working with the MME Database and SQL 21

 2009, QNX Software Systems GmbH & Co. KG. Solutions for database deadlock issues

Time values in the MME database
The MME’s time is a 64-bit, internally-derived value that is guaranteed to be
monotonically increasing, even across system restarts. This value is guaranteed on
systems with or without a Real-Time Clock, and on systems on which the real-time is
changed forward or backward.

This behavior permits time-based comparisons of entries in the database with other
database entries, such as, for example, thelastseenandlast_syncfields in the
mediastores table to determine if a mediastore requires resynchronization.

The table below lists MME database table columns (fields) that use the MME’s
internally derived time. These fields can be compared to determine the relative
sequence of events, as in the example above.

Table Columns (Fields)

folders

library

mediastores lastseenandlast_sync

For systems that do not have a stable real-time clock, you should enable the
<TimebaseSet> configuration element. This option causes the MME to run a routine
at startup to adjust its internal timebase so that all time values used in the database
increase monotonically. See “Database time base” in theMME Configuration Guide
chapter Configuring Database Behavior, andmme_timebase_set()in theMME API
Library Reference..

Solutions for database deadlock issues
Database deadlock issues have been observed on some MME projects. The causes for
these issues have been identified, and the solutions are described below:

• Different database file attached orders

• Using the QDB client to verify attached order

• Separating deadlock issues from performance issues

Different database file attached orders
Different database file attached orders for QDB and an external SQLite client result in
different locking orders, which cause database deadlocks.

April 30, 2009 Chapter 3 • Working with the MME Database and SQL 23

Solutions for database deadlock issues 2009, QNX Software Systems GmbH & Co. KG.

Solution

To prevent database deadlocks caused by different database file attached orders, ensure
that your projects lock databases in the same order as they are attached:

1 mme (master)

2 mme_temp

3 mme_custom

4 mme_library

If you don’t have anmme_custom table, use this order:

1 mme (master)

2 mme_temp

3 mme_library

CAUTION: Locking your database files in any other order causes database deadlocks.
!

Using a QDB client to verify attached order
Before attaching database files in an external external client, you can have the client
ask QDB the attached order for the files. Below is an example of how to ask QDB the
attached order of database files, and the result:

qdbc -d mme ’pragma database_list;’
Rows: 5 Cols: 3
Names: +seq+name+file+
00000: |0|main|/fs/tmpfs/mme.db|
00001: |1|temp||
00002: |2|mme_temp|/fs/tmpfs/mme_temp|
00003: |3|mme_custom|/fs/tmpfs/mme_custom.db|
00004: |4|mme_library|/fs/tmpfs/mme_library.db|

If a file doesn’t have a filename (row 1), then don’t attach it.

Separating deadlock issues from performance issues
During the development phase of your project you should configure your systems to
ensure that you are able to correctly separate performance problems from deadlock
problems, and understand and solve each problem accordingly:

• Run your systems with infinite timeouts to ensure that a deadlock is not confused
with a performance issue, and is always correctly identified and addressed.

24 Chapter 3 • Working with the MME Database and SQL April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Handling of corrupt database

• Enable profiling for queries that take longer than a specified time to execute (for
example, 200 milliseconds). If a query takes longer than the specified amount of
time, log it as a performance warning, and address the performance issue.

You can change your system configuration when you prepare your system for the
production environment.

Handling of corrupt database
If an operation that uses SQLite, such as those performed byqdb_statement()or
qdb_vacuum(), fails because of a corrupt database, the function now returnsEBADF
and logs an error. Client applications can now check forEBADF, and take appropriate
steps to correct the problem with their databases.

For information about checking for and correcting inconsistencies, see the information
provided with themme_sync_db_check()function in theMME API Library
Reference.

Optimizing your SQL
This section provides a few tips on how to optimize your SQL when working with the
MME.

SQL is very flexible and can perform the same job in many different ways. Not all
SQL statements are equal, however, and it is important to optimize your client
application’s requests to the MME database. SQLite is fast, but it can take time to
complete an operation if the query statement is not optimized.

For an overview of how to optimize SQL statements for SQLite, see “SQLite
Optimizer Overview” on the SQLite web sitewww.sqlite.org.

A note about SQL statements

The QDB (qdb) resource manager is a resource manager interface on top of the
SQLite database engine. Through the QDB, the MME uses SQLite to query and write
to its databases. This section offers recommendations for composing queries and other
SQL statements for the MME.

April 30, 2009 Chapter 3 • Working with the MME Database and SQL 25

Optimizing your SQL 2009, QNX Software Systems GmbH & Co. KG.

SQL statements arenot case sensitive. For example, the three queries below are
equivalent:

select fid,msid,filename from library

SELECT fid,msid,filename from library

SELECT fid,msid,filename FROM library

By convention, however, we use capitals for the SQL keywords to improve the
legibility of query statements:SELECT fid,msid,filename FROM library.

Design for size and limit queries
An SQL database can become very large very quickly, with hundreds of thousands of
entries. The MME database is designed to scale well, but it’s best to limit your queries
and to design these queries to avoid duplicating information in the database tables.

Use Indexes
Indexes improve database performance. When a query is made against a table, if a
column doesn’t have an index, it requires a table scan; and if an unindexed column is
of typeTEXT, SQL will perform a full table scan string comparing all rows with the
requested value.

Use JOINs carefully
Joins are convenient, but they don’t scale well and are often much slower than
sub-selections for large tables, because the complexity ofJOINs is exponential, while
the complexity of sub-selections is linear. As you add more rows to the tables, the
query sub-selection will increasingly perform better than the query with theJOIN.

The following examples produce the same results, but the statement with the
sub-select is much faster, especially with larger tables.

Not recommended
SELECT fid FROM library

INNER JOIN mediastores on library.msid = mediastores.msid
WHERE mediastores.available = 1;

Recommended
SELECT fid FROM library

WHERE msid IN (SELECT msid FROM mediastores WHERE available=1);

If you join two small tables that will never be large, then using aJOIN is acceptable, as
it won’t impact performance. However, the query with theJOINwon’t scale well and
performance will cause performance to degrade if either one of the tables increases in
size.

26 Chapter 3 • Working with the MME Database and SQL April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Optimizing your SQL

Filtering out unavailable tracks
Media files on external devices, such as a PFS device, remain in the MME library after
the device has been removed from the system. The exception to this rule is if the
device and its files are pruned from the library to keep the MME database within its
configured size limits. For information about database pruning, see “Database
pruning” in theMME Configuration Guide. In addition, files that were synchronized
but are later found to be unplayable remain in the library, though they are marked as
unplayable. For more information, see “Marking unplayable tracks” in the chapter
Playback Errors.

To avoid building track sessions with tracks that aren’t available, which could cause
gaps in playback, your client application should filter out tracks on unavailable
mediastores when it builds its track sessions. It should include eitherWHERE

available=1 or WHERE active=1 in its select statement. The example query
statement below selects all tracks in the playlist “Favorites” that are on available
mediastores:

SELECT fid FROM playlistdata WHERE
plid = (SELECT plid from playlists WHERE name = ’Favorites’)
AND msid IN (SELECT msid FROM mediastores WHERE available=1);

April 30, 2009 Chapter 3 • Working with the MME Database and SQL 27

Chapter 4

Working with Mediastores

In this chapter. . .
Detecting mediastores 31
Mapping mediastore filesystem paths to device locations37
Handling external disk changers 38
Handling removed mediastores 39
Handling reloaded mediastores 39
“Manually” updating thelibrary table 39

April 30, 2009 Chapter 4 • Working with Mediastores 29

 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

This chapter describes how to detect and manage mediastores, their state changes, and
their removal from and insertion into the MME.

Detecting mediastores
The MME uses the Media Content Detector (MCD) utility to monitor and detect the
insertion and removal of mediastores, and theslots table to associate mediastores
with the devices that present them. To detect mediastores, your system must have the
MCD and the slots table configured correctly. For more information, see “Mediastore
detection path configuration” in the the chapter Configuring Device Support of the
MME Configuration Guide..

Mediastore states
Mediastores can have any one of the following states:

• Nonexistent — the MME has no database entry for the mediastore.

• Unavailable — the MME has a database entry for the mediastore, but the
mediastore isn’t in the system in which the MME is running.

• Available — the MME has a database entry for the mediastore, and the mediastore
is in the system in which the MME is running. That is, the MME knows the
location of the mediastore, but the mediastore can’t be synchronized, and tracks on
the mediastore can’t be ripped or played. This state is generally possible only for
disk-based mediastores in multidisk changers.

• Active — the usable state of a mediastore. The MME has a database entry for the
mediastore, the mediastore can be synchronized, and tracks on the mediastore can
be ripped or played.

The initial state of all mediastores is “nonexistent”. The MME checks for the insertion
and removal of mediastores, including hard drives, CDs and DVDs, and USB memory
sticks, and delivers the eventMME_EVENT_MS_STATECHANGEwhen a mediastore
state changes.

When the state of a mediastore changes from another state to “nonexistent”, the MME
prunes the entries for that mediastore from its database,regardlessof the MME’s
pruning settings.

The default MME configuration is to automatically detect new mediastores. When it
detects a new mediastore, the MME:

• checks if it has seen the mediastore before, by attempting to match a unique
mediastore identifier with an entry in theidentifier column of the MME
mediastores table

• updates themediastores table and sets

- theavailablefield for the mediastore to indicate that the mediastore is available

April 30, 2009 Chapter 4 • Working with Mediastores 31

Detecting mediastores 2009, QNX Software Systems GmbH & Co. KG.

- if the mediastore is active, theactivefield to indicate that the mediastore is active

• delivers the eventMME_EVENT_MS_STATECHANGE

Understanding mediastore states at startup

In order to start the MME correctly, you should keep in mind the following:

• The MME database must be accessible to the MME before it starts. This
requirement means that the QDB must be running before the MME is started. Note,
however, that with the QDB running, the MME databases can be read by other
entities, including client applications that use the MME.

• The MME can’t use a mediastore that it hasn’t been told about by the path
monitoring system.

• When the MME first starts, it has no way of knowing:

- what mediastores are present

- what changes were made to mediastores or to its database while it was not
running — or the significance of those changes

• The mediastore information in the MME database may vary, depending on how
your system is configured, and how it shutdown; and you should handle the system
startup accordingly:

- If your system is configured to always start from a clean (empty) database at
each startup, you only need to tell the MME to begin device detection.

- If your system did not perform a clean shut down (for example, a power failure
or a battery removal stopped the system), you need to revert to a clean database,
and proceed from that point.

- If your system is configured to save the database at shutdown and restore it at
startup (the recommended configuration), the state of mediastores indicated by
the MME database at startup isthe state of the mediastores when the MME shut
down. If mediastores were removed, inserted or otherwise changed between
shutdown and startup, these changes are not indicated in the database, so you
need to tell the MME to begin device detection, thenwait for it to complete its
database clean up before attempting to access the database. See “System
startup operations” below for details.

For more information about mediastore states, see “Detecting mediastores” in the
chapter Working with Mediastores.

System startup operations

The following describes the operation of the system at startup,assumingthat
automatic device detection is disabled.

1 The QDB is started.

• The database may be read.

32 Chapter 4 • Working with Mediastores April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

• Themediastores table reflects the state of mediastores at the previous
shutdown, assuming that the table has been properly restored and no other
entity is writing to it.

2 The MME is started. Since device detection is disabled, themediastores table
doesn’t change state, and the client application has a second opportunity to
determine the startup (in fact, the previous shutdown) state of the mediastores.

3 The client application instructs the MME to begin device detection. The MME
goes through themediastores table, and sets anyactive or available
entries tounavailable. For each changed entry, the MME delivers an
MME_EVENT_MS_STATECHANGEevent. During this time, themediastores
table should not be read by other entities, as it may be changing.

4 The MME delivers anMME_EVENT_MS_DETECTION_ENABLED event.
Delivery of this event indicates that the MME has completed its database clean
up. The client application may now read the database.

CAUTION: The client application should not read from the MME database until the
MME completes its database clean up and delivers the
MME_EVENT_MS_DETECTION_ENABLED event. Until this event is delivered, the
database reflects thepreviousstate of mediastores, creating an inconsistency between
the information about the mediastores in the MME database and the actual state of the
mediastores. This inconsistency can cause errors.

!

5 The MME handles insertion requests. After the MME delivers an
MME_EVENT_MS_DETECTION_ENABLED event, it may process mediastore
insertion requests from the path monitoring system. Handling of these causes
the database to change: as the path monitoring system (normally the MCD)
detects the appearance of media stores, it tells the MME, and the MME
processes this new information and updates themediastores table as needed.

If the MME is configured forautomaticdevice detection, the MME executes Step 3
internally, and the states for mediastores in the database state may change between
Step 2 and Step 4 above.

Determining mediastore state changes after shut down

In some situations, a client application may want to determine if a mediastore
remained in the system (wasnot removed) while the system was shut down. This
information depends on information to which the MME does not have access. For
example, to tell the client application that a CD remained in the system, the MME
would need to know if CDs can be removed and inserted while the system power is off.

The mediastore information from the MME database that is directly available to the
client application is the following:

• The mediastore state at the previous shutdown. The client application may read this
information from the MME databaseafter the QDB has started, andbefore:

April 30, 2009 Chapter 4 • Working with Mediastores 33

Detecting mediastores 2009, QNX Software Systems GmbH & Co. KG.

- the MME is started, if automatic device detection isenabled(the default)

- device detection is started, if automatic device detection isdisabled

• Mediastore state changes at system startup.

These limitations mean that, in order to be able to distinguish between a mediastore
that was never removed from the system and a mediastore that was inserted just as the
system was starting up, the client application must be designed to use information that
it requests and maintains independently of the information the MME can provide. If,
for example, the client application is implemented in a system where CDs cannot be
ejected when the system is shut down, it may be able to assume — independently of
the information provided by the MME — that a CD that was present at shutdown is
present at startup.

Configuring how the MME handles mediastores at startup

Thedelete_at_start field in theslots table allows you to manage how the MME
processes mediastores marked asactive at startup.

The default MME behavior at startup is to change the state ofactive mediastores to
unavailable. However, when thedelete_at_start field for a slot is set to a non-zero
value, at startup the MME marks any mediastore found in the slot for deletion, and
sets its state tonon-existant. This configuration causes the MME to treat all
mediastores in a slot as new mediastores; that is, as mediastores that the MME has
never seen, and to perform synchronizations accordingly.

CD detection and presentation
The stages of disk insertion and detection are:

1 Disk inserted into drive.

2 The disk spins up.

3 The MCD notices the path appearance for the CD.

4 The MCD signals the insertion to the MME.

5 The MME probes the disk to see how to handle it.

6 The MME creates a media store entry (or marks an existing entry of the disk as
active).

7 The MME attempts to synchronize its database with the contents of the disk.

Mixed-mode CDs

The MME uses the first entry in a CD’s table of contents (TOC) to determine if the CD
is an audio or a data CD, and makes only one entry in themediastores table for the
CD. This behavior means that the MME presents a CD with both audio and data files
to the client application as either an audio CD or a data CD, based on the type of file in
its first TOC entry.

34 Chapter 4 • Working with Mediastores April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Detecting mediastores

Recommended method for detecting mediastores
The recommended method for an client application to detect a mediastore state
change, such as an insertion or a removal, is to check for the
MME_EVENT_MS_STATECHANGEevent, then check the new mediastore state:

• If the new state ise_mme_ms_active, you can assume that the mediastore has been
inserted.

• If the new state ise_mme_ms_unavailable, you can assume that the mediastore has
been removed.

Note that a state ofe_mme_ms_nonexistentcan occur when a mediastore has been
removed from the MME database, for example, during a pruning operation. Client
applications should therefore also check for this state.

Manually requesting device and mediastore detection
If you have configured the MME not to automatically detect devices and mediastores,
you must callmme_start_device_detection()to start device and mediastore detection.
The MME will check for any new devices that may have or be mediastores, and
updates itsmediastores table with the relevant information.

CAUTION: Between the time the MME starts up and mediastores are detected, the
MME can’t check the state of mediastores as defined in its database against the actual
state of mediastores connected to the system. Therefore, if you have configured your
MME to not automatically start device detection, always call
mme_start_device_detection()before attempting any tasks that access devices
(synchronization, playback, media copy and ripping, etc.).

Failure to callmme_start_device_detection()before attempting these type of tasks
will produce unexpected results that may compromise the integrity of your system.

!

Mediastore identifiers
When the MME detects that a mediastore has been inserted into the system, it checks
the mediastore for a unique identifier that it can match against an entryidentifier
column of the MMEmediastores table. If the unique identifier for a mediastore
matches an entry in this table, the MME considers that it has seen the mediastore
before and proceeds accordingly; it may, for example, be able to optimize the
synchronization of the mediastore if it ican confirm that some of the information it has
about the mediastore is still accurate.

Identifiers for hard drive filesystems, USB memory sticks, and data CDs and DVDs

When a mediastore is inserted, if the MME has sufficient information to do so, it
identifies that mediastore as already known. When it detects the insertion of a hard
drive filesystem, USB memory stick, or data CD or DVD into the system, the MME
searches for the fileWMPInfo.xml at the root of the mediastore. It then attempts to
extract theUUID from the file. If the extraction is successful, the MME stores this

April 30, 2009 Chapter 4 • Working with Mediastores 35

Detecting mediastores 2009, QNX Software Systems GmbH & Co. KG.

UUID in the identifier column of the MMEmediastores table and uses it as a
unique identifier for the mediastore.

If the MME doesn’t find the fileWMPInfo.xml, or if it is unable to extract aUUID
from the file, it creates an identifier from a hash of the volume name (if found) and
some file system information.

Note that in the absence of aUUID:

• Data CDs or DVDs that have changed their content since the last time they were
inserted in the system are recognized as new mediastores.

• Data CDs or DVDs with the same volume name are recognized as different if the
size of their contents is different.

• USB device serial numbers can’t be used, so there is a significant chance that these
devices can’t be uniquely identified: two USB devices of the same size with no
volume name aren’t distinguishable.

Identifying USB memory sticks

Many USB memory sticks don’t have at least one of aWMPInfo.xml file, a volume
name or a unique serial number. Without any of these unique identifiers, the MME has
no mechanism for distinguishing between two USB sticks of the same size.

To solve the problem in a development environment, you can either assign a unique
volume name to each USB stick, or synchronize each stick with Windows Media
Player, which automatically creates aWMPinfo.xml file. In a production
environment, you can have the HMI write a volume name or other unique identifier to
USB sticks the first time they are inserted.

Support for multiple instances of a mediastore

The MME supports up to 10 instances of the same mediastore. When it detects a
mediastore, the MME checks if the an instance of that mediastore is already present in
its database. If the new mediastore is a duplicate, the MME:

1 Doesn’t change any information for any instances of the mediastore already
present in the MME database.

2 Creates an entry for the new (duplicate) mediastore.

3 Appends “-in”, wheren is the instance number, to the string in the mediastore’s
identifier column, and (if this column is not empty) to the string in the
driver_identifier column.

Thus, for example, if two duplicates of a mediastore withmsid123 are entered in the
system, the MMEmediastoreswill have three entries for this mediastore, as
follows:

36 Chapter 4 • Working with Mediastores April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Mapping mediastore filesystem paths to device locations

msid identifier driver_identifier

123 FAT12341234 6

123 FAT12341234-i1 6-i1

123 FAT12341234-i2 6-i2

• Identifiers can be from “-i1” to “-i9”.

• The MME treats each mediastore instance as a separate, unique mediastore.

• The MME prunes unused mediastore instances from its database, as required.

Mediastore and device capabilities
The MME uses thecapabilitiesfield in themediastores table to store the
capabilities of a mediastore or a device, such as an iPod, that presents itself as a
mediastore. This field is a bit map defined by theMME_MSCAP_* constants.

To find out the capabilities supported by a mediastore or device, after receipt of an
MME_EVENT_MS_STATECHANGEevent indicating that the mediastore or device is
active, check the value of thecapabilitiesfield for that mediastore or device.

If, for example, a device manages its own:

• track sessions, the bit forMME_MSCAP_DEVICE_TRACKSESSIONS
(0x00000080) will be set

• repeat and random modes, the bit forMME_MSCAP_DEVICE_REPEATRANDOM
(0x00000800) will be set

For more information about mediastore and device states, see “Mediastore states”
above.

Track session capabilities

To get details about the current track session capabilities, call
mme_trksession_get_info(). Note, however, that the information provided by this
function is valid only if it is retrievedafter playback has started on the external device.

Mapping mediastore filesystem paths to device locations
In order to be able to associate a filesystem path to the physical location of a
mediastore, your client application should map the filesystem paths of mediastores to
device paths, and these device paths to the physical locations of devices. The
mountpathfield of themediastores table is always the filesystem path of a
mediastore. To map the mountpaths in themediastores table to device paths and,
finally, to the physical locations of devices, your client application must know the
following:

April 30, 2009 Chapter 4 • Working with Mediastores 37

Handling external disk changers 2009, QNX Software Systems GmbH & Co. KG.

• what physical devices are in the system (e.g. CD changer in the front seat and a CD
changer in the back seat)

• the device paths of the drivers used to handle these physical devices (e.g.
/dev/cd_front and/dev/cd_back)

• how filesystems of mediastores are mounted when they are found (e.g.
/fs/cd_front and/fs/cd_back)

With this information, your client application could map, for example,/fs/cd_back

from themountpathfield in themediastores table to the device path/dev/cd_back
and know that this mediastore is in the back seat CD changer.

If Qnet is running and the MME is handed the device path, the filesystem mountpath
found in the mediastores table will be prefixed by/net/nodename.

Associating devices and mediastores in the slots table
Theslots table is used to associate mediastores in the MME system with the devices
that provide them. As such, a slot is a representation of a device, such as a CD drive or
a USB stick. The MME must have an entry in itsslots table with the mountpath (or,
in some cases, the device path) of every device that it may encounter. If theslots

table doesn’t have an entry for the device, the MME will not recognize the device and
will not find the mediastores on that device.

Theslots table is preloaded with default entires for an HDD, as well as for CD/DVD,
USB, PFS, UPnP, and iPod devices. You should review these entries and modify, add
or delete entries in the table to match your system. For instructions, see “Configuring
the slots table for supported devices” in the chapterMME Configuration Guide.

Handling external disk changers
The MME fills in thenamefield in themediastores table when the state of an
external CD changer is set toavailable. This behavior allows the client application
to communicate the CD changer name to users as soon as the changer is detected and
available, even before it is active.

To trigger this new behavior, the client application must configure theslots table
namefields corresponding to external CD disk changers to either empty strings or
NULL values.

For other mediastores, the MME sets thenamefield in themediastores table when
the mediastore state is set toactive.

38 Chapter 4 • Working with Mediastores April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Handling removed mediastores

Handling removed mediastores
When the MME detects that a mediastore has been removed from the system, it:

• sets theavailableandactivefields for the mediastore in themediastores table to
0

• Delivers the eventMME_EVENT_MS_STATECHANGE

Note that theavailablefield set to0 indicates only that the mediastore is not available.
It does not provide information about the state of the mediastore synchronization.

CAUTION: If a mediastore is removed from the system while the MCD that monitors
it is not running, the MME willneverlearn that the mediastore has been removed.!

Handling reloaded mediastores
If the mediastore was inserted in the system and synchronized at a previous time, the
content of thelibrary table will have the mediastore information. However, because
there can be no guarantee that a mediastore exactly matches the information in the
MME database, the MME must resynchronize the mediastore to either confirm that all
information is accurate, or add, remove, and change information as required.

During this resynchronization process, the MME uses any information available on the
mediastore that can confirm the accuracy of its database before all synchronization
work is complete. This strategy allows the MME to optimize performance by skipping
resynchronization of parts of the mediastore that are confirmed unchanged since the
last insertion and synchronization.

The default MME behavior is to automatically synchronize mediastores. Your client
application needs only to monitor the progress of the synchronization to know when it
can start playing media, displaying metadata, and using playlists.

“Manually” updating the library table
The MME provides a function,mme_lib_column_set(), that allows you to “manually”
set the values of some fields for mediastores in thelibrary table.

The functionmme_lib_column_set()can only be used to update entries in the
columns listed below:

• accurate

• last_played

• fullplay_count

• playable

• permanent

April 30, 2009 Chapter 4 • Working with Mediastores 39

“Manually” updating the library table 2009, QNX Software Systems GmbH & Co. KG.

• copied_fid

For more information, see theMME API Library Reference.

40 Chapter 4 • Working with Mediastores April 30, 2009

Chapter 5

Synchronizing Media

In this chapter. . .
The synchronization process 43
Types of synchronization 49
Updated database tables 51
Working with synchronizations 51
Gracenote classical music support 55

April 30, 2009 Chapter 5 • Synchronizing Media 41

 2009, QNX Software Systems GmbH & Co. KG. The synchronization process

This chapter explains how to synchronize media on these mediastores with the MME
database.

This chapter describes the MME default behavior. For information about how to
configure the MME’s synchronization behavior, see the chapter Configuring Media
Synchronizations in theMME Configuration Guide.

For information specific to synchronizing iPods, see “Synchronizing iPods” in the
chapter Working with iPods.

The synchronization process
Mediastore synchronization is the process by which the MME examines mediastores
and updates its database with information about the media tracks on the stores and
with the metadata for these media. Information and metadata includes, but is not
limited to, media type and format (audio, video, etc.), track name and language, genre,
cover art, and so on. This information and metadata is essential for the MME and
client application to be able to find, organize and play media, and to display
meaningful information to the end user.

The MME can be configured to automatically synchronize mediastores on system
startup and on mediastore insertation, or to wait for requests to synchronize a
mediastore. The default MME configuration is to automatically synchronize all
mediastores except iPods. Automatic synchronization is always disabled for iPods; the
MME only synchronizes these devices when it is explicitly requested to do so.

Synchronizer selection
When it prepares to synchronize a mediastore, the MME selects the most appropriate
synchronizer for the mediastore. The selection criteria include ensuring that the MME
obtains the most accurate and complete metadata available for the files on the
mediastore. For example, for a CDDA:

• The MME checks if the CD device supports CD-Text, and if the Gracenote plug-in
is enabled.

• If CD-Text or Gracenote support is available, the MME uses the most appropriate
synchronizer to get metadata during the metadata synchronization pass.

• If these synchronizers are not available, the MME uses its default synchronizer to
get the metadata.

Metadata synchronizer selection

The MME includes a table,metadataplugins, that lists the different metadata
synchronizers available to the MME. Its fields are:

metadatapluginid The metadata plugin ID.

April 30, 2009 Chapter 5 • Synchronizing Media 43

The synchronization process 2009, QNX Software Systems GmbH & Co. KG.

name The name of the metadata plugin.

Themediastores table implements the fieldmetadatapluginidto identify the
metadata synchronizer used for the mediastore, and thereby identify the origin of the
metadata for the mediastore. If more than one metadata synchronizer is required for
the mediastore, themetadatapluginid field in themediastores table is set to 0
(zero).

For information about configuring ratings for metadata synchronizers, see “Metadata
synchronizer ratings” in theMME Configuration Guidechapter Configuring Metadata
Support.

Multiple synchronization passes
For most mediastores, the MME uses a multiple synchronization passes process. This
multiple pass process reduces the delay time between the insertion of a mediastore and
readiness to play media by separating synchronization into separate passes, as follows:

• file and folder discovery

• metadata update

• playlist compilation

• external database syncrhonization (future implementation)

Monitoring synchronization progress

The client application can register to receive synchronization events and use these
events to monitor the progress of the MME synchronization activities. These events
tell the client application what level of information is ready for use:

MME_EVENT_MS_SYNCFIRSTFID

The MME has found the first playable track on the mediastore.

MME_EVENT_MS_UPDATE

An MME synchronization process has updated a database table: synchronization
is progressing normally.

MME_EVENT_MS_1PASSCOMPLETE

Basic file information: the media can be played.

MME_EVENT_MS_2PASSCOMPLETE

Metadata: artist name, genre, album art, etc. is ready for display to the end user.

MME_EVENT_MS_3PASSCOMPLETE

Playlists: playlists are ready for display and use.

MME_EVENT_MS_SYNCCOMPLETE

All synchronization passes for the mediastore are complete.

44 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. The synchronization process

The synchronization pass process
Each synchronization pass proceeds as follows:

1 Start at the root node of a tree (in this case, the mediastore root directory).

2 Enumerate each object in the root node before examining the contents of any of
the objects.

3 Examine the first folder in the queue, following each branch to its end before
starting the next folder.

This process ensures that all directories that share a common parent node are
synchronized before directories deeper in the tree are examined. If you cancel a
synchronization in progress, some directories may be fully synchronized while others
may not have any of their contents synchronized.

7

1

2

3

4

5

6 8

910

11

Illustration of the order in which the MME synchronizes mediastores.

Tracking mediastore synchronization status
The MME maintains synchronization flags in its database to track the history of
synchronization status of mediastores and folders. The column,syncflags, in the
mediastores table is used to indicate which synchronization passes have been
completed on a particular mediastore. It consists of three-bit fields, where a set value
means the particular synchronization pass has been successfully completed:

• The least-significant bit indicates that the file synchronization pass has been
completed (001).

• The next significant bit indicates that pass the metadata synchronization pass has
been completed (010).

• The next significant bit indicates that the playlist synchronization pass has been
completed (100).

For example, a value of 0 from this field means that no synchronization has completed,
and a value of 5 (101) means that the file and playlist passes have been completed, but

April 30, 2009 Chapter 5 • Synchronizing Media 45

The synchronization process 2009, QNX Software Systems GmbH & Co. KG.

that the metadata has not been completed. A value of 7 (111) indicates that all
synchronization passes have been completed.

These flags arenot cleared if the device is made unavailable. When a disk is moved out
of the active slot while in a multi-disk changer, the disk is not made unavailable, only
inactive. Therefore this action does not clear any existing synchronization flag values.

For detailed information about what the MME does at each synchronization pass and a
complete list of synchronization events, see the section “Synchronization events” in
the chapter MME Events.

The MME sets the synchronization flags when the synchronization process has
finished inserting or updating the immediate contents of a folder. This behavior means
that the client application can monitor the synchronization flags knowing that once the
flag is set the contents for a mediastore folder in the MME database will not change.

Nonblocking synchronization function calls
Synchronization function calls are all nonblocking; they leave the client application
free to start media playback or perform other tasks.

This design means that the client application does not need to wait for synchronization
to complete before it begins playing media for the end user. It can check for
completion of the first synchronization pass and begin playing media while the MME
synchronization process is updating its database with metadata and creating playlists.

Pending synchronizations
If the MME receives a request to synchronize a mediastore but it does not have a
thread available to perform the synchronization, it places the request in its
“synchronization pending” queue until a thread becomes available.

Queued synchronizations can be canceled just like active synchronizations, by calling
mme_sync_cancel().

Optimization of synchronization for starting playback on slow devices
To optimize system performance when starting playback on slow devices, the MME
performs a foreground synchronization merge as soon as it has a file ID (fid) marked
as a “firstfid” (first playable) file. This action reduces the time required to start
playback on slow devices.

Ignoring specified file types
You can configure the MME synchronization process to:

• ignore certain file types, or files with specific strings in their names

• synchronize only specified file types

46 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. The synchronization process

For efficient synchronization, you should configure your MME to skip files that begin
with “.”, and to synchronize only specified file types. For more information, see the
chapter Configuring Media Synchronizations in theMME Configuration Guide.

The MME automatically always skips the files. (current directory) and.. (parent
directory) because they would cause recursion.

Database clean up during synchronization
When it is completing synchronizations of a mediastore, the MME may attempt to
cleanup unused references to metadata if:

• the mediastore being synchronized is prunable from the database, and

• the current synchronization is not the first synchronization of the mediastore

The cleanup proceeds as follows:

1 As the MME synchronizes the mediastore, it deletes from its database entries
for files that are no longer on the mediastore.

2 When it has completed its last synchronization pass, the MME knows that it no
longer requires metadata for these deleted entries and that it can delete
references to their metadata.

3 The MME performs the cleanup, deleting unused references to metadata, after it
delivers theMME_EVENT_MS_*PASSCOMPLETEevent for the last requested
synchronization pass.

The cleanup may:

• Take up to several seconds, depending on the size of the MME database, causing a
corresponding delay between delivery of theMME_EVENT_MS_*PASSCOMPLETE
event and delivery of theMME_EVENT_MS_SYNCCOMPLETEevent.

• Cause the QDB to consume a large portion of CPU resources for the duration of the
operation.

To prevent a track session “leak” — an accumulation of useless track sessions in the
trksessions table — when a mediastore is pruned from your database, you should
also delete from your database all track sessions that use tracks on that mediastore.
For information about how to delete track sessions, see “Deleting track sessions” in
the chapter Playing Media.

Folder synchronization
The MME can be configured to deliver events when it starts and completes a folder
synchronization. This capability may be used in association with prioritized folder
synchronization, or as an alternative to polling a folder’ssyncedcolumn to monitor the

April 30, 2009 Chapter 5 • Synchronizing Media 47

The synchronization process 2009, QNX Software Systems GmbH & Co. KG.

progress of its synchronization. See the chapterConfiguring Media Synchronizations
in theMME Configuration Guidefor information about configuring the MME to
deliver folder synchronization events.

Folder event sequence

The order of delivery of folder synchronization events for a specific folder is:

1 MME_EVENT_MS_SYNC_FOLDER_STARTED

2 MME_EVENT_MS_SYNC_FOLDER_COMPLETE

3 MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE, if recursive
synchronization of the folder is requested

The MME delivers theMME_EVENT_MS_SYNC_FOLDER_STARTEDevent
synchronously when it starts synchronization of a folder. At the same time, the MME
queues the two other folder synchronization events for delivery, so that database
changes associated with these two events are completed before the events are
delivered.

This behavior means that it is normal for the client application to see
MME_EVENT_MS_SYNC_FOLDER_STARTEDevents for child folders before it sees
theMME_EVENT_MS_SYNC_FOLDER_COMPLETEevent from the parent folder.

Because the eventsMME_EVENT_MS_SYNC_FOLDER_COMPLETEand
MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETEare queued, they
consume one slot in the synchronization merge buffer space, if this space is used.

Using mme_folder_sync_data_t information

All folder synchronization events use the structuremme_folder_sync_data_t to
deliver information, but all synchronization events do not use all members of this
structure. The different folder synchronization events deliver data in
mme_folder_sync_data_t as follows:

MME_EVENT_MS_SYNC_FOLDER_STARTED

File pass:num_files=0; num_folders=0.
Metadata pass:num_files=0; num_folders=0.

MME_EVENT_MS_SYNC_FOLDER_COMPLETE— folder new or changed.

File pass:num_files= number of files in the folder;num_folders=number of
child folders in the folder;num_playlists=number of playlists added to the
playlist table.
Metadata pass:num_files=number of files updated;num_folders=0.

MME_EVENT_MS_SYNC_FOLDER_COMPLETE— folder not changed.

File pass:num_files=0; num_folders=0; num_playlists=0.
Metadata pass:num_files=number of files updated;num_folders=0;
num_playlists=0.

48 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Types of synchronization

MME_EVENT_MS_SYNC_FOLDER_CONTENTS_COMPLETE

File pass:num_files=0; num_folders=number of child folders synchronized.
Metadata pass:num_files=0; num_folders=number of child folders
synchronized.

See also the documentation for the individual events.

Synchronizing playlists
Playlist synchronization converts playlist table entries into an ordered list of file IDs
and places these file IDs in theplaylistdata table.

Playlist synchronization includes the following behavior when finding a file in the
MME database to match a playlist file:

• For every entry in the playlist, the MME attempts to match the filename for that
entry in the playlist with a filename in its database.

• For playlists on MediaFS devices, the MME will search in its database for up to
100 matches of a filename in the playlist (same filename and same mediastore). If
the database contains more than 100 matches, any matches above 100 are ignored.

• When the MME has completed its search, it associates with the playlist the file in
the MME database that best matches the file in the playlist.

If a playlist file’s timestamp or file size changes from what it was during the file
synchronization pass, the synchronization process:

1 Removes the existing playlist file from theplaylist table.

2 Creates a new entry for the file in theplaylist table.

This new entry in theplaylist table isnot automatically synchronized. It requires a
playlist synchronization pass to produce its ordered list of file IDs in the
playlistdata table.

Synchronizing a specific playlist

To synchronize a specific playlist (rather than synchronizing all playlists on a
mediastore) call the functionmme_playlist_sync().

Types of synchronization
The MME supports the following kinds of synchronization:

• full, recursive synchronization

• directed synchronization

• file synchronization

April 30, 2009 Chapter 5 • Synchronizing Media 49

Types of synchronization 2009, QNX Software Systems GmbH & Co. KG.

Full, recursive synchronization
The default behavior for the MME is to automatically initiate full, recursive
synchronization on detection of a new mediastore. With full, recursive
synchronization, the MME scans all files on the mediastore and updates the MME
database with all relevant information and metadata. To initiate full, recursive
synchronization, callmme_resync_mediastore().

Directed synchronization
Directed synchronization synchronizes only the folders and files on a specified path on
a mediastore. This capability is particularly useful if you want to synchronize part of a
large mediastore in order to start playing its contents, then synchronize the rest or
other parts of the mediastore in the background, or even at a later time.

To initiate directed synchronization, callmme_sync_directed().

To improve the end user’s ability to browse through a mediastore, such as an iPod, the
MME makes available theMME_SYNC_OPTION_CANCEL_CURRENTflag. If the
MME is performing a synchronization on a mediastore and the HMI needs to start a
new directed synchronization (because, for example, the user has started browsing
through a different folder), the HMI can use this flag when calling
mme_sync_directed()to tell the MME to cancel the current synchronization and
queue the new directed synchronization request for execution.

Directed synchronization is available only for mediastores with hierarchical directory
structures: HDDs, iPods, USB sticks, data CDs, etc. It is not available for mediastores,
such as music CDs, that have a single level directory structure.

Directed synchronizations and missing folders

If a directed synchronization is unable to find on a mediastore a folder that is in the
MME database, it deletes the folder and its contents from the MME database.

This behavior means that the client application can remove a folder from a mediastore,
then use directed synchronization to remove this folder from the MME database.

File synchronization
File synchronization allows the client application to have the MME synchronize only a
specified file. This capability is typically used when the client application knows that a
specific file change has occurred: a file has been deleted, added, moved, or renamed.

File synchronization can be performed only with certain media store types. For
example, this functionality it is not supported for use with iPods.

To initiate file synchronization, callmme_sync_file().

50 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Updated database tables

Updated database tables
The MME database tables listed below are updated during the synchronization
process:

• File pass:

- folders

- library

- mediastores

- playlists

• Metadata pass:

- folders

- library

- library_*

• Playlist pass:

- folders

- playlistdata

- playlists

Media information and metadata
The MMElibrary table provides a single view of metadata for different metadata
formats (iTunes, Windows Media). If a metadata field is not supported in a file format,
that field is simply left empty.

If the MME synchronization processes cannot find a title in a file, the MME sets the
library title field to NULL. The client application can check a file’stitle field. If the
field is set toNULL, it knows that the file does not have a decodable title, and it can
handle the situation appropriately.

Custom information and metadata
The MME has a customizable table, where you can add your own information tied to
the MME library tables and access it as suits your needs. See the file
mme_custom.sql for a sample schema.

For detailed information about when during the synchronization process specific tables
are updated, see the section “Synchronization events” in the chapter MME Events.

Working with synchronizations
The default configuration for the MME is to automatically detect mediastores and to
automatically initiate their synchronization, updating the MMElibrary and other
tables with all relevant information and metadata. As a minimum, your client
application should register to receive synchronization events in order to monitor the
status and progress of synchronizations. You can also:

April 30, 2009 Chapter 5 • Synchronizing Media 51

Working with synchronizations 2009, QNX Software Systems GmbH & Co. KG.

• instruct the MME to synchronize a mediastore by calling
mme_resync_mediastore()

• find out if a mediastore has been synchronized, and if so, what passes have been
completed, by callingmme_sync_get_msid_status()

• get the status of an synchronization in progress by callingmme_sync_get_status()

• call mme_sync_cancel()with themsidset to the mediastore ID to cancel
synchronization of that mediastore, or with themsidset to0 to cancel all current
and pending synchronizations

For information about how to configure the MME’s synchronization options, see the
chapter Configuring Media Synchronizations in theMME Configuration Guide.

Determining if resynchronization is needed
You can compare thelastseenandlast_syncfields in themediastores table to
determine if you need to resynchronize a mediastore, and skip unnecessary
resynchronizations. Both fields use the MME’s internally derived time.

The lastseenfield contains the time when the mediastore was last inserted into the
MME, and thelast_syncfield contains the time of the mediastore’s most recent
synchronization. If thelastseenfield is greater than thelast_syncfield, the mediastore
may have changed since the last synchronization — it left the system and returned,
and could have been changed: it should be resynchronized.

Skipped synchronizations
The MME delivers the eventMME_EVENT_SYNC_SKIPPEDto indicate that it found
a mediastore that could have been synchronized, but did not synchronize it for one of
the following reasons:

• automatic synchronization is disabled; the client application must specifically
request the synchronization

• automatic synchronization is enabled, but an internal event handler indicates that
synchronization should not be done

• the mediastore is identified as a mediastore type that should not be automatically
synchronized (e.g. an iPod)

Setting a priority folder
The client application can instruct the MME to synchronize a specified folder first.
You can use this feature to reduce the time required to make metadata available or start
playback of media requested by the end user.

This capability can be useful when your client application is displaying the current
view of synchronized directories during a synchronization process during startup, or
when a new mediastore is inserted. If a user selects a displayed directory before the

52 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Working with synchronizations

MME has completed synchronization, your client application can set the selected
directory as a priority folder. The MME will synchronize this directory first and the
client application can update its display for the user as it receives
MME_EVENT_MS_UPDATE events.

Call mme_setpriorityfolder()to tell the MME to pause any ongoing synchronizations
and synchronize the specified folder before resuming the rest of the synchronization.

Synchronization behavior with priority folders

The priority folder feature:

• supports one priority folder per media store being synchronized.

• silently ignores requests to synchronize:

- the folder currently being synchronized

- any folder below the current folder (because it will have already been
synchronized)

• is not recursive: the MME will synchronize the only the priority folder before
resuming its normal synchronization folder sequence

• if triggered during thefirst synchronization pass, completes all requested
synchronization passes on the priority folder before resuming its normal
synchronization folder sequence

• if triggered during a metadata or playlist synchronization pass, it completes the
current synchronization pass only

• has no effect on a mediastore that is not currently being synchronized

If during a synchronization you set a priority folder, and you then set a new priority
folder before synchronization of the first priority folder has completed, in most, but
not all cases, the MME will:

1 Synchronize the most recently set priority folder.

2 Complete synchronization of the previously set priority folder.

3 Complete the general synchronization.

In the event that you attempt to set a new priority folder before the synchronization
process has checked for the first priority folder you requested, the MME will drop the
first priority folder request, and start synchronization with the newly requested priority
folder. The first priority folder requested will be synchronized with the other folders in
the general synchronization process.

April 30, 2009 Chapter 5 • Synchronizing Media 53

Working with synchronizations 2009, QNX Software Systems GmbH & Co. KG.

Removing file entries from the MME tables
You can instruct the MME to remove specific files from its database. To remove
information for a specific file from the MME database, callmme_sync_file() with the
new_msidset to 0 andnew_filenameset toNULL.

Cleaning up the library after removing files

When the MME copies or rips a file, it places the file IDfid for the destination file in
thecopied_id field for the source file in thelibrary table. If at a later time the
destination file is deleted, thiscopied_id field becomes invalid, because it points to a
file that is no longer in the MME library.

Checking the validity ofcopied_id fields is potentially a very costly (time-consuming)
operation and is not performed by normal synchronizations. However, theoptions
parameter for the synchronization functionsmme_sync_directed()and
mme_resync_mediastore()includes a flag
(MME_SYNC_OPTION_CLR_INV_COPIED) that you can set to force the
synchronization to check the validity ofcopied_id fields and set all invalid instances
of this field to zero (file not copied).

To clean up invalidcopied_id fields, call eithermme_sync_directed()or
mme_resync_mediastore()with the mask for theoptionsparameter set to
MME_SYNC_OPTION_CLR_INV_COPIED. With this option set, the synchronization
operation will clean up invalidcopied_id fields at the end of the file synchronization
pass, if the following are true:

• The mediastore being synchronized has been synchronized before.

• The synchronization request has asked for at least the file synchronization pass.

CAUTION: Calling eithermme_sync_directed()or mme_resync_mediastore()with
MME_SYNC_OPTION_CLR_INV_COPIEDset will clean up invalidcopied_id fields
for theentireMME database, not just for the library entries that correspond to the
mediastore being synchronized. This operation can take a long time, and you should
use itonly after deleting from your database media files that were created by a copy or
ripping operation (using themme_mediacopy_*() functions).

!

Repairing inconsistencies
If you encounter problems with a folder and its child items (files and subfolders) after
a synchronization, you may be able to usemme_sync_db_check()to repair
inconsistencies between the MME database and mediastores with POSIX compliant
filesystems.

For more detailed information about checking for and correcting inconsistencies, see
the information provided with themme_sync_db_check()function in theMME API
Library Reference.

54 Chapter 5 • Synchronizing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Gracenote classical music support

Determining if a file should be shown
The MME’s file synchronization pass deletes from the MME database items no longer
found on their mediastorebeforeadding new items.

A client application may use theseencolumns in MME tables to determine if a file on
a mediastore can be shown to end-users. Only files marked as “seen” should be shown
(files with theirseencolumn set to1, meaning that the file synchronization pass found
them on the mediastore).

Client applications should show end-users only files that have been found on a
mediastore by the file synchronization pass, using logic based on timestamps: if the
last_syncvalue of alibrary table entry for a file is greater than thelastseentime of
themediastores table entry for the mediastore that file is on, the file is on the
system (because the entry has gone through a first synchronization pass since the
mediastore was last placed in the system).

Gracenote classical music support
The MME supports Gracenote classical music metadata in its library. To enable
support for Gracenote classical music:

1 Enable Gracenote support in the configuration filemme.conf by setting the
<gracenote> element totrue.

2 Save the file and restart the MME.

For more information about how to make these changes, see “Gracenote support” in
theMME Configuration Guidechapter Configuring Metadata Support.

The fields described in the table below are used in the MME library to support
Gracenote classical music metadata. You should use the metadata in these fields
primarily for display purposes, because at this time many classical music entries in the
Gracenote database do not carry sufficiently precise metadata.

A single field in the MMElibrary table may hold more than one instance and type
of metadata, presented as comma separated strings. For example, when theartist field
in the MMElibrary table is built from Gracenote metadata, it can contain zero or
more soloists followed by zero or one conductor; if, for instance, the field contains two
names, it is not possible to deduce whether these two names are for two soloists or for
a single soloist and a conductor.

In the table below, mandatory metadata is shown in square brackets: [mandatory
string], and optional metadata is shown in curly braces:{optional string}.

Field Content

artist 0 or more{soloist(s)}, 0 or 1conductor

continued. . .

April 30, 2009 Chapter 5 • Synchronizing Media 55

Gracenote classical music support 2009, QNX Software Systems GmbH & Co. KG.

Field Content

composer composer short name

ensemble 0 or 1{ensemble}, 0 or 1{choral ensemble}

opus [opus title] {In key}, {opus number}, {catalogue number}, {opus
nickname}

title [movement number], [movement tempo or text title]

The remaining fields in the MME library hold their normal values.

For Gracenote classical music, the MME doesn’t use thesoloist_id or conductor_id
fields, because the Gracenote metadata doesn’t provide unique identifiers for these
metadata.

56 Chapter 5 • Synchronizing Media April 30, 2009

Chapter 6

Playing Media

In this chapter. . .
About playing media with the MME 59
Working with track sessions 59
Monitoring and managing playback 67
Managing track sessions during playback 76

April 30, 2009 Chapter 6 • Playing Media 57

 2009, QNX Software Systems GmbH & Co. KG. About playing media with the MME

This chapter describes how to work with track sessions and play audio media on the
MME.

About playing media with the MME
The MME is designed to facilitate development of a user-friendly, efficient, and
versatile HMI for playing diverse media. A client application can instruct the MME to
begin playing media from a mediastore even before the mediastore has been
synchronized with the MME database. However, most client applications will start
synchronizing a mediastore before starting playback, so they can provide metadata,
such as song artist and genre, to their end users.

To play media through the MME, the client application requires:

• a connection to an MME control context

• one or more mediastores with, in most cases, at least the first synchronization pass
underway

• an appropriate output device connected to the control context

• an MME track session with playable tracks

• For more information about track sessions, see “Working with track sessions”
below.

• For more information about playlists, see the chapter Playlists.

• For specific information about playing videos, see the chapter Playing and
Managing Video and DVDs.

• iPods and Bluetooth devices require special consideration. For more information
about how to work with track sessions and playback with these devices, see the
chapters:

- “Working with iPods”

- “Working with Bluetooth Devices”

Working with track sessions
A track sessionis the basic unit for playing media. It is created by an SQL query or an
explorer API function that generates a list of media tracks that can be played in a
control context. Each track in a track session is identified by its zero-based offset in
the list; this method permits duplicate file IDs (fids) in a track session.

To play media, the client application must:

1 Create a track session by callingmme_newtrksession(). This function delivers
the track session ID, which the client application can use to:

April 30, 2009 Chapter 6 • Playing Media 59

Working with track sessions 2009, QNX Software Systems GmbH & Co. KG.

• set the track session as the current track session for the control context

• remove the track session from the MME database

2 For track sessions that use media from unsynchronized mediastores (file-based
track sessions), use the explorer API to discover and add track sto the track
session. For more information, see the chapter Unsynchronized Media in this
guide. This step is not needed for track sessions that use media from
synchronized mediastores (library-based track sessions), because for these types
of track sessions, the call tomme_newtrksession()populates the track session
with the tracks to be played.

3 Set the track session by callingmme_settrksession(). Once a track session is set,
the client application can begin playback or perform other operations, such as
fast-forwarding, setting the random or repeat mode, and so on

4 Start playback, by callingmme_play(), or another function.

• The MME supports multiple track sessions; to determine which is the current track
session, callmme_trksession_get_info().

• A track session cannot be used by more than one control context. If you attempt to
set a track session already in use by another control context,mme_settrksession()
returns -1 and setserrno to EINVAL . To pass control of a track session to a new
control context, you must first release it from the current control context by calling
mme_settrksession()with trksessionidset to 0 (zero).

For more information about the fields in the track session table, see thetrksessions

table entry in the appendix: MME Database Schema Reference of theMME API
Library Reference.

Types of track sessions

The MME supports two types of track sessions:

• library-based

• file-based

Library-based track sessions

A library-based track session is built with files from mediastores that have been
synchronized and, therefore, have entries in thelibrary table in the MME database.
To create a library-based track session, simply proceed as with previous releases,
calling mme_newtrksession()with themodeargument set to
MME_PLAYMODE_LIBRARY (0).

The figure below illustrates the flow of activities from the creation of a track session to
the end of the track session, with a mediastore synchronization in the background.

60 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

Create
track

session

Set
track

session
EndTrack session

Synchronization

Play, skip, seek,
bookmark, etc.

Files Metadata Playlists

Playing media with the MME.

File-based track sessions

A file-based track session is a track session built with files discovered through the the
MME’s explorer API. Unlike tracks in a library-based track session, tracks in a
file-based track session can be from unsynchronized mediastores and donot, therefore,
have to have entries in thelibrary table. For more information about the MME’s
explorer API, see the chapter Unsynchronized Media in this guide.

Track sessions and playlists

The difference between a track session and aplaylist, is that a playlist is an arbitrary
collection of tracks that is created by a user, either by selecting individual songs or by
creating some selection criteria (such as all the songs by a particular artist),
represented as an SQL statement. The user can name a playlist and store it. A playlist
isn’t associated with a control context.

To play a playlist, the client application creates a track session from the playlist and
associates that track session with a control context. Set the track session with the
playlist to be the current track session by callingmme_settrksession(). For more
information about playlists, see the chapter Playlists.

Creating track sessions
Your application should create either a library-based track session or a file-based track
session, depending the synchronization status of the mediastore with the media to be
played:

• for synchronized mediastores, create a library-based track session

• for unsynchronized mediastores, create a file-based track session

April 30, 2009 Chapter 6 • Playing Media 61

Working with track sessions 2009, QNX Software Systems GmbH & Co. KG.

MME track sessions support duplicate file IDs (fids), because the MME references
tracks in track sessions by their offsets, not theirfids. To start playback with a specific
track offset in a track session, usemme_play_offset().

Creating library-based track sessions

Library-based track sessions are used for playing found on synchronized mediastores,
and are the most commonly used type of track session.

To create a library-based new track session, callmme_newtrksession()with an SQL
statement to select the tracks you want to play and themodeargument set to
MME_PLAYMODE_LIBRARY (0). This function will use your query statement to:

• retrieve the tracks you want to play from the MME database

• create a track session in thetrksessions table

CAUTION: Always use MME functions to update thetrksessions table.Never
write directly to this table. If you write directly to this table, you will make its data
unreliable.

!

Below are some examples of how your client application could create a library-based
track session and play it. To keep things simple, these examples assume that you have
already connected to the MME database and MME resource manager, and they don’t
check return codes, which your application should do.

Playing all tracks in the MME library

We can start with the simplest case: create a track session to play all the tracks in the
library. This case has the following steps:

1 Create a track session that includes all audio tracks from all available
mediastores in the library.

2 Set this track session as the active track session in the current control context.

3 Play all tracks in the track session, in the alphabetical order of the titles.

Since we are not interested in metadata or playlists, we can start playing tracks from
any new mediastores after only the first synchronization pass has completed on these
stores.

mme_hdl_t *mme;
char *sql;
uint64_t trksessionid;

mme = mme_connect("/dev/mme/default", 0); // Connect to MME
sql = "SELECT library.fid AS fid FROM library "

" INNER JOIN mediastores ON mediastores.msid = library.msid "
" WHERE mediastores.available=1 AND ftype=1 "
" ORDER BY title";

62 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

// create the new track session
mme_newtrksession(mme, sql, MME_PLAYMODE_LIBRARY, &trksessionid);

// set the new track session as the active track session
mme_settrksession(mme, trksessionid);

// start playing the track session,
// pass in a fid of 0 to start from the beginning.
mme_play(mme, 0);

Note that:

• TheSELECTstatement you pass tomme_newtrkssession()must not have a final
semicolon. The final semicolon must be omitted, because this statement is in fact a
sub-statement;mme_newtrksession()places this sub-statement into a larger
SELECTstatement.

• The query requests only audio tracks (ftype=1).

• The result for the statement you pass tomme_newtrksession() mustinclude afid
column. In fact, the MME disregards any other column, so it is most efficient to
just selectfid.

For more information about the SQL queries used with the MME and QDB as well as
recommendations, see the chapter Working with the MME Database and SQL.

Excluding mediastore fids from track sessions

The MME adds afid to thelibrary table for many types of mediastores, including
iPods and typeMME_STORAGETYPE_DEVB mediastores (which includes HDDs,
USB sticks, CDs and DVDs).

When composing queries for a track session, you should excludefids that refer to
mediastores by adding aWHERE clause to the query statement to select the file type
entry (ftype) you need. For example to select only entries whereftype=FTYPE_AUDIO:

SELECT fid, ftype, title FROM library WHERE ftype=1 ORDER BY title;

Creating and modifying file-based track sessions

File-based track sessions are used for playing found on unsynchronized mediastores.

To create a file-based track session:

1 Use the MME’s explore API functions (mme_explore_*() , etc.) to explore a
mediastore and retrieve information about tracks of interest on the mediastore.

2 Create a file-based track session by callingmme_newtrksession()with themode
argument set toMME_PLAYMODE_FILE (1).

3 Set the track sesssion by callingmme_settrksession().

April 30, 2009 Chapter 6 • Playing Media 63

Working with track sessions 2009, QNX Software Systems GmbH & Co. KG.

4 Call one ofmme_trksession_append_files() or mme_trksession_set_files() to
add files to the track session.

5 Proceed with playback and other functionality as with library-based track
sessions.

You don’t need to use the explorer API before you create or set the track session. You
can use it at any time to discover tracks of interest, which you can then add to your
track session using one of the methods described below.

Modifying a file-based track session

You can explore mediastores and add tracks to your track session at any time after
creating the track session, or after you have started playback. You can change an
existing file-based track session by:

• calling mme_trksession_append_files() to add newly explored files to the track
session

• calling mme_trksession_set_files() to replace all the tracks in the track session with
a new list of tracks

Setting track sessions
After you have created a track session, you must set it by callingmme_settrksession().
When you callmme_settrksession(), the MME takes a snapshot of the SQL statement
that represents the track session and stores it in thetrksessionview table. This
entry in thetrksessionview table changes only when a new track session is set, or
if you call the functionmme_trksessionview_update().

Setting a track session before synchronization has completed

If a client application sets a track session before the MME has completed the first
synchronization pass of a mediastore (before it receives the event
MME_EVENT_MS_1PASSCOMPLETE), the track session contains only a subset of the
data available on the mediastore. For example, if the client application calls
mme_settrksession()before it receives the event
MME_EVENT_MS_1PASSCOMPLETE, the track session it sets will contain only those
tracks that were synchronized up to that point; the remaining tracks on the mediastore
will not be included in the track session.

64 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Working with track sessions

CAUTION: If the SQLSELECT statement used to create the track session uses
metadata, the client application has to wait for the event
MME_EVENT_MS_2PASSCOMPLETEbefore making its final update to the
trksessionview table. For example,SELECT fid FROM library WHERE

artist_id=4 AND msid=3 uses metadata, so allfids for the track session will not
be found until after the second synchronization pass is complete. However, a query
such asSELECT fid FROM library WHERE msid=3 ORDER BY filename uses
only information provided by the first synchronization pass, so allfids for the track
session are found by the first synchronization pass.

!

To enable playback as quickly as possible while ensuring that all requested tracks are
included in the track session, the client application should update the
trksessionview table when it knows that the first syncrhonization pass has
completed, and, for large mediastores that can take a long time to synchronized fully,
periodically so that the track session does not run out of tracks. For example, with a
large mediastore with 10,000 files, the client application can do something like the
following, assuming that synchronization was started automatically, and that the SQL
SELECT statement does not use metadata:

1 Create the track session (mme_newtrksession()).

2 MME_EVENT_MS_SYNCFIRSTFIDreceived: set the track session
(mme_settrksession()) with onefid.

3 Start playback (mme_play(), thenmme_resume_state()).

4 Refresh the data in thetrksessionview table
(mme_trksessionview_update()).

5 If MME_EVENT_TRKSESSIONVIEW_INVALID is received, loop until
MME_EVENT_TRKSESSIONVIEW_UPDATE is received, indicating that the
MME has begun updating thetrksessionview table in the background.

6 At one minute intervals, update the data in thetrksessionview table
(mme_trksessionview_update()) until the event
MME_EVENT_MS_1PASSCOMPLETEis received. When this event is received,
refresh thetrksessionview table one last time.

April 30, 2009 Chapter 6 • Playing Media 65

Working with track sessions 2009, QNX Software Systems GmbH & Co. KG.

• Updates of thetrksessionview table may take several seconds. It is best to keep
these to a minimum. Full playback capabilities are available while the MME
performs these updates.

• The MME writes blocks of entries to thetrksessionview table in the
background. The size of this block is configurable. See “Setting the number of
tracks written to the trksessionview table” in theMME Configuration Guide. When
it finishes writing a block of entries, the MME delivers the event
MME_EVENT_TRKSESSIONVIEW_UPDATE. When it finishes writing entries for
all available tracks (tracks that have been synchronized thus far), the MME delivers
the eventMME_EVENT_TRKSESSIONVIEW_COMPLETE.

• Delivery of the eventMME_EVENT_TRKSESSIONVIEW_COMPLETEmeans only
that there are no more entries for tracks to be written to thetrksessionview

table. When synchronization completes its first pass, you will need to call
mme_trksessionview_update()again to update thetrksessionview table.

• Metadata for all tracks in the track session is not available until synchronization has
completed its second pass and delivered the event
MME_EVENT_MS_2PASSCOMPLETE.

Clearing track sessions
You can clear a track session by:

1 calling mme_stop()to stop the track session

2 calling:

• for library-based track sessions:mme_settrksession()with trksessionidset to
0 (zero)

• for file-based track sessions:mme_trksession_clear_files()

Deleting track sessions
To prevent a track session “leak” — an accumulation of useless track sessions in the
trksessions table — you should delete track sessions from thetrksessions table
in the following circumstances:

• When you prune from the MME database the mediastore with the tracks used by
the track session.

• When the number of track session in thetrksessions table increase above a
threshold that you define as optimal for your system and users.

• When a track session is older than a period you define as optimal for your system
and users.

• When requested to do so by the user.

66 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

To delete a track session:

1 Call mme_stop()to stop playback on the track session.

2 Call mme_settrksession()with the trksessionidset to 0 (zero) to clear the track
session.

3 Call mme_rmtrksession()to delete the track session.

Monitoring and managing playback
After you have started playing a track session, you need to monitor the progress of the
playback by checking the MME playback events. The example below shows a client
application displaying messages on receipt of some MME events:

switch (msg.single.type) {
case MME_EVENT_NONE:

fprintf(stderr, "Received MME_EVENT_NONE (%d)\n", MME_EVENT_NONE);
break;

case MME_EVENT_TIME:
fprintf(stderr, "Received MME_EVENT_TIME (%d)\n", MME_EVENT_TIME);
break;

case MME_EVENT_FILECHANGE:
fprintf(stderr, "Received MME_EVENT_FILECHANGE (%d)\n", MME_EVENT_FILECHANGE);
break;

case MME_EVENT_PLAYLIST:
fprintf(stderr, "Received MME_EVENT_PLAYLIST (%d)\n", MME_EVENT_PLAYLIST);
break;

...

default:
fprintf(stderr, "Unknown Event Received (%d)\n", msg.single.type);
break;

}

Setting the playback notification interval
While the MME is playing a track session, it delivers the eventMME_EVENT_TIME at
set intervals to notify the client application of playback progress.

The default interval between deliveries ofMME_EVENT_TIME is 100 milliseconds,
but the MME allows you to change this interval by calling
mme_set_notification_interval() with the timeset to the desired interval, in
milliseconds.

Note that:

• The interval between deliveries ofMME_EVENT_TIME remains constant
regardless of the speed of the playback.

• The frequency of updates during playback depends upon the frequency of updates
from audio drivers and devices. Depending on the frequency of updates received
from audio drivers and devices, client applications may notice jitter in the reporting

April 30, 2009 Chapter 6 • Playing Media 67

Monitoring and managing playback 2009, QNX Software Systems GmbH & Co. KG.

of playback positions. For more detailed information, see
mme_set_notification_interval() in the chapter MME API.

You should monitor for events indicating errors, changes in tracks (so you can display
the metadata display, for example), completion of playback, etc. For a complete list of
playback event types, see “Playback events” in the chapter MME Events.

You can also check on the progress of the playback by calling
mme_play_get_status(). This function retrieves the status of playback, providing the
total play time of the track and the play time elapsed.

Knowing when playback has ended
In most environments, users want to continue playback without interruption until they
explicitly request a change. Therefore, once the MME has started playback of a track
session, it continues playback until:

• the client application issues instructions to the MME

or:

• playback encounters an error that forces it to stop playback

or:

• playback reaches the end of the track sessions

In short, once playback of a track session has started, the client application doesn’t
need to do anything except monitor MME events, and pass information and metadata
to the end user, until it receives one of these events:

• MME_EVENT_FINISHED — playback has stopped because there are no more
tracks to play in the track session

• MME_EVENT_FINISHED_WITH_ERROR— playback has stopped due to an error

Both these events indicate that playback has stopped, and that action by the client
application is required for playback to resume. No other events (not even
MME_PLAY_ERROR_* events) require action from the client application for playback
to continue.

If the client application instructs the MME to stop playback (e.g. by calling
mme_stop()), the MME doesnot deliver anMME_EVENT_FINISHED_* event.

Using random and repeat modes
The MME can set the playback mode of a library-based track session to play through
the track session sequentially, repeat the track being played, repeat the entire track
session, or play through the track session in random order.

Track sessions inherit their repeat and random modes from the control context in
which they are created. Use the functionsmme_getrepeat()andmme_setrepeat(), and
mme_getrandom()andmme_setrandom()to get and set these modes.

68 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

• For both library-based and file-based track sessions, a call to
mme_trksessionview_update()refreshes the pseudo-random order of the tracks in
the track session.

• iPods maintain their own random and repeat modes, which the MME can detect
and set. For more information, see “Using random and repeat modes on iPods” in
the chapter Working with iPods.

Repeat and random modes with file-based track sessions

The explorer API and file-based track sessions are designed to allow the client
application to manage its track sessions, discovering tracks and adding new tracks to a
track session a few at time, as required by the end-user.

When new tracks are added to a track session in random mode, the new tracks are
appended in pseudo-random order to the end of the track session; they are not
integrated into the pseudo-random order for the entire track session. For example, if
five tracks are added to a track session with 20 tracks, the order for the tracks in
positions 0 to 19 remains the same, and the new tracks are appended in
pseudo-random order in postions 20 to 24.

When playing tracks in a file-based track session, to change the next track that will be
played without interrupting the track currently being played, the client application can
call mme_trksession_set_files() with theoffsetparameter set to the required track.

Starting playback from a specific track
The MME lets you start playback with a specific track from a track session. The
method for starting playback from a specific track is different for library-based and
file-based track sessions.

The MME can play a track that isn’t in the current track session, as long as it has an
active track session in the current control context. For more information, see
mme_play().

Library-based track sessions

To start playback with a specific track in a library-based track session, instead of
passingmme_play() a 0 (zero) for thefid argument, which starts playback with the
first track in the track session, pass it thefid of the track you want to play. The MME
will start playback with the track you specified, then continue playing the track session
as determined by the position of the track in the track session and the random and
repeat mode settings for the control context. For example:

• If repeat and random mode are off and the track you request is the second one in
the track session, the MME will start with that track and play all tracks to the end
of the track session. If the track you request is the last one in the track session, the

April 30, 2009 Chapter 6 • Playing Media 69

Monitoring and managing playback 2009, QNX Software Systems GmbH & Co. KG.

MME will play only that track, then stop playback, because it will have reached the
end of the track session.

• If the repeat mode is turned on, the MME will start playing the requested track,
then continue playing, repeating either the track or the entire track session, as
determined by the repeat setting.

• If the random mode is turned on, the MME will start playing the requested track,
then continue playing tracks as listed in its pseudo-random list.

If the library-based track session contains more than one instance of the specifiedfid,
the MME starts playback at the first instance of thisfid.

File-based track sessions

To start playback from a specific point in the file-based track session, use
mme_play_offset(), passing it the zero-based offset of the track where you want to
start playback. For example, to start playback with the 17th track in the track session
set themme_play_offset()function’soffsetargument to 16.

Playing a track not in the current track session

The MME can play a track that isn’t in the current track session, as long as it has an
active track session in the current control context. For more information, see
mme_play().

Pausing playback
Your client application should pause playback only in situations when it expects to
resume playback or tear down the track session after a brief interval, such as when the
end user sends a “pause” button command (MM_BUTTON_PAUSE) through the HMI.
For situations when you expect a change to the system, such as a shutdown or a change
to the mediastore being played, you should save the track session state and stop the
track session. For more information, see “Stopping and resuming playback” below.

To pause playback temporarily, callmme_play_set_speed()with thespeedset to 0.
This action pauses playback until you callmme_play_set_speed()again with the
speedset to something other than 0 (zero). Normal playback speed is 1000. For more
information about how to usemme_play_set_speed(), see “Using fast forward and
reverse” below.

Stopping and resuming playback
Your client application should save the track session state and stop the track session
when it expects or encounters a system change, such as a shutdown or a change to a
mediastore. Such situations include, but are not limited to, the following:

• a CD change in a system with a CD changer

• removal of a device, such as an iPod

70 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

• user-initiated change to another activity, such as switching from playback to the
radio tuner

• a system shutdown

• a shutdown of a supporting system, such as, for an MME system installed in an
automobile, the automobile’s being turned off

The operations required to stop then resume playback are a function of the capabilities
of the device with the media tracks for the track session. These devices can be:

• devices, such as USB media stores or CD changers, that do not manage their own
track sessions and, therefore, cannot save the state of a track session. For more
information, see “Resuming playback” below.

• devices, such as iPods, that manage their own track sessions and, therefore, save
the state of these track sessions. For more information, see “Resuming playback on
iPods” in the chapter Working with iPods.

For information about resuming playback when using the explorer API, see “Pausing
and resuming playback in a file-based track session” below.

Resuming playback

If you want to stop, then resume playback of a track session on a device or devices that
don’t manage their own track session, you must:

1 Stop the track session:

1a Call mme_play_set_speed()with thespeedset to 0 (zero) to pause the
track session.

1b Call mme_trksession_save_state()to save the play position and other
information, such as the track session ID, about the track session.

1c If you plan on usingmme_play_resume_msid()to resume playback, call
mme_set_msid_resume_trksession()to set the mediastore ID to be used
by mme_set_resume_msid().

1d Stop the track session by callingmme_stop().

2 Do something else, such as switch to another activity or shut down the system.

3 Resume the track session:

Method A (works only for devices and mediastores that don’t support their own
track sessions):

3a Call mme_settrksession()to reset the track session.

3b Call mme_trksession_resume_state()to resume playback of the track
session.

Method B (works for all devices and mediastores):

April 30, 2009 Chapter 6 • Playing Media 71

Monitoring and managing playback 2009, QNX Software Systems GmbH & Co. KG.

3a Call mme_play_resume_msid()to resume playback of the track session
(equivalent to callingmme_settrksession(), then
mme_trksession_resume_state()).

mme_play_set_speed()

mme_trksession_save_state()

mme_stop()

Other activities

A B

mme_settrksession()

mme_set_msid_resume_trksession()
(for Method B)

mme_trksession_resume_state()

mme_play_resume_msid()

Stopping and resuming an MME-controlled track session.

The strategies described below allow your client application to call
mme_trksession_resume_state()to resume playback at a later time at exactly the
position where it was stopped.

Saving the track session state withmme_trksession_save_state() beforestopping it
assures that, when you resume playback, the MME has all the information it needs to
start playing the correct track at the correct position.

Pausing the track session before saving its state ensures that when playback resumes,
it will be exactlyat the correct position in the track: the user will not hear the last few
milliseconds of music played if there is a delay between the call to
mme_trksession_save_state()and the call tomme_stop(). If you do not pause the
track session before saving its state, a situation like the following may occur:

• The playback isn milliseconds into a track.

• The client application callsmme_trksession_save_state(), thenmme_stop().

• There is a delay ofx milliseconds between the call tomme_trksession_save_state()
and the call tomme_stop(), which results in the state’s being saved asn
milliseconds, but playback stopping atn + x milliseconds.

• A call to mme_trksession_resume_state()starts playing the track at its saved state,
so the end user hears the portion of the track fromn milliseconds to (n + x)
milliseconds a second time.

72 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

• Saving the track session state withmme_settrksession()and resuming it by calling
mme_set_msid_resume_trksession()is intended for handling situations such as
system shutdowns or mediastore changes. You cannot save the track session state,
continue using the track session, then attempt to resume it.

In short, once you have saved the track session state you must stop using that track
session until you are ready to resume it. If you want to mark a place in a track
session, continue playback or do some other activity, then resume playback at the
point you marked, use the MME’s bookmark functions. For more information, see
“Bookmarking tracks” below.

• Calling eithermme_settrksession()or mme_set_msid_resume_trksession()
regenerates the list of tracks used by the MME for playback in random mode (the
entries in therandomidfield of thetrksessionview table).

Pausing and resuming playback in a file-based track session

Tracks in a file-based track session do not have corresponding entries in the MME
library table. This particularity means that when stopping and resuming playback,
the client application must take care of saving and restoring the file name and current
time position for the track to be paused and resumed.

Pause playback in a file-base track session

To pause playback of a track in a file-based track session:

1 Call mme_play_set_speed()with thespeedset to 0 (zero) to pause playback.

2 Save in a safe location;

• the full filename for the paused track (without the mountpath)

• the current time position for the track

Resume playback in a file-base track session

To resume playback of a track in a file-based track session, assuming that the track
was passed as describe in “Pause playback in a file-base track session” above:

1 Call mme_newtrksession()to create a new track session by with a device file ID
(fid) for the mediastore with the track to be resumed.

2 Call mme_settrksession()to set the track session.

3 Call mme_setautopause()with theenableargument set totrue to turn
autopause on for the MME; with autopause enabled in the MME, when a track
is played it begins in paused mode and remains paused until
mme_play_set_speed()is called with thespeedargument set to non-zero.

4 Call mme_trksession_append_files(), with thefilenameargument pointing to
the filename you saved when you paused playback, to add the paused track to
the new track session so that it can be played.

April 30, 2009 Chapter 6 • Playing Media 73

Monitoring and managing playback 2009, QNX Software Systems GmbH & Co. KG.

5 If your client application’s connection isnot O_SYNC; that is, if the MME does
not completely execute requests before returning to the client, wait for the event
MME_EVENT_PLAYAUTOPAUSED.

6 Call mme_seektotime()with the timeargument set to the current time position
you saved before pausing the track.

7 Call mme_play_set_speed()with thespeedargument set to 1000 to resume
playback at normal speed.

Using fast forward and reverse
Usemme_play_get_speed()to get the current playback speed of a track session
(expressed in units of 1/1000 of normal speed). Usemme_play_set_speed()to pause,
reverse, and playback more slowly or more rapidly than normal playback speed. Set
thespeedargument as shown in the table below:

Setting Action

< 0 Reverse atspeed

= 0 Pause playback

> 0 and< 1000 Slow playback atspeed

= 1000 Normal playback

> 1000 Fast playback atspeed

Implementation note about fast-forward and fast-backward speeds

When setting fast-forward or fast-backward speeds, the requested speed can’t be
guaranteed for all devices. The graph used to play the track will select the supported
speed closest to the one requested. The client application should use
mme_play_get_status().

Some devices, such as iPods, do not maintain a constant fast-forward or fast-backward
speed, but increase the speed according to the amount of time the fast-forward or
fast-backward is maintained.

For devices with this behavior, there is no value in attempting to measure play time
during a fast-forward or fast-backward. If you are testing with these devices, you can
only ensure that fast-forward and fast-backward arrive at the end or beginning of a
track faster with normal speed.

Fast-forward and fast-backward between tracks

Note that behavior when fast-forward or fast-backward move to a new track is:

• Device dependent — some devices, such as iPods, automatically set the speed to
normal playback speed.

74 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Monitoring and managing playback

• Configurable by setting the<AtEndOfSeek> element, if supported by the device.
The default setting is to continue seeking (fast forward of reverse). See
“Configuring playback” in theMME Configuration Guide.

Using seek to time, play at offset, and scan
To seek to a specific time in a track that is being played, usemme_seektotime(),
passing it the time location to which you want to go and continue playback. For
example, to skip ahead 15 seconds from the current position in a track, use
mme_play_get_status()to get the current time location of the playback, then call
mme_seektotime()with the current time location plus 15000.

Scan mode plays a track for a specified number of seconds, then moves to the next
track, scanning all tracks in a track session. To use scan mode and set the time that the
MME plays a track before moving to the next track, callmme_setscanmode()with the
number of milliseconds you want to play each track before moving the scan to the next
track. To get the current scan mode setting, usemme_getscanmode(). To turn scan
mode off, callmme_setscanmode()with the time-to-scan argument set to 0 (zero).

Gapless playback
When gapless playback is enabled, if two tracks on the same mediastore use the same
graph type, when moving from one track to the other, the MME attempts to minimize
the silence between tracks.

To enable gapless playback, you need to startio-media with the appropriate
arguments. For more information, see “Configuring gapless playback” in theMME
Configuration Guide.

Viewing “previous” and “next” tracks
The MME stores information about tracks that have been played and will play in the
track session in thetrksessionview table. This information allows your client
application to have the MME to move backwards through a track session, even if
random play mode is enabled.

If random mode is off, playback advances through the tracks as they are listed in the
sequentialidcolumn of thetrksessionview table. If random mode is on, playback
advances through the tracks as they are listed in therandomidcolumn of the
trksessionview table. To view the previous or next tracks in a track session, use
the file IDs listed before or after the current track in the relevant column.

Using play frequency statistics
The MME maintains information about how many times a track has been played. This
count includes fast forwards through the track. The client application can use this
information to build a most-popular or top-50 list.

The number of times a track has been played is maintained in thefullplay_countfield
of thelibrary table.

April 30, 2009 Chapter 6 • Playing Media 75

Managing track sessions during playback 2009, QNX Software Systems GmbH & Co. KG.

Bookmarking tracks
The MME provides bookmarking capabilities that a client HMI can offer to end users.
Bookmarks allow users to mark time locations on tracks in a track session and to
resume playback from these locations. Bookmarks are recorded in thebookmarks

table, and are identified by a bookmark ID (bookmarkid) and bookmark name (name),
a mediastore ID (msid), and a track file ID (fid).

To view available bookmarks, query thebookmarks table. For example, to view all
bookmarks for tracks on the current mediastore, wherecurrent_msid is the mediastore
ID :

.
SELECT bookmarkid, fid, msid, name FROM bookmarks

WHERE msid=current_msid ORDER BY name;

Use the functionsmme_bookmark_create()andmme_bookmark_delete()to create
and delete bookmarks, andmme_play_bookmark()to start playback from a specified
bookmark.

Managing track sessions during playback
This section describes how to manage track sessions during playback.

Managing track changes across multiple mediastores
The MME performs track changes across different mediastores. This feature is
supported by buffer level reporting. The MME provides the amount of time
(milliseconds of playback) remaining in the MME buffer. Client applications can
retrieve this information by calling the functionmme_play_get_status(). This
information gives device controllers a more accurate measure on which to base
decisions to wake up devices, such as the system HDD.

Aborting blocking reads

Client applications can use the time left in the MME buffer to decide to abort blocking
reads in order to skip to tracks on a mediastore other than the HDD. Aborting a
blocking read allows the MME to fulfill a request to start playback of a track on
another mediastore, such as a CD, immediately. It does not have to wait for its buffer
to empty, or for the device controller to wake up the HDD.

Managing track sessions when a mediastore is removed
When a mediastore is removed from the system, the MME delivers the event
MME_EVENT_MS_STATECHANGE, which carries the new state of the mediastore in
mme_event_data_t.ms_state_change.new_state. If media on the mediastore
is included in a currently playing track session, you can manage the change according
to whether the track being played has been removed or is still on the system.

For example, if your track session includes tracks from both/fs/usb0 and
/fs/usb1, and the track being played is on/fs/usb0:

76 Chapter 6 • Playing Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Managing track sessions during playback

• If the user removes/fs/usb0, then playback is interrupted, but you can refresh
the track session to include only tracks on/fs/usb1 and resume playback.

• If the user removes/fs/usb1, then playback continues, and you can refresh the
track session to include only tracks on/fs/usb0 and continue playback of
available tracks without interruption.

Managing playback when the current mediastore is removed

If the track currently being played is on the removed mediastore, the MME delivers
the eventMME_PLAY_ERROR_DEVICEREMOVED, and stops playback:

• If the track session contained only tracks on the removed mediastore, you can
inform the user that playback has stopped because the mediastore was removed,
and request input.

• If the track session contained tracks from several mediastores, you can call
mme_trksessionview_update()to update the track session (remove unavailable
tracks), then callmme_next()or mme_play() to resume playback from a mediastore
still in the system.

Managing the track session if playback is not on the removed mediastore

If the track currently being played isnot on the removed mediastore, the MME
continues playback, and you can ensure that playback will continue uninterrupted to
the end of the track session:

• If the track session includes tracks on the removed mediastore, call
mme_trksessionview_update()to update the track session (remove unavailable
tracks). When the currently playing track finishes playing, the MME will simply
advance playback to the next track in thetrksessionview table.

Switching playback to another track session
The MME supports seamless switching between track sessions; that is, changing
playback from one track session to another without interrupting playback,if the new
track session includes the track currently being played.

To seamlessly change track sessions during playback:

1 Create a track session that includes thefid of the currently playing track.

2 Call mme_settrksession()to set the new track session.

The MME will:

• continue playback of the currently playing track

• when playback of this track is complete, continue playing tracks from the newly set
track session

April 30, 2009 Chapter 6 • Playing Media 77

Managing track sessions during playback 2009, QNX Software Systems GmbH & Co. KG.

• File-based track sessions are not permanent. Their contents are lost if playback is
switched to another track session.

• Calling mme_settrksession()regenerates the list of tracks used by the MME for
playback in random mode (the entries in therandomidfield of the
trksessionview table).

For more information about MME behavior when switching playback between track
sessions, seemme_settrksession()in theMME API Library Reference.

78 Chapter 6 • Playing Media April 30, 2009

Chapter 7

Playlists

In this chapter. . .
Supported playlist formats 81
Creating track sessions from playlists 82
Examining playlists 83
Creating playlists 84

April 30, 2009 Chapter 7 • Playlists 79

 2009, QNX Software Systems GmbH & Co. KG. Supported playlist formats

Playlists can come from two sources:
• playlists included with mediastores

• playlists created by the client application, through the MME

This chapter describes how to work with playlists.

For information about synchronizing playlists, see “Synchronizing playlists” in the
chapter Synchronizing Media.

Supported playlist formats
The table below lists playlist formats supported by the MME:

Format Extension

MP3 URL .m3u

PLS .pls

Windows Media Player Playlist .wpl

Advanced Stream Redirector .asx

RMP Playlist .rmp

iTunes XML; see “iTunes files” below. .xml

Support for other playlist formats may be added in future releases, as required.

During the file and folder discover synchronization pass, the MME adds, to the
playlist table, entries for files whose extensions match supported playlist
extensions listed under MME configuration file’s<playlists> element. On the
playlist synchronization pass, or if the client applications callsmme_playlist_sync(),
the MME parses the contents of these files so that it can use the playlists as requested
by the user.

For more information about playlist synchronization, see “Synchronizing playlists” in
the chapter Synchronizing Media. For more information about the<playlists>

configuration element, see “Filtering synchronization by file type”in theMME
Configuration Guidechapter Configuring Media Synchronizations.

If a playlist file is incorrectly labelled with the wrong extension, or the MME cannot
parse the contents of the file, the MME will fail the playlist compilation pass.

April 30, 2009 Chapter 7 • Playlists 81

Creating track sessions from playlists 2009, QNX Software Systems GmbH & Co. KG.

iTunes files
The MME doesnot support parsing of generic iTunes database files. To use an iTunes
playlist, you must:

• copy the files you want in the playlist to a location outside of iTunes, such as a
USB stick

• create the playlist XML file at that same location

That is, the playlist file and the files it references must be on the same mediastore
outside iTunes.

For example, if you want to have an iTunes playlistSomeplaylist.xml, which
includesSong1.mp3 andSong2.wav, you must copySong1.mp3 andSong2.wav
to E:/music or some other location outside iTunes, then create the playlist
Someplaylist.xml at the same location.

Creating track sessions from playlists
The example below shows how to create a track session from a playlist. The MME
synchronizes playlists in the playlist synchronization pass, and stores them in the
playlists table. If we have a playlist called “My Playlist” that was built from a
SELECT statement, we can:

1 Use the QDB functionqdb_statement()to get theSELECTstatement for the
playlist.

2 Pass the statement tomme_newtrksession()to create a track session with the
same tracks as the playlist.

3 Set the new track session.

4 Play the tracks in the track session, in sequence from the beginning.

// Run the SQL statement.
qdb_statement(&db,

"SELECT statement FROM playlists WHERE plid=%lld;",
plid)

res = qdb_getresult(&db);

// Create a new track session from the result.
mme_newtrksession(&mmehdl, (char*)qdb_cell(res, 0, 0),

MME_PLAYMODE_LIBRARY, &trksid);

// Set the new track session as the active track session.
mme_settrksession(&mmehdl, trksid);

// Start playing the track session from the beginning,
// passing in a fid of 0 to start from the beginning.
mme_play(&mmehdl, 0);

82 Chapter 7 • Playlists April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Examining playlists

Excluding missing playlist files from track sessions
When it synchronizes playlists, the MME inserts in theplaylistdata table afid of 0
(zero) for any files that it cannot find. This action creates a record of files in a playlist
that are not found, and causes the MME to check for the existence of these files when
it performs subsequent resynchronizations.

If you build a track session using theplaylistdata table, you should explicitly
exclude files with afid of 0 by adding the clauseWHERE fid != 0 to track session
queries made to theplaylistdata table.

Combining playlists into a track session
The MME supports multiple instances of the same file ID (fid) in a track session, so
you can combine playlists with duplicatefids and have the MME play all the tracks in
the combined playlists.

Examining playlists
The MME includes functions that allow you to open and examine a playlist file. To
open a playlist file and examine the contents of the playlist:

1 Call mme_playlist_open()to:

• create a playlist session connection handle (mme_playlist_hdl_t)

• open a playlist examination session

2 Call mme_playlist_items_count_get() to get the number of items in the playlist
you are examining.

3 As required, usemme_playlist_position_set() to move to a specific entry in the
open playlist.

4 Call mme_playlist_item_get() to retrieve an item from the current position in
the playlist, setting theflagsargument as required to convert the playlist entry
into a file.

5 Call mme_playlist_close()to close the playliste examination session and free up
its buffers.

• mme_playlist_open()can only open a playlist if a playlist synchronization (PLSS)
plugin able to process the playlist is available. If no PLSS plugin for the playlist is
available, this function fails.

• The playlist examination API is very similar to the explorer API. How to use this
API is described in the chapter Unsynchronized Media.

April 30, 2009 Chapter 7 • Playlists 83

Creating playlists 2009, QNX Software Systems GmbH & Co. KG.

Case-sensitivity in playlists

Playlists are case-sensitive. Case-sensitivity applies to:

• playlist names

• pathnames to playlists

• paths inside the playlist files

• playlist entries

For examplesongs/my_playlist is not equivalent tosongs/My_playlist.
Similarly, in an M3U filesongs/Dark Side of the Moon.mp3 is not equivalent
to Songs/Dark Side of the moon.mp3.

Creating playlists
The MME supports user-created playlists. Please note the following about
user-created playlists:

• Client applications must manage their own playlists, placing the file IDs (fids) of
tracks in theplaylistdata_custom table.

• Resynchronizing a mediastore does not affect user playlists.

• Pruning a mediastore deletes user playlists. You should add a trigger to remove
entries in theplaylistdata_custom table when a mediastore is pruned, because
ift he mediastore is re-inserted into the system, its files will get new file IDs that
will not correspond to the file IDs in the playlists

• You can only delete user-created playlists; you cannot delete playlists on
mediastores.

Use the following functions to create and delete playlists:

• mme_playlist_set_statement()— set the query statement to use when creating a
playlist

• mme_playlist_create()— create a playlist

• mme_playlist_delete()— delete a playlist

Deleting a playlist
To delete a playlist, callmme_playlist_delete().

84 Chapter 7 • Playlists April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Creating playlists

To following commands can be used withmmecli to use the user-created playlist
functions:

• Create a playlist:mmecli playlist_create msid name

• Delete a playlist:mmecli playlist_delete plid

April 30, 2009 Chapter 7 • Playlists 85

Chapter 8

Unsynchronized Media

April 30, 2009 Chapter 8 • Unsynchronized Media 87

 2009, QNX Software Systems GmbH & Co. KG.

The MME provides an extensive API for exploring and browsing unsynchronized
mediastores.

Exploring unsynchronized mediastores
The MME’s mediastore explorer API can be used to provide the end-user with the
following information from an unsynchronized mediastore, such as an iPod. It
provides:

• the number of files and folders in the folder being explored

• metadata for the files in the folder, as requested

CAUTION: Retrieving more items than can be shown at one time in the HMI display
window reduces system responsiveness:

• Always request a number of items less than or equal to the number of items that
can be shown at one time in the HMI display window size.

• Adjust the number of items requested to correspond to changes to the size of the
HMI display window.

!

The explorer API includes the following functions, structures and constants:

• MME_EXPLORE_*

• mme_explore_start()

• mme_explore_size_get()

• mme_explore_position_set()

• mme_explore_info_get()

• mme_explore_end()

• mme_explore_info_free()

• mme_explore_hdl_t

• mme_explore_info_t

• mme_explore_playlist_find_file()

Exploring a mediastore

To explore an unsynchronized mediastore:

1 Call mme_explore_start(), passing it the path to the folder you want to explore.
This function returns a handle,mme_explore_hdl_t, which you can use with
the other explorer functions to explore the folder.

2 Optional tasks:

April 30, 2009 Chapter 8 • Unsynchronized Media 89

 2009, QNX Software Systems GmbH & Co. KG.

• If you want to know the number of items of interest in the folder, call
mme_explore_size_get().

• If you want to start exploring the folder at a specified offset (other that the
first item) callmme_explore_position_set()with the offset at which you
want to start exploring.

• If you want to access metadata for the items you are exploring, call
mme_explore_position_set() to set up the metadata types you want. For
more information, see “Retrieving metadata from unsynchronized files”
below.

• If you want to explore a playlist, callmme_explore_playlist_find_file() and
check the values of theMME_EXPLORE_* flags.

3 Begin exploring the items in the folder, starting at the specified offset, by calling
mme_explore_info_get(). Each time you call this function, the offset will
increment by one, so that the next call tomme_explore_info_get() retrieves
information for the next item in the folder. Whenmme_explore_info_get()
reaches the end of the folder, it returnsNULL.

As you explore the folder, you can display to the user any metadata you have
retrieved, and, if the user requests more complete metadata, call
mme_ms_metadata_get(), mme_metadata_extract_data() and, if required,
mme_metadata_extract_string() andmme_metadata_extract_unsigned()to
retrieve and extract the metadata, then pass it up to the user.

Items retrieved bymme_explore_info_get()are presented as they occur; that is, they
arenot sorted or reorganized in any way. The items that are playable tracks, can be
placed in file-based track sessions for playback. For information about how to create
and modify file-based track sessions, see “Creating and modifying file-based track
sessions” in the chapter Playing Audio.

CAUTION: This function may require considerable time to complete execution: with
some mediastore types, it requires areaddir() of the entire item being explored.!

Retrieving metadata from unsynchronized files

The mediastore explorer API can be used to get the number of files and folders inside a
specified folder on a mediastore, and, if requested, metadata. For optimal performance
you should compose two different strings specifying the metadata to be retrieved:

• The string you pass tomme_explore_position_set()should set up
mme_explore_info_get() to request only the metadata you will display to a user
exploring the mediastore (for example, title and artist) — enough information to
allow the user to decide if he or she wants more information about the track.

• The string you pass tomme_metadata_extract()should request more complete
metadata, which the client application passes up to the user only in response to a
specific request for more information.

90 Chapter 8 • Unsynchronized Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

It is possible to request complete metadata frommme_explore_info_get(), but doing
so may prove slow, especially when communicating with external devices, such as
iPods, that are connected via relatively slow ports.

There are two possible methods for composing the strings to retrieve metadata. Both
methods use the values defined by theMETADATA_* constants. You can compose
your strings as comma-separated values according to either of the following models:

• char *types="title,artist,album"

• char *types=METADATA_TITLE","METADATA_ARTIST","METADATA_ALBUM

Reading and displaying explored file names

All filesystem APIs under QNX use UTF-8 character sets; and, with the exception of
QNX4, all enforce its use, converting the character set on media to and from UTF-8 as
required.

This characteristic of QNX filesystems means that when your client application is
reading file and folder names from the explorer API it should assume that these names
are in UTF-8 format. This rule includes filenames successfully converted from playlist
file entries, but it doesnot include unconverted (raw) playlist file entries; the explorer
API takes these entries directly from the playlist itself and does not convert them.

For information specific to displaying information from iPods, see “Displaying
information from an iPod” in the chapter Working with iPods.

Filtering explored files

You can use themme_explore_position_set() function’sflagsandfilter arguments to
filter the files examined and deliver only files of interest. Filtering is based on the
values set in theflagsargument, and can be done in two ways:

• flags=MME_EXPLORE_FILTER_INCLUDE — include only files with names that
match the string referenced by thefilter argument

• flags=MME_EXPLORE_FILTER_EXCLUDE — exclude all files with names that
match the string referenced by thefilter argument

For example, to include only MP3 and WAVE files, based on the extensions.mp3 and
.wav, you should callmme_explore_position_set()as follows:

rc = mme_explore_position_set(x_hdl, 0, 20, NULL, ".mp3$|.wav$",
MME_EXPLORE_FILTER_INCLUDE);

Or, to exclude all files with the extension.mov, do the following:

rc = mme_explore_position_set(x_hdl, 0, 20, NULL, ".mov$",
MME_EXPLORE_FILTER_EXCLUDE);

For more detailed information, seemme_explore_position_set() in theMME API
Library Reference.

April 30, 2009 Chapter 8 • Unsynchronized Media 91

 2009, QNX Software Systems GmbH & Co. KG.

Using directed synchronization to browse mediastores
You can use the MME’s directed synchronization capabilities to browse through
mediastores. To let users browse through parts of a mediastore, call
mme_sync_directed()with the path to the folder where you want to begin browsing.
When the end user selects a new folder, call the function again with the new path.

For more information about directed synchronization, see “Directed synchronization”
in the chapter Synchronizing Media.

92 Chapter 8 • Unsynchronized Media April 30, 2009

Chapter 9

Metadata and Artwork

In this chapter. . .
Getting metadata 95
Getting artwork 99

April 30, 2009 Chapter 9 • Metadata and Artwork 93

 2009, QNX Software Systems GmbH & Co. KG. Getting metadata

This chapter describes how to get metadata and artwork for your media files. It
includes:

Getting metadata
The MME provides a variety of methods for retrieving metadata. You can use the
MME to retrieve metadata:

• for synchronized media, from the MME’slibrary table, updated by the MME’s
second synchronization pass

• for unsynchronized media as well as synchronized media, directly from the
mediastore

• from thenowplaying table

• from a remote source, such as a Gracenote server

Getting metadata for synchronized media
You can provide your end users with information, such as album title, artist, and
composer, for the currently playing file or track in a library-based track session by
retrieving this metadata from the MME’slibrary table.

To retrieve metadata for the currently playing file or track from thelibrary table:

1 Call mme_play_get_info() to get the current file ID (fid).

2 Query the MME database for the metadata.

The sample query shown below retrieves title, album name, artist name, genre name,
and composer name, assuming that you know only thefid for a track:

SELECT title, artist, album, genre, composer
FROM library NATURAL JOIN (
library_albums, library_artists, library_genres, library_composers)
WHERE fid=%lld;

A library-based track session is a track session created withsynchronizedmedia files.
For more information, see “About track sessions” in the chapter Playing Audio.

If an MP3 file contains more than one version of ID3 tags, the MP3 file parser parses
the most recent tag and ignores the older tag version. That is, if a file contains both
ID3v1 and ID3v2 metadata tags, the MP3 file parser ignores the ID3v1 tags. Only the
metadata from the the ID3v2 tags is made available to the MME.

For information about getting metadata for tracks in a file-based track session; that is
track sessions created withunsynchronized media, see “Getting metadata for
unsyncrhonized media” below.

April 30, 2009 Chapter 9 • Metadata and Artwork 95

Getting metadata 2009, QNX Software Systems GmbH & Co. KG.

Getting metadata for unsynchronized media
The MME includes an API that can be used to retrieve metadata for files on an both
synchronizedandunsynchronizedmediastores and devices.

This feature is particularly useful for quickly retrieving metadata for specific files from
large mediastores or devices, such as iPods, that would take a long time to synchronize
completely. For example, you can use this feature to retrieve metadata for a single file
or a small number of files, to display it to a user exploring the contents of a mediastore
or device.

This API includes the following functions, structures and constants:

• mme_metadata_extract_string()

• mme_metadata_extract_unsigned()

• mme_ms_metadata_done()

• mme_ms_metadata_get()

• mme_metadata_hdl_t

• METADATA_*

The metadata extraction functions listed above require the filepath and filename of the
file whose metadata is needed — for example, to display to a user who requests more
information about a track on an iPod.

Thus, to retrieve and make available metadata for unsynchronized media, you must:

• Use the MME explorer API functions as described in the chapter Unsynchronized
Media to get the filepath and filename of the file.

• Follow the steps described in “How to get the metadata” below to extract the
metadata from the file.

How to get the metadata

Once you have the path for the file whose metadata is needed:

1 Call mme_ms_metadata_get(), passing it the path to the file whose metadata
you need, and the types of. It returns themme_metadata_hdl_twith the
metadata for the file.

2 Call mme_metadata_extract_string() to extract metadata strings and
mme_metadata_extract_unsigned()to extract unsigned metadata.

3 Use the metadata as required — for example, display to the end-user.

4 Call mme_ms_metadata_done()to complete the operation and release the
metadata handle.

96 Chapter 9 • Metadata and Artwork April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Getting metadata

Managing explorer structures and metadata handles

Metadata extraction from unsynchronized media requires that the client application
manage the explorer information structures and the metadata and explorer handles it
uses. The client application must:

• copy themme_explore_info_t data structure

• manage the copies of this structure and the memory they require

• usemme_metadata_alloc() to copy metadata handles

• when it has finished with the metadata handles, deallocate the returned value from
mme_metadata_alloc() by usingfree()

The client application must usemme_metadata_alloc() to copy the metadata handle.
This copiedmetadata handle returned bymme_metadata_alloc() maintains valid
information until the client application releases it.

Simply copying themme_explore_info_t data structure does not guarantee valid
information because:

• the pointer in themme_explore_info_t data structure to the metadata handle
may go out of scope before the client application has finished using the metadata
object to which it refers

• mme_explore_info_t contains two pointers:

- one pointer to the path member

- one pointer to the metadata; this pointer may be null

• to ensure current and valid structures, the client application must have, as well as a
copy of themme_explore_info_t data structure, a copy of the metadata handle
structure:mme_metadata_hdl_t; this handle is opaque and, therefore, can not be
copied by the client application

The pointer to the path is a normal C-string; the client application:

• may use any method, such asstrdup()or strcpy(), to copy the source string

• is responsible for managing the memory required for these copies

Getting metadata from the nowplaying table
Thenowplaying table may contain more complete metadata than is available in the
library table — for example, when playing an iPod track session, because an iPod
makes information, such as track duration, available only during playback.

When the MME starts playing a new track it updates the information in the
nowplaying table and delivers anMME_EVENT_TRACKCHANGE event. When it
updates metadata in thenowplaying table it delivers the event

April 30, 2009 Chapter 9 • Metadata and Artwork 97

Getting metadata 2009, QNX Software Systems GmbH & Co. KG.

MME_EVENT_NOWPLAYING_METADATA , which you can use to trigger queries to
retrieve the updated metadata.
See also the description of thenowplaying table in the appendix: MME Database
Schema Reference of theMME API Library Reference.

Getting metadata from a remote source
The MME supports metadata from remote sources, such as CDText, Gracenote and
MusicBrainz. To use these capabilities, you must change the MME configuration file,
mme.conf, to enable the relevant MME modules and configure the specific behaviors
required by your environment.

For information about how to configure the MME to support these modules, see
“Metadata synchronizers” in the chapter Configuring Metadata Support in theMME
Configuration Guide.

Support for these features may require special licensing. Contact QNX for more
information.

Metadata ratings
This MME supports metadata rating extractions for the following formats:

• MP3

• WMA

MP3 files

If the ratings are available, the MME’s MMF module extracts metadata ratings in MP3
files from the following tags:

Tag Frame

ID3v2.2 POP

ID3v2.3 POPM

ID3v2.4 POPM

WMA files

If the ratings are available, the MME’s MMF module extracts metadata ratings in
WMA files from theExtended Content Description Object’s
WM/SharedUserRating record.

98 Chapter 9 • Metadata and Artwork April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

Ratings conversions

The MME stores metatdata ratings in therating field in the:
• library table

• nowplaying table

Therating field in thenowplaying table makes a file’s rating available even when the
file does not have an entry in thelibrary; for example, when the file is accessed
through the MME’s Explorer API.

Rating values are stored as follows:

• 0 — no metadata rating is available

• 1 to 255, with 1 for the lowest rating and 255 for the highest rating

The MME stores ratings from MP3 file ID3 tags without conversion. It converts
WMA file WM/SharedUserRating record ratings from their 1 to 99 range to a 1 to
255 range.

The table below shows how the the MME’s 1 to 255 rating system maps to WMA 1 to
99 rating system and to the WMA five star rating system:

MME WMA Stars

1-60 1-24 *

61-125 25-49 **

126-190 50-74 ***

191-254 75-98 ****

255 99 *****

Getting artwork
The MME includes a “Load-on-Demand” API for retrieving metadata. This API is
designed to support on-demand retrieval of all types of metadata, but it is currently
implemented for artwork, such as album art images.

• The Load-on-Demand metadata API can be used to retrieve artwork from
synchronized or unsychronized media. It requires only that you specify the file for
which you want to retrieve the artwork.

• For information about retrieving artword from Zune devices, see “Retrieving
artwork from Zune devices” in the chapter Working with PFS Devices.

April 30, 2009 Chapter 9 • Metadata and Artwork 99

Getting artwork 2009, QNX Software Systems GmbH & Co. KG.

Functions and data structures
The MME’s Load-on-Demand metadata extraction API includes the following
functions and data structures:

• mme_metadata_create_session()— create a new metadata session

• mme_metadata_free_session()— end a metadata session

• mme_metadata_getinfo_current() — retrieve metadata for the currently playing
track

• mme_metadata_getinfo_file() — retrieve metadata for the specified file, based on
its filepath

• mme_metadata_getinfo_library() — retrieve metadata for the specified file, based
on its file ID in thelibrary table

• mme_metadata_image_load() — load an image for a file

• mme_metadata_image_unload()— clear a specified image from temporary
storage

• mme_metadata_image_url_t— the structure carrying the URL for an image

• mme_metadata_info_t— the structure that carries the metadata retrieved by
any of the themme_metadata_getinfo_*() functions

• mme_metadata_session_t— a metadata session identifier

Information for images stored in the MME’s metadata image persistent cache is kept
in themdi_image_cache table.

For information about how to set configuration options for the MME’s metadata
extraction API, see the chapterMME Configuration Guidechapter Configuring
Metadata Support.

libxml2.so library and headers
MME releases include thelibxml2.so library and appropriate headers; this library
and the headers are required by clients of the MME in order to parse the metadata
structures delivered by the MME metadata extraction functions.

Thelibxml2 library delivered with the MME includes only a small subset of the full
libxml2 library; it includes only the modules required for reading, parsing and
writing XML files. Thexmlversion.h header file indicates exactly what functional
modules are in the included library.

Documentation forlibxml2 is available atxmlsoft.org.

100 Chapter 9 • Metadata and Artwork April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

Feature limitations
The current release support is limited, as follows:

• Support is limited to only the<image>/<format>metadata group

• The<image>/<format>metadata group does not produce the following image
information:

- MIME type

- Description: “Front Cover”, “Back Cover”, etc.

• Extraction of external artwork is supported, but is limited to the following
filenames:

- album.jpg

- ALBUM.JPG

- folder.jpg

- FOLDER.JPG

• Retrieval of embedded artwork from WMA files is not supported.

Using the metadata extraction API
The MME’s metadata extraction API usesmetadata sessions. A metadata session uses
a metadata session identifier used by the metadata extraction functions.

Metadata extraction includes the following tasks:

1 Call mme_metadata_create_session()to create a metadata session and reserve
the required system resouces.

2 Call one of themme_metadata_getinfo_*() functions to retrieve the required
metadata for a specified file and place it in themme_metadata_info_t data
structure.

3 If an image is available and required, callmme_metadata_image_load() to load
the image into the image cache.

4 Call mme_metadata_free_session()to close the metadata session and free the
system resources it was using.

The metadata extraction functions deliver metadata information as XML in the
mme_metadata_info_t structure. For more information, and examples, see “XML
content” on themme_metadata_info_t structure reference page.

As required, the client application can also:

• usemme_metadata_image_cache_clear() to clear specified images from the
metadata image cache

• usemme_metadata_image_unload()to clear a specified image from temporary
storage

April 30, 2009 Chapter 9 • Metadata and Artwork 101

Getting artwork 2009, QNX Software Systems GmbH & Co. KG.

The MME supports extraction of album artwork from iPods for the currently playing
trackonly. To retrieve album artwork from iPods, use the metadata extraction API as
you do to retrieve artwork from other devices and mediastores.

See also “Retrieving artwork from iPods” in the chapter Working with iPods.

Image pre-processing
The MME supports image pre-processing with the following capabilities:

• Decoding from the following source formats:

- BMP

- GIF

- JPEG

- PCX

- SGI

- TGA

• Encoding into the following target formats:

- BMP

- JPEG

• Image scaling and rotation

Images encoded into the BMP format may not be readable by some external
applications.

Enabling image pre-processing

The MME’s image processing capabilities are configured through the
<MetadataInterface>/<ImageProcessing> element in the MME’s
configuration file,mme.conf.

To enable image pre-processing, you must:

1 Configure the image processing library.

2 Enable one or more image processing modules.

3 Configure image processing profiles to be used by the MME’s metadata
Load-on-Demand API.

102 Chapter 9 • Metadata and Artwork April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Getting artwork

CAUTION: If you do not enable the image processing module, or if there are no
image processing modules configured, attempts to use a defined image processing
profile through the MME’s metadata interface will fail with anEINVAL error.

!

For information about how to configure and enable the MME for image
pre-processing, see “Image pre-processing” in the chapter Configuring Metadata
Support in theMME Configuration Guide.

A patch is required to enable the selection of JPEG image quality when performing
image pre-processing. This patch is available in the archive
patch-640-1383-img-quality.tar, under the Foundry27 Multimedia project’s
“Downloads” tab.

Using image pre-processing

The MME’s metadata API implements themme_metadata_image_load() function to
load and, if requested, process images. Image processing is specified through the
function’s image_format_profile parameter. This parameter can be set to either -1 if
no image processing is required, or the number of a pre-defined image processing
profile. For more information about these profiles and how to configure then, see
“Configuring image processing profiles” in the chapter Configuring Metadata Support
in theMME Configuration Guide.

For more information aboutmme_metadata_image_load(), see theMME API Library
Reference.

April 30, 2009 Chapter 9 • Metadata and Artwork 103

Chapter 10

Playing and Managing Video and DVDs

In this chapter. . .
Playing and managing video 107
Playing and managing DVDs 108
DVD-video player 110
Configuring the MME for video support 114

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 105

 2009, QNX Software Systems GmbH & Co. KG. Playing and managing video

This chapter describes how to work with track sessions and play audio media on the
MME.

For information about support for video on iPod devicess, see “Video support” in the
chapter Working with iPods.

Playing and managing video
This section is explains how to play video files and how to manage video attributes.

Playing video files
The MME supports playback of the following encoded video formats in MP4 files:

• H.264 video

• MPEG-4 video ES (elementary stream)

Video files in thelibrary table are identified by theirftypeset toFTYPEVIDEO(2)
or FTYPEAUDIOVIDEO(3). To play a video file, you need to:

1 Configure the MME for video support, by adding a video output device to the
MME’s outputdevices table, and setting values and behaviors for this device.
For instructions, see “Configuring the MME for video support” below.

2 Create and set a track session that includes the video file you want to play, just
as you would a track session with only audio files, or use the MME’s Explore
API to access the video file.

3 Start and manage playback, just like you would playback of an audio file: call
mme_play(), mme_stop(), etc.

For information about:

• managing video playback, see “Managing video attributes” below.

• playing DVD-video, see “Playing and managing DVDs” below.

• configureio-media for optimal video performance, see “Configuringio-media
for video ” in theMME Configuration Guide.

When video playback reaches the end of file, it leaves the last image on the screen. If
you want videos to end with a cleared screen, you must have the client application
issue the necessary instructions, such as, for example, a call tomme_stop().

Managing video attributes
The MME provides an array of functions for managing videos while they are playing,
including:

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 107

Playing and managing DVDs 2009, QNX Software Systems GmbH & Co. KG.

• mme_video_get_status(), which gets status information for video playback of any
format. The MME indicates that there has been a change in video status by sending
anMME_EVENT_VIDEO_STATUSevent.

• mme_video_set_angle(), which sets the video angle for video playback. Before
calling this function, usemme_video_get_angle_info() to get the current video
angle.

• mme_video_set_audio(), which sets the audio stream for video playback in a
control context, andmme_video_get_audio_info(), which gets information about
audio settings for video playback.

• mme_video_get_subtitle_info() andmme_video_set_subtitle(), which get and set
the subtitles for video playback.

• mme_setlocale(), which sets the preferred language for strings that indicate
unknown media metadata, andmme_getlocale(), which gets the locale information.

Playing and managing DVDs
The MME is designed to support the playing of:

• an entire DVD with navigation

• selected parts of a DVD, observing legal and other requirements and restrictions

DVD and video support is platform-specific. If MME API functions that support DVD
mediastores and video playback are called on a system that does not have the required
io-media modules, these functions return an error witherrorno set to ENOSYS.

Please contact us to discuss your DVD and video implementation requirements.

DVD synchronization
When the MME synchronizes a DVD, it creates in thelibrary:

• an entry for the entire DVD, withftypeset toFTYPE_DEVICE (5).

• entries for the various parts of the DVD.

The file IDs (fids) for entire DVDs can be found by examining thelibrary table
entries where theftypecolumn has the value 5 (FTYPE_DEVICE from
mme/interface.h).

The example below shows an SQL query to select all DVD entries in the library:

SELECT fid, title FROM library WHERE ftype=5;

108 Chapter 10 • Playing and Managing Video and DVDs April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playing and managing DVDs

Playing DVDs
The MME supports playing an entire DVD or only a part of the DVD, subject to legal
limitations that may either restrict access to some parts of a DVD or impose playback
of other parts, such as the copyright notice and warning.

When playing a DVD-video, you can usemme_video_get_info() to get information,
such as codec, capture format, and aspect ratio for the video, and
mme_video_set_properties()to set the video properties for output.

Playing an entire DVD

To play an entire audio or video DVD, simply include thefid for that DVD in your
track session. With the entire DVD in the track session, you can callmme_button()to
move around on the DVD, play media, and manage behavior. The MME delivers the
appropriate events at all transitions during the DVD playback.

Playing specific parts of a DVD

To play specific parts of an audio or video DVD (title, chapter, etc.), you can place the
fids for the parts of the DVD you want to play in a track session, then play the session.
The MME will play only the specified part of the DVD, and deliver the event
MME_EVENT_FINISHED when it has finished playing it.

Note that for DVD-videos legal restrictions may prevent playback of some parts of the
DVD using this method. Similarly, attempts to usemme_button()to circumvent these
restrictions will be rejected.

Starting playback from a specific DVD title and chapter

You can start playback at a title and specific chapter of an audio or video DVD by
calling mme_seek_title_chapter()when you would use a command button:

1 Create a track session with the file ID (fid) for the entire DVD.

2 Set the tracksession.

3 Call mme_play() to start playback.

4 Once the navigator is active, callmme_seek_title_chapter()to seek to the
desired title and chapter on the DVD.

Usemme_get_title_chapter()to get the number of titles and chapters in the current
track, and the currently playing title and chapter numbers; use
mme_seek_title_chapter()to seek to a specified title and chapter.

You can use these functions only if theMME_PLAYSUPPORT_NAVIGATION flag is set
in thesupportmember of the data structuremme_play_info_t. Call
mme_play_get_info() to get this structure .

For sample code snippets, see the examples on the reference pages for
mme_get_title_chapter()andmme_seek_title_chapter().

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 109

DVD-video player 2009, QNX Software Systems GmbH & Co. KG.

Setting the default preferred media language
To set the default preferred language for a media item, call
mme_media_set_def_lang() with the lang argument pointing to a string with the
requested language. You can also usemme_media_get_def_lang() to find out the
currently set langauge.

See also Configuring Internationalization in theMME Configuration Guide.

Managing DVD access
The MME API provides functions that facilitate managing access to DVDs, offering
client applications the ability to get disk regions.

For information about setting region playback codes (RPC) on ATAPI DVD devices,
seedvddrivectl in theMME Utilities Reference.

Using DVD region codes

Region codes are used to set the regions for which a device is enabled, and to check
the region of DVD-video discs before they are played. For example, if a user has a
device enabled for regions 1 and 3, the HMI can check that a DVD-video disk is from
one of these regions before allowing the user to play it.

Region codes are represented in bits 0 to 7, with bit 0 representing region 1, up to bit 7
representing region 8. The API takes a 32-bit region code, but the top 24 bits of the
region are not currently used.

The functionmme_dvd_get_disc_region()gets the region code of specific DVD-video
discs that are inserted into the DVD drive. The bits that are returned from
mme_dvd_get_disc_region() represent the regions in which the DVD-video disk may
be played. If no bits are set, the DVD-video disk is regionless and can be played in any
region.

It is the responsibility of the user application to set and track device regions, and to
inform the end user through the HMI of conditions where the regions for a DVD-video
disk are incompatible with the regions set for the device.

DVD-video player
The DVD player runs on Intel x86 platforms; audio and video decoding are enhanced
by Intel chips that support the Intel IPP library.

Required drivers and binaries
The DVD player requires the following QNX drivers:

• GMA9nn graphics driver

• Intel HD Audio driver

110 Chapter 10 • Playing and Managing Video and DVDs April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. DVD-video player

The following binaries are specific to DVD playback:

• dvd_demuxer.so— the DVD stream demuxer

• dvd_eventer.so— the DVD time event manager

• gf_mixer.so— the video mixer

• ipp_ac3_decoder.so— the Dolby Digital audio decoder

• ipp_mpeg2_decoder.so— the MPEG2 video decoder

• reader_dvd.so— the DVD data reader

• spu_decoder.so— the sub-picture decoder

• srv-dvdplayer— the DVD player application

• streamer_dvd.so— the DVD disk data streamer

For information about video layers, see theAdvanced Graphics Developer’s Guide, in
particular the chapter Working with Layers, Surfaces, and Contexts, and the “Layers”
API.

Playing DVDs
You can use the standard MME API to play DVDs with the software DVD player. All
you need to do is startsrv-dvdplayer in addition to your other MME components:

srv-dvdplayer -c /etc/system/config/files.dat &

The-c option sets the path to the keys required for playing encrypted DVDs. See
“Encrypted DVDs” below.

To get debug information forsrv-dvdplayer, use the-D option. For example:

srv-dvdplayer -DDD &

For more information, seesrv-dvdplayer in theMME Utilities reference.

Including srv-dvdplayer in a startup script

If you want to include startingsrv-dvdplayer in a startup script, you should add
start up instructions like those below before theio-media startup:

MM_INIT=not_the_default_path/lib/dll/mmedia srv-dvdplayer -c /etc/system/config/files.dat &
waitfor /dev/dvdplayer

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 111

DVD-video player 2009, QNX Software Systems GmbH & Co. KG.

By default,srv-dvdplayer looks in/lib/dll/mmedia for the multimedia filters,
but, as withio-media-generic, you can force it to look elsewhere by using the
$MM_INIT environment variable (shown above).

After you have startedsrv-dvdplayer, you can follow the usual steps for creating a
track session and playing the media:

1 Insert a DVD.

2 Create a track session.

3 Set the track session.

4 Start playback.

5 Send DVD navigation and control commands, as required.

When creating the track session, you can identify a DVD in themediastores table
by its storage type, which is set toMME_STORAGETYPE_DVDVIDEO.

DVD commands

Use the following functions to manage DVD playback and trick play, set video
properties and get information:

• mme_button()

• mme_dvd_get_status()

• mme_play_set_speed()

• mme_seektitle_chapter()

• mme_seektotime()

• mme_video_get_audio_info()

• mme_video_get_subtitle_info()

• mme_video_set_angle()

• mme_video_set_subtitle()

Use the other standard MME functions to control other behavior and settings, such as
volume level.

112 Chapter 10 • Playing and Managing Video and DVDs April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. DVD-video player

Most commands for DVD playback and navigation are sent using the MME’s
mme_button()function, which behaves like the buttons on a DVD remote control. For
more information about this and the other functions used for DVDs, see theMME API
Library Reference.

Configuring the MME for software DVD playback
DVDs use the configuration settings for CDs. For more information, see theMME
Configuration Guide.

For specific information about configuring the MME for video support, see
“Configuring the MME for video support” below.

Encrypted DVDs
To play encrypted DVDs you must obtain commercial CSS decryption keys from the
DVD Copy Control Association. To provide your encrypted keys to the DVD player,
use thedvdkeymgr utility.

Playing encrypted DVDs

To play encrypted DVDs:

1 Obtain commercial CSS decryption keys from the DVD Copy Control
Association.

2 Create akeys.txt file. For more information, see “Input file” on the
dvdkeymgr page of theMME Utilities Reference.

3 Use thedvdkeymgr utility to generate a DVD CSS decryption binary file:
files.dat.

4 Startsrv-dvdplayer, using the-c option to set the path to thefiles.dat
file.

dvdkeymgr

The utility dvdkeymgr takes the keys in the input file,keys.txt, located atpath, and
creates a CSS decryption binary file calledfiles.dat. For example, the command
line instructions below generates afiles.dat file from the keys in the file
/usr/keys.txt:

dvdkeymgr /usr/keys.txt

To enablesrv-dvdplayer to play encrypted DVDs, after you have generated the
files.dat file, you must place it in the same folder assrv-dvdplayer, or use
srv-dvdplayer’s -c option to point to the file.

For more information, seedvdkeymgr in theMME Utilities reference.

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 113

Configuring the MME for video support 2009, QNX Software Systems GmbH & Co. KG.

Configuring the MME for video support
To configure the MME for video support, you must add the URL of a video output
device to the MME’soutputdevices table, as follows:

INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’defaultoutput2’,

’gf:deviceentry>?param1¶m2’);

Thedeviceentrystring and its parameters correspond to the device entry in the
/dev/io-display directory. It includes, in this order, separated by commas:

• the vendor ID

• the device ID

• the device index

For example, in thedeviceentryparameters in the string
gf:8086,2772,0?layer=1&sublayer=2 ... identify the following:

• the vendor ID is 8086

• the device ID is 2772

• the device index is 0 (zero); there is only one device

If there is only one device, the device index can me omitted, and will default to 0
(zero).

• For information about the modifiers that follow the question mark, see “Adding
modifiers to a video output device URL” below.

• For information about video layers, see theAdvanced Graphics Developer’s Guide,
in particular the chapter Working with Layers, Surfaces, and Contexts, and the
“Layers” API.

• You should also configureio-media for optimal video performance. For more
information, see “Configuringio-media for optimal video performance” in the
MME Configuration Guide.

Adding modifiers to a video output device URL
The URL to the video output device may contain optional modifiers after the question
mark (“?”), each modifier separated by an ampersand (“&”), to set default values and
behaviors on the device. Supported modifiers are listed below:

index Specify the GF display index.

layer Specify the GF layer.

114 Chapter 10 • Playing and Managing Video and DVDs April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Configuring the MME for video support

nsurfs Specify the number of GF surfaces.

sublayer Specify the SPU (subtitle) layer.

To specify the destination rectangle use:

dsth Set the destination height, in pixels.

dstw Set the destination width, in pixels.

dstx Set the destinationx coordinate.

dsty Set the destinationy coordinate.

To specify the aspect ratio of the pixels on the physical display use:

aspd The aspect ratio denominator.

aspn The aspect ratio numerator.

To set the color control on the output use:

bright Specify the brightness, in direct GF units.

contrast Specify the contrast, in direct GF units.

sat Specify the color saturation, in direct GF units.

After playback has started, you can use themme_video_set_properties()function to
adjust playback parameters.

Configuring video output for the software DVD player

When configuring video output for the software DVD player, you must specify the
layer andsublayer modifiers in the output URL string. For example, the modifiers
in the stringgf:8086,2772,0?layer=1&sublayer=2 ... are interpreted as
follows:

• layer=1 — the GF layer (for the video) is 1

• sublayer=2— the SPU layer (for subtitles) is 2

The ARGB layer used for subtitles does not support scaling. To keep the video and
subtitle layers correclty aligned on screen, both are centered and not scaled.

April 30, 2009 Chapter 10 • Playing and Managing Video and DVDs 115

Configuring the MME for video support 2009, QNX Software Systems GmbH & Co. KG.

Example: Defining a video output device
The example below shows how to define in themme database schema, an audio output
device and a video output device.

INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(1, 1, ’rearoutputaudio’, ’snd:/dev/snd/pcmC0D3p’);

INSERT INTO outputdevices(type, permanent, name, devicepath)

VALUES(2, 1, ’rearoutputvideo’,

’gf:8086,2772,0?aspn=72&aspd=77&bright=-20&sat=-10’);

116 Chapter 10 • Playing and Managing Video and DVDs April 30, 2009

Chapter 11

Playback Errors

In this chapter. . .
CD drive timeout 119
Playback buffering 119
Playback read error recovery 120
Stopping playback after repeated playback failures121
Marking unplayable files 121
Handling damaged media 122

April 30, 2009 Chapter 11 • Playback Errors 117

 2009, QNX Software Systems GmbH & Co. KG. CD drive timeout

This chapter describes common playback errors and how to manage them.

The MME offers a number of methods for handling problems with media and with the
environment in which it is used. These problems include damaged media, corrupt
files, and vibrations in the environment.

Many of the options that configure the way the MME handles problems with media
and its environment are configured inio-media. For more information, see
io-media in the chapter MME Utilities Reference.

CD drive timeout
When they encounter a read problem, many CD drivers (such asdevb-eide)
automatically retry the read until they time out. If the read problem is due to
vibrations, there is a good chance that the vibrations will cease before the time out and
that the playback will continue successfully. However, if the read problem is due to
scratched or otherwise damaged media, the read will continue to fail until the drive
times out and delivers anEIO error.

This behavior indicates that driver read timeouts should be configured differently
depending on the environment in which a drive is installed:

• In an environment (such as a stationary installation) with little chance of vibration
errors, read errors will almost always be caused by defective media. There is,
therefore, no need for a long retry period, and the read timeout period should be
relatively short.

• In moving environments (such as in automobiles, airplanes, or trains), read errors
will often be caused by vibrations and not by problems with the media storage
device (the CD or DVD). A relatively long retry period will allow the drive to
recover and continue playing.

To set the timeout period for a drive, use the command-line options for your CD drive.
For more information about setting the driver time-out period, refer to the
documentation for the CD driver or drivers you are using.

Playback buffering
To permit uninterrupted playback to the user in the event of recoverable read errors
(such as errors caused by vibrations)io-media buffers data. By default,io-media
queues 49 buffers of data for playback. The data is buffered before decompression, so
the play time for these buffers varies according to the amount of compression used for
the media tracks being played. Total buffered play time available with 49 buffers is,
approximately:

• CDDA — 10 seconds of buffered play time.

• MP3 — 100 seconds of buffered play time.

Other media formats have comparable buffered play times, depending on the level of
data compression.

April 30, 2009 Chapter 11 • Playback Errors 119

Playback read error recovery 2009, QNX Software Systems GmbH & Co. KG.

You can specify the number of buffers available for queued playback via the
io-media configuration file.

Playback read error recovery
If io-media encounters a read error from a CD drive and it cannot recover within the
time set in the device driver timeout configuration, the MME will attempt to skip
ahead to a different part of the track and continue playing. If the MME encounters a
read error at the new location, it increases the skip time and attempts to read the media
at a third location. If this read fails, the MME repeats the process until one of the
following conditions occurs:

• While skipping forward, the MME reaches the end of the track. In this case the
MME reports a normal end of track.

• Attempts to read the track continue failing until the number of skip forwards
exceeds the maximum allowed. In this case, the MME reports a fatal read error.

Note thatio-media may skip ahead due to damaged (scratched) media or to
vibrations in the environment;io-media knows only that the CD drive reported a
read error and that it needs to skip to another part of the track it is trying to play.

You should configureio-media at startup to define how it behaves in the event of
playback read errors. Configurable settings are:

• enable skip ahead — enable or disable skip ahead on playback read error

• skip seek time — the number of milliseconds to skip forward in a track when
attempting to recover from a read error.

• increment percent — the percent of the previous skip seek time to seek forward
repeatedly until playback is possible

• maximum retries — the maximum number of times to skip before failing.

For example, with the skip seek time set to 120 milliseconds and the increment percent
set to 50, ifio-media is unable to play from a point on a track, it will:

1 Skip forward 120 milliseconds and attempt to resume playback.

2 If playback fails at the new position,io-media will add 50 percent to the skip
time (60 milliseconds), and skip forward a second time (180 milliseconds
forward from the original point of failure).

3 If playback fails a third time,io-media will add 50 percent to the last skip time
(90 milliseconds, for a total skip of 270 milliseconds from the original point of
failure).

4 If the failure persists,io-media will continue to skip forward in 50 percent
increments until it is able to successfully play the track or it reaches the end of
the track.

120 Chapter 11 • Playback Errors April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Stopping playback after repeated playback failures

Whenio-media is able to resume playback, it resets the skip seek time to the
configured time.

If a track is being played backwards, andio-media is configured to skip on error,
io-media:

• skips backwards

• stops and reports a read failure at the beginning of the track

For more information about configuring playback read error recovery behavior, see
“Configuring how the MME handles playback read errors” in theMME Configuration
Guide. For information about how to configureio-media, seeio-media in the
MME Utilities Reference.

Stopping playback after repeated playback failures
When the MME receives the instruction to play a track (mme_play(), mme_next(), or
mme_prev()), it attempts to start playback of the requested track. If the requested track
is not playable because the media is damaged (e.g. a scratched CD), the MME
attempts to play the next track, continuing until it finds a playable track or it has tried
and failed to play every track in the track session. This behavior prevents the MME
from processing any other request until it has found a playable file or attempted to play
every track in the track session.

To stop the MME from attempting to play every track in a track session, you can call
mme_stop()to stop playback, and switch playback to another track session on another
mediastore, such as the HDD, then eject the bad mediastore. You can determine the
conditions under which your client application will usemme_stop()to stop a track
session. For example, your client application can stop a track session after it receives
severalMME_PLAY_ERROR_READ and/orMME_PLAY_ERROR_CORRUPTevents in
sequence.

Marking unplayable files
The MME provides a flag that identifies unplayable files. Your client application can
use this flag to filter unplayable files from track sessions. If the MME is unable to play
a track, it:

• may mark the track as unplayable by setting the track’splayablefield in the
library table to 0 (zero)

• delivers anMME_PLAY_ERROR*event

April 30, 2009 Chapter 11 • Playback Errors 121

Handling damaged media 2009, QNX Software Systems GmbH & Co. KG.

What files are marked as “unplayable”
Theplayablefield does not apply to files that the MME can start to play but on which
it encounters errors later during playback. The MME marks only files for which it
cannot initiate playback because, for example, the file is invalid, the codec for the file
format is not available, or DRM forbids playback of the file.

For errors that occur after playback starts (e.g. a track is so badly scratched in the
middle thatio-media gives up trying to read it, or an MP3 file is corrupt somewhere
in the middle), the MME doesn’t send anMME_PLAY_ERROR*event and the
playable field isn’t set to 0 (zero). In these cases, the MME delivers an
MME_EVENT_TRACKCHANGE event when it goes to play the next track.

Skipping “unplayable” files
To ensure that your client application does not attempt to play files marked as
unplayable, you can include the clauseWHERE playable=1, in the SQLSELECT
statement you use to build your track sessions.

The<SkipUnplayable> configuration element can be used to have the MME
automatically skip unplayable files without sending any error messages to the client
application. For more information, see “Automatically skip files marked as
unplayable” in theMME Configuration Guide.

Handling damaged media
To support handling of damaged media, when it encounters read errors, the MME
returns the following events, depending on the type of read error condition
encountered:

• MME_EVENT_PLAY_WARNING — io-media encountered a read error and is
attempting to skip forward past the bad section of the track.

• MME_EVENT_PLAY_ERROR— io-media has surpassed the maximum skip
forward on read error attempts, and has given up attempting to read the track.

• MME_EVENT_TRACKCHANGE — while attempting to skip forward past a bad
section of a track,io-media has advanced beyond the end of the track. The MME
has performed a track change and is attempting to play the new track.

• MME_EVENT_FINISHED — while attempting to skip forward past a bad section of
a track,io-media has advanced beyond the end of the track, and there are no more
tracks to play in the track session.

To support this behavior, the enumerated typemm_warnings_t has the following
values:

• MM_WARNING_READ_TIMEOUT — the source was slow and a read timed out.

• MM_WARNING_READ_ERROR— there was a read error, and the operation is
trying to recover.

122 Chapter 11 • Playback Errors April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Handling damaged media

Synopsis
typedef enum e_mm_warnings {
MM_WARNING_READ_TIMEOUT = 0x1,
MM_WARNING_READ_ERROR = 0x2,
} mm_warnings_t;

April 30, 2009 Chapter 11 • Playback Errors 123

Chapter 12

Copying and Ripping Media

In this chapter. . .
About media copying and ripping 127
Copying and ripping media 128
Managing the copy queue 134
Modifying media metadata 135

April 30, 2009 Chapter 12 • Copying and Ripping Media 125

 2009, QNX Software Systems GmbH & Co. KG. About media copying and ripping

The MME provides capabilities for copying and ripping media. Ripping is the process
of reading files from a mediastore, changing the format of these files into another
format if required, then writing the files in their new format to a mediastore or other
storage device. Copying media is simply ripping media and writing the destination
files in the same format as the source files.

About media copying and ripping
You can instruct the MME to rip media from one or several mediastores to any
writable mediastore.

The copying and ripping process
When the MME performs a ripping operation, it looks through its copy queue, stored
in thecopyqueue table, for the IDs of the files to copy or rip, as well as other
information it needs for the operation.

If it is copying media, the MME will copy files along with all their metadata.
Depending on how it is configured, the MME will either copy all media to one folder
or preserve the original folder paths for the copied files on the destination mediastore.
For more information, see “Managing folder paths” below.

The MME will copy or rip a file only if it isn’t being played or synchronized.
Similarly, the MME will abort a copy or ripping operation if during the operation the
source file is requested for playback.

If it is ripping media, the MME uses a metadata database, such as Gracenote, AMG or
CD-Text, to add to the metadata of the new ripped file, and uses the ripping template
defined throughmme_mediacopier_add() to retrieve the folder paths to use when
writing the ripped files. For more information, see “Copy folder paths and ripping
templates” below.

When it has received notification that a copy or ripping operation has completed, your
client application should usemme_mediacopier_clear() to clear the copy queue so
that subsequent copying or ripping operations don’t copy or rip the same files twice.

Monitoring progress and playback
Your client application should usemme_mediacopier_get_status()to retrieve the
status of media copying and ripping. Copying provides the number of bytes to be
copied and the number of bytes copied. Ripping provides the total play time of the
media track and the amount of play time ripped. Always check for MME media
copying and ripping events (MME_EVENT_MEDIACOPIER_*) to check on the
progress of copying and ripping operations, and to know when they are completed.

Priority background ripping
If priority background ripping is set, the MME plays back copied or ripped files from
the copied or ripped files, not from the source file.

April 30, 2009 Chapter 12 • Copying and Ripping Media 127

Copying and ripping media 2009, QNX Software Systems GmbH & Co. KG.

Event delivery during priority background ripping

During priority background ripping operations, delivery of:

• MME_MEDIACOPIER_COMPLETEindicates that there is nothing left in the
copyqueue, and that the mediacopier is stopping.

• MME_MEDIACOPIER_DISABLED indicates that the mediacopier has stopped
because:

- it received a stop request from themme_mediacopier_disable()

or

- it is unable to rip any of the tracks currently in the copyqueue

Seeking and trick play during ripping with playback

Attempts to seek forward or perform other trick play activities during priority
background ripping can cause undesired output to the user. For example, if the user
attempts to seek forward past the current end of a file being played as it is being
ripped, he or she may experience a wait, followed by some playback as the ripping
catches up to the requested position in the file, further waiting, and so on.

You may, therefore, wish to have your HMI block some or all seek and trick play
capabilities during ripping with playback operations, adjusting HMI behavior and
displaying appropriate messages to the user as required. You could, for example, grey
out buttons for features that you disable until ripping is completed.

As a last fall-through, you may also configureio-media to catch and prevent these
operations. The defaultio-media behavior is to permit seeking and trick play during
a ripping with playback operation. However, you can set the
MM_TMPFILE_STREAMER_SEEKABLE mmf_graphbuilder resource in the
io-media configuration file to prevent these activities.

Copying and ripping media
Copying or ripping with the MME requires that you perform the following tasks, in
order:

1 Check and, if necessary, set the media copying or ripping mode.

2 For copy operations, decide if you want to preserve the original folder path or
use a new path on the target mediastore; for ripping operations, get the ripping
template.

3 Prepare the copy queue with the files you want to copy or rip.

4 Start the operation.

When it has finished copying or ripping all files in the copy queue, the MME delivers
the eventMME_EVENT_MEDIACOPIER_COMPLETE.

128 Chapter 12 • Copying and Ripping Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Copying and ripping media

Setting the copy or ripping mode
To check the copy and ripping mode, usemme_mediacopier_get_mode(); to set the
mode, usemme_mediacopier_set_mode().

The MME offers two modes for media copying and ripping:

• background

• priority background

Both the background and the priority background modes are non-blocking. That is,
after you set up the copy or ripping operation and callmme_mediacopier_enable()to
start it, the MME starts copying or ripping in the background and your application can
go on to perform other tasks. Usemme_mediacopier_get_mode()to retrieve the
current media copying and ripping mode. Note that to use priority background media
copying and ripping, you must enable this mode in the configuration filemme.conf

before starting the MME. For more information, see the chapter Configuring Media
Copying and Ripping in theMME Configuration Guide.

The figure below illustrate background ripping:

Media
reader

Encoder
File

writer

Hard drive

Memory stick

CD player

Hard drive

Memory stick

MME background ripping operation.

The figure below illustrates priority background ripping with playback:

April 30, 2009 Chapter 12 • Copying and Ripping Media 129

Copying and ripping media 2009, QNX Software Systems GmbH & Co. KG.

Media
reader

Encoder
File

writer

Hard drive

Memory stick

CD player

Hard drive

Memory stick

Media
reader

Decoder
Audio
writer

MME priority background ripping operation with playback.

Copy folder paths and ripping templates
If you are copying media, you can elect to preserve folder paths; if you are ripping
media, you can use ripping templates to define how ripped files will be organized on
the target mediastore.

Managing folder paths

The MME can be configured to maintain folder paths by default when copying files by
setting the<PreservePath> element in themme.conf file: <PreservePath
enabled="true"/>. For more information, see the chapter Configuring Media
Copying and Ripping in theMME Configuration Guide.

If it is configured or instructed to preserve folder paths, when it performs a file copy,
the MME:

• recreates in the destination the folder paths for the copied files

• updates thefolders table with entries for the newly created folders

For example, if a source file is located in
/fs/usb0/mymusic/albums/pinkfloyd/wall.mp3, the MME will copy it to
/media/drive/ripped/mymusic/albums/pinkfloyd/wall.mp3.

The MME also supports the dynamic setting of folder paths during a copy, which you
can select later in the process, when you callmme_mediacopier_enable():

• To ignore the original path and create a new path during copy, set theflags
argument inmme_mediacopier_add() to MME_MEDIACOPIER_NONE.

• To preserve the original folder path for the copied media folders and files, set the
flagsargument inmme_mediacopier_enable()to
MME_MEDIACOPIER_PRESERVE_PATH.

130 Chapter 12 • Copying and Ripping Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Copying and ripping media

Folder path functionality applies only to media copy operations,not ripping
operations.

Using the $*PRESERVE_PATH* template strings

The$*PRESERVE_PATH templates strings may only be used for copying operations.
They arenot supported for ripping operations.

These template strings:

• override the global preserve path configuration set with the<PreservePath>

element in the MME configuration file

• must be the last templates strings in a path

• may optionally be terminated with a “/” character

• are for use on a per copy basis; they must not be used in the global default folder
name

If you use$PRESERVE_PATH or $NO_PRESERVE_PATH with no additional path
information provided, the operation uses the the global default copy destination folder:

• /$NO_PRESERVE_PATH copies to the root of the target mediastore

• /$PRESERVE_PATH builds the path from the source mediastore on to the
destination mediastore

$PRESERVE_PATH_AFTER is used in the destination folder name to modify the
source path when it is appended to the destination folder. When it builds the
destination path, the MME copy operation searchs for and discards from the source
path the characters after$PRESERVE_PATH_AFTER: (note the colon “:”). It discards
characters from the beginning of the source path up to and including the characters
after$PRESERVE_PATH_AFTER:.

For example, to transform the source path
/fs/pfs0/Music/Artist/Album/Song.mp3 into
/copy_dir/Artist/Album/Song.mp3 on the copied mediastore, you can use
either of the following destination paths:

• /copy_dir/$PRESERVE_PATH_AFTER:/fs/pfs0/Music/— explictly define
all characters to be removed from the destination path

• /copy_dir/$PRESERVE_PATH_AFTER:/Music/— discard all characters up to
an including the stated string

Setting and using ripping templates

The functionmme_mediacopier_add()uses the data structure
mme_mediacopier_info_t to set templates that define how the MME names ripped
files and where it places them in folder structures. If a ripping template is set, when

April 30, 2009 Chapter 12 • Copying and Ripping Media 131

Copying and ripping media 2009, QNX Software Systems GmbH & Co. KG.

the MME rips media, it automatically names the ripped files and places them in the
locations defined by the template, building the folder structures and filling in
appropriate information based on the metadata for the ripped files.

For example, the following strings defined for the templates:

Folder /$ARTIST/$ALBUM/

File name /$title/

would yield (based on the metadata) the following folders and file names:

• /Katia Guerreiro/Tudo ou Nada/Despedida.mp3

• /Pearl Jam/Ten/Oceans.mp3

• /Pearl Jam/Ten/Alive.mp3

• /U2/Joshua Tree/Exit.mp3

Usemme_mediacopier_add() to set ripping templates at any time before a ripping
operation and to get the template you want to use before a ripping operation. For
example, you could define one template to organize media by artist, album and title,
and another to organize media by genre, year and artist, and offer the end-user the
option of ripping media using either template. Or, your HMI could let the end-user
build additional templates and store them.

Building the copy queue
After you have set the copy or ripping mode you want to use, and how you want to
handle folder paths for media copies or the organization of ripped files, you need to
compose an SQL query statement and callmme_mediacopier_add()with this
statement to:

• build up the list in files to be copied or ripped in the copy queue

• tell the MME whether this is a media copy or a ripping operation

• set the destination mediastore for the operation

• for ripping operations, set the target format for the media.

The example below shows how to add files to the copy queue, ensuring that there are
no duplicate entries. The SQL query could be something such as"SELECT fid

FROM library WHERE msid=msid_num", wheremsid_numis the mediastore ID of
the CD you want to copy, and you want to select all tracks from the CD for ripping.

// If none of this CD’s tracks were ripped before, we make sure

// that we add them to the copyqueue.

if(init_copyqueue) {

mme_mediacopier_info_t info;

132 Chapter 12 • Copying and Ripping Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Copying and ripping media

// Clear the copyqueue.

// We do this to prevent copying tracks multiple times.

mme_mediacopier_clear(mme);

// Set up rip destination and encoding

info.dstfilename = NULL;

info.dstfolder = NULL; // use the defaults

info.dstmsid = 0;

info.encodeformatid = 2; // 2 is ’wav’,

// see the ’encodeformats’ table.

if(-1 == mme_mediacopier_add(mme, &info, sql, 0)) {

perror("mme_mediacopier_add()");

return;

}

}

Note how in the example above, the client application callsmme_mediacopier_clear()
to clear the copy queue before adding files to it. For more information, see “Managing
the copy queue” below.

Updating metadata

The MME can be configured to synchronize files with inaccurate metadata before
copying or ripping them. If this option is set, when the MME prepares to copy or rip a
file, it:

• Checks theaccuratefield in thelibrary table for the file.

• If this field is set to 0 (the metadata is not accurate), before copying or ripping the
file, the MME synchronizes the source file so its metadata is accurate, ensuring the
accuracy of the metadata in the copied or ripped file.

To configure the MME to synchronize files with inaccurate metadata before copying
or ripping them, make sure that the<Copying> element<UpdateMetadata> in the
MME configuration file (mme.conf) is set totrue. This is the default setting.

Completing unknown metadata

To add specified metadata strings when metadata is not known, build the copy queue
with the functionmme_mediacopier_add_with_metadata()instead of
mme_mediacopier_add().

Starting media copying or ripping
To start a media copying or ripping operation, callmme_mediacopier_enable()
instructing it to either copy or rip the media listed in the copy queue. This function
will read through the copy queue in thecopyqueue table and either copy or rip the
files, as directed.

April 30, 2009 Chapter 12 • Copying and Ripping Media 133

Managing the copy queue 2009, QNX Software Systems GmbH & Co. KG.

Stopping media copying or ripping
To stop a media copying or ripping operation, callmme_mediacopier_disable().

Behavior when media copying or ripping encounters an error
If the MME is unable to copy or rip a file, it:

• delivers the eventMME_EVENT_MEDIACOPIER_SKIPFIDor
MME_EVENT_COPY_ERROR

• moves to the next entry in thecopyqueue table

You may want to remove entries for skipped files from thecopyqueue so that the
MME does not attempt to copy or rip them the next time you begin a media copying or
ripping operation.

You can use the<DeleteOnNonRecoverableError> element in the MME
configuration file to have the MME automatically delete from the copy queue entries
for files that cause unrecoverable errors.

Behavior when a mediastore is removed
If the mediastore from which files are being copied or ripped is ejected during the
operation, the MME will deliver the eventMME_EVENT_COPY_ERROR
(MME_COPY_ERROR_NOTSPECIFIED) and an event
MME_EVENT_MEDIACOPIER_SKIPFIDevent for the track being ripped, as well as
the next few tracks in the copy queue until the MME detects that the mediastore was
ejected.

When the MME detects that the mediastore was removed from the system, it delivers
the eventMME_EVENT_COPY_ERROR(MME_COPY_ERROR_DEVICEREMOVED),
and removes the partially ripped file from the destination mediastore.

Managing the copy queue
Stopping a media copying or ripping operation does not affect thecopyqueue table.
You should ensure that your client application manages the copy queue so that you do
not inadvertently copy or rip files left in the queue by an earlier media copying or
ripping operation. At the start of every media copying or ripping operation, you should
call mme_mediacopier_clear() to remove all entries in thecopyqueue table.

You can also remove specific items from the copy queue by calling
mme_mediacopier_remove(). This feature allows you to offer the end users
functionality such as the ability to review a list of media to be copied or ripped and
add or remove individual entries as desiredbeforestarting a media copying or ripping
operation.

134 Chapter 12 • Copying and Ripping Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Modifying media metadata

Modifying media metadata
The MME providesmme_metadata_set()so your client application can provide the
end-user with the ability to modify the metadata for copied and ripped media. You can
design an HMI interface that displays media metadata and accepts input of corrections
or additions from the user, then pass the input to themme_metadata_set(), which will
write the modified metadata to both the media file (where applicable) and the MME
database.

April 30, 2009 Chapter 12 • Copying and Ripping Media 135

Chapter 13

External Devices, CD Changers and
Streamed Media

In this chapter. . .
Getting and setting device options139
Working with external CD changers 143
Working with internet streamed media 143
Audio input playback 145

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 137

 2009, QNX Software Systems GmbH & Co. KG. Getting and setting device options

The MME supports playing streamed media, as well as media on mediastores on
external changers. This chapter describes:

• Getting and setting device options

• Working with external CD changers

• Working with internet streamed media

• Audio input playback

Getting and setting device options
The MME supports getting and setting device option configurations, even if the MME
does not know about the options:

• Device option configuration API

• Getting and setting device configuration values

• Determining the iPod connection and capabilities

Device option configuration API
The API or getting and setting device option configurations uses the following
functions, data structures, enumerated types and events:

• mme_device_get_config()

• mme_device_set_config()

• MME_EVENT_MEDIA_STATUS

• mm_media_status_t

• mm_media_status_event_t

• mm_media_status_reason_t

Getting and setting device configuration values
Themme_device_get_config()andmme_device_set_config()functions get and set
configuration option values for devices accessed through MediaFS. The MME does
not need to know about the options or their settings.

At present, you can usemme_device_get_config()to get configuration values for iPod
devices and Bluetooth devices that use a Temic stack, andmme_device_set_config()
to set options on iPod devices, with these constraints:

• mme_device_get_config()returns all configuration options for a device; individual
elements or attributes cannot be specified

• mme_device_set_config()sets only one XML element attribute at a time; to set
multiple attributes, you must call the function once for each attribute

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 139

Getting and setting device options 2009, QNX Software Systems GmbH & Co. KG.

Supported interfaces

At present, the MME supports getting and setting interface options for two types of
interfaces:

• USB devices plugged into the system

• devices accessed through a device driver (such as, for example, a QNX resource
manager) running on the system

The<interface> configuration element for USB devices uses the following
attribute template:

<interface type="usb" path="USB_bus_number" devno="USB_device_number" \
vendorid="USB_vendor_id_number" productid="USB_product_id_number"/>

The<interface> configuration element for devices accessed through a device driver
uses the following attribute template:

<interface type="device" path="/fsys/path/to/device/resmgr"/>

Getting configuration values from iPods

To get the configured settings for an iPod:

1 Reserve a buffer for the information that will be returned from the device.

2 Call mme_device_get_config().

For example, for an iPod with the mediastore ID 2:

char buf[1000];

mme_device_get_config(hdl, 2, "/", 0, sizeof(buf), buf);

The function will fill the buffer with the device information, which will be presented in
a format like the following for an iPod using USB transport:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<device api_version="1">
<interface type="usb" path="0" devno="1" vendorid="0x5ac" productid="0x5ac"/>

<media>
<iPod>
<version>

<model_id value="00150000" valuetype="hex"/>
<model_number value="MA627C" valuetype="text"/>
<firmware value="020201" valuetype="hex"/>

</version>
<capabilities>
<video/>
<digitalaudio/>

<cta/>
</capabilities>
<transport value="usb_ipod" valuetype="text"/>

<audiobook_speed value="normal" valuetype="enum" modifiable="yes" alternatives="slower,normal,faster"/>
<preferences>
<video value="ask" valuetype="enum" modifiable="no" alternatives="off,on,ask"/>

<screen value="fit" valuetype="enum" modifiable="yes" alternatives="fill,fit"/>
<format value="ntsc" valuetype="enum" modifiable="no" alternatives="ntsc,pal"/>
<lineout value="on" valuetype="enum" modifiable="no" alternatives="off,on"/>

140 Chapter 13 • External Devices, CD Changers and Streamed Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Getting and setting device options

<connection value="composite" valuetype="enum" modifiable="no" alternatives="none,composite,svideo,component"/>
<caption value="off" valuetype="enum" modifiable="no" alternatives="off,on"/>
<ratio value="full" valuetype="enum" modifiable="no" alternatives="full,wide"/>

<subtitle value="off" valuetype="enum" modifiable="no" alternatives="off,on"/>
<audioalt value="off" valuetype="enum" modifiable="no" alternatives="off,on"/>

</preferences>

<displayimage>
<upload value="on" valuetype="enum" modifiable="no" alternatives="on"/>

</displayimage>

</iPod>
</media>

</device>

Or the following for an iPod using serial transport:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<device api_version="1">>
<interface type="device" path="/net/groytest2.ott.qnx.com/dev/ser1"/>
<media>
<iPod>
<version>
<model_id value="00150000" valuetype="hex"/>
<model_number value="MA627C" valuetype="text"/>
<firmware value="020201" valuetype="hex"/>

</version>
<capabilities>
<video/>
<digitalaudio/>

</capabilities>
<transport value="ser_ipod" valuetype="text"/>
<preferences/>
</iPod>

</media>
</device>

Getting configuration values from Bluetooth devices

Themme_device_get_config()can be used to retrieve device configuration settings
from Bluetooth (A2DP) devices.

To retrieve this information from a Bluetooth device, simply call
mme_device_get_config()as you would for an iPod device, but with the mediastore
ID set for the Bluetooth device. The information in buffer filled in by the call will look
something like the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<device api_version="1">

<interface type="device" path="/dev/wms/player1"/>
<media>
<AVRCP>

<version>
<major value="1" valuetype="num"/>
<minor value="3" valuetype="num"/>

</version>
</AVRCP>

</media>
</device>

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 141

Getting and setting device options 2009, QNX Software Systems GmbH & Co. KG.

Setting configuration values on an iPod

Themme_device_set_config()allows you to change the iPod preferences that were
configured when the iPod driver was started. It sets configuration values by setting the
attributes for sub-elements inside the<preferences> attribute.

Each element inside the<preferences> has the following attributes:

• value— the current setting

• valuetype— the type of setting (currently all settings are enumerated values; that
is, a choice from a fixed list)

• modifiable— determines if the other attributes can be changed

• alternatives— possible values for the settings

At present, the only element with modifiable attributes is<screen>.

To modify an iPod’s screen zoom mode:

1 Call mme_device_set_config()with thexpathargument set to the path to the
element’svalueattribute, and thenewvalueset to the desire value.

For example:

mme_device_set_config(hdl, 2, "/device/media/iPod/capabilities/screen@value", "fill", 0);

On an iPod:

• “fill” means stretch the imagewithoutaltering the aspect ratio. That is, the image
will have no vertical or horizontal black bars (no letterbox or pillar box), but it may
be cropped to make it fit the iPod screen

• “fit” means that the image isnot cropped, but the image may be framed by
horizontal or vertical black bars

Determining the iPod connection and capabilities
To determine how an iPod is connected, simply callmme_device_get_config(), and in
the returned buffer with the device information, check the following elements and
attributes:

• Check the<transport> element’svalueattribute:

- "ser_ipod" — the iPod is using serial transport

- "usb_ipod" — the iPod is using USB transport

• Check the<capabilities> sub-elements. For example, if<digitalaudio> is
present, then the iPod supports digital audio.

142 Chapter 13 • External Devices, CD Changers and Streamed Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Working with external CD changers

Working with external CD changers
The MME includes several features that facilitate working with external CD changers:

• The constantsSTORAGETYPE_MEDIAFS_* support different mediastore types on
the same device.

• The enumerated typesmme_mode_random andmme_mode_repeat include values
to support random and repeat modes for folders and subfolders.

• The MME supports track changes initiated by external CD changers. When the
MME receives notification that an external CD changer has changed tracks, it:

- identifies the new currently playing track

- updates thenowplaying table with the file ID (fid) and metadata for the
currently playing track

A random or repeat mode setting works only if the external device supports the
setting. If the external device does not support the requested setting, the MME logs a
warning and continues playback.

For more information about building systems that use external CD changers, contact
your QNX representative.

Working with internet streamed media
The MME supports playback of internet streamed media, including:

• HTTP streamed audio, such as SHOUTcast and Icecast. Currently supported
formats are:

- AAC

- MP3

• RTP streamed video from an IP camera. Currently supported formats are:

- MPEG4-ES (MPEG4 video elementary stream)

RTP streamed media
The MME can output RTP streamed media from a camera. Support is presently limited
to ouput of the media stream; features such as pan and tilt control are not supported.

To access the RTP stream, pass the RTSP (Real Time Stream Protocol) access URL of
the camera toio-media.

For example, an Axis 207 network camera on a network could be accessed with the
following URL: rtsp://10.42.108.95:554/mpeg4/1/media.amp, where:

• 10.42.108.95 is the IP address of the camera on the network

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 143

Working with internet streamed media 2009, QNX Software Systems GmbH & Co. KG.

• 554 is the IP camera access port number

To maintain optimal sycnhronization performance, add akeepdll configuration
element to yourio-media configuration file as follows:

keepdll {
name = rtp_reader
optional = yes

}

Or, use theio-media configuration element,keepdlls, which allows you to specify
DLLs to keep by an interface name, rather than by the DLL name.

Configuring the MME to support streamed media
To configure the MME to support streamed media, you must:

1 Add a rule to the MCD to detect internet connections.

2 Enable an internet slot in theslots table.

Add a rule to the MCD to detect internet connections

To add a rule to the MCD to detect internet connections, simply add a rule to the
MME’s MCD configuration file to have the MCD look for internet connections. For
example:

[/dev/socket]
Callout = PATH_MEDIA_PROCMGR
Argument = /proc/mount
Priority = 11,10
Start Rule = INSERTED
Stop Rule = EJECTED

For more information about MCD rules, see “Configuring themcd utility” in the MME
Configuration Guidechapter Configuring Device Support.

Enable an internet slot in the slots table

After you have configured the MCD to look for internet connections you must
configure theslots table to support internet connections. For example:

INSERT INTO slots(path,zoneid, name, slottype)
VALUES(’/dev/socket’, 1, ’INTERNET’, 10);

For more information about configuring theslots table, see “Configuring theslots
table for supported devices” in theMME Configuration Guidechapter Configuring
Device Support.

144 Chapter 13 • External Devices, CD Changers and Streamed Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Audio input playback

Playing streamed media
If you have configured the MME to support internet connections, itsmediastores

table should have an entry for an “internet” mediastore. You can check this by
querying the database from the commandline. For example:

qdbc -d mme "select msid,slotid,name,mountpath from mediastores"

One of the returned lines should return values something like:

|2|13|Internet|/dev/socket|

Media streams cannot be synchronized, so to play it you should played in afile-based
track session:

1 Create a file-based track session by callingmme_newtrksession()with themode
argument set toMME_PLAYMODE_FILE.

2 Set the track sesssion by callingmme_settrksession().

3 Append the the HTTP stream by callingmme_trksession_append_files() with
thefilenameargument referencing to the HTTP stream.

or:

4 Append the RTP stream by callingmme_trksession_append_files() with the
filenameargument set to the URL of the RTP stream from the Axis camera
server:"rtsp://10.42.108.95:554/mpeg4/1/media.amp".

5 Proceed with playback.

TheSELECT statement used to create the track session query for media whereftype=5
(media that can be played as one file).

For example, with themmecli commandline utility, you might play streamed media as
follows:

mmecli newtrksession f "select fid from library where ftype=5 and msid=2"

mmecli settrksession 1

mmecli trksessionview_append_file 1 2 http://www.playsong.com/song

mmecli play

Audio input playback
The MME now supports playback of audio inputs on a system by treating audio inputs
as type of mediastore.

This feature uses a new mediastore type and a new slot type:

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 145

Audio input playback 2009, QNX Software Systems GmbH & Co. KG.

• MME_STORAGETYPE_SND_INPUT

• MME_SLOTTYPE_SND_INPUT

Audio input playback requiresaudio_streamer.so, a streamer for reading audio
from a sound card.

Configuring the MME to recognize audio input “mediastores”
To have the MME recognize audio input “mediastores”, you must:

• add an appropriate entry to theslots table

• configure the MCD for audio input “mediastores”

Configuring the slots table

To use audio input “mediastores”, you must add an entry to theslots table that sets:

• the path to the location of the audio input

• the slot type to 11

For example:

INSERT INTO slots(path, zoneid, name, slottype)
VALUES(’/dev/snd’, 1, ’snd’, 11);

Configuring the MCD

You must also configure the MCD to tell the MME about the appearance of audio
input “mediastores” by adding a section like the following to the MCD configuration:

[/dev/snd]
Callout = PATH_MEDIA_SCAN
Argument = 5000
Priority = 11,10
Start Rule = INSERTED
Stop Rule = EJECTED

Since/dev/snd is normally permanent, the argument and priority values may be
changed. The section name must be the path to the audio input devices.

An audio input “mediastore” is not synchronizable; an explicit attempt to synchronize
it will result in a MME_EVENT_SYNCABORTEDerror.

146 Chapter 13 • External Devices, CD Changers and Streamed Media April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Audio input playback

Playing media from an audio input “mediastore”
Media from an audio input “mediastore” is played in a file-based track session. Once
playback has begun, however, it will continue until explicitly stopped because it will
never reach an end of file.

To play media from an audio input “mediastore” you must know the exact path to the
mixer output you want to play. Generally tis path is something likepcmC0D0c#Mic

In.

You may learn what is available by:

• doing anls of the path to the location of the audio input

• looking at the output ofmix_ctl

Once you know the path of your audio input, simply create a file-based track session
and play the media

1 create a file-based track session, using thesnd “mediastore”’s device file ID.

2 Set the track session for playback.

3 Call mme_trksession_set_files() to set the input to the track session.

4 Play the track session.

April 30, 2009 Chapter 13 • External Devices, CD Changers and Streamed Media 147

Chapter 14

Working with iPods

In this chapter. . .
Installing MME components for external media players151
Connecting to and using iPods 151
Link kit for iPod authentication 172

April 30, 2009 Chapter 14 • Working with iPods 149

 2009, QNX Software Systems GmbH & Co. KG. Installing MME components for external media players

This chapter describes:

• Installing MME components for external media players

• Connecting to and using iPods

• Link kit for iPod authentication

For information about how to get configuration values from an iPod device, see
“Getting and setting external device options” in the chapter External Devices, CD
Changers and Streamed Media.

Installing MME components for external media players
If you want use an external media player, such as an iPod or a PlaysForSure-enabled
device, you need to:

1 Install the runtime files that support these devices. These installations may
require special licenses.

2 Useiofs-ipod or iofs-pfs, depending on the type of media player.

For more detailed instructions, see the QNX Aviage Multimedia SuiteInstallation
Note.

Connecting to and using iPods
This section describes how to connect to iPod devices, and how to use the MME to
interface to and manage iPods, where the behavior of iPods requires an approach
different from that used for other devices.

• Required components

• Authenticating iPods

• Connecting to iPods

• Detecting iPods

• Removing iPods

• Synchronizing iPods

• Playing media on iPods

• Video support

• Displaying information from an iPod

• Uploading splash screens to iPods

• HD radio tagging

April 30, 2009 Chapter 14 • Working with iPods 151

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

Required components
The table below lists the non-standard components you need to connect to and use
iPod devices from a QNX system:

Component Serial USB Description

Licenses Yes Yes See “Licenses”
below.

Authentication chip Recommended Yes See “Authenticating
iPods” below.

deva-ctrl-ipod.so Depends on configuration Yes The iPod audio
driver.

io-fs-media Yes Yes The media
filesystem.

iofs-ipod.so Yes Yes The iPod driver.

iofs-ser-ipod.so Yes No The serial transport.

iofs-usb-ipod.so No Yes The USB transport.

iofs-i2c-ipod.so If using chip. Yes The i2c interface to
the Apple
authentication chip.

See also theMME Utilities Referencefor detailed information about the relevant
drivers and transports.

Licenses

Special licenses are required to access and use iPod devices. Please contact Apple to
obtain the licenses needed for your environment.

Authenticating iPods
Two methods are available for authenticating iPod devices:

• an authentication chip on your system

• a cross transport authentication chip in the cable connecting the iPods to your
system

Apple authentication chip

An Apple authentication IC chip is required for USB transport connections, and is
highly recommended for serial transport connections. An Apple authentication IC
chip ensures:

• full functionality of Apple current devices — for example,withoutan
authentication IC chip:

152 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

- iPods do not have access to video browsing and digital audio

- iPhones report the message: “Accessory unsupported”

• compatibility with future Apple devices

The QNXiofs-i2c-ipod.somodule allows the QNX iPod driver to access the
authentication chip using a standard i2c driver. If you do not install the authentication
chip as a standard i2c device, you must write a custom module that gives the QNX
iPod driver access to the chip. For more information, see “Link kit for iPod
authentication” below.

To instruct the iPod driver to use this authentication method, startiofs-ipod.so

with the theacp option set toi2c and its options:

io-fs-media -dipod,transport=usb,acp=i2c[:options]

Cross transport authentication

A cross transport authentication chip can be built into the cable connection iPods to
your system. This authentication method is available for USB transport connections
only; it authenticates iPods over the serial pins and tell the iPods to grant authenticated
privileges to the USB transport.

As well as offering the same advantages as an authentication chip built in to your
system, a cross transport authentication chip in a cable:

• places the authentication chip in a swappable cable rather than on a board

• eliminates the need for the iPod driver to perform authentications

Please contact Apple for more information about licenses and specifications for a cross
transport authentication chip.

To instruct the iPod driver to use this authentication method, startiofs-ipod.so

with the theacp option set tocta:

io-fs-media -dipod,transport=usb,acp=cta

The following iPod devices support cross transport authentication, provided they have
the latest firmware:

• all iPod touches

• all iPhones

• all iPod nano 4G

April 30, 2009 Chapter 14 • Working with iPods 153

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

Connecting to iPods
You can connect from a QNX system to any iPod device (including an iPhone) with an
Apple 30-pin connector. You can connect to these devices through a QNX serial
device (“2-wire” connection) or a QNX USB device (“1-wire” connection).

You can connect to newer iPods (Generation 5 and more recent) either through a serial
connection or, with an Apple authentication chip, through a USB connection. Older
iPods (Generation 4 and older) support only the serial connection.

Before designing your client application, you should contact:

• Apple to obtain the specifications for cables supporting the serial protocol, and the
required authentication IC chip and associated licenses

• QNX for more information about your requirements for iPod devices

iPod nano 2G devices: use a high speed port for connections to these iPods; do not use
a full speed port.

The iPod nano 2G refuses to connect if the upstream port reports full speed; this
device can not complete a control transfer if the interrupt endpoint is polled before the
status phase of the control transfer is complete.

Accessing iPods as USB devices

Some iPods support USB connections as mass storage devices; when accessed in this
way they look like hard drives. Older iPods and iPod Shuffles can be accessed only as
USB storage devices:

• iPod Shuffles do not have an Apple 30-pin connector; they use a USB connector
and present themselves as USB mass storage devices.

• If an iPod that is accessed as a USB mass storage device (older models and
Shuffles) uses a file system that can be mounted onto a QNX system (for example,
DOS), the MME can play the iPod’s contents just like it plays the contents of any
USB mass storage device. However, the MME cannot access the contents of iPod
that use a proprietary Apple file system (iPod’s that have been formatted on an
Apple computer).

Apple devices that support digital audio

At time of this MME release, the following Apple devices supported digital audio:

Model Firmware*

iPod nano 1G 1.2.0

continued. . .

154 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Model Firmware*

iPod nano 2G 1.1.2

iPod nano 3G 1.0

iPod 5G 1.2

iPod classic 1.0

iPod touch 1.1

iPhone 1.1

*Firmware listed is the minimum required.

A very small number of iPods with outdated firmware may present themselves as
supporting digital audio, when in fact they do not support it.

If an iPod falsely presents itself as supporting digital audio, the launcher has no way of
telling that the presentation is false. It will launch the digital audio driver, not the
driver for a USB storage device, and the MME will be unable to play media or do
anything with the iPod.

You should therefore design your client application to detect this sort of situation and
alert the user so he or she can intervene and mount the iPod as a USB mass storage
device.

Connecting through a serial device

When you connect to iPod devices through a serial device, the connection uses an
iPod-specific protocol.

The iPod-specific protocol is used regardless of the type of physical layer used for the
connection. A serial device can be a serial port (such as a 16550), a USB-to-serial
class driver, or any other interface that presents a serial device.

For this type of connection, you can manufacture a serial to USB iPod cable to easily
connect iPods into any USB port on an existing system. This cable should have an
iPod 30-pin connector at one end, a USB connector at the other end, and a USB to
serial chip inside the cable.

The iPod driveriofs-ipod.so and the serial transportiofs-ser-ipod.so
together support the serial protocol required to communicate with iPods.

• Serial connections to iPods are sometimes referred to as “2-wire” connections.

• When you connect to an iPod through a serial device you must route the audio to
the appropriate location in the system.

April 30, 2009 Chapter 14 • Working with iPods 155

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

Two-wire connections

Serial connections to iPods use two wires:

• The first wire provides a serial interface from the host to the iPod’s dock interface.
This wire is used to send control over the serial interface. USB to serial converters
(devc-serusb) may make this interfaceappearto be a USB interface, but it is in
fact a serial interface.

• The second wire provides analog audio, just like a headphone jack. This wire can
be connected:

- directly to speakers

- directly to an amplifier

- to anio-audio managed audio device, which is in turn managed by the MME
andio-media

All three configurations for the second wire above are valid.

If you choose to bring the analog audio intoio-audio and have the MME manage it,
you need to:

• run the audioin line to a sound card capture device

• use the iPod serial transport (iofs-ser-ipod.so) audio option to set the URL
to the location whereio-media can read the audio data

If you do not bring the audio intoio-audio, the MME can receive time position
updates and track changes from the iPod through the control lines, but it cannot
control volume, mute or other functionality on the iPod.

Hardware requirements for serial connections to iPods

When designing a system that will use a serial interface to iPod devices you must
ensure that the hardware on your system:

• supports analog audio input

• has sufficient CPU to move data around

• has sufficient CPU to perform sample rate conversion at output, or that hardware
and drivers support conversion in the hardware

Connecting through a USB device

When you connect to iPod devices on a USB bus, the connection uses an iPod-specific
USB protocol.

To connect to iPod devices and communicate with them through a USB connection,
you need:

• the USB device enumerator:enum-usb that presents USB devices to the system

156 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

• the iPod driver:iofs-ipod.so

• the USB transport:iofs-usb-ipod.so that supports the USB protocol required
to communicate with iPods

• an Apple authentication chip

• the driver for the Apple authetication chip:iofs-i2c-ipod.so, or a custom
driver

• the audio driver:io-audio

• the audio driver for iPods:deva-ctrl-ipod.so

• USB connections to iPods are sometimes referred to as “1-wire” connections.

• To support USB transport connections to iPods, you need the following patch:
deva-ctrl-ipod.so sound driver for iPod digital audio devices (Patch ID 1154).

• When you connect to an iPod through a USB device you must also launch a USB
audio driver for the iPod.

One-wire connections

USB connections to iPods use one wire:

• The wire used for one-wire iPod connections has a USB connector on the host end
and an iPod dock on the iPod end.

• Control packets are sent across this connection as USBhid commands.

• The iPod sends audio digital PCM data across the USB connection isochronously,
which decodes the music to the host.

• The host usesio-audio andio-media to handle the PCM data.

Starting the drivers

To use iPod devices, after you obtained the required licenses, cable and authentication
chip, follow the instructions in theInstallation Noteprovided with your QNX Aviage
Multimedia Suite package, and install the following software components onto your
system:

• deva-ctrl-ipod.so

• io-fs-media

• iofs-ipod.so

• iofs-ser-ipod.so, for serial connectins

• iofs-usb-ipod.so, for USB connections

April 30, 2009 Chapter 14 • Working with iPods 157

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

• iofs-i2c-ipod.so, or a custom driver, as required

• enum-usb, for USB connections

After you have installed the required components, to connect from a QNX system to
an iPod device:

1 Startio-usb, specifying the-c option and the driver.

2 Startio-fs-media, specifying the device, the transport (serial or USB, as
required) with either the path to the device or the device name, the
authentication chip interface with the address, path and speed for the connection
to the chip, other options as required. For example, to connect to an iPod on the
default serial port and using the authentication chip, startio-fs-media as
follows:

io-fs-media -dipod,transport=ser,acp=i2c

3 If your system is configured to useio-audio, start it. See “Starting
io-audio” below.

4 Physically connect an iPod device to your system.

Below is a sample startup:

io-usb -c -duhci -dehci
io-audio -dipod busno=0,devno=1,cap_name=ipod-0-1
io-fs-media -dipod, \

transport=usb:devno=1:busno=0:sconfig:audio=/dev/snd/ipod-0-1, \
darates=+8000:11025:12000:16000:22050:24000, \
playback,acp=i2c

• Theio-usb may use the EHCI, OHCI or UHCI driver, as required.

• Theio-usb -c option is needed to instructio-usb not to select the iPod
configuration.

• Theio-fs-media iPod transport’ssconfig option selects the USB
configuration. You can omit it if you use a launcher that selects the USB
configuration.

See theMME Utilities Referencefor more information about the iPod driver options
and default values, andio-usb in theNeutrino Utilities Referencefor more
information aboutio-usb.

io-fs-media is single threaded, so you need to start a separate instance of the
filesystem for each device to which you want to connect.

158 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Starting io-audio

All USB connections and serial connections that route audio through the MME require
io-audio. If you system configuration requiresio-audio, you should start it before
physically connecting an iPod device.

When you startio-audio, you need to specify:

• busno — the USB bus number

• devno — the iPod device number

• cap_name — the name given to the capture device; you must pass the path to the
capture device to theio-fs iPod driver through itsaudio option so that
io-media will know where to read the audio data

For example:

io-audio -dipod busno=0,devno=1,cap_name=ipod-0-1 &

For more information aboutio-audio and its options, seeio-audio in theNeutrino
Utilities Reference.

iPod one-wire: from connection to playback

The figure below shows the sequence of activities from the insertion of an iPod
through a USB connection to playback:

April 30, 2009 Chapter 14 • Working with iPods 159

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

qdb

HMI

mmemcd

/fs/ipod0

io-media

io-fs-media
ipod

io-audio
deva-ctrl-ipod

enum-devices

enum-usb

Digital audio

io-audio

Select configuration

iPod is
inserted

Digital
audio

Digital
audio

USB bus

io-usb

Digital
audio

2

1

8

8
3

7

4

4

5
5

6

6

8

Activities sequence after iPod connection through USB transport.

1 The launcher (enum-usb) sees the iPod, then sends the device information,
such as vendor ID and device ID, toenum-devices, which uses this
information to determine the driver it must launch.

2 enum-devices launchesio-fs-media ipod and anio-audio instance.

3 io-fs-media ipod places the iPod in the filesystem:/fs/ipod0.

4 mcd notices the appearance of/fs/ipod0 in the filesystem, and notifiesmme.

5 mme writes iPod information in its database throughqdb, and notifies the HMI
that the iPod is present.

6 The HMI explores the iPod, then asksmme for playback of some tracks on the
iPod.

160 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

7 mme tellsio-media to start playback on the iPod.

8 io-media tells the iPod to start playback, and routes the digital audio from the
iPod to the speakers through a secondio-audio instance.

Checking for optimal connections

To check it an iPod is using the optimal available connections, you can examine the
capabilitiesfield for the device in themediastores table:

• Check for the capabilityMME_MSCAP_CONNECTION_NONOPTIMAL
(0x00040000) to determine if the iPod is using a USB (1-wire) or a serial (2-wire)
connection for control.MME_MSCAP_CONNECTION_NONOPTIMAL is set if it a
serial (non-USB) connection is used for control.

• Check for the capabilityMME_MSCAP_AUDIO_NONOPTIMAL (0x00080000) to
determine if the iPod is using an analog or digital audio connection.
MME_MSCAP_AUDIO_NONOPTIMAL is set if an analog audio connection is
being used.

TheMME_MSCAP_*_NONOPTIMAL flags apply only to iPods that are capable of
playback and control via USB connections as well as serial and analog connections.
For early iPods models, which only support serial and analog connections, a 2-wire
connection is “optimal”, as it is the only one possible.

For a full list of possible mediastore capabilities values, seeMME_MSCAP_* in the
MME API Library Reference.

Detecting iPods
When the MME detects an iPod, it updates themediastores table just as it does with
other types of mediastores. It sets thestorage_typecolumn in themediastores table
to the mediastore type,MME_STORAGETYPE_IPOD, and it updates thefolders
table with the root folder information for the iPod.

After receiving anMME_EVENT_MS_STATECHANGEevent withmme_ms_state_t
indicating a newly inserted mediastore, to check if the mediastore you are working
with is an iPod, you can check this column in themediastores table for the presence
of an iPod. TheSELECT statement below shows how to check for an iPod:

qdb_statement(db, "SELECT 1 FROM mediastores
WHERE msid = %lld AND storage_type = %d;",
event.data.msid, MME_STORAGETYPE_IPOD);

Removing iPods
When you have finished playing media from an iPod, you do not need to disconnect it
from the MME. Just physically remove it from the system. Note, however, that when
an iPod is removed from the system, the MME removes the iPod content from its

April 30, 2009 Chapter 14 • Working with iPods 161

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

database — it maintains an entry for the iPod in themediastores table and an entry
for the iPod root folder in thefolders table, but the content of the iPod “disappears”
from the system.

This MME behavior is specific to iPod devices and is implemented because it isn’t
possible to quickly determine if any changes were made to an iPod device between its
removal from the MME system and its re-insertion: the MME needs to resynchronize
the iPod to ensure the accuracy of its data.

Synchronizing iPods
The MME supports synchronization of media on iPod devices. The design of iPod
devices imposes some constraints on how the MME performs synchronizations on
iPods. If the default configurations for iPod synchronizations are used:

• The MME never automatically synchronizes an iPod. The client application must
request synchronization.

• If the client application requests full, recursive synchronization of all media on the
iPod device (by callingmme_resync_mediastore()), the MME performs
synchronization via the path/Music/Genres/, then repeats the process via the
pathMusic/Songs/.

To improve the browsing of iPods, the MME updates thetitle field during the first
synchronization pass. This behavior is unique to iPod synchronizations.

To synchronize an iPod, you should use the directed synchronization function
mme_sync_directed(), specifying the path where you want to begin synchronization.
For more information, see “Directed synchronization” in the chapter Synchronizing
Media.

We don’t recommend that you use the standard synchronization function
mme_resync_mediastore()to perform a full, recursive synchronization of all media on
an iPod device, due to the size of iPod databases, duplicate files on iPods, and the slow
interface between the MME and these devices.

Configuring MME iPod synchronizations

You can configure:

• the maximum number of folders containing files allowed in the MME database by
setting thelimit attribute for the ../<ipod>/<synced_folders> option in the
MME configuration file

• the MME to automatically synchronize iPods, and to synchronize the complete
contents of iPods

For more information, see “Configuring MME iPod synchronization” in theMME
Configuration Guide.

162 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Playing media on iPods
An iPod manages its own:

• track sessions

• repeat and random modes

These characteristics place some constraints on what the MME can do with these
devices, and they determine client application behavior when working with these
devices. Specifically, iPods require special consideration when working with track
sessions, when resuming playback, and when using random and repeat modes.

For information about how to check mediastore and device capabilities, see
“Mediastore and device capabilities” in the chapter Working with Mediastores.

The MME supports concurrent playback and synchronization or exploration on an
iPod device. That is, you can explore or synchronize the device’s folders and files
during playback. You cannot, however, start more than one playback session at a
time; attempting to initiate a second playback session will fail and return the event
MME_PLAY_ERROR_MEDIABUSY.

Rules for playing media on iPods

To avoid unexpected behavior, follow the rules listed below when playing media on
iPods. For more detailed information, see the relevant sections below.

• An MME track session should contain only onefid per iPod. If the track session
spans multiple iPods, include only onefid per iPod.

• To move to the next or previous track in the MME track session (in the
trksessionview table), call themme_next()andmme_prev() functions

• To move to the next or previous track in theiPod track session, callmme_button()
with mm_button_t set toMM_BUTTON_NEXT or MM_BUTTON_PREV, as
required.

CAUTION: Do not set autopause (mme_setautopause()) for control contexts with an
iPod. Because iPods control their own playback, if you set autopause for a control
context with an iPod:

• playback from the iPod may produce unexpected behavior

• metadata and other track information requested from the iPod may be invalid

!

Working with track sessions when using iPod devices

To play media on an iPod, call the same functions as for other devices:

• mme_newtrksession()to create the track session

April 30, 2009 Chapter 14 • Working with iPods 163

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

• mme_settrksession()to set the track session

• mme_play() to start playback

However, because iPods manage their own track sessions, when you use the MME to
play media on these devices, you in fact have two layers of track session:

• the MME track session

• the track session on the iPod

These two layers of track sessions mean that, once the MME has started playback on
an iPod, unlike devices that do not manage their own track sessions, the iPod continues
playback on its own. When it reaches the end of a track, the iPod starts playback of the
next entry in theiPod track session, and continues until it either comes to the end of its
track session, or the client application tells it to stop by callingmme_stop().

This behavior means that if you place multiple file IDs (fids) from an iPod in an MME
track session, playback will:

1 Start at thefid on the iPod.

2 Continue playback through every track in the iPod’s track session before
returning to the MME track session.

3 Start at the nextfid in the MME’s track session.

4 If this fid is on the iPod, continue from thisfid through every trackin the iPod’s
track session, and so on.

For example, if an iPod folder has five files, and you create a track session for an iPod
using aSELECT statement, such asSELECT fid FROM library WHERE

folderid=x, that is appropriate for other devices, you would place all five tracks
from the folder (A, B, C, D, E) in the MME track session. Assuming that the iPod
repeat and random modes are off, this MME track session would, in fact, play 15
tracks on the iPod, as follows:

A, B, C, D, E
B, C, D, E
C, D, E
D, E
E

To prevent the situation described above and to avoid unintentional repetition of iPod
track sessions, when using iPods, place only onefid from the iPod in the MME track
session.

The tables below describe playback behavior of two MME track sessions. The first
table shows an MME track session with multiplefids from an iPod (not
recommended). The second table shows an MME track session with onefid per iPod
(recommended). Thesequentialidis from thetrksessionview table; it is thefid for
playback in sequential mode. Both examples assume that random and repeat modes
are off.

164 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Not recommended: more than 1 fid per iPod

Mediastore sequentialid nowplayingfid Behavior

HDD 12 12 1. Playfid 12.
2. Move to the nextsequentialidentry in the
trksessionview table.

iPod 1 16 0 1. Playfid 16 on iPod 1.
2. Play all other tracks afterfid 16 in the iPod track session.
3. Move to the nextsequentialidentry in the
trksessionview table.

iPod 1 17 0 1. Playfid 17 on iPod 1.
2. Play all other tracks afterfid 17 in the iPod track session.
3. Move to the nextsequentialidentry in the
trksessionview table.

USB 1 23 23 1. Playfid on USB 1.
2. Move to the nextsequentialidentry in the
trksessionview table.

Recommended: 1 fid per iPod

Mediastore sequentialid nowplayingfid Behavior

HDD 12 12 1. Playfid 12.
2. Move to the nextsequentialidentry in the
trksessionview table.

iPod 1 17 0 1. Playfid 17 on iPod 1.
2. Play all other tracks afterfid 17 in the iPod track session.
3. Move to the nextsequentialidentry in the
trksessionview table.

iPod 2 96 0 1. Playfid 96 on iPod 2.
2. Play all other tracks afterfid 96 in the iPod track session.
3. Move to the nextsequentialidentry in the
trksessionview table.

USB 1 23 23 1. Playfid on USB 1.
2. Move to the nextsequentialidentry in the
trksessionview table.

April 30, 2009 Chapter 14 • Working with iPods 165

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

• If you created your MME track session to play tracks exclusively from the iPod, it
should have only onefid and you can start playback by callingmme_play() with the
fid argument set to 0 (zero).

• If your MME track session includes tracks from iPodsand from other devices and
mediastores (CDs, USB sticks, etc.):

- If you want to play only the tracks on the iPod, you must callmme_play() with
thefid argument set to thefid for the track in the iPod track session where you
want to start playback.

- If you want to play all tracks (from the iPod, and from other devices and
mediastores) in the track session, you can callmme_play() with thefid argument
set to 0 (zero) to start playback from the first track in the MME track session.

Getting track information when playing media on iPods

An iPod sends back to the MME metadata such as track title and artist, which the
client application can display to the end-user. However, because iPods manage their
own track sessions, the MME has no way of knowing information that the iPod
doesn’t report, such as the filename or the file ID of the currently playing track in the
iPod track session. These constraints mean that if playback is on an iPod:

• The MME sets the fid in the nowplaying table to 0.

• Thefid (mme_event_data_t.trackchange.fid) delivered with the
MME_EVENT_TRACKCHANGE event is the file ID listed in the MME track
session (sequentialid).

• mme_play_get_info() reports the currently playingfid listed in the MME track
session (sequentialid), and theMME_PLAYSUPPORT_* flags. It does not have
access to the file ID or file name, etc. in the iPod track session.

If you want to know if a track is playing on the iPod track session, you can:

• Check theMME_PLAYSUPPORT_DEVICE_track sessionflag to see if the device is
an iPod.

• Check thefid in thenowplaying table for 0, which means the track currently
playing is on the iPod.

Getting the time position when playing media on iPods

When playback is on an iPod, the MME reports the playback time position just as it
does when playback is on other devices. Note, however, that iPods usually deliver
events every 500 milliseconds. If the MME notification interval is less than 500
milliseconds (the default setting is 100 milliseconds), client applications that rely on
delivery of time events from an iPod may see jitter in time-position reporting. For
more detailed information, seemme_set_notification_interval() in the chapter MME
API.

166 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Moving through an iPod track session

To move to the next or previous track in an iPod track session, call themme_button()
function with thebuttonargument set toMM_BUTTON_NEXT or
MM_BUTTON_PREV, as required.

Manage trick play behavior and modes in the same manner as for other devices, with
calls to functions such asmme_play_set_speed()to fast forward, reverse, pause, etc.

MM_BUTTON_NEXT andMM_BUTTON_PREVare the onlymme_button()settings
supported by iPods.

Fast forward and reverse on iPods

Fast forward and reverse, and reporting of the current speed is implemented differently
on iPods than on most other media devices:

• iPods do not report their current playback speed. Queries for their playback speed
always return a nominal 1000, but this value should not be considered accurate.

• During fast forward or reverse, an iPod continuously increases speed until it
reaches the beginning or end of a track, at which time it resets to normal speed.

Thedamping_audio_writer filter has no effect on iPods because these devices
control their own trick play behavior.

Resuming playback on iPods

The MME doesn’t have access to detailed track session information on devices, such
as iPods, that manage their own track sessions. This limitation means that when the
MME creates a track session for media one of these devices, it simply:

• passes information, such as play time and metadata, from the device to the client
application

• passes commands to the device

If you want to stop, then resume playback of a track session on an iPod, you must:

1 Do whatever action the user requests: pause playback, switch to another activity,
note that the device has been disconnected from the system, etc. The device is
responsible for saving the state of track session.

2 Call mme_play_resume_msid()to resume playback of the track session. This
function creates a new MME track session, and the device is responsible for
resuming playback from the point where it was stopped.

April 30, 2009 Chapter 14 • Working with iPods 167

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

Calling mme_play_resume_msid()when the iPod device itself is in a stopped state
will not resume playback, because a stopped iPod has no active track session that can
be resumed.

mme_play_set_speed()

mme_resume_set_msid()

Other activities

Unplug device, stop system, etc.

Stopping and resuming a device-controled track session.

CAUTION: A call to mme_play() stops playback aftermme_play_resume_msid()has
been called, becausemme_play() finds no playable tracks in the MME track session.!
The only exception to this behavior occurs when the user has browsed the iPod and
requests playback of a specific folder’s contents: Artist, Genre, etc. In this case, the
client application should create a new MME track session with thefid requested by the
user, and usemme_play() to start playback on that track session.

Using random and repeat modes on iPods

An iPod maintains its own random and repeat modes. The MME works with this
characteristic and behaves as follows with iPod devices:

• Calling the following functions “pushes down” the random and/or repeat modes
from the MME track session and sets them on the device:

- mme_play()

- mme_setrandom()

- mme_setrepeat()

• Calling mme_play_resume_msid()“pulls up” the repeat and random modes from
the device and sets them on the MME control context and track session.

Remember that:

• New track sessions inherit the repeat and random modes from the control contexts
in which they are created.

• If you re-use an old track session, this track session keeps its random and repeat
modes and passes them to the control context in which it is being used.

• Not all devices accept all random and repeat modes supported by the MME.

168 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

• After a call tomme_play_resume_msid(), you should wait for the
MME_EVENT_PLAYSTATE event with theplaystateset to
MME_PLAYSTATE_PLAYING before querying the device or setting the random and
repeat modes.

With all versions (up to 1.1 as of this writing) of the iPhone and iPod touch, the
following behavior has been observed:

• A request to set the repeat mode to repeat single takes effect on the next track, not
on the currently playing track.

• When repeat single mode is set, it is not possible to turn repeat mode off: the MME
repeat mode is turned off as expected, but the iPhone remains in repeat single mode.

To correct this behavior, remove the iPhone or iPod touch, then re-insert it into the
system.

Seeking chapters on iPods

To seek to a chapter on an iPod, simply callmme_seek_title_chapter()as you would
to seek to a chapter on a DVD-video. When the chapter changes, the MME will
deliver the eventMME_EVENT_MEDIA_STATUS.

Similarly, to get the number of titles and chapters in the current track, and the
currently playing title and chapter numbers, usemme_get_title_chapter().

For more information, see “Starting playback from a specific DVD title and chapter”
in the chapter Playing and Managing Video and DVDs.

Setting subtitles on iPods

To set subtitles on iPods and to get subtitle information from iPods, use the
mme_video_get_subtitle_info() andmme_video_set_subtitle() functions like you
would for other devices that support video.

For more information, see “Managing video attributes” in the chapter Playing and
Managing Video and DVDs.

Video support
The MME supports playback of video on iPod devices, using analog video and audio
output.

To play video on iPods, you need:

• a video card that supports video capture (video in)

• software, such as agf-writer variant, to take the captured video and pass it into
the system

For more information about playing and managing video, see the chapter Playing and
Managing Video and DVDs. For information about video layers, see theAdvanced

April 30, 2009 Chapter 14 • Working with iPods 169

Connecting to and using iPods 2009, QNX Software Systems GmbH & Co. KG.

Graphics Developer’s Guide, in particular the chapter Working with Layers, Surfaces,
and Contexts, and the “Layers” API.

The MME supports analog video with digital audio from iPods, but this support
requires an asynchronous sample rate converter (ASRC) to maintain video and audio
synchronization.

Displaying information from an iPod
Theiofs-ipod presentation alters filesystem names of folders and files. Characters
are substituted to allow for leading “.” (periods), embedded spaces and so on. In
addition,iofs-ipod adds an index number, prefixed by a “˜”.

The MME corrects these names when it places them in database columns, such astitle
that are not filesystem names, and when it builds pseudo-metadata for the
library_genres,library_artists, andlibrary_albums tables.

Further corrections to how information from an iPod is displayed must be handled by
the client application. An iPod uses URL encoding in name strings, so a string such as
“Folk/Rock” will display as “Folk%2FRock” to the end user, unless the client
application decodes it.

Common URL encoding strings that need to be decoded from their hexadecimal
values before displaying them to the end user are listed in the table below:

Character Encoding

%23

$ %24

% %25

& %26

+ %2B

, %2C

/ %2F

: %3A

; %3B

= %3D

? %3F

@ %40

170 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Connecting to and using iPods

Retrieving artwork from iPods

Retrieval of artwork from an iPod is limited to the artwork for the currently playing
iPod trackonly.

To retrieve the artwork for the currently playingiPod track, use the MME’s
Load-on-Demand metadata extraction API as you would to retrieve metadata from any
other device. That is:

1 Call mme_mme_metadata_create_session()to create a metadata session.

2 Use themme_metadata_getinfo_current() function to get the artwork
information.

3 Call mme_metadata_image_load() to load the artwork.

• The MME supports iPod artwork in color only; it does not support grayscale iPod
artwork.

• iPod images are BMP files.

• Due to a hardware limitation of 3G iPods, the MME does not support splash screen
loading for these devices.

For more information about metadata sessions for the Load-on-Demand metadata
extraction API, see “Getting artwork” in the chapter Metadata and Artwork.

Uploading splash screens to iPods
You can upload color or greyscale splash screen images to iPod devices when you start
the iPod driveriofs-ipod.so. For more information, see “Splash screens” on the
MME Utilities Referencepage foriofs-ipod.so.

HD radio tagging
Client applications that support HD radio tagging for iPods can do so when running
the MME. To implement radio tagging:

• Startio-fs-mediawith thestorage option to turn on HD radio tagging support;
for example:# io-fs-media -dipod,storage,

• Simply pass instructions directly toio-fs-media, which passes the instructions
on to the iPod. The next time the iPod is plugged into a system with iTunes, iTunes
will pick up the radio tags.

HD radio tagging requires authentication.

April 30, 2009 Chapter 14 • Working with iPods 171

Link kit for iPod authentication 2009, QNX Software Systems GmbH & Co. KG.

Below is an example of code that can be used to write HD radio tags to an iPod. Your
client application should be designed to manage writing to more than one iPod
(/ipod0, /ipod1, etc.).

#include <sys/dcmd_media.h>

...

if((fd = open("/fs/ipod0/.FS_info./control, O_RDWR)) == -1) {
printf("Failed to access ipod");

} else {
rc = devctl(fd, DCMD_MEDIA_IPOD_TAG, plist_single, plist_single_len, &ret);
if (rc == 0)

printf("Items were written, only iTunes can confirm contents");
else

printf("Write of tag file to iPod failed err:%d (%s): ret:%d", rc, strerror(rc), ret);
}

• plist_singleis the pointer to the XML tag; see the Apple documentation.

• Thedevctl() retargument returns the number of bytes written to the iPod.

iPods that support HD radio tagging

At time of this MME release, the following iPod models supported HD radio tagging:

Model Firmware*

iPod nano 3G 1.0

iPod 5G 1.2.3

iPod classic 1.0

*Firmware listed is the minimum required.

Link kit for iPod authentication
This section describes the MME link kit for building a customized iPod ACP
(Authetication CoProcess) module for use with Apple authentication chips.

• About the iPod authentication link kit

• The iPod ACP module

• Using the custom iPod ACP module

172 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Link kit for iPod authentication

About the iPod authentication link kit
The MME includes theiofs-i2c-ipod.somodule that allows the QNX iPod driver
to access the iPod authentication chip using a standard i2c driver. Due to the multitude
of possible target board configurations, this module may require modification in order
to give the QNX iPod driver access to the Apple authentication chip in your
environment.

The MME link kit for iPod authentication is provided to assist you in developing any
custom authentication coprocessor communication modules you require. It includes
the source code for the sampleiofs-i2c-ipod.somodule, which you can use as an
example and modify as needed.

The sample iPod ACP module
The iPod ACP module is a plugin to the iPod driver. It allows the higher-level driver to
communicate with the Apple authentication chip without worrying about the hardware
specifics of the board on which it is running.

The sample iPod ACP module provided is a generic i2c implementation, which can be
modified and implemented with many, different custom transport mechanisms. It
contains the complete framework required for iPod ACP modules. You only need to
modify its hardware and transport sections to meet the specifications for the ACP you
will use.

Before compiling and using the sample iPod ACP module, you must:

• have a board on which you can perform your tests

• install the BSP package you will use (withhw/i2c.h and relevant drivers)

iPod ACP module functions

The sample functions provided with the authentication link kit are describe below.You
can modify these functions to meet the needs of your environment, maintaining the
specified behaviors and return values. For more detailed information about these
functions, see the source file,acp_i2c.c.

Unless otherwise noted, on failure these functions return -1 and seterrno.

ipod_i2c_addinfo()

The ipod_i2c_addinfo() is useful for debugging. It adds information, as instructed, to
the debug/information XML file created when an iPod filesystem is mounted. This
function adds any requested informatiom into the XML file’s i2c section, or any other
section of the file, as required.

April 30, 2009 Chapter 14 • Working with iPods 173

Link kit for iPod authentication 2009, QNX Software Systems GmbH & Co. KG.

ipod_i2c_cpready()

If the generic iPod driver needs to check theCP_READY signal, it can call the
ipod_i2c_cpready()function.

This sample function returns the state of theCP_READY signal:

• 0 — not ready

• 1 — ready

If this function is not implemented, it returnsENOSYS

Checking for aCP_READY signal is not required for Apple 2.0 rev B authentication
chips; new designs should use this chip or a newer chip.

ipod_i2c_init()

Whenio-fs-mediawith an iPod driver is started, the iPod ACP module’s
initialization function is called. This function should:

• parse any command-line options needed for the module

• open and initialize its connection to the Apple authentication chip

The initialization function,ipod_i2c_init(), provided with the sample module:

• parses the options for

- an i2c resource manager path

- the i2c bus speed

- the address on the i2c bus

• opens a connection to the i2c resource manager

• sets the necessary bus speed, keeping the connection open

ipod_i2c_lock()

The ipod_i2c_lock() locks and unlocks access to an ACP chip so that multiple iPod
drivers can run concurrently, sharing access to a single ACP chip. The generic iPod
driver for i2c calls this function with a thelock parameter set to a value defined by
acplock.

Whenipod_i2c_lock() is called with its lock parameter set toACP_UNLOCKED, it
tells the ACP chip that it is not needed until further notice. This call can return
ACP_PWROFF, which tells the generic ACP code to power down the ACP chip by
writing the appropriate commands to the chip’s registers. When the generic code
finishes telling the ACP chip to power down, it callsipod_i2c_lock() again, this time
passing itACP_PWROFFto indicate that the chip power down processing has
completed.

174 Chapter 14 • Working with iPods April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Link kit for iPod authentication

acplock

The enumerated valueacplock defines the lock settings used by the ACP module.
These settings are:

• ACP_UNLOCKED — unlock the ACP

• ACP_SHARED— starting to use the ACP, but only sending atomic commands; no
response expected, so an exclusive lock is not required

• ACP_EXCLUSIVE — starting a challenge-response sequence; locking is required to
exclude otherio-fs-media ipod instances until a response is received

• ACP_PWROFF— generic power down processing done

Waiting for
ACP_UNLOCKED

ACP_EXCLUSIVE

Authentication chip

Two iPods sharing an authenitication chip.

ipod_i2c_read() and ipod_i2c_write()

The ipod_i2c_read()andipod_i2c_write() functions read and write data from and to
an Apple authentication chip. They return the number of bytes read or written.

The parameters for these functions include:

• the register address on the chip at which to read or write

• a pointer to the buffer for data read in, or with the data to write

• the number of bytes of data to read or written

Using the iPod ACP module
After you have added all your device-specific code to your custom iPod ACP module,
you can build it, then useio-fs-media to load it.

April 30, 2009 Chapter 14 • Working with iPods 175

Link kit for iPod authentication 2009, QNX Software Systems GmbH & Co. KG.

Building the module

You can build the iPod ACP module as follows:

1 Copy the sample modules to your home directory:

cp -R $QNX_TARGET/examples ˜/examples

2 In your home directory, make and install the module:

cd ˜/examples/io-fs/drvr/media/ipod/acp/i2c
make install

To build all sample modules, you can make them from the˜/examples/io-fs

directory, as follows:

cd ˜/examples/io-fs
make install

Starting the module

You can useio-fs-media and the iPod driver to load your module. For example:

io-fs-media -dipod,transport=usb,acp=modulename

You can also pass options to the module, as follows:

io-fs-media -dipod,transport=usb, \
acp=acp_modulename:path=/sample/path:option2=someoption

For a list of options available with the ACP sample module, seeiofs-i2c-ipod.so.

176 Chapter 14 • Working with iPods April 30, 2009

Chapter 15

Working with PFS Devices

In this chapter. . .
Installing MME components for external media players179
Starting PFS devices 179
Detecting and synchronizing PFS devices180
Playing media on PFS devices181
Devices that don’t supportGetPartialObject 183

April 30, 2009 Chapter 15 • Working with PFS Devices 177

 2009, QNX Software Systems GmbH & Co. KG. Installing MME components for external media players

This chapter describes how to use the MME to synchronize and play media on
PFS-enabled devices:

• Installing MME components for external media players

• Starting PFS devices

• Detecting and synchronizing PFS devices

• Playing media on PFS devices

• Devices that don’t supportGetPartialObject

See alsoiofs-pfs.so in theMME Utilities Reference, and User-specified MTP
commands to PFS devices in theMME Technotes.

Installing MME components for external media players
If you want use an external media player, such as an iPod or a PlaysForSure-enabled
device, you need to:

1 Install the runtime files that support these devices. These installations may
require special licenses.

2 Useiofs-ipod or iofs-pfs, depending on the type of media player.

For more detailed instructions, see the QNX Aviage Multimedia SuiteInstallation
Note.

Starting PFS devices
The PFS driver used by the MME can be started with one program instance per PFS
device, rather than with a single program instance servicing multiple PFS devices. You
have the option of startingiofs-pfs to service multiple PFS devices or to support
one PFS device per instance ofiofs-pfs.

To startiofs-pfs to support one PFS device per instance ofiofs-pfs, use the
device option and specify the paths for the bus, device and interface for each. For
example, to handle two PFS devices (device=bus_no:device_no:interface_no):

io-fs-media -dpfs,device=1:3:3
io-fs-media -dpfs,device=2:4:6

Bus, device and interface numbers are hexadecimal values.

Zune device startup
Zune devices are PFS devices, and require the PFS device driveriofs-pfs. In
addition to the other PFS startup options, Zune devices require special key files that

April 30, 2009 Chapter 15 • Working with PFS Devices 179

Detecting and synchronizing PFS devices 2009, QNX Software Systems GmbH & Co. KG.

give them permission to access protected content. Please contact Microsoft to obtain
these files.

Once you have placed the key files on your system, for example at/etc/pfs/, you
can use theio-fs-media zune option to pass the paths to these files to your PFS
driver. For example:

io-fs-media -dpfs,zune=/etc/pfs/p7b.der:/etc/pfs/priv_key.der

For information about the PFS driver, seeiofs-pfs.so in theMME Utilities
Reference.

Detecting and synchronizing PFS devices
When the MME detects a PFS device, it updates themediastores table just as it
does with other types of mediastores, and sets thestorage_typecolumn for the
mediastore toMME_STORAGETYPE_MEDIAFS. To check if the mediastore you are
working with is a PFS device, simply check the value of this column for the
mediastore’s entry in themediastores table.

PFS .alb objects
PFS device “Abstract Audio Aalbum” (or.alb) objects contain references to tracks in
a specific album on a PFS device. Theio-fs PFS driver offers analbdir option that
lets you instruct the driver to treat these objects as directories or as files (default). This
option should be used when a directed synchronization of, for example, the “Albums”
directory on a PFS device is more efficient that synchronizing the entire mediastore.

.alb objects as files

If the default driver behavior is used: treat.alb objects as files, MME
synchronization operations will not find media files via.alb objects files, preventing
duplicate entries in the database when the entire mediastore is synchronized. However,
because.alb objects are treated as files, their contents cannot be browsed with the
directed synchronization API.

.alb objects as directories

If the optional driver behavior is used: treat.alb objects as directories is used, MME
synchronization operations may synchronize the contents of.alb objects via multiple
directories (such as the “Albums” and “Music” directories), and therefore make
multiple entries in the MME database for each track listed in.alb objects. However,
because.alb objects are treated as directories, their contents can be browsed with the
MME directed synchronization or explorer APIs.

For more information aboutiofs-pfs.so, seeiofs-pfs.so in theMME Utilities
Reference.

180 Chapter 15 • Working with PFS Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Playing media on PFS devices

Skipping .alb objects during synchronizations

If you do not want.alb objects synchronized, you can use the<SyncFileMask> in
the MME configuration filemme.conf to instruct the MME to skip files with the
extension.alb, :

<Configuration>
...
<Database>

...
<Synchronization>
...

<SyncFileMask>\.alb$</SyncFileMask>
...
<Synchronization>

<Database>
<Configuration>

The<SyncFileMask> element can define multiple character strings identifying files
to be ignored by the MME synchronization. For more information, see “Configurable
file skipping:<SyncFileMask>” in the MME Configuration Guide.

Playing media on PFS devices
This section describes considerations specific to playing media on PFS devices, and to
getting artwork from these devices. In includes:

• Playing DRM content

• Decryption of DRM content

• Retrieving artwork from Zune devices

Playing DRM content
The MME supports PlaysForSure (PFS) devices that play DRM-protected media. To
play DRM-protected media on PFS devices, you must obtain the required key files
from Microsoft, and use the MME’s PFS module (iofs-pfs).

Thelibrary table’sprotectedfield is used to record that a file is known to be
DRM-protected (1). If the file is known tonot be DRM-protected, or if the MME does
not know if the file is DRM-protected, this field is set to 0 (zero).

If you will use DRM-enabled devices on your system, you should start the PFS
module with thedrm option, so that it checks for the required files and exits if it does
not find them. This strategy ensures that the MME does not fail when it attempts to
playback DRM-protected media. For more information about configuring the MME to
support PFS devices playing DRM-protected media, see “Configuring Digital Rights
Management (DRM)” in theMME Configuration Guide.

April 30, 2009 Chapter 15 • Working with PFS Devices 181

Playing media on PFS devices 2009, QNX Software Systems GmbH & Co. KG.

When you have finished playing media from a PFS device, you do not need to
disconnect it from the MME. Just physically remove it from the system.

Decryption of DRM content
DRM content decryption uses an AES block cipher with a 128-bit key. The AES key
is unique to each playback session; it is different every time a song is played.

When the PFS module registers itself with the PlaysForSure device, it sends a
certificate. This certificate contains the 1024-bit RSA public key that the device will
use to encrypt the seed used to determine the AES key.

When the user selects DRM-protected content:

1 The PFS module requests a license for that content from the PlaysForSure
device.

2 The device returns the license, which includes an encrypted seed.

3 The PFS module uses a private RSA key to decrypt the seed, then uses the
decrypted seed to determine the key for the AES block cipher.

4 The PFS module processes every 128 bits of encrypted content with the 128-bit
AES key to yield the decrypted content for playback.

Retrieving artwork from Zune devices
Zune devices are currently the only PFS devices for which the MME supports artwork
retrieval.

To retrieve the artwork from a Zune device, use the MME’s Load-on-Demand
metadata extraction API as you would to retrieve metadata from any other device.
That is:

1 Call mme_mme_metadata_create_session()to create a metadata session.

2 Get the required artwork information by calling one of the following:

• mme_metadata_getinfo_current()

• mme_metadata_getinfo_file()

• mme_metadata_getinfo_library()

3 Call mme_metadata_image_load() to load the artwork.

For more information about metadata sessions for the Load-on-Demand metadata
extraction API, see “Getting artwork” in the chapter Metadata and Artwork.

182 Chapter 15 • Working with PFS Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Devices that don’t support GetPartialObject

Devices that don’t support GetPartialObject
The default configuration forio-fs-media is to support only PFS devices that
implement theGetPartialObjectMTP command, as specified by the PFS 2.01
specification. Unlessio-fs-media is configured to support PFS devices that don’t
support theGetPartialObjectMTP command, attempting to access such a devices
produces aninfo.xml file with the following:
<NotSupported>101b</NotSupported>.

If your environment requires that you use devices that don’t support the
GetPartialObjectMTP command, you must specify thegetsize option and the
buffer size when you startio-fs-media. For example, to specify a 3 megabyte
buffer:

io-fs-media -dpfs,getsize=3M

Devices that support only theGetObject MTP command require that the MME have
enough memory allocated by thegetsize option for it to read in the entire file. If the
file exceeds the memory allocated, the read fails. Note, however, that you can have the
MME allocate memory dynamically by settinggetsize to 0 (getsize=0). This
configuration allows the MME to use as much memory as is available to read a file,
allowing it to read in bigger files — with the danger that all available dynamic memory
may be allocated for a file read, leaving no dynamic memory available for other uses.

For more information about how to configureio-fs-media to work with legacy
devices that don’t fully support the PFS 2.01 specification, seeiofs-pfs.so.

April 30, 2009 Chapter 15 • Working with PFS Devices 183

Chapter 16

Working with Bluetooth Devices

In this chapter. . .
Integrating Bluetooth audio devices into the MME187
Creating a Bluetooth device representation to the MediaFS specification188
Theio-fs-media module example 188
Modifying theio-fs-media module example 192
Using theio-fs-media module 193
Messages for controlling Bluetooth devices193
Using Bluetooth devices with the MME 195

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 185

 2009, QNX Software Systems GmbH & Co. KG. Integrating Bluetooth audio devices into the MME

The MME Bluetooth devices. This section describes how to integrate Bluetooth
devices into the MME, and provides some basic information about accessing
Bluetooth device functionality through the MME:

• Integrating Bluetooth audio devices into the MME

• Creating a Bluetooth device representation to MediaFS specification

• Theio-fs-mediamodule example

• Modifying theio-fs-mediamodule example

• Using theio-fs-mediamodule example

• Messages for controlling Bluetooth devices

• Using Bluetooth devices with the MME

For information about how to get configuration values from a Bluetooth device, see
“Getting and setting external device options” in the chapter External Devices, CD
Changers and Streamed Media.

Integrating Bluetooth audio devices into the MME
The MME uses theio-fs-media interface to control playback on remote devices.
This interface permits device agnostic playback control and metadata extraction, and
lets the MME control playback without detailed knowledge of the underlying device.

To control Bluetooth audio devices, the MME uses the MediaFS interface provided by
io-fs-media.

MME io-fs-media

Bluetooth stack,
Resource manager,

or
Controller

The MME uses the io-fs interface to control a Bluetooth audio device.

See alsoio-fs-media in theMME Utilities Reference.

To use Bluetooth devices with the MME you must integrate them into the MME. This
integration requires three tasks:

1 Create a Bluetooth device representation to MediaFS specification.

2 Configure the MME for Bluetooth support.

3 Control the Bluetooth device through the MME and play media.

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 187

Creating a Bluetooth device representation to the MediaFS specification 2009, QNX Software Systems GmbH &

Co. KG.

You should be familiar with the QNXMediaFS (Media File System) Specification
before starting work on integrating Bluetooth devices into the MME. If you do not
have the latest MediaFS specification, contact your QNX representative.

Creating a Bluetooth device representation to the
MediaFS specification
The Aviage Bluetooth Integration Kit provides the resource manager framework
required for representing Bluetooth devices viaio-fs-media. This resource
manager provides the ability to load user-created modules that uses the MediaFS
specification to describe devices.

Access to a control device is specific to that device and depends on how the device is
represented by the system. The access interface can be via any of:

• a Bluetooth stack

• a resource manager

• a memory mapped controller

You can also create your own resource manager to represent Bluetooth devices,
following the MediaFS specification.

The io-fs-media module example
To facilitate development of newio-fs-media AVRCP modules describing
Bluetooth devices, the Aviage Bluetooth Integration Kit includes anio-fs-media

module example that implements the Bluetooth AVRCP (Audio/Video Remote
Control Profile).

This example contains the complete framework required forio-fs-mediamodules
that describe devices. You only need to modify device-specific sections to change the
module so that it can access your required underlying control devices.

Before compiling and using the sampleio-fs-mediamodule example that
implements the Bluetooth AVRCP, you must:

• have a board on which you can perform your tests

• install the BSP package you will use (with the relevant drivers)

188 Chapter 16 • Working with Bluetooth Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. The io-fs-media module example

What the io-fs-media module example does
Theio-fs-media AVRCP module is a plugin to theio-fs-media resource
manager. Whenio-fs-mediawith an AVRCP module is started, it:

• calls the code entry pointavrcp_mount()

• starts a timer

• waits to be informed that a remote device is present

When it learns of a remote device, theio-fs-media resource manager registers a
path, called themountpoint, to the location of MediaFS filesystem. The default
mountpoint used by the module provided with the Aviage Bluetooth Integration Kit is
/fs/avrcp0. When you have configured the MCD, it will monitor the system for this
path. See “Modifying the MCD configuration file for Bluetooth” below.

/fs/avrcp0

.FS_INFO.

info.xml

The io-fs-media MediaFS module hierarchy

Since theio-fs-mediaAVRCP module implements only a subset of the MediaFS
filesystem hierarchy, the only item at this path is the.FS_info. directory.

The.FS_info. directory contains MediaFS entries used for playback control and
device information extraction. The directory for theio-fs-media AVRCP module
contains only theinfo.xml file. The first request to read theinfo.xml file causes
avrcp_getinfo()function to populate the file’s contents.

All playback and metadata extraction messages are issued through an open file
descriptor to theinfo.xml file. These are handled by the functionavrcp_devctl().
This function and other major functions inavrcpexample.c are described below.
For more detailed information about these and other functions inavrcpexample.c,
see the source file.

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 189

The io-fs-media module example 2009, QNX Software Systems GmbH & Co. KG.

avrcp_devctl()
Theavrcp_devctl()function is the workhorse for all device control messages. It
translates MediaFS playback and metadata extraction commands, then transmits them
to the remote device. All commands handled by theavrcp_devctl()function require
the addition of device-specific control code to theio-fs-mediamodule example.

See “Configuring the MME for Bluetooth support” for more information about
available commands.

avrcp_mount()
Theavrcp_mount()function is the entrance point for theio-fs-mediamodule. It
allocates memory associated to the driver. After allocating memory and registering
internal functions,avrcp_mount()enables a timer that handles polling for remote
device insertions and removals.

You can modify the structureavrcp_device defined in theavrcpexample.h
header file to store user data that persists for a mount period.

avrcp_options()
Theavrcp_options()function passes arguments to the driver at theio-fs-media

interface. Theio-fs-mediamodule example includes the following set of options:

• device — the control device to which commands are issued

• mount — specify the mountpoint

• verbose — a value to enable logging at verbosity levels; the functionfs_log() can
use the verbosity level to filter logging.

avrcp_timer()
The functionavrcp_timer() is used to detect the presence of a remote device to mount
and register its path. To use this function you must add device-specific code to the
io-fs-mediamodule that will communicate the presence of a remote device so that
it can be mounted.

Because the mountpoint for theio-fs-mediamodule can be registered and
unregistered, if a remote device is present and available to play,avrcp_timer()
registers its mount path. If the remote device is removed from the system,
avrcp_timer() unregisters the mount path.

The mount process
The mount process has two stages:

1 Establish a valid connection to the resource manager or AVRCP controller.

2 Confirm that the remote device is connected.

190 Chapter 16 • Working with Bluetooth Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. The io-fs-media module example

If the resource manager or the AVRCP controller is unavailable, theio-fs-media

module uses theavrcp_timer() function’s “poll” until it detects that the required
resource is available for mounting.
The poll rate is set by the user in the configuration options. See above.

The avrcpexample.h header file
Theavrcpexample.h defines the structureavrcp_device and several constants
used by theio-fs-media AVRCP module.

#include <inttypes.h>
#include "media.h"

#define AVRCP_NAME "AVRCP"
#define NAME_BUF_SIZE 512
#define AVCP_METADATA_MAX 1024

struct avrcp_device {
struct mediafsdevice mediafs;
char * devpath;
int fd;
char dname[AVCP_METADATA_MAX];
char dserial[AVCP_METADATA_MAX];
uint16_t verbose;

};

The structureavrcp_device is the principle AVCP device structure. It is defined in
theavrcpexample.h header file and carries information about these devices. It can
be extended to hold data about an underlying device. Its standard members include:

Member Type Description

mediafs structmediafsdevice An opaque structure; it must be present and
first.

devpath char The pathname to the AVCP device resource
manager.

fd int The file descriptor connection to device
resource manager, or -1 if not connected

dname[AVCP_METADATA_MAX] char Bluetooth-friendly name

dserial[AVCP_METADATA_MAX] char Bluetooth address (used as device serial
number)

verbose uint16_t The log level verbosity

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 191

Modifying the io-fs-media module example 2009, QNX Software Systems GmbH & Co. KG.

Modifying the io-fs-media module example
This section describes how to modify and build theio-fs-mediamodule example.

Adding device-specific code to the module
The Aviage Bluetooth Integration Kit includes a set of files that make up the
io-fs-mediamodule. These files include:

• avrcpexample.c— the source code for the module

• avrcpexample.h— a header file with theavrcp_device structure

The only file that requires changes for integration is theavrcpexample.c file.
Sections of this file that require the addition of device-specific code are denoted by
comments, as follows:

• // -- START DEVICECODE — the start of device-specific code section

• // -- TASK: — a description of what the device-specific code needs to
accomplish

• // -- PSEUDOCODE— an optional a high-level description of an algorithm or a
routine that must be replace by device-specific code

• // -- EXAMPLECODE. — optional code that can remain and be used in the
device-specific code

• // -- END DEVICECODE — the end of device-specific code section

Below is an example of a section of theavrcpexample.c file that requires
device-specific code:

case DCMD_MEDIA_PREV_TRACK:
// -- START DEVICECODE
// -- TASK: Issue command to skip to the previous track on
// the remote device.
// Device control may be supported. If not supported,
// status=ENOTSUP.
// Device control can fail.
// -- PSEUDOCODE:
// status = DEVICEFUNC_PREV_TRACK();
// -- END DEVICECODE

break;

Building the module
After you have added the required device-specific code to theio-fs-mediamodule,
you can build it as follows:

1 Copy the sample modules to your home directory:

cp -R $QNX_TARGET/examples ˜/examples

192 Chapter 16 • Working with Bluetooth Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Using the io-fs-media module

2 In your home directory, make and install the module:

cd ˜/examples/io-fs/drvr/media/avrcpexample
make install

To build all sample modules, you can make them from the˜/examples/io-fs

directory, as follows:

cd ˜/examples/io-fs
make install

Using the io-fs-media module
After you have added all your device-specific code to theio-fs-mediamodule, you
can useio-fs-media to load it. Starting the module is as simple as running an
instance ofio-fs-mediawith the driver, as follows:

io-fs-media -davrcpexample

You can also pass options to the module, as follows:

io-fs-media -davrcpexample,verbose=10,mount=/fs/alt/mount/point

Seeavrcp_options()for a list of options.

If the remote device is present, then your application should register a new mount
point. You can use thels commandline instruction to examine the mountpoint:

ls /fs/avrcp0

You can add multiple devices by running separate instances of the module, as follows:

io-fs-media -davrcpexample,dev=/dev/avrcp0,mount=/fs/avrcp0
io-fs-media -davrcpexample,dev=/dev/avrcp1,mount=/fs/avrcp1
io-fs-media -davrcpexample,dev=/dev/avrcp2,mount=/fs/avrcp2

Messages for controlling Bluetooth devices
This section lists the messages that you can send to Bluetooth devices to control
playback and to extract metadata.

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 193

Messages for controlling Bluetooth devices 2009, QNX Software Systems GmbH & Co. KG.

• Remote devices differ, so device-specific control codes may not support some
commands. If a command is not required and is not supported, it must return an
error witherrno set toENOTSUP.

• All state modification control messages must besynchronous. A requested action
must either complete or fail before returning. For example, if the state modifier
DCMD_MEDIA_PLAY message is issued, upon return of thedevctl()call, the
underlying device must be in a playing state, or have returned a POSIX error
indicating why the command failed.

• For more information about commands, see the MediaFS specification.

Playback messages
Playback of media tracks on a Bluetooth device occurs on the device. The start and
manage playback theio-fs-mediamodule sends control messages to the Bluetooth
device. The table below lists playback commands implemented for AVRCP 1.0 and
1.3 devices. Required commands are marked with an asterisk (*). All others are
optional.

AVRCP 1.0

Theio-fs-media driver implements the following playbackdevctls for
AVRCP 1.0 devices:

• DCMD_MEDIA_PLAY*

• DCMD_MEDIA_PAUSE*

• DCMD_MEDIA_RESUME*

• DCMD_MEDIA_NEXT_TRACK

• DCMD_MEDIA_PREV_TRACK

• DCMD_MEDIA_FASTFWD

• DCMD_MEDIA_FASTRWD

• DCMD_MEDIA_PLAYBACK_INFO*

AVRCP 1.3

In addition to the playback commands listed above, the following optional shuffle and
repeat commandsdevctls are implemented for AVRCP 1.3 devices:

• DCMD_MEDIA_GET_SHUFFLE

• DCMD_MEDIA_SET_SHUFFLE

• DCMD_MEDIA_GET_REPEAT

194 Chapter 16 • Working with Bluetooth Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Using Bluetooth devices with the MME

• DCMD_MEDIA_SET_REPEAT

Metadata messages
Metadata extraction commands retrieve metadata about the currently playing file. All
strings returned by the metadata extraction commands must be UTF-8 encoded. All
metadata extraction commands are optional.

• DCMD_MEDIA_SONG

• DCMD_MEDIA_ALBUM

• DCMD_MEDIA_ARTIST

• DCMD_MEDIA_GENRE

• DCMD_MEDIA_DURATION

• DCMD_MEDIA_TRACK_NUM

Using Bluetooth devices with the MME
This section describes:

• how to configure the MME for Bluetooth support

• how to set up an MME track session on manage playback on a Bluetooth device

Configuring the MME for Bluetooth support
After you have modified yourio-fs-mediamodule and have it running, you must
configure the MME to enable Bluetooth support. You need to:

• modify the MCD configuration file

• add an entry for Bluetooth to theslots table

Modifying the MCD configuration file for Bluetooth

To enable Bluetooth support, add an entry to the MCD configuration file to instruct the
MCD to monitor the path for Bluetooth devices. For example:

[/fs/avrcp*]
Callout = PATH_MEDIA_PROCMGR
Argument = /proc/mount
Priority = 11,10
Start Rule = INSERTED
Stop Rule = EJECTED

For more information about the MCD, see theMME Utilities Reference.

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 195

Using Bluetooth devices with the MME 2009, QNX Software Systems GmbH & Co. KG.

Enabling Bluetooth support in the slots table

The Bluetooth slot type isMME_SLOTTYPE_MEDIAFS (4), and the storagetype is
MME_STORAGETYPE_A2DP (12). To enable Bluetooth support, you need to add an
entry such as the following in theslots table:

INSERT INTO slots(path,zoneid, name, slottype)
VALUES(’/fs/avrcp0’, 1, ’Bluetooth’, 4);

Theslottypefor Bluetooth support must be4.

Playing media on Bluetooth devices
If you have configured the MME correctly to support Bluetooth devices, on learning of
the insertion of a Bluetooth device, the MME:

• creates an entry for the device in themediastores table

• inserts a singleFTYPE_DEVICE file ID (fid) into thelibrary table

You can use this file ID to create a track session with a single track for the device, then
issue commands to start and manage playback. Playback remains on the Bluetooth
device, and the MME does not have access to information about an individual track on
the device unless the track is being played.

MME playback features supported for Bluetooth devices

The MME supports calls to the following playback functions for Bluetooth devices:

• mme_stop()

• mme_play()

• mme_play_set_speed(0)

• mme_play_set_speed(1000)

• mme_button(MM_BUTTON_NEXT)

• mme_button(MM_BUTTON_PREV)

CAUTION: Do not set autopause (mme_setautopause()) for control contexts with a
Bluetooth phone. Because Bluetooth phones control their own playback, if you set
autopause for a control context with a Bluetooth phone:

• playback from the device may produce unexpected behavior

• metadata and other track information requested from the device may be invalid

!

Below are sample sequences showing how to use the MME commandline utility
(mmecli)to:

196 Chapter 16 • Working with Bluetooth Devices April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Using Bluetooth devices with the MME

• query the MMEmediastores table for a Bluetooth device

• query the MMElibrary table for the file ID for the Bluetooth device

• create a track session and start playback on the Bluetooth device

Query the mediastores table
qdbc -d mme "select msid,slotid,storage_type, mountpath \

from mediastores"
Rows: 2 Cols: 4
Names: +msid+slotid+storage_type+mountpath+
00000: |1|1|2|/media/drive|
00001: |2|9|2|/fs/avrcp0|

Query the library table
qdbc -d mme "select fid,msid,folderid,ftype,filename, title \

from library where msid=2"
Rows: 1 Cols: 6
Names: +fid+msid+folderid+ftype+filename+title+
00000: |2|2|2|5||Bluetooth|

Create a track session and start playback on the Bluetooth device
mmecli newtrksession l "Select fid from library where msid=2"
(rc=0,errno=0) new trksessionid=2. Execution Time=0.010

mmecli settrksession 2
(rc=0,errno=0) Set trksessionid=2. Execution Time=0.031

mmecli play
(rc=0,errno=i0) Playing from tracksession fid = 2. Execution Time=0.038

Getting metadata

The MME has access to metadata for a track on a Bluetooth device only when the
device is playing the track. To obtain this metadata, query the MME’snowplaying

table.

Audio routing

The MME does not handle audio routing for theio-fs-mediamodule. You must
configure your system to properly route audio from Bluetooth devices to the desired
output location.

April 30, 2009 Chapter 16 • Working with Bluetooth Devices 197

Glossary

April 30, 2009 Glossary 199

 2009, QNX Software Systems GmbH & Co. KG.

Checkpoint

A snapshot of a database, usually RAM-based, that is copied to persistent storage,
such as a hard drive or flash. The checkpoint can be used to restore the database after a
power cycle or if the database becomes corrupt.

CBR

Constant bitrate.

Control context

A multimedia output point, or location where media files can be played. A control
context represents an audio output device, can hold a single track session, and can play
a single track at a time. By default, the MME has one control context, but you can add
more to the MME database, then connect to them. An MME client receives
notifications from an attached control context.

CPPM key

Content Protection for Pre-recorded Media — a key used for DRM.

Codec

Coder-Decoder — an program that encodes and/or decodes a digital data stream or
signal.

DSP

Digital Signal Processor — a microprocessor that processes digital signals is real-time.

DTS

Digital Theater System — a multi-channel digital sound format.

DRM

Digital Rights Management — a generic term for technologies used to control access
to and usage of copyrighted works. The MME supports files protected with Microsoft
Windows Media DRM, via theiofs-pfs.so PFS module toio-fs.

FID or fid

File ID — in the MME, a unique identifier for media files and tracks

File

In the context of the MME, “file” refers to all non-media files (the MME configuration
file, for instance) and to media files that are being read or otherwise manipulated for a
purpose other than playing them. See also “track” below.

April 30, 2009 Glossary 201

 2009, QNX Software Systems GmbH & Co. KG.

Locale code

The locale code is a string containing a 5-character language and region code. This
code consists of a 2-character ISO639-1 language code, followed by a ’_’ character,
followed by a 2-character ISO3166-1 alpha-2 region code. See
http://www.loc.gov/standards/iso639-2/php/code_list.php

Media

Any music, pictures, or video, in block or stream format.

Mediastore

Any source for multimedia data; examples include hard drives, DVDs, CDs, and
media devices such as an iPod or MP3 player.

Metadata

Data describing a media track. Metadata includes but is not limited to track name,
artist(s), release date, genre and so on.

MME

Multimedia Engine — the Aviage Multimedia Suite’s multimedia engine.

MTP

Media Transport Protocol — a protocol developed by Microsoft for synchronizing
both protected and unprotected media content on portable media devices such as MP3
players.

Playback

The act of playing of a media track.

Playlist

A list of media files (identified by FIDs). Your application can play a playlist by
creating a track session from it.

PlaysForSure (PFS)

A certification given by Microsoft to media devices that use the MTP protocol.

Prune management

A technique of ensuring that a database doesn’t grow too large or exceed a specified
size by “pruning” (deleting) unused data.

Ripping

Ripping is the process of reading files from a mediastore, changing the format of these
files into another format if required, then writing the files in their new format to a
mediastore or other storage device. Copying media is simply ripping media and
writing the destination file in the same format as the source file.

202 Glossary April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG.

RPC

Regional Playback Control. Seedvddrivectl in theMME Utilities Guide.

Synchronization

The process by which the MME examines mediastores and updates its database with
information about the media tracks on the stores and with the metadata for these
media. Information and metadata includes but is not limited to media type and format
(audio, video, etc.), track name and language, genre and cover art.

Track

In the context of the MME, “track” refers to media files that are being played or read
and otherwise accessed or manipulated for playing. For example, the MME
synchronizes folders and thefiles inside them, but it reads thetracksfrom a playlist
and places them in a track session. See also “file” above.

Track session

A list of media tracks (identified by FIDs) that can be played by the MME on a
specific control context.

Trick play

The term “trick play” refers to playback operations (such as fast forward, reverse and
skip) that are not straightforward, normal speed playback.

UOP

User Operation Prohibitions — prohibitions placed on what users can do when
manipulating a video.

VBR

Variable bitrate.

Zone

In the MME, an area to which output devices are attached, and to which the output
from media playback is sent.

April 30, 2009 Glossary 203

Index

!

.alb

objects 180
PFS device objects 180
skipping on PFS devices 181

$NO_PRESERVE_PATH 131
$PRESERVE_PATH 131
$PRESERVE_PATH_AFTER 131
_SLOGC_MME 19
_SLOGC_QDB 19
<interface> 140

devices accessed through a device driver
140

USB devices 140
<TimebaseSet> 23
1-wire Seeone-wire
2-wire Seetwo-wire

A

aborting
blocking reads 76

ACP
building the module 176
custom module 172

acplock 175
alb See.alb
albdir

io-fs-media option 180
album files

on PFS devices 181
appending

streams to a track session 143

Apple authentication chip
module 172

artwork
iPod

retrieving from 171
PFS device

retrieving from 182
retrieving from iPod 171
retrieving from PFS device 182
retrieving from Zune device 182
Zune device

retrieving from 182
ASRC Seeasynchronous sample rate converter
asynchronous sample rate converter 169
audio

driver for iPods 152
routing for Bluetooth devices 197

audio input
configuring the MCD for playback 146
configuring the MME to play 146
playback 145

Audio/Video Remote Control Profile See
AVRCP

authentication
iPod 152

chip from Apple 152
cross transport 153

module for Apple devices 172
Authentication coprocessSeeACP
autopause

Bluetooth phone 196
iPod phone 163

AVRCP
Bluetooth 188
plugin module example 189

April 30, 2009 Index 205

Index 2009, QNX Software Systems GmbH & Co. KG.

avrcp_devctl() 190
avrcp_device 191
avrcp_mount() 190
avrcp_options() 190
avrcp_timer() 190
avrcpexample.h 191

B

background
media copying and ripping 129
ripping 127

Bluetooth 187
autopause 196
AVRCP 188
avrcp_devctl() 190
avrcp_device 191
avrcp_mount() 190
avrcp_options() 190
avrcp_timer() 190
building the plugin module 192
configuration 141
configuring the MCD to support 195
configuring the MME to support 195
creating a MediaFS device representation

188
getting metadata 197
implementing in the MME 193
integrating into the MME 187
metadata extraction 195
mme_setautopause() 196
modifying the module example 192
playback 196
playback controls 194
plugin module example 189
routing audio 197
support 187
using MME track sessions 196
using theio-fs-mediamodule 193

BMP
encoding 102
pre-processing 102

bookmarks 76
browsing

media 92

buffer
levels 76

buffering
playback 119

C

cache
shared SeeStarting QDB in theQDB

Developer’s Guide
camera

IP 143
capabilities

device 37
mediastore 37
track session 37

case-sensitivity
playlists 84

CD
detection with MCD 34
drive timeout 119
mixed-mode 34
removal with MCD 39

CD changers 143
CD-Text 43
CDText 98
changing

metadata 135
chapter

iPod
getting information 169
seeking to 169

playing on a DVD 109
cleaning up

after deleting files 54
during synchronization 47
invalidcopied_id fields 54

clearing
track sessions 66

client application
connecting to the MME 13

codec
H.264 107

comparing time values
in the MME database 23

206 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

configuration
Bluetooth device 141
determining for iPod 142
exteranl device 139
interface

device 140
iPod 140, 142
video 114

configuring
mmf_trackplayer 120
skip forward 120

connecting 13
iPods 154

problems with nano 2G 154
to a control context 3
to the MME 3

connection
mme_hdl_t 14
safety 14

connections
optimal for iPod 161

control context
connecting to 3

control contexts 3
defining multiple 3
examples 6
maximum 5

conventions
typographical xiv

copied_fid 54
copied_id

cleaning up invalid 54
copy queue 127

building 132
clearing 127, 134
managing 134
removing files from 134

copying
synchronizing files before 133

copying media Seemedia copying
correcting

metadata 135
corrupt

database 25
creating

track sessions 61

zones 8
cross

transport authentication 153
Cross Transport Authentication

iPod 153
cta

iPod Cross Transport Authentication 153
CTA SeeCross Transport Authentication

D

damaged
media 122

damaged media 119
damping_audio_writer filter 167
database

corrupt 25
repair 54
time values 23

DCMD_MEDIA_* 193
decryption

of DRM content 182
delay

completing synchronization 47
deleting

cleaning up files after 54
playlists 84
track sessions 66

detecting
iPods 161
mediastores 31, 39
PFS devices 180

deva-ctrl-ipod.so 152
device

attaching output to zone 9
capabilities 37
external options 139
mapping physical location to mediastore

filesystem path 37
path for Qnet 38
specifying output over Qnet 8

devices
output 6

digital audio
Apple devices that support 154

April 30, 2009 Index 207

Index 2009, QNX Software Systems GmbH & Co. KG.

disconnecting
from the MME 15

disk changers
external 38

display
parsing for iPod 170

drivers
starting iPod 157

DRM
decryption of content 182

duplicate
fids in a track session 62

DVD
layers 114
managing access to video 110
managing attributes 107
navigation 108
player

configuring output 115
encrytped DVDs 113
MME configuration 113

playing a specific chapter 109
playing a specific title 109
region codes

video 110
software player 110
synchronization 108

dvdkeymgr 113

E

EBADF 25
encrypted

DVD
playing 113

playing
DVD 113

environment
configuring for end user 119

error
read 121
read recovery 120

events
classes 18
copying 128

delivery during copying and ripping 128
getting 19
registering for 16
ripping 128
stopping 19
unregistering for 19

explored files
filtering 91

explorer API 89
resuming playback 73

exploring
media 89
mediastore 89

external
disk changers 38

external device
configuration 139

extract
metadata 99

F

fast forward
speed on iPods 167

fast-backward
speed 74

fast-forward
speed 74

fid
duplicate in file-based track sessions 62
excluding from track session 63

file ID See fid
file-based

track sessions 61
files

displaying names 91
gettingfid from iPod 166
getting name from iPod 166
reading and displaying names 91
skipping unplayable 122
synchronization 50
unplayable 121

filtering
explored files 91

flags

208 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

synchronization 45
folders

missing during directed synchronization
50

formats
playlist 81

fullplay_count
library 75

G

gapless
playback 75

GetPartialObject

not supported 183
GIF

pre-processing 102
GMA9nn graphics driver 110
Gracenote 98

metadata 55
graphics

pre-processing 102

H

H.264
playing 107

handle
MME connection 14

HD radio tagging Seeradio tagging
HTTP

stream
appending to a track session 143

I

ID3
metadata tags 95

image
pre-processing 102
processing module 102

processing through metadata API 103
images

retrieving from iPod 171
retrieving from PFS device 182

installing
MME components for external media

players 151, 179
interface

configuration
devices accessed through a device driver

140
USB devices 140

supported
devices 140

internationalization SeeConfiguring
Internationalization in theMME
Configuration Guide

internet
streamed media 143

io-audio

starting for iPods 159
io-fs-media

creating a Bluetooth device representation
188

pfs
albdir option 180

io-media

configuring mmf_trackplayer 120
playback buffering 119

iofs-pfs.so 183
IP

camera 143
iPhone

problems with repeat mode 169
iPod 151

ACP module 172
artwork

retrieving 171
audio driver 152
authentication 152

chip from Apple 152
cross transport 153

autopause 163
building the ACP module 176
changing tracks 163
chapter

April 30, 2009 Index 209

Index 2009, QNX Software Systems GmbH & Co. KG.

getting information 169
seeking to 169

configuration 140, 142
determining 142

connection support 154
detecting 161
drivers 157
fast forward 167
getting time position 166
getting track information 166
HD radio tagging 171
io-audio 159
link kit 172
metadata 97
MME_MSCAP_AUDIO_NONOPTIMAL

161
MME_MSCAP_CONNECTION_NONOPTIMAL

161
MME_MSCAP_DEVICE_TRACKSESSIONS

161
mme_setautopause() 163
nano

problems connecting 154
parsing display 170
playback through USB transport 159
playing media 163
presented as a USB storage device 154
random mode 168
removing 161
repeat mode 168
resuming playback 167
retrieving artwork 171
reverse 167
rules for playing media 163
screen zoom 142
serial connection 155
Shuffle 154
splash screen 171
starting playback 163
subtitle

get information 169
setting 169

synchronizing 162
track sessions 163
two-wire connection 155
USB

connection 156
using the ACP module 175
video 169
with no digital audio 154

ipod_i2c_addinfo() 173
ipod_i2c_cpready() 174
ipod_i2c_init() 174
ipod_i2c_lock() 174
ipod_i2c_read() 175
ipod_i2c_write() 175
iPod touch

problems with repeat mode 169
iTunes

playlists 82

J

jitter
in playback position reporting 67

JPEG
endocing 102
pre-processing 102

L

language
preferred playback 110

languages SeeConfiguring Internationalization
in theMME Configuration Guide

last_sync
field in mediastores table 52

lastseen
field in mediastores table 52

layers
DVD 114
video 114

library

fullplay_count 75
library table

“manually” updates 39
library-based

track sessions 60
libxml2.so 100

210 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

Load on Demand
metadata 99

localization 110,SeeConfiguring
Internationalization in theMME
Configuration Guide

logo
custom on iPod 171
displaying on iPod 171

M

mcd

CD detection 34
CD removal 39
enabling Bluetooth support 195

MCD Seemcd
configuring for audio input playback 146
rule for streamed media 144

media
browsing 92
copying 127
damaged 119, 122
exploring 89
handling problems with 119
metadata for unsynchronized 96
playing 59
ripping 127

media copying
background and priority background 129
behavior when a mediastore is

removed 134
behavior when an error is encountered 134
folder paths 130
mode 129
modifying metadata 135
overriding the global preserve path

configuration 131
templates 130

media players
installing MME components for 151, 179

media streams Seestreamed media
MediaFS 187
mediastore

capabilities 37
exploring 89

unsynchronized 89
mediastores

detecting 31, 32, 39
excludingfid 63
managing track sessions across multiple

76
mapping filesystem path to physical device

location 37
states 31, 32
synchronization 43

mediastores table
device capabilities 37
mediastore capabilities 37

metadata
“Load on Demand” 99
API 96
changing 135
completing during ripping 132
correcting 135
custom 51
extracting on Bluetooth devices 195
extraction API 99
for Gracenote classical music 55
getting 95
getting for currently playing track 97
getting for synchronized media 95
getting for track or file 95
getting for unsynchronized media 96
getting from an iPod 166
getting from Bluetooth devices 197
getting fromnowplaying table 97
ID3 tags 95
in library-based track session 95
iPod 97
managing the handle 97
ratings 98
remote source 98
updating before copy or rip 133

MM_BUTTON_NEXT
using with iPods 167

MM_BUTTON_PREV
using with iPods 167

MM_IPP_VIDEO_DECODER_NUM_THREADS
mmf resource See MME Configuration
Guide chaper Configuring Other
Components

April 30, 2009 Index 211

Index 2009, QNX Software Systems GmbH & Co. KG.

mm_media_status_event_t 139
mm_media_status_reason_t 139
mm_media_status_t 139
MM_TMPFILE_STREAMER_SEEKABLE

mmf_graphbuilder resource 127
MM_WARNING_READ_ERROR 122
MM_WARNING_READ_TIMEOUT 122
mm_warnings_t 122
MME

configuring for audio input playback 146
disconnecting from 15
slog code 19

mme_bookmark_create() 76
mme_bookmark_delete() 76
mme_button 112
mme_button() 109
mme_data.sql

specifying output device path in 8
mme_device_get_config() 139, 142
mme_device_set_config() 139, 142
mme_disconnect() 15
mme_dvd_get_status 112
MME_EVENT_CLASS_* 18
mme_event_classes_t 18
MME_EVENT_FINISHED 68, 109, 122
MME_EVENT_FINISHED_WITH_ERROR 68
MME_EVENT_MEDIA_STATUS 139, 169
MME_EVENT_MEDIACOPIER_* 129
MME_EVENT_MS_*PASSCOMPLETE 44, 47
MME_EVENT_MS_STATECHANGE 76
MME_EVENT_MS_SYNC_FOLDER_* 48
MME_EVENT_MS_SYNCCOMPLETE 47
MME_EVENT_PLAY_ERROR 122
MME_EVENT_PLAY_WARNING 122
MME_EVENT_SHUTDOWN 15
MME_EVENT_SHUTDOWN_COMPLETED 15
MME_EVENT_SYNC_SKIPPED 52
MME_EVENT_TIME

setting delivery interval 67
MME_EVENT_TRACKCHANGE 122
MME_EVENT_TRKSESSIONVIEW_* 64
MME_EXPLORE_* 89
mme_explore_end() 89
mme_explore_hdl_t 89
mme_explore_info_get() 89
mme_explore_info_t 89

copying 97
mme_explore_position_set() 89

filtering files 91
mme_explore_size_get() 89
mme_explore_start() 89
mme_folder_sync_data_t 48
mme_get_output_attr() 9
mme_get_title_chapter() 109, 169
mme_getrandom() 68
mme_getrepeat() 68
mme_getscanmode() 75
mme_hdl_t 14
mme_lib_column_set() 39
mme_media_get_def_lang() 110
mme_media_set_def_lang() 110
mme_mediacopier_add_with_metadata() 128,

132
mme_mediacopier_add() 128, 132
mme_mediacopier_clear() 127, 132, 134
mme_mediacopier_disable() 134
MME_MEDIACOPIER_DISABLED 128
mme_mediacopier_enable() 128, 129, 133
mme_mediacopier_get_mode() 129
mme_mediacopier_remove() 134
mme_mediacopier_set_mode() 128, 129
mme_mediacopier_set_name_template() 128
mme_metadata_alloc()

using 97
mme_metadata_hdl_t

copying 97
mme_metadata_image_load() 103
mme_metadata_set() 135
MME_MSCAP_* 37
MME_MSCAP_AUDIO_NONOPTIMAL

iPod 161
MME_MSCAP_CONNECTION_NONOPTIMAL

iPod 161
MME_MSCAP_DEVICE_TRACKSESSIONS

iPod 161
mme_newtrksession() 61
mme_output_set_permanent() 9
mme_play_bookmark() 76
MME_PLAY_ERROR_READ 121
mme_play_get_speed() 74
mme_play_get_status() 68, 74, 75
mme_play_resume_msid() 163

212 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

using with iPod 167
mme_play_set_speed 112
mme_play_set_speed() 70, 74
mme_play_set_zone() 8
mme_play() 69

using with iPod 163
mme_playlist_close() 83
mme_playlist_create() 84
mme_playlist_delete() 84
mme_playlist_generate_similar() 84
mme_playlist_hdl_t 83
mme_playlist_item_get() 83
mme_playlist_items_count_get() 83
mme_playlist_open() 83
mme_playlist_position_set() 83
mme_playlist_set_statement() 84
mme_playlist_sync() 49
MME_PLAYMODE_FILE 63
MME_PLAYMODE_LIBRARY 60, 62
mme_resync_mediastore() 51, 54
mme_seek_title_chapter() 109, 169
mme_seektitle_chapter 112
mme_seektotime 112
mme_seektotime() 75
mme_set_notification_interval() 67
mme_set_output_attr() 9
mme_setautopause()

Bluetooth devices 196
iPods 163

mme_setpriorityfolder() 52
mme_setrandom() 68
mme_setrepeat() 68
mme_setscanmode() 75
mme_settrksession() 62
mme_shutdown() 15
MME_SLOTTYPE_SND_INPUT 145
mme_stop() 70
MME_STORAGETYPE_DEVB 63
MME_STORAGETYPE_DVDVIDEO

storage type 111
MME_STORAGETYPE_SND_INPUT 145
mme_sync_cancel() 51
mme_sync_db_check() 54
mme_sync_directed() 50, 54
mme_sync_file() 50
mme_sync_get_msid_status() 51

mme_sync_get_status() 51
MME_SYNC_OPTION_CLR_INV_COPIED 54
mme_trksession_resume_state() 70
mme_trksession_save_state() 70
mme_video_get_angle_info() 107
mme_video_get_audio_info 112
mme_video_get_audio_info() 107
mme_video_get_info() 109
mme_video_get_status() 107
mme_video_get_subtitle_info 112
mme_video_get_subtitle_info() 107, 169
mme_video_set_angle 112
mme_video_set_angle() 107
mme_video_set_audio() 107
mme_video_set_properties() 109
mme_video_set_subtitle 112
mme_video_set_subtitle() 169
mme_zone_create() 8
mmf_trackplayer

configuring 120
handling read errors 120

most popular
tracks 75

MP3
metadata 95
streamed 143

MP4
files 107

MPEG-4
playing 107

MPEG4-ES 143
multi-node support 7
multi-zone

configuring the MME for 6
MusicBrainz 98

N

nano
iPod

problems connecting 154
navigation

DVD 108
network

MME support for 3

April 30, 2009 Index 213

Index 2009, QNX Software Systems GmbH & Co. KG.

next
track in track session 75

nodes 3
getting media from remote 7
MME support for 3
outputting to remote 7

notifications
setting interval 67

nowplaying table
getting metadata from 97

O

one-wire
connection

iPod 156
iPod

connection 156
options

getting and setting for device 139
output

attributes 9
devices 6
DVD player

configuring 115
zones 5

output device
remote 8
specifying over Qnet 8
specifying path inmme_data.sql 8

output devices
attaching to zone 9
controlling 8
examples 6
making permanent 9

output zones
controlling 8

outputdevices

table 114

P

pathname delimiter in QNX documentation xv

PCX
pre-processing 102

pending
synchronizations 46

permanent
output devices 9

PFS
detecting 180
not supported 183
playback on 181
starting 179

PFS device
.alb objects 180
Abstract Audio Album objects 180
artwork

retrieving 182
retrieving artwork 182

PFS devices 179
playable

field in library 121
playback

audio input 145
buffering 119
changing track sessions 77
controlling on Bluetooth devices 194
DVD title and chapter 109
for Bluetooth devices 196
from copied or ripped files 127
gapless 75
jitter in position reporting 67
managing track sessions 76
pausing 70
pausing in a file-based track session 73
PFS devices 181
preferred language 110
region code 110
resuming 70, 71
resuming in a file-based track session 73
resuming on iPod 167
setting random mode 68
setting repeat mode 68
special features 74
starting from a specific track 69
stopping 70, 71
stopping due to read errors 121
streamed media 145

214 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

time elapsed 68
total play time 68

playing
H.264 video 107
media 59
MPEG4 files 107
video 107, 109

playlistdata table 49
playlists 61, 81

case-sensitivity 84
create track session from 82
deleting 84
formats

supported 81
handling missing files 83
iTunes 82
synchronizing 49

specific 49
PlaysForSure SeePFS
pre-processing

graphics 102
previous

track in track session 75
priority

background media copying and ripping 129
folder synchronization 52

pruning
track sessions 66

Q

QDB
slog code 19

qdb_statement() 25
qdb_vacuum() 25
Qnet

device path 38
specifying output device 8

queries
track session 63

query
for track sessions 62

R

radio tagging
iPods that support 172
with iPods 171

random
mode for playback 68
using mode with iPods 168

ratings
metadata 98

read
aborting blocking 76
configuring error recovery 120
configuring skip forward 120
error recovery 120
errors 121
recovering from errors 119
retries 120

Real Time Protocol SeeRTP
Real-time Transport ProtocolSeeRTP
region

playback code 110
region codes

DVD
video 110

Region Playback CodeSeeRPC
registering

for events 16
remote

metadata source 98
output device 8

removing
iPods 161

repair
database 54

repeat
mode for playback 68
using mode with iPods 168

resuming
playback 71
playback on iPod 167

resynchronization
determining if required 52

retries
configuring for read 120

reverse

April 30, 2009 Index 215

Index 2009, QNX Software Systems GmbH & Co. KG.

on iPods 167
ripping 127

about 127
background 127
background and priority background 129
behavior when a mediastore is

removed 134
behavior when an error is encountered 134
mode 129
modifying metadata 135
monitoring progress 127
queue 127
synchronizing files before 133
templates 130
with playback 127

RPC 110
RTP

stream
appending to a track session 143

S

sample rate converter
asynchronous 169

scratch recovery 119
seamless

track session change 77
seeking

to time in track 75
serial connection

iPod 155
setting

track session 64
SGI

pre-processing 102
shared

cache SeeStarting QDB in theQDB
Developer’s Guide

shutting down
the MME 15

slog codes 19
slots

default settings 38
software

DVD player 110

speed
fast-backward 74
fast-forward 74

splash screen
iPod 171

SQL
for track sessions 62
optimizing commands 25

SQLite 25
srv-dvdplayer 111

starting 111
starting

PFS devices 179
Zune devices 179

startup 13
statistics

track played 75
stopping

playback 71
stream

appending to a track session 143
streamed media 143

configuring the MME 144
playing 145

streams Seestreamed media
structures

mme_hdl_t 14
subtitle

iPod
getting information 169
setting 169

synchronization
about mediastore 43
and track sessions 64
clean up 54
cleanup 47
database

repairing 54
delay due to database cleanup 47
directed 50

missing folders 50
DVD 108
file 50
flags 45
iPods 50, 162
passes 44

216 Index April 30, 2009

 2009, QNX Software Systems GmbH & Co. KG. Index

pending 46
PFS devices 181
playlists 49
pre-copy 133
priority folder 52
repair

database 54
synchronizer selecting 43
using to browse 89

T

TGA
pre-processing 102

time
comparing values in the MME database 23
getting position on iPod 166
seeking to in track 75
values in the MME database 23

timeout
CD drive 119
function 14

timer
unblocking for functions 14

title
playing on a DVD 109

track
changes across multiple media stores 76
played statistics 75
seeking to time in 75

track session
capabilities 37

track sessions 59
“leaks” 66
and synchronization 64
clearing 66
creating 61
creating file-based 63
creating library-based 62
deleting 66
duplicatefids in file-based 62
file-based 61
for Bluetooth devices 196
from multiple playlists 83
iPod 163

library-based 60
managing during playback 76
pruning 66
removed mediastores 76
seamless changing 77
seeking to time in 75
setting 64
types 60
viewing next and previous tracks 75

tracks
skipping unplayable 122
unplayable 121

trksessionview

table 64, 75
two-wire

connection
iPod 155

iPod
connection 155

two-wire connection
iPod 155

typographical conventions xiv

U

unplayable
marking files 121
skipping files 122

unregistering
for events 19

unsynchronized
mediastore 89

unsynchronized media
metadata 96

URL
modifiers for video output device 114
video output device 114

USB
iPod

connection 156
USB mediastores

duplicate 36
identifying 36

UTF-8 91
UUID 31

April 30, 2009 Index 217

Index 2009, QNX Software Systems GmbH & Co. KG.

V

vibration
configuring system for environment with

119
timeout 119

video
iPod 169
layers 114
managing attributes 107
modifiers for output device in URL 114
output device 114
output device URL 114
playing 107, 109
sample configuration 116

viewing
next and previous tracks in a track session

75

W

WMPInfo.xml 35

Z

zones 3, 8
attaching 8
attaching output device to 9
creating 8
detaching 8
detaching output device from 9
examples 6
MME support for 3
output 5
removing 8, 9

zoom
iPod screen 142

Zune
artwork

retrieving 182
retrieving artwork 182
starting 179

218 Index April 30, 2009

