
Pr
el

im
in

ar
yQNX Aviage Multimedia Suite

MediaFS Developer’s Guide

For QNX Neutrino 6.4.x

 2009, QNX Software Systems GmbH & Co. KG.



Pr
el

im
in

ar
y

 2008-2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published February 03, 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.



Pr
el

im
in

ar
y Contents

About this Guide vii
Typographical conventions x

Note to Windows users xi

Technical support options xi

MediaFS Overview 11
About io-fs-media 3

The MediaFS standardized interface 3

MediaFS Structure 52
Filesystem location 7

The MediaFS filesystem structure 7

Required POSIX function support 8

MediaFS Entities 113
The .FS_info. directory and its contents 13

The info.xml file 13

The devsymbolic link 15

The control file 15

The currentsymbolic link 16

The playback directory 16

Directories and files outside the .FS_info. directory 17

Directory behavior 17

File behavior 17

Playlist files and directories 18

MediaFS playlists 18

Media Changers 214
Representing media changers and mediastores 23

MediaFS instances for slots 23

Informing MediaFS of state changes 25

Changer states 26

Managing Playback 295

February 3, 2009 Contents iii



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

Requested playback control sequences 31

Start playback — file or directory 31

Start playback — media device 32

Fast forward and reverse 33

Pause and resume playback 34

Managing autonomous playback state changes 35

Track change 35

Playback state change 35

Metadata update 35

Device Messages 376
Using device control messages 39

Device configuration messages 40

iPod, UPnP device and streaming messages 41

Common messages 41

iPod device messages 42

UPnP device messages 42

Media stream messages 42

DRM management messages 43

Playback Messages 457

Metadata Messages 538

Playback Structures and Constants 599
Playback structures 61

_media_date 61

_media_play 62

_media_playback 62

_media_playback_status 63

_media_settings 65

_media_speed 65

_media_stream_info 65

Playback constants 66

Media playback constants 66

Repeat and random mode setting constants 67

Media stream constants 68

Media type strings 68

iPod structures 69

_media_ipod_daudio 69

iv Contents February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

Getting Album Art 7110
How to retrieve album art 73

Album art messages 73

Album art structures 75

_media_albart 75

_media_albart_entry 75

_media_img_desc 76

Album art constants 76

MediaFS Events 7911
Working with MediaFS events 81

The MediaFS event queue 81

Reading MediaFS events 82

Event types 83

MediaFS events and their structures 83

The _media_event data structure 83

Track, time and other information update events 84

Metadata update events 86

Error and warning events 87

MediaFS Examples 89A
MediaFS structure 91

info.xml file 91

Index 95

February 3, 2009 Contents v



Pr
el

im
in

ar
y



Pr
el

im
in

ar
yAbout this Guide

February 3, 2009 About this Guide vii



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

The MediaFS Developer’s Guidepresents how the io-fs-media media filesystem
(MediaFS) module expects device drivers to describe media devices and mediastores,
and the devctl()messages that these drivers need to support.
This Guideis intended for:

• developers who design and write device drivers for use with MediaFS

• developers who integrate support for these devices into higher-level applications
that use the MediaFS interface — applications such as the QNX Aviage
Multimedia Suite’s Multimedia Engine (MME)

For more information about the MME, see Introduction to the MMEand the other
books in the MME documentation set.

The table below may help you find what you need in this book:

For information about: See:

The MediaFS standardized interface MediaFS Overview

The structure of MediaFS, and required
POSIX function support

MediaFS Structure

MediaFS entities, including files,
directories and symbolic links

MediaFS Entities

Media changer presentation to MediaFS Media Changers

How to present playback states and
controls to MediaFS

Managing Playback

Device management messages
supported by MediaFS

Device Management Messages

Playback and status update supported by
MediaFS

Playback Messages

Metadata retrieval messages supported
by MediaFS

Metadata Messages

Playback structures and constants used
by MediaFS

Playback Structures and Constants

How to retrieve album art Getting Album Art

MediaFS events and their structures MediaFS Events

Examples of code used to work with
MediaFS

Appendix A: Examples

Other MME documentation available to application developers includes:

February 3, 2009 About this Guide ix



Pr
el

im
in

ar
y

Typographical conventions  2009, QNX Software Systems GmbH & Co. KG.

Book Description

Introduction to the MME MME Architecture, Quickstart Guide, and FAQs.

MME Developer’s Guide How to use the MME to program client
applications.

MME API Library Reference MME API functions, data structures, enumerated
types, and events.

MME Technotes MME technical notes.

MME Utilities Utilities used by the MME.

MME Configuration Guide How to configure the MME.

QDB Developer’s Guide QDB database engine programming guide and API
library reference.

Note that the MME is a component of the QNX Aviage multimedia core package,
which is available in the QNX Aviage multimedia suite of products. The MME is the
main component of this core package. It is used for configuration and control of your
multimedia applications.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

Reference Example

Code examples if( stream == NULL )

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

continued. . .

x About this Guide February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Technical support options

Reference Example

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

Technical support options
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

February 3, 2009 About this Guide xi



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 1

MediaFS Overview

In this chapter. . .
About io-fs-media 3
The MediaFS standardized interface 3

February 3, 2009 Chapter 1 • MediaFS Overview 1



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. About io-fs-media

MediaFS is an io-fs-media module that presents a POSIX-compliant filesystem
view of media devices. This filesystem view of media devices can be used by
higher-level applications, such as for example the MME, to browse and control media
devices:

• About io-fs-media

• The MediaFS standardized interface

About io-fs-media
The io-fs filesystem is a Neutrino resource manager that handles filesystem
semantics, including pathname resolution, file and directory access, symbolic links,
permissions and block caching.

The io-fs-media filesystem is based on the io-fs filesystem framework; it
provides extensions specific to media devices in order to make disparate media devices
and filesystems appear as POSIX-compliant filesystems under QNX Neutrino.

For more information about io-fs-media, see io-fs-media in the MME Utilities
Reference.

The MediaFS standardized interface
MediaFS is an io-fs-media module that presents a standardized interface through
which upper layer software can query and control media playback on a wide range of
media devices, including portable music devices such as iPods and PlaysForSure
devices, and UPnP devices that attach to a network.

The following diagram shows the MediaFS module in relation to the user application
and media devices.

February 3, 2009 Chapter 1 • MediaFS Overview 3



Pr
el

im
in

ar
y

The MediaFS standardized interface  2009, QNX Software Systems GmbH & Co. KG.

User application

MediaFS high-level POSIX interface

io-fs

MediaFS

MediaFS low-level interface

iPod
device

PFS
device

Device access layer

Serial port
driver

USB driver TCP/IP

UPnP
device

MediaFS in a multimedia implementation

The MediaFS standardized interface allows higher-level multimedia applications, such
as the MME, to:

• use POSIX functions related to file and directory operations to access audio and
video content along with associated metadata on media devices and mediastores

• write device management front ends (io-fs filesystem extensions) that provide a
single point of integration for disparate multimedia devices, thus facilitating
integration of new (MME) plugins with a minimum of integration work

In other words, to add a new device to a multimedia environment that uses MediaFS,
all you need to do is:

• create a device driver as an io-fs-media plugin module to represent the device
according to the MediaFS requirements

• make adjustments to the client application (the MME or the HMI,or both) to ensure
that they are aware of and able to handle new situations that might arise due to the
presence of the new device

The Aviage Multimedia Suite already includes, in addition to its core modules,
optional io-fs-media plugin modules to handle a variety of devices. These plugin
modules include iofs-ipod.so for iPod devices, and iofs-pfs.so for PFS
devices.

4 Chapter 1 • MediaFS Overview February 3, 2009



Pr
el

im
in

ar
y Chapter 2

MediaFS Structure

In this chapter. . .
Filesystem location 7
The MediaFS filesystem structure 7
Required POSIX function support 8

February 3, 2009 Chapter 2 • MediaFS Structure 5



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Filesystem location

This chapter describes:

• Filesystem location

• The MediaFS filesystem structure

• Required POSIX function support

Filesystem location
When io-fs-media learns of a new media device, it registers a path to the location
of the MediaFS filesystem; this path is called the mountpoint. MediaFS then:

• creates the MediaFS standarized filesystem structure for the device

• creates a filesystem representing the device under /fs

• makes available the contents of the device as a filesystem with the root directory of
the device mounted on /fs/dev_id, where dev_id is a name that indicates the type of
device with a numeric suffix representing the device’s instance number

The first device discovered has an instance number of 0. For example, if a device is an
iPod iw is mounted as /fs/ipod0; while a PFS/MTP device is mounted as
/fs/pfs0.

Multiple instances of a device are identified by the numeric suffix. Thus, for example
two iPods, a PFS device, and a UPnP device would be mounted as follows:

/fs/ipod0
/fs/ipod1
/fs/pfs0
/fs/upnp0

For more information about how to represent a media device to MediaFS, see the
chapter MediaFS Entities.

The MediaFS filesystem structure
Located under the MediaFS mountpoint, the .FS_info. directory is the MediaFS
standardized structure of files and directories that contain the control and state
information of a media device. Every device instance has its own MediaFS filesystem
structure.

The basic MediaFS filesystem structure is as follows:

mountpoint
mountpoint/.FS_info.
mountpoint/.FS_info./info.xml
mountpoint/.FS_info./dev
mountpoint/.FS_info./current
mountpoint/.FS_info./control
mountpoint/.FS_info./playback
Directory|Directories
File|Files

February 3, 2009 Chapter 2 • MediaFS Structure 7



Pr
el

im
in

ar
y

Required POSIX function support  2009, QNX Software Systems GmbH & Co. KG.

Media device controllers must populate the the device-specific files in the .FS.info.
directory, according to the specifications presented in the chapter MediaFS Entities.

The figure below shows the io-fs-media MediaFS module hierarchy with a
Bluetooth device.

/fs/avrcp0

.FS_INFO.

info.xml

The MediaFS module hierarchy with a Bluetooth device

Files and directories outside the .FS_info. directory are device dependent, and
therefore do not have a standardized, defined structure in MediaFS. See “Directories
and files outside the .FS_info. directory” in the chapter MediaFS Entities.

Required POSIX function support
All files and folders in the MediaFS representation adhere to the POSIX standard, and
the following POSIX functions must be supported on all directories and files in the
MediaFS representation:

• close()— close a file

• closedir()— close a directory

• devctl()— control a device

• dircntl() — control an open directory

• fstat()— get file information, given a file description

• open()— open a file

• opendir()— open a directory

• readdir() — read a directory entry

• stat()— get information about a file or directory, given a path

8 Chapter 2 • MediaFS Structure February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Required POSIX function support

Directories and files can be identified by using the standard POSIX stat()function, and
the S_ISDIR and S_ISREG macros on the returned stat structure.

For speed optimizations, MediaFS supports the ability to retrieve extra stat()
information as part of the readdir() operation, if the D_FLAG_STAT flag is set.

For more information about these functions and data structures, see the QNX Neutrino
Library Reference.

February 3, 2009 Chapter 2 • MediaFS Structure 9



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 3

MediaFS Entities

In this chapter. . .
The .FS_info. directory and its contents 13
Directories and files outside the .FS_info. directory 17
Playlist files and directories 18

February 3, 2009 Chapter 3 • MediaFS Entities 11



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. The .FS_info. directory and its contents

This chapter describes:
• The .FS_info. directory and its contents

• Files outside the .FS_info. directory

• Playlist files and directories

The .FS_info. directory and its contents
When MediaFS learns of a device, it creates a .FS_info. directory for the media
device with device-specific playback and metadata interface items. The table below
lists these items:

Item Type Required? Description

info.xml file Yes XML file with device-specific
information.

dev symbolic link Yes Symbolic link to device identified by
the <uuid> element in the info.xml
file.

control file Yes File in which device-specific playback
actions are issued to a media device.

current symbolic link No Symbolic link pointing to the currently
playing file in MediaFS.

playback directory No Directory with symbolic links, listed in
the same order as the media device will
complete playback of the files.

See the sections below for complete descriptions of the .FS_info. items.

The info.xml file
The info.xml device information file is an XML version 1.0 file that contains
device-specific information. MediaFS creates this file when it creates the .FS_info.
directory for a media device, placing it in the root directory for the device as
.FS_info./info.xml. This file is static and persists for the lifetime of the MediaFS
instance that created it.

When it creates the info.xml file, MediaFS does not populate it with device
information. To enable MediaFS to present to higher level software layers a standard
interface to all media devices, device controllers must populate the info.xml file for
each device with XML-formatted, device-specific information. This XML-formatted
information can be used by higher-level software, such as the MME, and may also be
useful for human viewing.

The table below lists the basic elements of an info.xml file:

February 3, 2009 Chapter 3 • MediaFS Entities 13



Pr
el

im
in

ar
y

The .FS_info. directory and its contents  2009, QNX Software Systems GmbH & Co. KG.

XML Key Required? Description

<uuid> Yes Unique identifier for the device

<media> Yes Root XML key for the media

<media>/<device> Yes User-defined name for the device

<media>/<model>/<*> No Device model information

<media>/<protocol>/<*> No Device protocol information

<media>/<serial> No Device serial number

<media>/<swversion> No Device software revision

Required XML keys

The keys listed below are required in the info.xml file for a media device:

<uuid> A unique identifier for the media device; upper layer components, such
as the MME, must be able to use this key to associate the media device
with its settings and remember these settings. A <uuid> number must
be static, and unique to a media device.

<media>/<device>

A name used to indicate to upper layer components, such as the MME,
the device below the MediaFS. For example, an iPod
<media>/<device> tag value could be “ipod”:

<media>
<device>ipod</device>

</media>

Example info.xml file

The example below presents the minimum required content of a info.xml file:

<?xml version="1.0" standalone="yes"?>
<uuid>unique_media_identifier</uuid>
<media>

<device>devicename</device>
</media>

Mediastore changer devices, such as CD or DVD changers, require different elements
in their info.xml file. For more information, see “The info.xml file for mediastore
changers” in the chapter Working with Media Changers.

14 Chapter 3 • MediaFS Entities February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. The .FS_info. directory and its contents

The dev symbolic link
The develement in the .FS_info. directory is a symbolic link to the media device
identified by the <uuid> element. It should be an entry in the /dev directory and
provide access to the raw media device.

The control file
The control file in the .FS_info. directory is the control pointwhere
device-specific playback actions are issued to a media device. This control point is a
three-directional file interface that supports the following I/O capabilities:

• Accept playback, state information device control messages.

• Set a state via device control messages.

• Provide asynchronous change notifications via out-of-band messaging.

• Get events from the MediaFS event queue; see also the
DCMD_MEDIA_READ_EVENTS device control message, and the chapter MediaFS
Events.

The MediaFS control point provides state information and metadata for the current
device. That is:

• state and metadata device control messages issued on the control file return
information about the device at the time of the execution

• metadata obtained from the control point is the metadata for the currently active
(playing) track

If the state or the metadata of the currently active device changes, the control point
sends a notification of the change via an out-of-band message to all registered
listeners, such as, for example, the MME.

Conditions for sending a notification

The MediaFS control point sends a notification if anyof the following conditions is
met:

• Any member of the _media_playback_status structure returned from a call
with the control message DCMD_MEDIA_PLAYBACK_INFO has changed.

• An event has been added to the MediaFS event queue.

• The current file has been updated.

• The content of the playback directory has changed.

• The device playback speed or state has changed.

February 3, 2009 Chapter 3 • MediaFS Entities 15



Pr
el

im
in

ar
y

The .FS_info. directory and its contents  2009, QNX Software Systems GmbH & Co. KG.

To receive asynchronous notifications, a client application must use the QNX
io_notify() function to register for these notifications.

The current symbolic link
The current symbolic link is optional. If it is present, this symbolic link is a relative
path from the .FS_info. directory. When it is resolved, this symbolic link points to
the currently active file; this file is in the MediaFS file system. If the playback
directory is present, the symbolic link points to an entry in this directory. If no file on
the media device is currently active, the current symbolic link is set to an empty value.

Metadata retrieval commands issued on the current symbolic link return the specified
metadata for the currently playing file.

The MediaFS control point sends a notification to registered clients via an out-of-band
message whenever the current symbolic link is updated.

A system must support the POSIX readlink() function in order to resolve the current
symbolic link.

The playback directory
The playback directory is optional. If it is present this directory contains symbolic
links to files that the media device will play. When it writes these symbolic links to the
playback directory, the device controller should organize them in the same order as
the media device will play the files referenced by the links.

Whenever possible, symbolic links in the playback directory should point to the files
that they represent in the main media filesystem. However, for some device and some
operational modes, the device may not be able to guarantee the accuracy of these
pointers. Client applications should, therefore, treat the links as hints and not as
guarantees of a file’s location in the main media filesystem.

Metadata retrieval

Client applications can use metadata retrieval messages to execute metadata extraction
calls against the files listed in the playback directory. If the links point into the
MediaFS hierarchy, the results of a call to one of these symbolic links is the same as
the result of a call to retrieve metadata directly from a file in MediaFS.

For more information about metadata retrieval messaged, see “Metadata query and
retrieval messages” in the chapter Playback and Status Messages.

Changes to the playback directory

When the content of the playback directory changes (because, for example, the
client has selected a play operation against a new set of media files), the control point
sends a notification of the change to all applications registered for out-of-band
messages on the control file.

16 Chapter 3 • MediaFS Entities February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Directories and files outside the .FS_info. directory

Directories and files outside the .FS_info. directory
The behavior of MediaFS entities located outside the .FS_info. directory structure
varies according to the capabilities and behaviors of the underlying media device.
However, MediaFS maintains certain behaviors throughout for these directories and
files, as described in this section.

Directory behavior
MediaFS directories outside the .FS_info. directory represent the data hierarchy of
the target device. For example, directories on an Apple iPod could be represented
using the following structure:

/ipod0
/ipod0/.FS_info.
/ipod0/Music
/ipod0/Music/Artists
/ipod0/Music/Songs
...

Directory characteristics

To be usable by MediaFS, a directory outside the .FS_info. directory structure must
have the following characteristics:

• The directory must support the DCMD_FSYS_DIR_NFILES command message, to
indicate the number of files present in the directory.

• All directory attributes (name, size, etc.) must adhere to the QNX filesystem
specifications and POSIX specifications.

Additionally, directories outside the .FS_info. directory structure may need to
accept the DCMD_MEDIA_PLAY command, if the associated media device supports
playback of all items in a directory; that is, if the device supports using a directory as a
playlist.

Indentifying a MediaFS directory

The code snippet below shows how to determine if a directory is a MediaFS directory:

stat(path, &statbuf);
if ((S_ISDIR & statbuf.st_mode)) {

//This is a MediaFS directory
}

File behavior
MediaFS files outside the .FS_info. directory represent files or tracks that can used
with the media device.

The POSIX filesystem representation for these files is free-form, with the following
exceptions:

February 3, 2009 Chapter 3 • MediaFS Entities 17



Pr
el

im
in

ar
y

Playlist files and directories  2009, QNX Software Systems GmbH & Co. KG.

• Files should use a file extension to aid in file type detection.

• All file attributes (name, size, etc.) must adhere to QNX filesystem specifications
and POSIX specifications.

Indentifying a MediaFS file

The code snippet below shows how to determine if a file is a MediaFS file:

stat(path, &statbuf);
if ((S_ISREG & statbuf.st_mode)) {

//This is a MediaFS file
}

Supported device control messages

MediaFS files outside the .FS_info. directory structure must support state change
and metadata query device control messages.

Messages issued directly to a file outside this directory structure must apply to the
specified file. For example, the device control message DCMD_MEDIA_SONG issued
directly to a file outside the .FS_info. directory structure returns the song title for
that file, not the song title of the currently playing file.

If a device control message cannot be completed due to media device limitations, the
call that issues the control message returns a ENOTSUP error.

For a complete list of device control messages used with MediaFS and descriptions of
these messages, see the chapter Playback and Metadata Messages.

Playlist files and directories
A playlist can be either of:

• a standardized playlist file, such as an M3U or PLS file, stored in the MediaFS
hierarchy; entries in the these playlist files must be filesystem paths pointing to
entries in MediaFS

• a MediaFS playlist, which is a collection of files inside a directory

Playlist support is subject to upper layer component (MME) support.

MediaFS playlists
Note the following about MediaFS playlists:

• A MediaFS playlist directory can be present only outsideof the .FS_info.
directory.

• For a directory to be identified as a MediaFS playlist, the directory must have the
othersexecute bit cleared in the st_modemember of its stat structure.

18 Chapter 3 • MediaFS Entities February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Playlist files and directories

Indentifying a MediaFS playlist

The code snippet below shows how to determine if a directory is a MediaFS playlist:

stat(path, &statbuf);
if (!(S_IXOTH & statbuf.st_mode)) {

//This is a MediaFS playlist
}

For more information about the stat structure, see stat(), stat64()in the the QNX
Neutrino Library Reference.

February 3, 2009 Chapter 3 • MediaFS Entities 19



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 4

Media Changers

In this chapter. . .
Representing media changers and mediastores 23
Informing MediaFS of state changes 25

February 3, 2009 Chapter 4 • Media Changers 21



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Representing media changers and mediastores

Media changer devices — essentially CD and DVD changers — differ from other
media devices because they contain and change removable mediastores.

A removable mediastore is a physical storage medium, such as a CD or DVD, with
one of more media files that can be synchronized and played. Media changer devices
can load and unload these mediastores as required, changing their states from
“unavailable” to “available” to “active”.

This chapter describes how these devices and their mediastores can be represented to
MediaFS and how state changes on these devices should be communicated to
MediaFS:

• Representing media changers and mediastores

• Informing MediaFS of state changes

Representing media changers and mediastores
MediaFS uses extensions to offer a common representation of devices with multiple
mediastores — devices such as CD and DVD changers: it represents a media changer
device as a single changercontainer. This changer container contains multiple slot
items. Each slot represents a mediastore, and is described by a separate MediaFS
instance.

For example, the following illustration represents the hierarchy of one media changer
device with three slots, each slot described by a MediaFS instance:

MediaFS changer device and mediastore hierarchy representation

MediaFS instances for slots
A slot represents a single mediastore. Each slot has a MediaFS instance, which
adheres to the MediaFS specifications for media device representation. That is, each
slot has a MediaFS instance with its own info.xml file, control file, optional
playback directory, devsynbolic link, and optional current symbolic link.

The info.xml file for mediastore changers

MediaFS info.xml files for changer devices and slots differ from info.xml files for
other media devices in order to accurately represent the devices as containers for the
mediastores, and the mediastores as dependent on a device. That is, that the changer
device can hold one, many or no mediastores, and that these mediastores can only be
accessed inside a changer.

February 3, 2009 Chapter 4 • Media Changers 23



Pr
el

im
in

ar
y

Representing media changers and mediastores  2009, QNX Software Systems GmbH & Co. KG.

The table below lists the elements required in an info.xml file use to describe media
changer devices and slots:

XML Key Required? Description

<media> Yes Root XML key for the media

<media>/<driver> Yes Description of the device as a MediaFS
changer device

<media>/<name> Yes Name of the mediastore

<media>/<serial> Yes Device serial number

<media>/<slot> Yes Slot number for the mediastore

<media>/<type> Yes Description of the mediastore type

Required XML keys

The keys listed below are required in the info.xml file for a media changer device
slot:

<media>/<driver>

A user-defined name for the device; for slots this value mustbe set to
mediafs-changer.

<media>/<name>

The mediastore name that can be passed to the upper software layers (such as
the MME and an HMI) for display to the user. In most cases this name is the
volume name of the mediastore.

<media>/<serial>

A unique identifier for the mediastore represented by the slot. It must be set to a
value , such as the freeDB hash, that uniquely identifies the mediastore.

<media>/<slot>

The slot position of the mediastore in the changer device. The value of this key
must be the same as the offset returned by a call to the device with the
DCMD_CAM_MECHANISM_STATUS control message. This offset (and
therefore the value of the <slot> key) is a single-digit string representing the
slot with the mediastore.

<media>/<type>

A predefined text identifying the kind of mediastore present in the media
changer device slot. Permitted values are:

• FS — basic filesystem

• AUDIOCD — CDDA disc

• DVDVIDEO — DVD-video disc

24 Chapter 4 • Media Changers February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

• DVDAUDIO — DVD-audio disc

• VCD — Video CD disc

• UNKNOWN — unknown mediastore type

Example info.xml file

The example below shows an info.xml file for a MediaFS slot representing a
mediastore changer device:

<?xml version="1.0" standalone="yes"?>
<info>

<media>
<device>mediafs-changer</device>
<slot>1</slot>
<serial>280a1752</serial>
<name>MIXED</name>
<type>FS</type>

</media>
<device>

<driver>mediafs-changer</driver>
<catagory>media</catagory>

</device>
</info>

For more information about the info.xml file, see “The info.xml file” in the
chapter MediaFS Files, Directories and Functions.

Informing MediaFS of state changes
MediaFS expects a slot to have one of the following states:

• unavailable — the slot is not represented in MediaFS

• available — the slot is represented in MediaFS, inside the changer container

• active — the slot is available anda mediastore that can be synchronized and played
is physically present

For example, if a CD changer has six possible mediastore locations, it can be
represented by a changer with any one of slots 0 to 5. If a mediastore is loaded into
slot 0, MediaFS represents it as shown in the figure below:

MediaFS changer representation of a mediastore in slot 0

If the mediastore is ejected from the changer, MediaFS removes its slot representation:

February 3, 2009 Chapter 4 • Media Changers 25



Pr
el

im
in

ar
y

Informing MediaFS of state changes  2009, QNX Software Systems GmbH & Co. KG.

MediaFS changer representation of device with no available mediastores

For files on a mediastore to be synchronized or played, the slot representing the
mediastore in MediaFS must by marked activeas well as available. That is, the device
controller must use the slot’s control file to inform MediaFS not only that the slot is
present, but that a readable disc is physically loaded in the changer and is ready to be
read. Thus, only one changer slot can be active at any one time.

Changer states
To keep MediaFS informed of slot state changes, your device controller must issue the
DCMD_CAM_CDROM_MECHANISM_STATUS device control message to each
changer slot’s control file, as appropriate.
DCMD_CAM_CDROM_MECHANISM_STATUS is a standard control defined in the
sys/cdrom.h header file. The example below shows one way to implement the
DCMD_CAM_CDROM_MECHANISM_STATUS device control command:

#define CDROM_MSH_CHANGER_SET_CURRENT_SLOT( cdrom_status, slot )\
cdrom_status.mech_state &= ˜0x07 ; \
cdrom_status.changer_state_slot &= ˜0x1F ; \
cdrom_status.mech_state |= (slot >> 5) ; \
cdrom_status.changer_state_slot |= (slot & 0x1F) ;

struct _cdrom_mechanism_status cdrom_status ;
struct _cdrom_exchange cdrom_exchange ;

switch(changer.status)
{
case STATUS_EMPTY:

cdrom_status.hdr.mech_state = CDROM_MSH_MECHANISM_IDLE ;
break;

case STATUS_RETRACT:
case STATUS_LOAD:

cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_LOADING ;
break;

case STATUS_UNLOAD:
cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_UNLOADING ;
break;

default:
cdrom_status.hdr.changer_state_slot = CDROM_MSH_CHANGER_READY ;
break;

}

cdrom_status.hdr.num_slots_avail = changer.num_slots ;
cdrom_status.hdr.slot_table_len = changer.num_slots ;

for( index=0; index < changer.num_slots; index++ ) {
if(changer.slotInfo[index].status == DISCIN) {

26 Chapter 4 • Media Changers February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Informing MediaFS of state changes

cdrom_status.str[index].flags |= CDROM_STR_DISC_PRESENT;
}

}

CDROM_MSH_CHANGER_SET_CURRENT_SLOT( cdrom_status.hdr,
changer.active_slot);

February 3, 2009 Chapter 4 • Media Changers 27



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 5

Managing Playback

In this chapter. . .
Requested playback control sequences 31
Managing autonomous playback state changes 35

February 3, 2009 Chapter 5 • Managing Playback 29



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Requested playback control sequences

Playback on media devices may be initiated or changed by:

• a user; that is, a high-level application, such as the MME

• a media device, such as an iPod

This chapter presents the control message sequences and settings that a device
controller may need to support to monitor and manage media playback through
devctl()calls to MediaFS entities. It contains the following sections:

• Requested playback control sequences

• Managing autonomous playback state changes

For a list of MediaFS control messages, see the chapter Playback and Metadata
Messages.

Requested playback control sequences
A media device controller using MediaFS should support client applications issuing
commands to MediaFS entities to start playback of:

• a media file (or track), at the start of the track or at an offset, if the media device
supports playback from an offset

• a directory

• a media device, if the media device supports this action

This section presents the control message sequences and settings required to effect a
playback state change through a devctl()call to a MediaFS entity. It contains:

• Start playback — file or directory

• Start playback — media device

• Fast forward and reverse

• Pause and resume playback

Start playback — file or directory
To start playback for a specific file or directory, the client application should issue, as
required, either the DCMD_MEDIA_PLAY or the DCMD_MEDIA_PLAY_AT device
control message to the MediaFS file or directory to play.

If the file or directory is valid for the media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Start playback of the requested track on the media device.

3 Update the following _media_playback structure members:

February 3, 2009 Chapter 5 • Managing Playback 31



Pr
el

im
in

ar
y

Requested playback control sequences  2009, QNX Software Systems GmbH & Co. KG.

• count— set to the number of tracks that will be played

• index— set to the index of the requested track

• state— set to PLAYBACK_STATE_PLAY

• flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; no other value is permitted

• metaseq— set to 0 (zero)

• length— set to the length of the track, or to 0 (zero) if the track length is not
available

• elapsed— set to 0 (zero) if the DCMD_MEDIA_PLAY message was issued,
or to the track start offset, in seconds, if the DCMD_MEDIA_PLAY_AT
message was issued and is supported

• speed— if the the flagsmember is set to
PLAYBACK_FLAG_SPEED_EXACT, set to 1 (one) only; no other value is
permitted

4 Update the MediaFS current symbolic link (if it is present) to point to the
requested media file.

5 Send an out-of-band notification on the control file.

6 If all operations are successful, reply to the device control message with EOK.

Start playback — media device
Some media devices support playback of the entire device, starting with the first track
in the device, a random track, or at the point where playback was previously stopped.
To start or resume playback of a device, a client application should issue the
DCMD_MEDIA_PLAY device control message to the MediaFS control file.

If this action is valid for the current media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Start playback of the media device.

3 Update the following _media_playback structure members:

• count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

• index— set to the currently playing track if the device provides this
information immediately, or to 0 (zero) if the information is not provided at
this time

• state— set to PLAYBACK_STATE_PLAY

• flags— if the media device supports this feature, set to
PLAYBACK_FLAG_SPEED_EXACT only; no other value is permitted

• metaseq— set to 0 (zero)

32 Chapter 5 • Managing Playback February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Requested playback control sequences

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to 0 (zero)

• speed— set to 1 (one), only if the PLAYBACK_FLAG_SPEED_EXACT flag is
set; no other value is permitted

4 Update the current symbolic link to point to the requested media file. If the
currently playing file is not known at this time, clear the symbolic link.

5 Send an out-of-band notification on the control file.

6 If all operations are successful, reply to the device control message with EOK.

Track information updates

If a media device autonomously indicates the playing track after MediaFS replied to
the DCMD_MEDIA_PLAY device control message that started the playback on the
device, the device controller must perform the following operations, in sequence:

1 Update the following _media_playback structure members:

• count— set to either 1 (one) if only one track will be played, or to the
number of tracks that will be played

• index— set to the currently playing track

• metaseq— increment by 1 (one), if metadata is now available

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to the current track time received from the media device

2 Send an out-of-band notification on the control file.

Fast forward and reverse
The playback speed or direction of a media device represented through MediaFS can
only be changed while the device is in the playing state. To change the playback speed
or direction, or both, the client application should issue the appropriate messages to
the the MediaFS control file.

If the action is valid for the current media device, the device controller must perform
the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Change the playback speed on the media device, as requested.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PLAY (1) flags— set to
PLAYBACK_FLAG_FASTFWD or PLAYBACK_FLAG_FASTRWD, and set to
PLAYBACK_FLAG_SPEED_EXACT if the device supports this feature

• speed— set to the playback speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

February 3, 2009 Chapter 5 • Managing Playback 33



Pr
el

im
in

ar
y

Requested playback control sequences  2009, QNX Software Systems GmbH & Co. KG.

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

For more information about fast forward and reverse control messages, see “Playback
control messages and device status query messages” in the chapter Playback and
Status Messages.

Pause and resume playback
The client application should pause and resume playback on MediaFS devices by
issuing messages to the MediaFS control file.

Pause playback

Playback can only be paused while a device is in the playing state. To pause playback,
a client application should issue the DCMD_MEDIA_PAUSE message to the MediaFS
control file. If this action is valid for the current media device, the device controller
must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Pause playback on the media device.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PAUSE

• speed— set to 0 (zero), only if the PLAYBACK_FLAG_SPEED_EXACT flag
is set

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

Resume playback

Playback can only be resumed while the device is in the paused state. To resume
playback, the client application should issue the DCMD_MEDIA_RESUME message to
the MediaFS control file. If this action is valid for the current media device, the
device controller must perform the following operations, in sequence:

1 Receive the device control message, and validate playback.

2 Resume playback paused on the media device.

3 Update the following _media_playback structure members:

• state— set to PLAYBACK_STATE_PLAY

• speed— set to the device speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

4 Send an out-of-band notification on the control file.

5 If all operations are successful, reply to the device control message with EOK.

34 Chapter 5 • Managing Playback February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Managing autonomous playback state changes

Managing autonomous playback state changes
During playback of a track, a media device may change playback or metadata states
autonomously, independently of any user request. This section describes the actions
that a device controller must perform when it encounters a device-initiated state
change:

• Track change

• Playback state change

• Metadata update

Track change
If a media device autonomously changes tracks, the device controller must perform the
following operations, in sequence:

1 Update the following _media_playback structure members:

• count— set to the number of tracks that will be played

• index— set to the new currently playing track

• metaseq— set to 0

• length— set to the length of the track, or 0 (zero) if the length is unavailable

• elapsed— set to 0 (zero)

2 Update the current symbolic link to point to the new currently playing MediaFS
file.

3 Send an out-of-band notification on the control file.

Playback state change
Some media devices may autonomously pause, stop, or resume playback. If these state
changes occur on a media device, the device controller must perform the following
operations, in sequence:

1 Update the following _media_playback structure members:

• state— set to the new playback state

• speed— set to the device speed, only if the
PLAYBACK_FLAG_SPEED_EXACT flag is set

2 Send an out-of-band notification on the control file.

Metadata update
If a media device supports asynchronous metadata updates it may update the metadata
fro the current playng track. If an update of this type occurs, the device controller must
perform the following operations, in sequence:

February 3, 2009 Chapter 5 • Managing Playback 35



Pr
el

im
in

ar
y

Managing autonomous playback state changes  2009, QNX Software Systems GmbH & Co. KG.

1 Update the following _media_playback structure member:

• metaseq— increment by 1 (one)

2 Send an out-of-band notification on the control file.

Any susequent client application requests for metadata through a device control
message to a MediaFS entity will deliver the new metadata received from the media
device.

36 Chapter 5 • Managing Playback February 3, 2009



Pr
el

im
in

ar
y Chapter 6

Device Messages

In this chapter. . .
Using device control messages 39
Device configuration messages 40
iPod, UPnP device and streaming messages 41

February 3, 2009 Chapter 6 • Device Messages 37



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Using device control messages

This chapter describes the MediaFS device control messages and how to use them. It
contains the following sections:

• Using device control messages

• Device configuration messages

• iPod, UPnP device, and streaming messages

• The MediaFS device control messages, constants and data structures are defined in
the header file io-fs/lib/public/sys/dcmd_media.h.

• If a buffer is required for a command message, the buffer is described with the
message in this documentation, using the following template as “Buffer:
description”. If the control message does not require a buffer, then no buffer
description is presented in documentation.

• For information about how to use MediaFS device control messages, see “Using
device control messages” below.

• For information about the messages used to retrieve album art, see “Album art
retrieval messages” in the chapter Getting Album Art.

Using device control messages
MediaFS device control messages can be applied to open files and directories in the
MediaFS filesystem to:

• query media devices for their states and playback information

• initiate actions against media files, such as start, pause and stop playback, skip to
the next or previous file, or change random and repeat mode settings

• retrieve file metadata

• extract album art and other images

Control messages are applied by calls to the devctl()function. When a control
message is applied to a MediaFS entity, the filesystem routes the message to the
appropriate device driver. The device driver must:

• apply the requested action to the underlying media device

• return to the calling application the the result of the action

All state modification control messages must be synchronous. A requested action must
either complete or fail before returning. For example, if the state modifier
DCMD_MEDIA_PLAY message is issued, upon return of the devctl()call, the
underlying device must be in a playing state, or have returned a POSIX error
indicating why the command failed.

February 3, 2009 Chapter 6 • Device Messages 39



Pr
el

im
in

ar
y

Device configuration messages  2009, QNX Software Systems GmbH & Co. KG.

As with other directories and files, an application must open a MediaFS directory or
file with, respectively, the opendir()and open()functions before it can us devctl()to
issue control messages to them.

To pass data to and receive data from media devices, a client application should use
the devctl() dev_data_ptr and dev_info_ptr arguments to point to the appropriate
_media_* data structures. These structures are described in the chapter Playback
Structures and Constants.

For a list of POSIX functions that MediaFS supports, see “Required POSIX function
support” in the chapter MediaFS Structure. For more information about the functions,
such as open()and devctl(), used to control devices, see the QNX Neutrino Library
Reference.

• MediaFS command messages are defined in the header file sys/dcmd_media.h.

• If a buffer is required for a command message, the buffer is described with the
message in this documentation, using the following template: “Buffer:
description”. If the control message does not require a buffer, then no buffer
description is presented in documentation.

Device configuration messages
This section describes the device messages defined to get and set device
configurations. These message are:

• DCMD_MEDIA_GET_XML

• DCMD_MEDIA_SET_XML

DCMD_MEDIA_GET_XML

DCMD_MEDIA_GET_XML returns an XML configuration string (UTF-8) with the
device configuration information. See also the chapter MediaFS Entities.

Buffer: char[1]

DCMD_MEDIA_SET_XML

DCMD_MEDIA_SET_XML expects a buffer containing a terminated xpath string
followed by a terminated value string; that is, the element or attribute to modify, and
its new value.

Buffer: char[1]

40 Chapter 6 • Device Messages February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

DCMD_MEDIA_GET_XML and DCMD_MEDIA_SET_XML use a common
configuration layout that becomes specific for each device. For example:

<device api_version="1">
<media>

<interface type="usb" ... />
<DeviceSpecificString>
.... Device specific settings
</DeviceSpecificString>

</media>
</device>

See also the chapter MediaFS Entities.

iPod, UPnP device and streaming messages
This section describes the device control messages defined to obtain information from
and manage iPod and UPnP devices, and media streams. These message are:

• Common messages

• iPod device messages

• UPnP device messages

• Media stream messages

• DRM management messages

Most devices do not support the full set of control messages. If a message is not
supported by the media device the requested action, the device controller must return
the error code ENOTSUP (command invalid for this device).

Common messages
This section describes the device control messages that can be used to obtain
information from and manage iPod devices, UPnP devices, DRM, and media streams.
These messages are:

• DCMD_MEDIA_CONFIG

• DCMD_MEDIA_GET_DEVINFO

DCMD_MEDIA_CONFIG

DCMD_MEDIA_CONFIG issues a configuration setting to a media device.

Buffer: char[1]

February 3, 2009 Chapter 6 • Device Messages 41



Pr
el

im
in

ar
y

iPod, UPnP device and streaming messages  2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_GET_DEVINFO

DCMD_MEDIA_GET_DEVINFO requests information about a media device.

Buffer: char[8*1024]

iPod device messages
This section describes the device control messages defined to obtain information from
and manage iPod devices. These message are:

• DCMD_MEDIA_IPOD_DAUDIO

• DCMD_MEDIA_IPOD_CAP

• DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_DAUDIO

DCMD_MEDIA_IPOD_DAUDIO is used to iPod audio settings from an iPod device.
This information is carried in the _media_ipod_daudio data structure

Buffer: struct _media_ipod_daudio

DCMD_MEDIA_IPOD_CAP

DCMD_MEDIA_IPOD_CAP retrieves capabilities information from an iPod device.

Buffer: char[1]

DCMD_MEDIA_IPOD_TAG

DCMD_MEDIA_IPOD_TAG is used to write an iTunes tag on a file on an iPod device.

Buffer: uint8_t[1]

UPnP device messages
This section describes the device control messages defined to obtain information from
and manage UPnP devices. These message are:

• DCMD_MEDIA_UPNP_CDS_BROWSE

DCMD_MEDIA_UPNP_CDS_BROWSE

DCMD_MEDIA_UPNP_CDS_BROWSE browses a mediastore on a device that uses the
UPnP protocol.

Buffer: char[8]

Media stream messages
This section describes the device control messages defined to obtain information from
and manage media streams. These message are:

• DCMD_MEDIA_CLOSE_STREAM

42 Chapter 6 • Device Messages February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. iPod, UPnP device and streaming messages

• DCMD_MEDIA_INFO_STREAM

• DCMD_MEDIA_OPEN_STREAM

• DCMD_MEDIA_READ_STREAM

• DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_CLOSE_STREAM

DCMD_MEDIA_CLOSE_STREAM closes a media stream.

DCMD_MEDIA_INFO_STREAM

DCMD_MEDIA_INFO_STREAM retrieves information about a media stream. This
information must be placed in a _media_stream_info structure.

Buffer: struct _media_stream

DCMD_MEDIA_OPEN_STREAM

DCMD_MEDIA_OPEN_STREAM opens a media stream.

DCMD_MEDIA_READ_STREAM

DCMD_MEDIA_READ_STREAM reads a media stream into a buffer. Before a stream
can be read, it must be opened with a DCMD_MEDIA_OPEN_STREAM message and
set with a DCMD_MEDIA_SET_STREAM message.

Buffer: char[16*1024-1]

DCMD_MEDIA_SET_STREAM

DCMD_MEDIA_SET_STREAM sets the media stream that will be read by calls to
devctl()with the DCMD_MEDIA_READ_STREAM message.

Buffer: unsigned int

DRM management messages
This section describes the device control messages defined to obtain information about
and apply DRM (Digital Rights Management) to media. These message are:

• DCMD_MEDIA_DRM_CHALLENGE

• DCMD_MEDIA_DRM_IS_AUTH

• DCMD_MEDIA_DRM_LICENSE

• DCMD_MEDIA_DRM_PROXIMTY

• DCMD_MEDIA_DRM_REGISTER

February 3, 2009 Chapter 6 • Device Messages 43



Pr
el

im
in

ar
y

iPod, UPnP device and streaming messages  2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_DRM_CHALLENGE

DCMD_MEDIA_DRM_CHALLENGE negotiates DRM access to a DRM protected
media file.

Buffer: char[8*1024]

DCMD_MEDIA_DRM_IS_AUTH

DCMD_MEDIA_DRM_IS_AUTH requests and receives DRM authorization to play a
DRM protected media file.

Buffer: char[8*1024]

DCMD_MEDIA_DRM_LICENSE

DCMD_MEDIA_DRM_LICENSE sends and receive DRM licence information required
to obtain authorization to play a DRM protected media file.

Buffer: char[8*1024]

DCMD_MEDIA_DRM_PROXIMTY

DCMD_MEDIA_DRM_PROXIMTY sends and receive device proximity information
when negotiating authorization to play a DRM protected media file.

Buffer: char[8*1024]

DCMD_MEDIA_DRM_REGISTER

DCMD_MEDIA_DRM_REGISTER sends and receive registration information when
negotiating authorization to play a DRM protected media file.

Buffer: char[8*1024]

44 Chapter 6 • Device Messages February 3, 2009



Pr
el

im
in

ar
y Chapter 7

Playback Messages

February 3, 2009 Chapter 7 • Playback Messages 45



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

This chapter describes the MediaFS device control messages that can be passed to the
devctl()to control playback on and get state information from media devices accessed
and managed through MediaFS. These message are:

• DCMD_MEDIA_FASTFWD

• DCMD_MEDIA_FASTRWD

• DCMD_MEDIA_GET_REPEAT

• DCMD_MEDIA_GET_SHUFFLE

• DCMD_MEDIA_GET_STATE

• DCMD_MEDIA_NEXT_CHAP

• DCMD_MEDIA_NEXT_TRACK

• DCMD_MEDIA_PAUSE

• DCMD_MEDIA_PLAY

• DCMD_MEDIA_PLAY_AT

• DCMD_MEDIA_PLAYBACK_INFO

• DCMD_MEDIA_PLAYBACK_STATUS

• DCMD_MEDIA_PREV_CHAP

• DCMD_MEDIA_PREV_TRACK

• DCMD_MEDIA_RESUME

• DCMD_MEDIA_SEEK_CHAP

• DCMD_MEDIA_SET_REPEAT

• DCMD_MEDIA_SET_SHUFFLE

• DCMD_MEDIA_SET_STATE

Playback control and device status messages can be issued to the MediaFS control

file only.

The exceptions to this rule are:

• the DCMD_MEDIA_PLAY message, which can be issued to:

- the MediaFS control file

- a MediaFS file or directory

- any other file

- a directory, if the device supports directory playback

February 3, 2009 Chapter 7 • Playback Messages 47



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

• the DCMD_MEDIA_PLAY_AT message, which can be issued to:

- a MediaFS file

• Most devices do not support the full set of control messages. If a message is not
supported by the media device the requested action, the device controller must
return the error code ENOTSUP (command invalid for this device).

• All state modification control messages must be synchronous; the requested action
must either complete or fail before returning.

For example, if the state modifier DCMD_MEDIA_PLAY is issued, upon return of
the devctl()< call, the underlying device must be in a playing state, or have returned
a POSIX error indicating why the command failed.

DCMD_MEDIA_FASTFWD

DCMD_MEDIA_FASTFWD instructs the media device to go to the fast forward speed
specified by the rate member of the _media_speed structure. Behavior when this
message is issued to a media device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device’s capabilities and
characteristics.

Buffer: struct _media_speed

DCMD_MEDIA_FASTRWD

DCMD_MEDIA_FASTRWD instructs the media device to go to the fast reverse speed
specified by the _media_speed data structure’s rate member. Behavior when this
message is issued to a media device that is not in a playing state is device dependent:
the request may succeed or fail, depending on the media device’s capabilities and
characteristics.

Buffer: struct _media_speed

DCMD_MEDIA_GET_REPEAT

DCMD_MEDIA_GET_REPEAT queries the media device for its current repeat
playback mode. Defined repeat modes are:

• REPEAT_OFF

• REPEAT_ONE_TRACK

• REPEAT_ALL_TRACKS

• REPEAT_FOLDER

• REPEAT_SUBFOLDER

On success, the call must return the current device repeat mode, in the
_media_settings data structure’s valuemember.

48 Chapter 7 • Playback Messages February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

Buffer: struct _media_settings

DCMD_MEDIA_GET_SHUFFLE

DCMD_MEDIA_GET_SHUFFLE queries the media device for its current random
playback mode. Defined random modes are:

• SHUFFLE_OFF

• SHUFFLE_TRACKS

• SHUFFLE_ALBUMS

• SHUFFLE_FOLDER

• SHUFFLE_SUBFOLDER

On success, the call must return the current device random mode, in the
_media_settings data structure’s valuemember.

Buffer: struct _media_settings

DCMD_MEDIA_GET_STATE

DCMD_MEDIA_GET_STATE queries the media device for its current settings and
returns the data in the _media_settings data structure. This data can be used at a
later time to restore playback to the state at the time of the query.

Buffer: uint8_t[1]

DCMD_MEDIA_NEXT_CHAP

DCMD_MEDIA_NEXT_CHAP instructs the media device to skip forward to the next
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

DCMD_MEDIA_NEXT_TRACK

DCMD_MEDIA_NEXT_TRACK instructs the media device to skip forward to the next
file in its playlist. Behavior when this message is issued to a media device that is not in
a playing state is device dependent: the request may succeed or fail, depending on the
media device’s capabilities and characteristics.

DCMD_MEDIA_PAUSE

DCMD_MEDIA_PAUSE instructs the media device to pause playback of the current
file. Issuing this message always causes a “pause” instruction to be sent to the media
device, even when playback is already in a paused state.

February 3, 2009 Chapter 7 • Playback Messages 49



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_PLAY

DCMD_MEDIA_PLAY directs a media device to start playback. Behavior depends on
the entity to which this message is issued, as follows:

• file — start or resume playback of the current file

• directory — start or resume playback of the file in the directory, as specified by the
media device

• control file — start or resume playback of a track determined by the media device

All media devices must support this capability, as it is fundamental to executing
playback.

DCMD_MEDIA_PLAY_AT

DCMD_MEDIA_PLAY_AT instructs the media device to start playback at a specified
time offset in a file. This play time offset is set in the _media_play data structure.

Buffer: struct _media_play

DCMD_MEDIA_PLAYBACK_INFO

DCMD_MEDIA_PLAYBACK_INFO queries the media device for its current playback
information and returns the data in the _media_playback data structure.

All media devices must support this capability, as it is fundamental to executing
playback.

Buffer: struct _media_playback

DCMD_MEDIA_PLAYBACK_STATUS

DCMD_MEDIA_PLAYBACK_STATUS queries the media device for its current
playback status and returns the data in the _media_playback_status data
structure.

All media devices must support this capability, as it is fundamental to executing
playback.

Buffer: struct _media_playback_status

DCMD_MEDIA_PREV_CHAP

DCMD_MEDIA_PREV_CHAP instructs the media device to skip back to the previous
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

DCMD_MEDIA_PREV_TRACK

DCMD_MEDIA_PREV_TRACK instructs the media device to skip backward to the
previous file in its playlist. Behavior when this message is issued to a media device
that is not in a playing state is device dependent: the request may succeed or fail,
depending on the media device’s capabilities and characteristics.

50 Chapter 7 • Playback Messages February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_RESUME

DCMD_MEDIA_RESUME instructs the media device to resume the playback of the
current file. Issuing this message always causes a “resume” instruction to be sent to
the media device, even when playback has already resumed.

DCMD_MEDIA_SEEK_CHAP

DCMD_MEDIA_SEEK_CHAP instructs the media device to seek to the specified
chapter in a video. Behavior when this message is issued to a media device that is not
in a playing state is device dependent: the request may succeed or fail, depending on
the media device’s capabilities and characteristics.

Buffer: uint32_t

DCMD_MEDIA_SET_REPEAT

DCMD_MEDIA_SET_REPEAT sets the repeat mode on the media device. For a list of
defined repeat modes, see DCMD_MEDIA_GET_REPEAT above.

Buffer: struct _media_settings

DCMD_MEDIA_SET_SHUFFLE

DCMD_MEDIA_SET_SHUFFLE sets the random (shuffle) mode on the media device,
changing the playback order. For a list of defined random modes, see
DCMD_MEDIA_GET_SHUFFLE above.

Buffer: struct _media_settings

DCMD_MEDIA_SET_STATE

DCMD_MEDIA_SET_STATE restores the playback settings on the media device to the
values stored in the _media_settings data structure by a devctl()call with the
DCMD_MEDIA_GET_STATE message.

Buffer: uint8_t[1]

February 3, 2009 Chapter 7 • Playback Messages 51



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 8

Metadata Messages

February 3, 2009 Chapter 8 • Metadata Messages 53



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

This chapter describes the MediaFS device control messages defined to obtain media
file metadata from a media device accessed and managed through MediaFS or outside
MediaFS. These message are:

• DCMD_MEDIA_ALBUM

• DCMD_MEDIA_ARTIST

• DCMD_MEDIA_COMMENT

• DCMD_MEDIA_COMPOSER

• DCMD_MEDIA_DURATION

• DCMD_MEDIA_GENRE

• DCMD_MEDIA_NAME

• DCMD_MEDIA_PUBLISHER

• DCMD_MEDIA_RELEASE_DATE

• DCMD_MEDIA_SONG

• DCMD_MEDIA_TRACK_NUM

• DCMD_MEDIA_URL

Metadata retrieval messages to can be issued to:

• the MediaFS control file

• files entries in the MediaFS playback directory

• the current symbolic link

• any file not in the .FS_info. directory

Behavior of metadata requests

Metadata retrieved by a call to devctl()with a DCMD_MEDIA_* metadata retrieval
message is returned as a NULL-terminated string.

Return

If the queried media device does no support the requested metadata query, the devctl()
call with the DCMD_MEDIA_* metadata query message returns ENOTSUP.

Metadata for the currently playing file

To request metadata for the currently playing media file, use a metadata retrieval
message with a call to the MediaFS control file, or to the current symbolic link.

Successful completion of a devctl()call with a metadata retrieval device control
message to the control file, or to the current symbolic link retrieves the requested
metadata for the currently playingfile.

February 3, 2009 Chapter 8 • Metadata Messages 55



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

Metadata for a specified file

To request metadata for a specific media file, use a metadata retrieval message with a
call to that file.

Successful completion of a devctl()call with a metadata retrieval device control
message to a file that is not the MediaFS control file or the current symbolic link
retrieves the requested metadata for the specifiedfile.

DCMD_MEDIA_ALBUM

DCMD_MEDIA_ALBUM queries a file for its album metadata, which the call returns
in a NULL-terminated string. An empty string is valid if the album metadata is not
known.

Buffer: char[1]

DCMD_MEDIA_ARTIST

DCMD_MEDIA_ARTIST queries a file for its artist metadata, which the call returns in
a NULL-terminated string. An empty string is valid if the artist metadata is not knowm.

Buffer: char[1]

DCMD_MEDIA_COMMENT

DCMD_MEDIA_COMMENT queries a file for its comment metadata, which the call
returns in a NULL-terminated string. An empty string is valid if there is no track
comment metadata.

Buffer: char[1]

DCMD_MEDIA_COMPOSER

DCMD_MEDIA_COMPOSER

DCMD_MEDIA_COMPOSER queries a file for its composer metadata, which the call
returns in a NULL-terminated string. An empty string is valid if the composer
metadata is not known.

Buffer: char[1]

DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION

DCMD_MEDIA_DURATION queries a file for its duration, which the call returns as an
unsigned integer indication the track duration, ins seconds.

Buffer: char[1]

DCMD_MEDIA_GENRE

DCMD_MEDIA_GENRE queries a file for its genre metadata, which the call returns in
a NULL-terminated string. An empty string is valid if the genre metadata is not known.

Buffer: char[1]

56 Chapter 8 • Metadata Messages February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG.

DCMD_MEDIA_NAME

DCMD_MEDIA_NAME queries a file for its name, which the call returns in a
NULL-terminated string. An empty string is valid if the name is not known.

Buffer: char[1]

DCMD_MEDIA_PUBLISHER

DCMD_MEDIA_PUBLISHER queries a file for its publisher metadata, which the call
returns in a NULL-terminated string. An empty string is valid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_RELEASE_DATE

DCMD_MEDIA_RELEASE_DATE queries a file for its release data metadata, which
the call returns in the _media_date data structure.

Buffer: char[1]

DCMD_MEDIA_SONG

DCMD_MEDIA_SONG queries a file for the song title, which the call returns in a
NULL-terminated string.

Buffer: char[1]

DCMD_MEDIA_TRACK_NUM

DCMD_MEDIA_TRACK_NUM queries a file for its track number, which the call
returns in a NULL-terminated string. An empty string is valid if the track number is
not known.

Buffer: char[1]

DCMD_MEDIA_URL

DCMD_MEDIA_URL gets the URL for a media file.

Buffer: char[1]

February 3, 2009 Chapter 8 • Metadata Messages 57



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 9

Playback Structures and Constants

In this chapter. . .
Playback structures 61
Playback constants 66
iPod structures 69

February 3, 2009 Chapter 9 • Playback Structures and Constants 59



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

Thsi chapter describes MediaFS structures and constants used for playback monitoring
and control:

• Playback structures

• Playback constants

• iPod structures

Playback structures
MediaFS uses the following data structures to report and control playback information
of files in the MediaFS framework:

• _media_date

• _media_play

• _media_playback

• _media_playback_status

• _media_settings

• _media_speed

• _media_stream_info

_media_date
struct _media_date {

uint16_t year;
uint8_t second;
uint8_t minutes;
uint8_t hours;
uint8_t day;
uint8_t month;
uint8_t weekday;
char text[40];

}

The _media_date structure contains track date information. It is populated and
returned by devctl()when it successfully issues a DCMD_MEDIA_RELEASE_DATE
message to a MediaFS file.

Member Type Description

year uint16_t The release date year, in four digit format (0000-9999).

second uint8_t The release date second, in two digit format (00-59).

continued. . .

February 3, 2009 Chapter 9 • Playback Structures and Constants 61



Pr
el

im
in

ar
y

Playback structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

minutes uint8_t The release date minute, in two digit format (00-59).

hours uint8_t The release date hour, in two digit format (00-59).

day uint8_t The release date day, in two digit format (01-31).

month uint8_t The release date month, in two digit format (01-12).

weekday uint8_t The release date day of the week, in one digit format
(0-6), starting with 0 for Sunday to 6 for Saturday.

text char A free-form, NULL text field for date information for use
with devices that cannot store date specifics. Maximum
length is 39 characters. If this field is used, all other fields
in this structure must be set to 0 (zero).

_media_play
struct _media_play {

unsigned pos;
};

The _media_play structure is used in combination with the
DCMD_MEDIA_PLAY_AT command to set the starting play position. It includes at
least the members described in the table below.

Member Type Description

pos unsigned The offset in seconds from time zero at which to start
playback.

_media_playback
struct _media_playback {

uint32_t count;
uint32_t index;
uint8_t state;
uint8_t flags;
uint16_t metaseq;
uint32_t length;
uint32_t elapsed;
uint32_t speed

};

The _media_playback structure has been deprecated and replaced by
_media_playback_status.

62 Chapter 9 • Playback Structures and Constants February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

_media_playback_status
struct _media_playback_status {

uint32_t flags;
uint32_t state;
uint32_t speed;
uint32_t trkidx_total;
uint32_t trkidx_current;
uint32_t trkpos_total;
uint32_t trkpos_current;
uint32_t chpidx_total;
uint32_t chpidx_current;
uint32_t chppos_total;
uint32_t chppos_start;
uint32_t metaseq;
uint32_t reserved[4];

};

The _media_playback_status structure contains information about the current
playback state of the device. It is returned when a DCMD_MEDIA_PLAYBACK
message is sent to the control file. Any change to any element in this structure must
trigger a notification event on the MediaFS control file. The
_media_playback_status structure includes at least the members described in the
table below.

For more information about possible values for playback states and flags values, see
“Media playback constants” below.

Member Type Description

flags uint32_t Flags to indicate the playback speed status as well
as other information about a media file. See “The
flagsand speedmembers” and “Media playback
constants” below.

state uint32_t The current playback state of the device. Must be
one of PLAYBACK_STATE_STOP,
PLAYBACK_STATE_PLAY or
PLAYBACK_STATE_PAUSE. This value must be
updated on a device playback state change. See
“Media playback constants” below.

speed uint32_t The playback speed. This value is valid only if the
PLAYBACK_FLAG_FASTFWD or the
PLAYBACK_FLAG_FASTRWD flag is set. See “The
flagsand speedmembers” below.

trkidx_total uint32_t The total number of tracks in the playback list.

trkidx_current uint32_t The index reference for the currently playing track.

continued. . .

February 3, 2009 Chapter 9 • Playback Structures and Constants 63



Pr
el

im
in

ar
y

Playback structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

trkpos_total uint32_t The length of the currently playing track, in
milliseconds. Set to 0 if the track length is not
known.

trkpos_current uint32_t The current position in the currently playing track,
in milliseconds.

chpidx_total uint32_t The total number of chapters in the current media
item. Set to 0 (zero) if there are no chapters.

chpidx_current uint32_t The index reference for the currently playing
chapter.

chppos_total uint32_t The length of the currently playing chapter, in
milliseconds. Set to -1 if the chapter length is not
known.

chppos_start uint32_t The offset, in milliseconds, from the start of the
chapter from which to start playback of the chapter.
Set to -1 if this offset is not known.

metaseq uint32_t A sequence number that changes if metadata values
have changed during playback of the current track.

reserved[4] uint32_t Reserved for future use.

The flags and speed members

The value of the flagsmember can be one of:

• 0 (zero)

• PLAYBACK_FLAG_FASTFWD (0x01)

• PLAYBACK_FLAG_FASTRWD (0x02)

• PLAYBACK_FLAG_SPEED_EXACT (0x04)

• PLAYBACK_FLAG_EVENTS (0x08)

• PLAYBACK_FLAG_ALBART (0x10)

• PLAYBACK_FLAG_IS_VIDEO (0x20)

If flagsis non-zero and the media device supports an indication of the exact playback
speed, then PLAYBACK_FLAG_SPEED_EXACT flag can be set.

The speedmember is updated on a playback speed change: 0 means paused, and 1
(one) means normal playback speed. The value of speedis only valid if the
PLAYBACK_FLAG_SPEED_EXACT flag is set. If the
PLAYBACK_FLAG_SPEED_EXACT flag is not set in the flagsmember, speedshould
be set to 0 (zero).

64 Chapter 9 • Playback Structures and Constants February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Playback structures

You should combine the PLAYBACK_FLAG_* values to set the flagsmember.
See also “Media playback constants” below.

_media_settings
struct _media_settings {

uint8_t value
};

The _media_setting structure is used in conjunction with the
DCMD_MEDIA_GET_SHUFFLE, DCMD_MEDIA_SET_SHUFFLE,
DCMD_MEDIA_GET_REPEAT and DCMD_MEDIA_SET_REPEAT device control
messages. It contains the repeat or random mode setting for the device, and includes at
least the members described in the table below.

Member Type Description

value uint8_t The repeat or random mode value for the device.

Separate messages must be issued for getting and setting random and repeat modes;
that is, it is not possible to get or set both the random and the repeat mode with one
devctl()call. See also “Repeat and random mode setting constants” below.

_media_speed
struct _media_speed {

unsigned rate;
};

The _media_speed structure is used to set the current playback speed of the media
device. The rate is a multiplication factor, where 1 (one) is normal playback speed.
Valid values are 1, 2, 4, 8, 16 and 32.

This structure is used in conjunction with the DCMD_MEDIA_FASTFWD and
DCMD_MEDIA_FASTRWD commands. It includes at least the members described in
the table below.

Member Type Description

rate unsigned The playback speed multiplication factor; 1
(one) is normal speed.

_media_stream_info
struct _media_stream_info {

unsigned char is_DRM;
unsigned char seek_supported;
unsigned char unused[2];
uint32_t reserved;
uint64_t stream_length;

};

February 3, 2009 Chapter 9 • Playback Structures and Constants 65



Pr
el

im
in

ar
y

Playback constants  2009, QNX Software Systems GmbH & Co. KG.

The _media-stream_info structure is used to carry information that affects how a
media stream can be played. It includes at least the members described in the table
below:

Member Type Description

is_DRM char Indicate if the media stream is DRM (Digital
Rights Management) protected. Set to either Y
(protected) or N (not protected).

seek_supported char Indicate if the media stream supports seek
capabilities. Set to either Y (supported) or N (not
supported).

unused[2] char Reserved for future use.

reserved uint32_t Reserved for future use.

stream_length uint64_t The length of the media stream, in bytes. Set to
MEDIA_STREAM_LENGTH_UNKNOWN if the
media stream length is not known.

Playback constants
The tables below list the constants defined in dcmd_media.h for playback monitoring
and control.

Media playback constants
The PLAYBACK_FLAG_* and PLAYBACK_STATE_* constants are defined in the
structure _media_playback_status; they set or describe playback states.

Constant Value Description

PLAYBACK_FLAG_FASTFWD 0x01 Playback is in fast forward mode;
the DCMD_MEDIA_FASTFWD
control message has been applied,
and playback speed is set to a
number other than 1 (one).

PLAYBACK_FLAG_FASTRWD 0x02 Playback is in fast rewind mode; the
DCMD_MEDIA_FASTRWD control
message has been applied, and
playback speed is set to a number
other than 1 (one).

continued. . .

66 Chapter 9 • Playback Structures and Constants February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Playback constants

Constant Value Description

PLAYBACK_FLAG_SPEED_EXACT 0x04 The playback speed is the exact
device speed; otherwise the
playback speed is the value set with
a DCMD_MEDIA_FAST*WD
control message.

PLAYBACK_FLAG_EVENTS 0x08 Events are waiting to be retrieved
from the event queue.

PLAYBACK_FLAG_ALBART 0x10 Album art is available to be read by
a call with the
DCMD_MEDIA_ALBART_READ
control message.

PLAYBACK_FLAG_IS_VIDEO 0x20 Video is currently playing.

PLAYBACK_STATE_STOP 0 Playback is stopped.

PLAYBACK_STATE_PLAY 1 Playback is underway (not paused
or stopped).

PLAYBACK_STATE_PAUSE 2 Playback is paused.

Repeat and random mode setting constants
The REPEAT_* and SHUFFLE_* constants set or describe playback repeat and random
mode settings. The REPEAT_* values should be used with the
DCMD_MEDIA_*_REPEAT messages, and the SHUFFLE_* should be used with the
DCMD_MEDIA_*_SHUFFLE messages.

Constant Value Description

REPEAT_OFF 0 Repeat mode is off.

REPEAT_ONE_TRACK 1 Repeat the current track only.

REPEAT_ALL_TRACKS 2 Repeat all tracks.

REPEAT_FOLDER 3 Repeat all tracks in the folder.

REPEAT_SUBFOLDER 4 Repeat all tracks in the subfolder.

SHUFFLE_OFF 0 Random mode is off.

SHUFFLE_TRACKS 1 Play all tracks in pseudo-random order.

SHUFFLE_ALBUMS 2 Play all albums in pseudo-random order. The
playback order of the tracks depends on
whether SHUFFLE_TRACKS is set.

continued. . .

February 3, 2009 Chapter 9 • Playback Structures and Constants 67



Pr
el

im
in

ar
y

Playback constants  2009, QNX Software Systems GmbH & Co. KG.

Constant Value Description

SHUFFLE_FOLDER 3 Play all tracks in the folder in pseudo-random
order.

SHUFFLE_SUBFOLDER 4 Play all tracks in the subfolder in
pseudo-random order.

Media stream constants
The MEDIA_STREAM_* constants set or describe media streams.

Constant Value Description

MEDIA_STREAM_LENGTH_UNKNOWN -1 The media stream length is
not known.

Media type strings
The table below lists common media type strings used in the info.xml file’s
<media>/<type> element to describe the mediastore. These mediastore types are
consistent with the mediastore types defined by the MME’s MME_STORAGETYPE_*
constants in order to map type to string.

Constant Value Description

IOFS_MEDIA_TYPE_UNKNOWN “UNKNOWN” Unknown storage type

IOFS_MEDIA_TYPE_AUDIOCD “AUDIOCD” Audio CD

IOFS_MEDIA_TYPE_VCD “VCD” Video CD

IOFS_MEDIA_TYPE_SVCD “SVCD” Super Video CD

IOFS_MEDIA_TYPE_FS “FS” RAM disc

IOFS_MEDIA_TYPE_DVDAUDIO “DVDAUDIO” Audio DVD

IOFS_MEDIA_TYPE_DVDVIDEO “DVDVIDEO” Video DVD

IOFS_MEDIA_TYPE_IPOD “IPOD” iPod device

IOFS_MEDIA_TYPE_KODAKCD “KODAKCD” Kodak picture CD

IOFS_MEDIA_TYPE_PICTURECD “PICTURECD” Other picture CD

IOFS_MEDIA_TYPE_A2DP “A2DP” A2DP protocol for
Bluetooth

continued. . .

68 Chapter 9 • Playback Structures and Constants February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. iPod structures

Constant Value Description

IOFS_MEDIA_TYPE_SMB “SMB” IOFS_MEDIA_TYPE_FS

IOFS_MEDIA_TYPE_FTP “FTP” Internet FTP connection

IOFS_MEDIA_TYPE_HTTP “HTTP” Internet HTTP connection

IOFS_MEDIA_TYPE_NAVIGATION “NAVIGATION” Navigation CD or DVD.

IOFS_MEDIA_TYPE_PLAYSFORSURE “PFS” PlaysForSure and similar
devices.

IOFS_MEDIA_TYPE_UPNP “UPNP” Devices using UPnP
protocol.

iPod structures
MediaFS uses the following data structures to manage iPod devices:

• _media_ipod_daudio

_media_ipod_daudio
struct _media_ipod_daudio {

unsigned rate;
int sndchk;
int voladj;
unsigned reserved;

};

The _media_ipod_daudio structure is used to carry information about an iPod’s
capabilities, and instructions to be applied to the iPod. I includes at least the following
members:

Member Type Description

rate unsigned The sample rate, in Hertz, for the media on the device.
Standard values are 32000, 44100 and 48000; some
devices also support 8000, 11025, 12000, 16000, 22050
or 24000 Hertz.

sndchk int The device sound check value, as gain in decibels plus or
minus. If the sound check capabilitiy is disabled on the
device, this value must be set to 0.

voladj int The device volume adjustment, a gain in decibels plus or
minus.

reserved unsigned Reserved for future use.

February 3, 2009 Chapter 9 • Playback Structures and Constants 69



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 10

Getting Album Art

In this chapter. . .
How to retrieve album art 73
Album art messages 73
Album art structures 75
Album art constants 76

February 3, 2009 Chapter 10 • Getting Album Art 71



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. How to retrieve album art

MediaFS supports retrieval of album art associated with media files, if this capability
is supported by the media device:

• How to retrieve album art

• Album art messages

• Album art structures

• Album art constants

How to retrieve album art
To retrieve album art associated with a media file, a high-level multimedia application,
such as the MME, application and the device driver must perform the following steps
in sequence:

1 Client application: Issue a DCMD_MEDIA_ALBART_INFO message to the
MediaFS control file, or to another specified file to find out if there is artwork
associated with the file.

Device controller: Retrieve the required information from the device and return
it in the _media_albart_entry data structure. If artwork is available, set the
appropriate values in this structure’s flag and posmembers.

2 Client application: If artwork is available, issue a
DCMD_MEDIA_ALBART_LOAD message.

Device controller: Complete and return the _media_albart_entry structure
with the image description, so that the client application can know the size of
the image and prepare to read it.

3 Client application: Issue DCMD_MEDIA_ALBART_READ messages to read
the artwork and place it in a buffer, managing the returned image blocks and
using them to reconstruct the image after the complete image has been read.

Device controller: Retrieve as requested the artwork in blocks from the media
device, returning to the client application, as apporpriate, one of:

• the number of bytes sent, if part of the image data had been sent

• EAGAIN, if the device is still in the process of sending the image block and
the client application needs to try again to get the next image block

• ENODATA, if the entire image has been read and there is no more data to send

Album art messages
To support album art retrieval, a device controller must support the following control
messages from a higher-level application:

• DCMD_MEDIA_ALBART_INFO

• DCMD_MEDIA_ALBART_LOAD

February 3, 2009 Chapter 10 • Getting Album Art 73



Pr
el

im
in

ar
y

Album art messages  2009, QNX Software Systems GmbH & Co. KG.

• DCMD_MEDIA_ALBART_READ

If the queried media device does no support the album art retrieval, the devctl()call
with the DCMD_MEDIA_ALBART_* message returns ENOTSUP.

DCMD_MEDIA_ALBART_INFO

The DCMD_MEDIA_ALBART_INFO message is used to query a media file for the
presence of album artwork. The album art information for the file is placed in the
_media_albart_entry data structure.

On success, a call to devctl()with this message returns the number or entries in the
array with the album artwork.

Buffer: _media_albart_entry

DCMD_MEDIA_ALBART_LOAD

The DCMD_MEDIA_ALBART_LOAD message is used to retrieve the index
information for a file whose album artwork is to be retrieved. The requested
information is placed in the _media_albart_entry data structure.

On success, a call to devctl()with this message returns the index for the specified file.

Buffer: _media_albart_entry

DCMD_MEDIA_ALBART_READ

The DCMD_MEDIA_ALBART_READ message is used to read an album artwork
image. The read process starts with the devctl()call with the
DCMD_MEDIA_ALBART_READ message and ends when the entire image has been
read.

Image data is read only once and returned; once a portion of an image has been read
and returned, it is not returned again. The device control must manage reading data
blocks from the device, and the calling application must manage the returned data
blocks until the entire image has read and can be passed up to an HMI application for
display.

The total size of the image, in bytes, and other image information is placed in the
_media_img_desc data structure.

When a call to devctl()with the DCMD_MEDIA_ALBART_READ message completes
the device controller must return one of:

• the number of bytes received

• ENODATA — the entire image has been read

• EAGAIN — the image is still being received

Buffer: _media_albart

74 Chapter 10 • Getting Album Art February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Album art structures

Album art structures
MediaFS uses the following data structures to process the album art for media files:
• _media_albart

• _media_albart_entry

• _media_img_desc

_media_albart
struct _media_albart {

uint32_t flags;
uint32_t pos;
uint32_t reserved[6];
struct _media_img_desc desc;
uint8_t data[1];

};

The _media_albart structure contains the album art data retrieved from a media file.
It is populated and returned by devctl()when it successfully issues a
DCMD_MEDIA_ALBART_READ message to a MediaFS file.

The data in this structure may not be the complete requested image, and multiple reads
may be required to read a complete image. See DCMD_MEDIA_ALBART_READ in
the chapter MediaFS Messages, and the chapter Album Art.

Member Type Description

flags uint32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS_* constants under “Album art
constants” below.

pos uint32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS is set; or the chapter,
if ALBART_FLAG_POS_CHPIDX is set.

reserved[6] uint32_t Reserved for future use.

desc struct The _media_img_desc structure with the image
description.

data[1] uint8_t An array for the album art data.

_media_albart_entry
struct _media_albart_entry {

uint16_t index;
uint16_t reserved[3];
uint32_t flags;
uint32_t pos;

February 3, 2009 Chapter 10 • Getting Album Art 75



Pr
el

im
in

ar
y

Album art constants  2009, QNX Software Systems GmbH & Co. KG.

struct _media_img_desc desc;
};

Member Type Description

index uint16_t The index to match for this album art entry.

reserved[3] uint16_t Reserved for future use.

flags uint32_t Flags specifying how to interpret position information
for the album art. See the descriptions of the
ALBART_FLAG_POS_* constants under “Album art
constants” below.

pos uint32_t Position at which to display the album art. This
position is either the offset, in milliseconds, in the track
if ALBART_FLAG_POS_TRKPOS is set; or the chapter,
if ALBART_FLAG_POS_CHPIDX is set.

desc struct The _media_img_desc structure with the image
description.

_media_img_desc
struct _media_img_desc {

uint32_t width;
uint32_t height;
uint32_t size;
uint32_t reserved;
char mimetype[64];

};

Member Type Description

width uint32_t The album art image width, in pixels.

height uint32_t The album art image height, in pixels.

size uint32_t The album art image size, in bytes.

reserved uint32_t Reserved for future use.

mimetype[64] char A string with the album art MIME type.

Album art constants
The table below lists the constants defined in dcmd_media.h for album artwork
processing.

76 Chapter 10 • Getting Album Art February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Album art constants

Constant Value Description

ALBART_FLAG_POS_NONE 0x00000000 No position information is
available.

ALBART_FLAG_POS_TRKPOS 0x00000001 The position is expressed in
milliseconds from the start of the
track.

ALBART_FLAG_POS_CHPIDX 0x00000002 The position is the chapter
number.

ALBART_FLAG_POS_MASK 0x0000000F A mask for stripping out bits not
relevant to the flagsmember of
the _media_img_desc data
structure.

ALBART_INDEX_NONE 0xFFFF Indicate that no specific index is
used, so that a call to devctl()with
the
DCMD_MEDIA_ALBART_LOAD
message attempts to load the best
match rather than a specific file.

February 3, 2009 Chapter 10 • Getting Album Art 77



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Chapter 11

MediaFS Events

In this chapter. . .
Working with MediaFS events 81
Event types 83
MediaFS events and their structures 83

February 3, 2009 Chapter 11 • MediaFS Events 79



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Working with MediaFS events

This chapter describes MediaFS events types, and events and their data structures.

• Working with MediaFS events

• MediaFS event types

• MediaFS events and their structures

Working with MediaFS events
MediaFS supports events to communicate between devices and upper-level
applications. A device driver should, therefore, be designed to write, whenever the
underlying device changes state, the appropriate MediaFS events and their payloads to
the MediaFS event queue so that they can be read by client applications.

This section presents:

• The MediaFS event queue

• Reading MediaFS events

For a complete list of supported MediaFS event types, see as well as events and data
structures, see MediaFS events and their structures below.

The MediaFS event queue
The MediaFS event queue is the means by which a device driver can communicate
playback status changes and updates, and device state changes to client applications in
the sequence in which they occur.

The MediaFS event queue:

• is a fixed-size, circular queue

• implements FIFO (first in, first out) behavior

The MediaFS queue’s FIFO behavior means that a client reading items from the queue
will always recieve events in chronological order.

Writing events to the queue

When the device controller writes an event to the MediaFS queue, it must:

• Set to PLAYBACK_FLAG_EVENTS the flagsmember of the
_media_playback_status structure.

• Send an asynchronous notification to all clients registered on the control file.

Event queue management

The device controller should ensure the following event queue behavior:

• If the event queue is full when the device driver writes an event to it, the new event
should overwrite the oldest event in the queue.

February 3, 2009 Chapter 11 • MediaFS Events 81



Pr
el

im
in

ar
y

Working with MediaFS events  2009, QNX Software Systems GmbH & Co. KG.

• When all items in the queue have been removed, the device controller should clear
the PLAYBACK_FLAG_EVENTS flag in the _media_playback_status data
structure’s flagsmember.

In order to assure backwards compatibility with MediaFS 1.0, which did not support
events, the MediaFS event queue is optional.

Reading MediaFS events
Multimedia applications using MediaFS should be designed to use devctl()calls with
the DCMD_MEDIA_READ_EVENTS to read events from the MediaFS event queue,
and to use the information provided by these events to manage media playback and
other activities. To read MediaFS events, an application must call the devctl()function
with the DCMD_MEDIA_READ_EVENTS message.

DCMD_MEDIA_READ_EVENTS

DCMD_MEDIA_READ_EVENTS instructs MediaFS to populate the client
application’s data buffer with data from the MediaFS event queue.

Buffer: char[1]

Managing your buffer when using DCMD_MEDIA_READ_EVENTS

The DCMD_MEDIA_READ_EVENTS is used to instruct MediaFS to populate the
client application’s data buffer with data from the MediaFS event queue. It is the
responsibility of the the client application to ensure that it has a buffer large enough
for the events in the MediaFS event queue.

Behavior when the queue is larger than the client application buffer

If the number of bytes of data in the event queue is greater thanthe size of the client
application’s data buffer, a call to devctl()with the DCMD_MEDIA_READ_EVENTS
message will:

• not write any data to the client application’s data buffer

• set the _media_event structure’s len member to the number of bytes requiredin
the data buffer

• return EOK

In this case, the client application should:

1 Increase the size of the buffer it uses for the MediaFS events to at least the size
returned in len.

2 Call devctl()with the DCMD_MEDIA_READ_EVENTS message again to read
the events from the queue.

82 Chapter 11 • MediaFS Events February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

Behavior when the queue is smaller than or equal to the client application buffer

If the number of bytes of data in the event queue is less than or equalto the size of the
client application’s data buffer, a call to devctl()with the
DCMD_MEDIA_READ_EVENTS message will:
• fill the buffer

• set the _media_event structure’s lenmember to the number of bytes of data in the
buffer to the number of bytes of data in the data buffer

Event types
MediaFS uses five types of events. These event type values are carried in the
_media_event structure’s typemember. They are described in the table below:

Event type Value Description

MEDIA_EVENT_ERROR 0 Error

MEDIA_EVENT_WARNING 1 Warning

MEDIA_EVENT_TRACK 2 Communicate a track information change.

MEDIA_EVENT_TIME 3 Communicate a time update.

MEDIA_EVENT_METADATA 4 Communicate changes to metadata.

MediaFS events and their structures
This section describes MediaFS events, organized by event type. It includes:

• The _media_event data structure

• Track, time and other information update events

• Metadata update events

• Error and warning events

The _media_event data structure
_media_event
struct _media_event {

uint32_t type;
uint32_t len;

};

The _media_event structure is a included in all other MediaFS event structures. It
specifies the event type, and the length of the event data. This structure includes at
least the members described in the table below.

February 3, 2009 Chapter 11 • MediaFS Events 83



Pr
el

im
in

ar
y

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

Member Type Description

type uint32_t The event type; see “Event types” above.

len uint32_t The length of the event data, in bytes (including padding
to 8-byte alignement).

Track, time and other information update events
MediaFS information events signal an update to track or time information for the
specified media track or file. Depending on the type of information they communicate,
these events carry either the _media_event_info, the _media_event_time or the
_media_event_track data structure.

The table below describes the MediaFS track and time update events:

Event Value Description

MEDIA_EVENT_INFO_UNKNOWN 0 Events carrying information, such
as time or track updates, about
atrack or media file.

_media_event_info
struct _media_event_info {

struct _media_event event;
uint32_t index;
uint32_t type;
char value[1];

};

The _media_event_info structure contains track or media file information. It
should be populated when track or media file information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

type uint32_t The type of information event; see “Track, time and other
information update events” above.

value[1] char A character string with the changed track information.

84 Chapter 11 • MediaFS Events February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

_media_event_time
struct _media_event_time {

struct _media_event event;
uint32_t index;
uint32_t elapsed;
uint32_t duration;

};

The _media_event_time structure contains track or media file time information. It
should be populated when track or media file time information changes, and, if
relevant, included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

elapsed uint32_t The elapsed time for the current track, in milliseconds.

duration uint32_t The track duration (total time) of the current track, in
milliseconds.

_media_event_track
struct _media_event_track {

struct _media_event event;
uint32_t index;
uint32_t duration; // Duration of the current track.
char trackpath[1]; // Track file name relative to moun

};

The _media_event_track structure contains track or media file information. It
should be populated when track or media file information changes, and, if relevant,
included with the information events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

duration uint32_t The track duration (total time) of the current track, in
milliseconds.

trackpath char A character string with the path (relative to the
mountpoint) of the current media file or track.

February 3, 2009 Chapter 11 • MediaFS Events 85



Pr
el

im
in

ar
y

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

Metadata update events
MediaFS metadata events signal an update or other change to metadata for the
specified media track or file. These events carry the data structure
_media_event_metadata.
The table below describes the MediaFS metadata update events:

Event Value Description

MEDIA_EVENT_METADATA_UNKNOWN 0 An unspecified change
has been made to the
file’s metadata.

MEDIA_EVENT_METADATA_SONG 1 Change to the file’s
song metadata.

MEDIA_EVENT_METADATA_ALBUM 2 Change to the file’s
album metadata.

MEDIA_EVENT_METADATA_ARTIST 3 Change to the file’s
artist metadata.

MEDIA_EVENT_METADATA_GENRE 4 Change to the file’s
genre metadata.

MEDIA_EVENT_METADATA_COMPOSER 5 Change to the file’s
composer metadata.

MEDIA_EVENT_METADATA_RELEASE_DATE 6 Change to the file’s
release date metadata.

MEDIA_EVENT_METADATA_TRACK_NUM 7 Change to the file’s
track number metadata.

MEDIA_EVENT_METADATA_PUBLISHER 8 Change to the file’s
publisher metadata.

MEDIA_EVENT_METADATA_DURATION 9 Change to the file’s
duration metadata.

MEDIA_EVENT_METADATA_NAME 10 Change to the file’s
name metadata.

MEDIA_EVENT_METADATA_COMMENT 11 Change to the file’s
comment metadata.

_media_event_metadata
struct _media_event_metadata {

struct _media_event event;
uint32_t type;
uint32_t index;
uint32_t duration;
struct _media_date date;
char value[1];

86 Chapter 11 • MediaFS Events February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. MediaFS events and their structures

};
The _media_event_metadata structure contains track metadata. It should be
populated whenever metadata for a track or media file changes, and included with the
metadata update events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

type uint32_t The type of metadata event; see “Metadata update events”
above.

index uint32_t The index number for the track to which the event is
associated.

duration uint32_t The track date.

date struct The _media_date structure with the track date
information.

value[1] char A UTF-8 encoded character string for character-based
metadata types.

Error and warning events
MediaFS error and warning events signal an error or other condition that requires
attention from the client application. These events carry, respectively, the data
structure _media_event_error or _media_event_warning.

The table below describes the MediaFS error and warning events:

Event Value Description

MEDIA_EVENT_ERROR_UNKNOWN 0 An unspecified error condition
has occurred.

MEDIA_EVENT_ERROR_DRM 1 A DRM error has occurred.

MEDIA_EVENT_ERROR_CORRUPT 2 The media file is corrupt.

MEDIA_EVENT_WARNING_UNKNOWN 0 An unspecified condition that
requires attention has occured.

_media_event_error
struct _media_event_error {

struct _media_event event;
uint32_t index;
uint32_t type;

};

February 3, 2009 Chapter 11 • MediaFS Events 87



Pr
el

im
in

ar
y

MediaFS events and their structures  2009, QNX Software Systems GmbH & Co. KG.

The _media_event_error structure contains track or media file error information.
It should be populated when an error is encountered with a track or media file, and
included with the error events that MediaFS places in its event queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

type uint32_t The type of error event; see “Error and warning events”
above.

_media_event_warning
struct _media_event_warning {

struct _media_event event;
uint32_t index;
uint32_t type;

};

The _media_event_warning structure contains track or media file error
information. It should be populated when a warning situtation is encountered with a
track or media file, and included with the error events that MediaFS places in its event
queue.

Member Type Description

event struct The _media_event structure with the event type and
size.

index uint32_t The index number for the track to which the event is
associated.

type uint32_t The type of warning event; see “Error and warning
events” above.

88 Chapter 11 • MediaFS Events February 3, 2009



Pr
el

im
in

ar
y Appendix A

MediaFS Examples

In this appendix. . .
MediaFS structure 91
info.xml file 91

February 3, 2009 Appendix: A • MediaFS Examples 89



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. MediaFS structure

This appendix presents some examples that help illustrate how to use MediaFS. It
contains:

• MediaFS structure

• info.xml file

MediaFS structure
The following presents a MediaFS instance representing an iPod device:

ipod0/:
total 3
dr-xr-xr-x 3 root root 512 Jun 01 11:28 .
dr-xr-xr-x 2 root root 0 Jun 01 11:28 ..
dr-xr-xr-t 3 root root 512 Jun 01 11:28 .FS_info.
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Music

ipod0/.FS_info.:
total 6
dr-xr-xr-t 3 root root 512 Jun 01 11:28 .
dr-xr-xr-x 3 root root 512 Jun 01 11:28 ..
nrw-rw-rw- 1 root root 0 Jun 01 11:28 control
lrwxrwxrwx 1 root root 0 Jun 01 11:28 current ->
-r--r--r-- 1 root root 1127 Jun 01 11:28 info.xml
dr-xr-xr-x 2 root root 512 Jun 01 11:28 playback

ipod0/.FS_info./playback:
total 2
dr-xr-xr-x 2 root root 512 Jun 01 11:28 .
dr-xr-xr-t 3 root root 512 Jun 01 11:28 ..

ipod0/Music:
total 10
dr-xr-xr-x 10 root root 512 Jun 01 11:28 .
dr-xr-xr-x 3 root root 512 Jun 01 11:28 ..
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Albums
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Artists
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Audiobooks
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Composers
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Genres
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Playlists
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Podcasts
dr-xr-xr-x 2 root root 512 Jun 01 11:28 Songs

info.xml file
The following presents an MediaFS info.xml file for an iPod device:

<?xml version="1.0" standalone="yes"?>
<info>

February 3, 2009 Appendix: A • MediaFS Examples 91



Pr
el

im
in

ar
y

info.xml file  2009, QNX Software Systems GmbH & Co. KG.

<media>
<device>iPod</device>
<protocol>

<general>1.02</general>
<display_remote>1.01</display_remote>
<extended>1.09</extended>

</protocol>
<name>Yov Yovchev&#x2019;s iPod</name>
<serial>JQ44915UR5S</serial>
<swversion>1.2.1</swversion>
<model>

<id>0x00060000</id>
<number>P9585LL</number>
<generation>1</generation>
<type>iPod photo</type>
<size>40GB</size>
<color>white</color>

</model>
<audio>

<eq>off</eq>
</audio>
<display>

<limit>
<type>2</type>
<format>le_rgb565</format>
<height>110</height>
<width>210</width>

</limit>
<limit>

<type>3</type>
<format>be_rgb565</format>
<height>110</height>
<width>210</width>

</limit>
<limit>

<type>1</type>
<format>mono</format>
<height>110</height>
<width>210</width>

</limit>
</display>

</media>
<fsys>

<type>ipod</type>
<mountpoint>/fs/ipod0</mountpoint>
<mountdevice>file-2-ipod-5-media</mountdevice>

</fsys>
<device>

<driver>ipod</driver>
<catagory>media</catagory>
<transport>

<type>ser_ipod</type>

92 Appendix: A • MediaFS Examples February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. info.xml file

<dev>/dev/serfpga3</dev>
</transport>

</device>
</info>

For an example from an info.xml file used for a media changer device, see “The
info.xml file for mediastore changers” in the chapter Working with Media Changers.

February 3, 2009 Appendix: A • MediaFS Examples 93



Pr
el

im
in

ar
y



Pr
el

im
in

ar
y Index

!

.FS_info.

directories outside 17
directories outside of 17
directory 13
entities outside directory 17
files outside of 17

_media__stream_info 65
_media_albart 74, 75
_media_albart_entry 74, 75
_media_date 61
_media_event 83
_media_event_error 87
_media_event_info 84, 85
_media_event_metadata 86
_media_event_time 85
_media_event_warning 88
_media_img_desc 76
_media_img_entry 74
_media_ipod_daudio 69
_media_play 62
_media_playback 31, 62
_media_playback_status 63
_media_settings 65
_media_speed 65
<driver>

XML key 24
<media>/<device> 14
<media>/<driver> 24
<media>/<name> 24
<media>/<serial> 24
<media>/<slot> 24
<media>/<type> 24
<name>

XML key 24
<serial>

XML key 24
<slot>

XML key 24
<type>

XML key 24
<uuid>

key 14

A

active
state of mediastore 25

ALBART_FLAG_POS_* 76
ALBART_INDEX_NONE 76
album art 73

constants 76
metadata 56
of a track 56
retrieval messages 73
structures 75

art
getting for albums 73
metadata 73

artist
metadata 56
of a track 56

asynchronous
notifications 15

available
state of mediastore 25

February 3, 2009 Index 95



Pr
el

im
in

ar
y

Index  2009, QNX Software Systems GmbH & Co. KG.

B

behavior
control file 15
current symbolic link 16
playback directory> 16

buffer
events 82

C

changer
devices 23
extensions 23
info.xml 23
slots 23
states 26

changes
autonomous playback 35

close() 8
closedir() 8
comment

for a track 56
composer

metadata 56
of a track 56

constants
artwork 76
playback 66

control

file 15
control

MediaFS device messages 39, 47
playback sequences 31
point 15

control file
behavior 15

conventions
typographical x

current
symbolic link to currently playing file 16

current
file 16

D

date
of a track release 57

DCMD_FSYS_DIR_NFILES 17
DCMD_MEDIA_ALBART_INFO 74
DCMD_MEDIA_ALBART_LOAD 74
DCMD_MEDIA_ALBART_READ 74
DCMD_MEDIA_ALBUM 56
DCMD_MEDIA_ARTIST 56
DCMD_MEDIA_CLOSE_STREAM 43
DCMD_MEDIA_COMMENT 56
DCMD_MEDIA_CONFIG 41
DCMD_MEDIA_DRM_* 43
DCMD_MEDIA_DRM_CHALLENGE 44
DCMD_MEDIA_DRM_IS_AUTH 44
DCMD_MEDIA_DRM_LICENSE 44
DCMD_MEDIA_DRM_PROXIMTY 44
DCMD_MEDIA_DRM_REGISTER 44
DCMD_MEDIA_FASTFWD 48
DCMD_MEDIA_FASTRWD 48
DCMD_MEDIA_GENRE 56
DCMD_MEDIA_GET_DEVINFO 42
DCMD_MEDIA_GET_REPEAT 48
DCMD_MEDIA_GET_SHUFFLE 49
DCMD_MEDIA_GET_STATE 49
DCMD_MEDIA_GET_XML 40
DCMD_MEDIA_INFO_STREAM 43
DCMD_MEDIA_IPOD_* 42
DCMD_MEDIA_IPOD_CAP 42
DCMD_MEDIA_IPOD_DAUDIO 42
DCMD_MEDIA_IPOD_TAG 42
DCMD_MEDIA_NAME 57
DCMD_MEDIA_NEXT_CHAP 49
DCMD_MEDIA_NEXT_TRACK 49
DCMD_MEDIA_OPEN_STREAM 43
DCMD_MEDIA_PAUSE 49
DCMD_MEDIA_PLAY 17, 31, 32, 50
DCMD_MEDIA_PLAY_AT 31, 50
DCMD_MEDIA_PLAYBACK_INFO 15, 50
DCMD_MEDIA_PLAYBACK_STATUS 50
DCMD_MEDIA_PREV_CHAP 50
DCMD_MEDIA_PREV_TRACK 50
DCMD_MEDIA_PUBLISHER 57
DCMD_MEDIA_READ_EVENTS 82
DCMD_MEDIA_READ_STREAM 43

96 Index February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Index

DCMD_MEDIA_RELEASE_DATE 57
DCMD_MEDIA_RESUME 51
DCMD_MEDIA_SEEK_CHAP 51
DCMD_MEDIA_SET_REPEAT 51
DCMD_MEDIA_SET_SHUFFLE 51
DCMD_MEDIA_SET_STATE 51
DCMD_MEDIA_SET_STREAM 43
DCMD_MEDIA_SET_XML 40
DCMD_MEDIA_SONG 57
DCMD_MEDIA_TRACK_NUM 57
DCMD_MEDIA_UPNP_CDS_BROWSE 42
DCMD_MEDIA_URL 57
dev

element in .FS_info. 15
devctl() 8

dev_data_ptr argument 39
dev_info_ptr argument 39

device
control messages 39, 47
information 13
playback 32

device-intitiated
metadata update 35
playback state change 35
track change 35

Digital Rights Management SeeDRM
dircntl() 8
directories

.FS_info. 13
behavior of outside .FS_info. directory

17
MediaFS 13
opening 39
outside .FS_info. directory 17
playback 16, 31

DRM
control messages 43
error 87
media stream 65

duration
track 56

E

ENOTSUP error 18

entities
outside the .FS_info. directory 17

error
DRM 87
event structure 87
events 87

events 81
buffer 82
error 87
error structure 87
get MediaFS 82
information structure 84
metadata 86
metadata structure 86
queue 81
reading 82
time 84
time structure 85
track 84
track structure 85
types 83
warning 87
warning structure 88

extensions
changer 23

F

fast forward 48
playback speed 33

fast reverse 48
files

behavior of outside .FS_info. directory
17

MediaFS 13
opening 39
outside the .FS_info. directory 17
playback 31

filesystem
location 7
media 3
MediaFS 3
POSIX compliance 3

flags 64
fstat() 8

February 3, 2009 Index 97



Pr
el

im
in

ar
y

Index  2009, QNX Software Systems GmbH & Co. KG.

functions
supported POSIX 8

G

genre
metadata 56
track 56

I

images
getting 73

info.xml 13, 23
changer 23
creation 13
example 91
minimum requirement 13
persistence 13
slot 23

information
event structure 84
playback 50

interface
MediaFS standardized 3

io-fs 3
io-fs-media 3
IOFS_MEDIA_TYPE_* 68
iPod

control messages 42
data structure 69
example of info.xml file 91
example of MediaFS structure 91

L

location
MediaFS filesystem 7

M

MEDIA_EVENT_* 81
MEDIA_EVENT_ERROR_* 87
MEDIA_EVENT_INFO_UNKNOWN 84
MEDIA_EVENT_METADATA_* 86
MEDIA_STREAM_LENGTH_UNKNOWN 65,

68
media device

<serial> 24
<slot> 24
<uuid> 14
playback 32
unique identifier 14

media stream
control messages 42

MediaFS
album art retrieval 73
changer extensions 23
configuration messages 40
device control messages 39, 47
device messages 40
events 81
images 73
info.xml example 91
iPod management messages 41
metadata retrieval 55
mountpoint 7, 13
overview 3
playback 31
playback control 47
playlists 18
standardized interface 3
standardized structure 7, 13
state information retrieval messages 55
streaming media management messages 41
structure example 91
structures 61

mediastore
removable 23
slots 25
states 25
types 68

messages
album art retrieval 73
device control 39, 47

98 Index February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Index

files outside .FS_info. directory 17
iPod management 41
metadata retrieval 55
playback control 47
state information retrieval 55
streaming media management 41

metadata
album art 56, 73
artist 56
composer 56
device-initiated update 35
event structure 86
events 86
for files referenced in playback

directory 16
genre 56
publisher 57
release date 57
retrieval messages 55
title 57
track comment 56
track duration 56
track name 57
track number 57

MME 3
MME_STORAGETYPE_* 68
mountpoint

MediaFS 7, 13
Multimedia Engine SeeMME

N

name
of a track 57

next
chapter 49
track 49

notifications
asynchronous 15
registering for 15

number
of a track 57

O

offset
playback at 50

open() 8, 39
opendir() 8, 39
out-of-band

notifications 15

P

pathname delimiter in QNX documentation xi
pause

playback 34, 49
playback

directory behavior 16
playback

about 31
at offset 50
autonomous state changes 35
constants 66
control messages 47
control sequences 31
current file 16
device-initiated state change 35
directory 31
fast forward 33
file 31
file with device-specific actions 15
information 50
managing 31
media device 32
next chapter 49
next track 49
pause 34, 49
previous chapter 50
previous track 50
random 49, 51
repeat 48, 51
restore state 51
resume 34, 51
seek to chapter 51
start 50
state 49, 51
status 50

February 3, 2009 Index 99



Pr
el

im
in

ar
y

Index  2009, QNX Software Systems GmbH & Co. KG.

structures 61
with MediaFS 31

PLAYBACK_FLAG_* 64, 66
PLAYBACK_STATE_* 66
playback directory

metadata retrieval for files referenced 16
playlists

MediaFS 18
POSIX

MediaFS compliance 3
supported functions 8

previous
chapter 50
track 50

publisher
of a track 57

Q

queue
event 81

R

random
mode 49, 51

readdir() 8
reading

events 82
readlink() 16
release

date 57
repeat

mode 48, 51
REPEAT_* 67
restore

playback state 51
resume

playback 34, 51
reverse 48

playback speed 33
rewinddir() 8

S

seek
chapter 51

seekdir() 8
SHUFFLE_* 48, 49, 51, 67
slots

changer 23
info.xml file for 23
mediastores 25
states 25

speed 64
speed

playack 33
start

playback 50
stat() 8
state

available 25
changer 26
information retrieval messages 55
playback 49, 51
slots 25
structures 61
unavailable 25

status
playback 50

stream
control messages 42
DRM 65

structure
example 91

structures
album art extraction 75
MediaFS 61
playback 61
state 61

symbolic link
current 16
dev 15
to currently playingfile 16
to media device 15

symlink Seesymbolic link

100 Index February 3, 2009



Pr
el

im
in

ar
y

 2009, QNX Software Systems GmbH & Co. KG. Index

T

telldir() 8
time

event structure 85
events 84

title
metadata 57
track 57

track
comment 56
device-initiated change 35
duration 56
event structure 85
events 84
name 57
number 57
publisher 57

types
event 83
mediastore 68

typographical conventions x

U

unavailable
state of mediastore 25

UPnP
control messages 42

W

warning
event structure 88
events 87

February 3, 2009 Index 101


