
Copyright ©2007, QNX Software Systems.

Qnx Corner Article

Memory Profiling using QNX Momentics IDE 4

Summary
This article describes various techniques for embedded software memory profiling, using tools from the
QNX Momentics IDE 4 tool set.

By Elena Laskavaia, QNX Software Systems
Aug 31, 2007

The term memory profiling refers to a wide range of application testing tasks related to computer memory, such as
identifying memory corruption, memory leaks and optimizing memory usage. The QNX Momentics IDE, which is part of
QNX Momentics 6.3.2, includes tools to assist you with all of these tasks. However, this article focuses on the
optimization of memory usage for better performance and smaller memory footprint. Memory efficiency is particularly
critical for embedded software, where memory resources are very limited, especially with absence of swapping, and the
need for processes that run continuously.

Note: This article assumes that you have basic knowledge of the QNX Momentics IDE (the Eclipse based Integrated
Development Environment), and that you can edit, compile, and run C/C++ applications on target hosts running the
QNX Neutrino RTOS.

Process Memory
Typically, virtual memory occupied by a process can be separated into the following categories:

• Code — Contains the executable code for a process and the code for the shared libraries. If more than one
process uses the same library, then the virtual segment containing its code will be mapped to the same physical
segment (i.e., shared between processes).

• Data — Contains a process data segment and the data segments for the shared libraries. This type of memory is
usually referred to as static memory.

• Stack — This segment contains memory required for function stacks (one stack for each thread).
• Heap — This segment contains all memory dynamically allocated by a process.
• Shared Heap — Contains other types of memory allocation, such as shared memory and mapped memory for a

process.

Note: It is important to know how much memory each individual process uses, otherwise you can spend considerable
time trying to optimize the heap (i.e., if a process uses only 5% of the total process memory, is it unlikely to return any
noticeable result). Techniques for optimizing a particular type of memory are also dramatically different.

Procedure 1: Inspecting process memory distribution

You can use the System Information view from QNX Momentics IDE 4 to inspect the distribution and overall memory
occupation for the current process.

Note: The IDE must be currently running, you must have created a target project, and your target host must be
connected.

To inspect the process memory distribution:

1. Run the process that you want to inspect on the target.
2. Switch to the System Information perspective.
3. In the Target Navigator view, select the target on which your process is running.
4. Switch to the System Summary view. In this view, you can obtain an overview of the process memory.
5. On the All Processes tab, select a process of interest.

From this illustration, you can see how much physical memory the selected process occupies; in this example, it
is 272K of Code, and 176K of Data.

6. Now, switch to the Memory Information view.
7. In the Target Navigator, expand your target and select the same process you selected earlier.

8. You can see a detailed map of the virtual memory for the process.

Based on the memory distribution information in the preceding example, you can determine if it is ideal to
allocate time to optimize the heap memory, or you might want to consider to optimize something else, such as
the stack or static memory.

Performance of heap allocations
Heap memory profiling can be performed to achieve two goals: performance improvements (because heap
memory allocation/deallocation is one of the most expensive ways of obtaining memory), and heap memory
optimization. The QNX Momentics Memory Analysis tool can assist you with both of these goals.

Note: We assume that your application is currently running without memory errors. Using the IDE tools to find
memory errors is out of scope of this article.

Procedure 2: Preparing a memory profiling session

To prepare for a memory profiling session:

1. First, you will need to compile the binary with debug options. This configuration is required in order to link
the results to source code.

2. Create a launch configuration to run your application on the target system.
3. In the Launch Configuration dialog, select the Tools tab

4. Click Add Tool, to enable the Memory Analysis Tooling option, and click Ok.
5. Expand the Memory Errors folder and disable (un-check) all items in the list, except for Perform leak

check when process exits.
6. Optional: If your process never exits, edit the Perform check every (ms) option, and specify an interval

in milliseconds. This value will be used to periodically perform a verification for memory leaks.

Note: It is sufficient to check only once each time you run the application because the leaks would be
duplicated, and the leak detection process itself takes a significant amount of time to complete.

7. Expand the Memory Tracing folder. Ensure that you enable the Enable memory
allocation/deallocation tracing option.

8. Expand the Memory Snapshots tab. Ensure that you enable the Memory Snapshots option, and type
an interval for the snapshots for your application (i.e., 10 to 20 snapshots during the entire application
execution).

9. If you use custom shared libraries, expand the Library search paths tab, and specify information so that
the tool can also read symbol information from the libraries.

10. Enable the Switch to this tool's perspective on launch option at the bottom of the page.
11. Now, you can launch the application. The IDE switches to the Memory Analysis perspective. You will

see a new session display in the Session View. Let the application run for a desired amount of time
(you may perform a testing scenario), and then stop it (either it should terminate itself or you can stop it
from IDE).

12. Now, the Memory Analysis session will be ready, and we can begin to inspect the results.

Analyzing allocation patterns
Once we've prepared a memory profiling session, to begin our analysis we need to open the Memory Analysis
session viewer by double-clicking on a session. First thing you'll see is the Allocations page with the
Overview: Requested Allocations chart. Let's take a closer look at this chart.

At first glance, it does not look like a very useful chart, does it? Let's see what we can do about it. This cart
shows memory allocation and deallocation events generated by the malloc and free functions and their
derivatives. The X-axis represents the event number (which can be changed to be the timestamp), and the Y-
axis represents the size (in bytes) of the allocation (if a positive value), or deallocation (if a negative value). Let's
take a closer look at the bottom portion of the chart. The Page field shows the scrollable page number, the
Total Points field shows how many recorded events there are, the Points per page field shows how many
events can fit onto this page, and the Total Pages field shows how many chart pages there are in total.

For our example, there are 1482 events, and all of them would not likely fit on this single chart. There are
several choices we have available to us. First, we can attempt to reduce the value in the Points per page field
to 500, for example. Now, the graphical representation is better, but it is not very useful.

If you look at Y-axis, you can notice some big allocations at the beginning. To see this area more closely, select
this region with the mouse, and the chart and table at the top change to populate with the data from the selected
region. Now, if we locate our big allocation and check its stack trace, we can see that this allocation belongs to
the function called monstartup, which is not part of our own code, meaning that it cannot be optimized and we
should probably exclude it from the events of interest.

To exclude this function, we can use a filter. Right-click on the Overview chart's canvas, select Filters... from
the menu, and the Filter dialog will appear. Type 1000 in the To allocation size field.

The overview will look like this:

From the filtered view, we can see a pattern: the allocation is followed by a deallocation, and the size of the
allocations grows over time. Typically, this growth is the result of the realloc pattern. To confirm our suspicion,
return to the Filters... menu option, and disable (un-check) all of the allocation functions, except for the realloc-
alloc option. Now, we can clearly see that the growth occurs with a very small increment.

Next, select some region of the overview chart and explore the event table. You will notice events with the same
stack trace. This is one realloc call with a bad (too small) increment. This would be the pattern for a
shortsighted realloc.

Notice that the string in the example was re-allocated approximately 400 times (from 11 bytes to 889 bytes).
Based on that information, we can optimize this particular call (for performance) by either adding some constant
overhead to each realloc call, or double allocate the size. In this particular example, we'll double allocate the
size, and then re-compile and re-run the application. Open the editor and filter all but the realloc events:

Now, we see only 12 realloc events instead of the original 400, which would significantly improve the
performance; however, the maximum allocated size is 1452 bytes, which is 600 bytes in excess of what we
require. We can adjust the realloc code to better tune it for a typical application run. Normally, you should
make realloc sizes similar to the allocator block sizes. (This topic is discussed in more detail in the next
section called, "Optimizing heap memory".)

Now, let's return to check other events. In the Filters menu, enable all functions, except for realloc (ensure
that realloc remains un-checked). Select a region in the overview:

In the Details chart, the alloc/free events have the same size. This is the typical pattern for a short-lived object.

Navigate to the source code from the stack trace view (double-click on a row for the stack trace):

This code has an object where it allocates 11 bytes, and then it is freed at the end of the function. This is a good
candidate to put a value on the stack. However, if the object has a variable size, and comes from the user,
using stack buffers should be done carefully. As a compromise between performance and security, a size check
can be performed, and if the length of the object is less than the buffer size, it is safe to use the stack buffer;
otherwise, if it is more than the buffer size, the heap can be allocated. The buffer size can be chosen based on
the average size of allocated objects for this particular stack trace (refer to Procedure 6 below).

Short-sighted realloc functions and short-lived objects are memory allocation patterns which can improve
performance of the application, but not the memory usage.

Optimizing Heap Memory
You can use the following techniques to optimize memory usage:

o Eliminate memory leaks
o Shorten the life cycle of heap objects
o Reduce the overhead of allocated objects
o Tune the allocator

Memory Leaks
A memory leak is a portion of heap memory that was allocated but not freed, and the reference to that area of
memory cannot be used by the application any longer. Typically, the elimination of a memory leak is critical for
applications that run continuously because even a single byte leak can crash a mission critical application that
runs over time.

Procedure 3: Quick check for Memory Leaks

To test an application for memory leaks, run the application and then compare memory usage at specific times.
You can use the Malloc Information view for this by selecting a process, and then watching the Allocated
column (which is Outstanding allocations in memory) and observe the number in this column to see if it
increases (see the growth in the chart below). If you notice a trend where it increases over time, then the
process is not returning some of the allocated memory.

To know exactly what's occurring, use the Memory Analysis tool.

Memory leaks can be apparent or hidden. Apparent memory leaks can be found by the tool automatically. A
memory leak is "apparent" if the binary address of that heap block (marked as allocated) is not stored in any of
the process memory and current CPU registers any longer.

There are three ways of finding memory leaks using the QNX Momentics Memory Analysis tool. To perform an
automatic leak check, use the following two options from the Memory Analysis Tooling launch configuration:
Perform leak check when process exits and Perform leaks check every (ms) with your desired interval. If
these options are enabled, the Memory Analysis tool automatically checks for memory leaks in the currently
running program.

The following illustration shows a list of memory leaks that memory Analysis tool identified:

The third and final method to find a memory leak is to use the Get Leaks button on the Settings page of
Memory Analysis Session viewer while application runs (which can also be used the debugger).

Procedure 4: Enabling memory leaks detection

The following procedure (for example, in a continuously running application) will enable memory leak detection
at any particular point in program execution:

1. Find a location in the code where you want to check for memory leaks, and insert a breakpoint.
2. Launch the application in Debug mode with Memory Analysis Tooling enabled (for instructions, see

Procedure 2).
3. Switch to the Memory Analysis perspective.
4. Open the Debug view so it is available in the current perspective.

5. When the application encounters the breakpoint you specified, open the Memory Analysis session from
the Session View (by double-clicking) and switch to the Setting page for the Session Viewer.

6. Click the Get Leaks button. Before you resume the process, no new data will be available in the Session
Viewer because the memory analysis thread and application threads are stopped while the process is
suspended by the debugger.

7. click the Resume button in the Debug view to resume the process' threads.
8. If leaks did not appear on the Errors tab of the Session Viewer, either there were no leaks, or the time

given to the control thread (a special memory analysis thread that processes dynamic requests) to
collect the leaks was not long enough to perform the command (it was suspended before the operation
completed).

9. Now, switch to the Errors page of the viewer, and you can review information about collected memory
leaks.

Besides apparent memory leaks, an application can have other types of leaks that the memory Analysis tool
cannot detect. These leaks include objects with cyclic references, accidental point matches and left-over heap
references (which can be converted to apparent leaks by nullifying objects that refer to the heap. If you can
continue to see the heap grow after eliminating apparent leaks, you should manually inspect some of the
allocations. You can do this review after the program terminates (completes), or you can stop the program at
any time using the debugger, and inspect the current heap state.

Procedure 5: Manually inspecting outstanding allocations

To manually inspect outstanding allocations:

1. Open the Allocations page of the Session Viewer.
2. In the Overview chart, select the Filters... option from the menu.
3. Enable the Hide matching allocation/deallocation pair option and click Ok.
4. Review the results (only those allocations which continue to be in memory or were in memory at the

moment of the exit).
5. Select the allocations using the mouse. The Details view and table become populated with the data.
6. Select one allocation from the table. The Trace view becomes populated with the current stack trace for

the selected event.

You can inspect the stack trace of the allocation (using source code navigation) and determine whether
it is leak.

The same data that is grouped by backtraces is available from the Statistics page on the Outstanding traces
tab.

Alternatively, you can inspect memory allocations that occurred during a particular time frame of interest by
opening the Usage page, which will be populated with snapshots of memory usage (if you enabled this option).

Select the region you are interested in and the statistics for the memory usage will populate the table above.

Select the Allocations page and switch the X-axis mode to be timestamp (changes to the timestamp label):

Select an area of interest. You would see allocations and de-allocations that occurred during this period in the
Details chart and event table. Review the event table results. All malloc calls that do not have a paired free
would not have icon in the left column with a checkmark beside it.

Object life cycle
The other optimization technique is to shorten the heap objects' life cycle. This technique lets the allocator
reclaim memory faster, and allows it to be immediately used for new heap objects, which, over time, reduces
the maximum amount of memory required.

Always attempt to free objects in the same function as they are allocated, unless it is an allocation function. An
allocation function is a function that returns or stores a heap object that would be used after this function exits. A
good pattern of local memory allocation will look like this:

...
p=(type *)malloc(sizeof(type));
do_something(p);
free(p);
p=NULL;
do_something_else();
...
As a result, after the pointer is used, you free it and then you nullify it so that the free block cannot be referred to,
and then you do something else, making sure that during this other activity, the memory is already freed. In
addition, try to avoid creating aliases for heap variables because it usually makes code less readable, prone to
errors, and difficult to tools to analyze.

Use Procedure 5, described above, to find currently allocated memory, and then inspect it so see if you can
shorten an objects' cycle.

Allocation overhead
Another large source of memory usage occurs from the following types of allocation overhead:

o User overhead — The actual data occupies less memory when requested by the user
o Padding overhead — The fields in a structure are arranged in a way that the sizeof of a structure is larger

than the sum of the sizeof of all of its fields.
o Heap fragmentation — The application takes more memory than it needs, because it requires contiguous

memory blocks, which are bigger than chunks that allocator has
o Block overhead — The allocator actually takes a larger portion of memory than required for each block
o Free blocks — All free blocks continue to be mapped to physical memory

User overhead usually comes from predictive allocations (usually by realloc), which allocate more memory
than needed. You can either tune it by estimating the average data size, or - if your data model allows it - after
the growth of data stops, you can truncate the memory to fit into the actual size of the object.

Procedure 6: Estimating the average allocation size

To estimate the average allocation size for a particular function call, find the backtrace of a call on the
Backtraces tab of the Statistics page of the Session Viewer. The Count column represents the number of
allocations for a particular stack trace, and the Total Allocated column shows the total size of the allocated
memory. To calculate an average, divide the Total Allocated value by the Count value.

Padding overhead affects the struct type on processors with alignment restrictions. The fields in a structure
are arranged in a way that the sizeof of a structure is larger than the sum of the sizeof of all of its fields.
You can save some space by re-arranging the fields of the structure. Usually, it is better to group fields of the
same type together. You can measure the result by writing a sizeof test. Typically, it is worth performing this
task if the resulting sizeof matches with the allocator block size (see below).

Heap fragmentation occurs when a process uses a lot of heap allocation/deallocation of different sizes. When
this happens, the allocator divides large blocks of memory into smaller ones, which later cannot be used for
bigger blocks because the address space is not contiguous. In this case, the process will allocate another
physical page even if it looks like it has enough free memory. The QNX memory allocator is a "bands" allocator,
which already solves most of this problem by allocating blocks of memory of constant sizes of 16, 24, 32, 48, 64,
80, 96 and 128 bytes. Having only a limited number of possible sizes lets the allocator choose the free block
faster, and keeps the fragmentation to a minimum. If a block is more that 128 bytes, it is allocated in a general
heap list, which means a slower allocation and more fragmentation. You can inspect the heap fragmentation by
reviewing the Bins or Bands graphs. An indication of an unhealthy fragmentation occurs when there is growth
of free blocks of a smaller size over a period of time.

Block overhead is a side effect of combating heap fragmentation. Block overhead occurs when there is extra
space in the heap block; it is the difference between the user requested allocation size and actual block size.
Block overhead is available to inspect using the Memory Analysis tool:

In the allocation table, you can see the size of the requested block (11) and the actual size allocated (16).

You can also estimate the overall impact of the block overhead by switching to the Usage page:

You can see in this example that current overhead is larger than the actual memory currently in use.

Some techniques to avoid block overhead are:

o You should consider allocator band numbers, when choosing allocation size, especially for predictive
realloc. This is the algorithm that can give you next highest power or two for a given number m if it is
less than 128, or a 128 divider if it is more than 128:

 int n;
 if (m > 256) {
 n = ((m + 127) >> 7) << 7;
 } else {
 n = m - 1;
 n = n | (n >> 1);
 n = n | (n >> 2);
 n = n | (n >> 4);
 n = n + 1;
 }

It will generate the following size sequence: 1,2,4,8,16,32,64,128,256,384,512,640, and so on.

o You can attempt to optimize data structures to align with values of the allocator blocks (unless they are in
an array). For example, if you have a linked list in memory, and a data structure does not fit within 128
bytes, you should consider dividing it into smaller chunks (which may require an additional allocation
call), but it will improve both performance (since band allocation is generally faster), and memory usage
(since there is no need to worry about fragmentation). You can run the program with Memory Analysis
Tooling enabled again (using the same options), and compare the Usage chart to see if you achieved
the desired results. You can observe how memory objects were distributed per block range using
Bands page:

This chart shows, for example, that at the end there were 85 used blocks of 128 bytes in a block list.
You also can see the number of free blocks by selecting a time range.

And finally, Free Blocks overhead. When you free memory using the free function, memory is returned to the
process pool, but it does not mean that the process will free it. When the process allocates pages of physical
memory, they are almost never returned. However, a page can be deallocated when the ratio of used pages
reaches the low water mark. Even in this case, a virtual page can be freed only if it consists entirely of free
blocks.

Tuning the allocator
Occasionally, application driven data structures have a specific size, and memory usage can be greatly
improved by customizing block sizes. In this case, you either have to write your own allocator, or contact QNX
to obtain a customizable memory allocator. To estimate the benefits of a custom block size, you can use the
Bin page. First, enter the bin size in the Launch Configuration of the Memory Analysis tool, run the application,
and then open the Bins page to explore the results. The resulting graph shows the distribution of the heap
object per imaginary blocks, based on the sizes that you selected.

Optimizing Static and Stack Memory
In the previous section, we explained tool-assisted techniques for optimizing heap memory, and now we will
describe some tips for optimizing static and stack memory:

Code

In embedded systems, it is particularly important to optimize the size of a binary, not only because it takes
RAM memory, but also because it uses expensive flash memory. Below are some tips you can use to
optimize the size of an executable:

o Ensure that the binary is compiled without debug information when you measure it. Debug data is the
largest contributor to the size of the executable, if it is enabled.

o Strip the binary to remove any remaining symbol information
o Remove any unused functions
o Find and eliminate code clones
o Try compiler performance optimization flags, such as -O, -O2 (note that there is no guarantee that code

would be smaller; it can actually be larger in some cases).
o Do not use the char type to perform int arithmetics, particularly when it is a local variable. Converting to

int and back (code inserted by the compiler) affects performance and code size (particularly on ARM).
o Bit fields are also very expensive in arithmetics on all platforms; it is better to use bit arithmetics explicitly

to avoid hidden costs of conversions.

Data

o Inspect global arrays that significantly contribute to static memory consumption. In some cases, it maybe
better to use the heap, particularly when this object is not used through the entire process life cycle.

o Find and remove unused global variables
o Be aware of structure padding. Consider re-arranging fields to achieve smaller structure size.

Stack
In some cases, it is worth the effort to optimize the stack, particularly when the application has some
frequent picks of stack activity (meaning that a huge stack segment would be constantly mapped to
physical memory). You can watch the Memory Information view for stack allocation and inspect code
that uses stack heavily. This usually occurs in two cases: recursive calls (which should be avoided in
embedded systems), and heavy usage of local variables (keeping arrays on the stack).

Note: Tasks of finding unused objects, structures that are not optimal, and code clones are not
automated in the QNX Momentics IDE. You can search for static analysis tools with given keywords to
find an appropriate tool for this task.

Conclusions
This article introduces techniques and methods for performing memory profiling for embedded applications
using QNX Momentics IDE tools. The non-intrusive QNX memory analysis tools can greatly simply the labor-
intensive job of memory profiling, which otherwise would have been done using a debugger, printf, or modifying
application code.

For more information about QNX Momentics IDE 4, see http://www.qnx.com.

http://www.qnx.com/

	Memory Profiling using QNX Momentics IDE 4
	Process Memory
	Procedure 1: Inspecting process memory distribution

	Performance of heap allocations
	Procedure 2: Preparing a memory profiling session

	Analyzing allocation patterns
	Optimizing Heap Memory
	Memory Leaks
	Procedure 3: Quick check for Memory Leaks
	Procedure 4: Enabling memory leaks detection
	Procedure 5: Manually inspecting outstanding allocations

	Object life cycle
	Allocation overhead
	Procedure 6: Estimating the average allocation size

	Tuning the allocator
	Optimizing Static and Stack Memory
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

