New IDE Application Profiler Enhancements

Authored by: Elena Laskavaia

The new Application Profiler features are currently under development for the next release of QNX Momentics.
Use the forum and provide us with your comments and suggestions.

Profiling Techniques

Function This type of instrumentation is the most effective way of optimizing bottlenecks in single

enter/exit time application. The data collection technique lets you gather precise information about

instrumentation duration of time that the processor spent in each function, and provides stack trace and
call count information at the same time.

Now, you can see exactly where application spending you time and how it gets there
using a Call Tree. New Time column shows you time spent in the function itself and all of
its descendants, as well as the minimum (Min), maximum (Max) and average (Average)
total time for all invocations of a function. Also, you can view who called the function,
and how much time each function took to execute in context of a caller.

£ Execution Time 2 98 =1 gl =¥ 70O
Tl: profilterTest #178 - Theads Tree
Marmne Tirme Count | Location
5 ® Thread 1 175.353 ms 1
5 ® _start 175.353 ms 1
o B main 175,253 ms 1
@ main (zelf) 0.697 ms 1 main.c:28
-l B 3 174,641 ms 1 main.C:41
@ a (zelfy 0.004 ms 1 main.c:21
B b 0,009 ms 1 main.c:22
+ B loop 131.010 ms 1 main.c:23
= B fact =0.012% 0.002 ms 1 main.c:24
@ fact (zelf) <0.01% 0.001 ms 1 lib.c:2
+# B fact =0.01% 0.002 ms 1 lib.c:4
= B fact = = E 43.615 ms 1 main.c:25
@ fact (self) <0.01% 0.001 ms 1 lib.c:2
+ B fact EENE7 % 43.614 ms 1 lib.c:4
+ B loop =0.01% 0.015 ms 1 main.c:41

Ul Changes

Call Tree Mode You can drill down from the thread entry function to see how actual time distributes per
function descendents. This is the default Call Tree mode for the new instrumented
profiling. If you need time aggregated for particular function, use the context menu to
explore aggregated Callees tree for this function.

7l profilterTest #1728 - Theads Tree

MNarme Tirme
= B Thread 1 175,353 ms
= ® _start 175,353 ms
= B rmain 175,353 ms

@& main (zelf) 0,697 ms

= B A 09, 509 174.641 ms

@ a (zelfy <0.01% 0.004 ms

B b <0.01% 0.009 ms

B loop 131.010 ms

= B fact <0,01% 0.003 ms

@ fact (zelfy <0.01% 0.001 ms

B fact <0.01% 0.002 ms

Reverse Call Who calls a specific function, and how is the time distributed per caller? A Reverse Call
Tree Mode Tree helps answer this question. You can drill down (up in the stack) and check the callers
and their contribution time until you encounter a thread entry function.

¥ Execution Time X & =l Tyl =Y %
4! demoMemaoryProfiling #177 - Who calls 'append_str’
Marme Tirme Count
1.774 ms
= append_int-=append_str 05 1.029 ms 230
= = convert_array-=append_str ENNE %5 0.746 ms 247
= = do_work-=Convert_array %G 0.746 ms 247
= = work-=do_worl 01.07% 0.019 ms g
= main-=work 01.07% 0,019 ms g
= = work->do_work 25, 22078 0,626 ms 199
= main->work 25,2200 0,626 ms 199
= = work-=do_work [s.66% 0,100 ms c
= main->work [=.665% 0,100 ms e
Context An easy to use context navigation menu is available for each node of the tree, table or call
Navigation graph. The actions in the context menu are: Show Callees - shows the functions that are

called by selected function, Show Callers - lists the functions that called selected function,
Show Call Graph - shows an illustration of the runtime call graph.

= @ append_str 100.0
= append_int-=append_str S

1774 me
1.029 ms
FAams

Tl: Show Callees

= convert_array-=appen
= = do_work->convert_

746 me

= = work-=do_work A1 Show Callers 019 g
= main-»work | 2% Show Call Graph 019 me

= = work-»do_wark| Show Source E26 m
= main-=work m% 0.626 m:

= = wiork-=dn wnrk h=.qe9s M0 e

Call Graph The Call Graph was enhanced to include tooltips and a context menu.

Mode
Improvements Cconyert_array-=init_str |

| do_work-=convert_array |—>| convert_array corvert_array-=append_int |
_—l

corwert_array-=append_str |

Tirme: 0,746 ms
Percent: 00,29%
Count; 247

Profiler Session Profiler sessions are now managed in the Profiler Sessions view; separate from the Debug

View with view. Sessions are persistent: saved when the eclipse application is closed, and restored
session when it is open again. The session view supports standard session management actions
Persistence such as Delete, Rename, Open, Close, Session Comparison, Session Import, as well as

actions applicable for running sessions only: Start/Stop profiling and Take Snapshot.

& Profiler Sessions > 25 F =0
£ profitterTest %86 (Samping) #162 [22/08/07 3:44 PM] A
£ profilterTest %80 (Samping) - snapshot of 102 #1063 [22/08,

& E‘j est . xB86 (Samping) #1656 [224
® £ profilter Test 86 (Sarmping) #175 [23/4
£ profilter Test .86 (Samping) #176 [23/(

m E—:I dermoMomoryProfiling #177 [24/02/07 A
o FEA e mfilbew Tonk #4700 T2 400007 290 ORAT

¥ Delele
Rename
Properties
Close

=
15T [

.

|

= My Compare =
[Import. .

Comparison When you complete optimizing it is useful to know the progress you've made. The new
Mode comparison mode allows you easily to see the difference between two runs. You can
continue to view data as a Call Tree or a Table - but instead of absolute time values, you
would see time differences. Tooltips would provide actual time value as you need them.
¥ Execution Time X s =T 8y =¥ 70O
i= Comparing: profilterTest (178} <-= profilkerTest (optimized) (179} - Function Table
Marmne Tirme Count
& loop -34.451 ms 2
@ a -52.563 ms 1
i@ _start -82.520 ms 1
@ main -52.529 ms 1
@ loop_func -41.451 ms 1010
@ fact A Hoz.03% 1oid: 9.298 us | 115
Mew: 9952 s
Diff: 0.667 us
07.17%
Session The Take Snapshot feature lets you freeze the current state of the application profiler data,
Snapshots Tool and while actual session data keeps changing, snapshot data remains frozen and can later

be compared with the final results, or other snapshots of the same session. In the
Execution Time View, this action also automatically switches to view a Comparison mode
to dynamically show the updated difference between the current state and the snapshot.

g Execution Time X L] tR [= ¥ =
i= Comparing: profilterTest .x86 (Samping) - snapshot Dﬁake Shapshiot and YWatch Diﬂ‘erence[
Mame Time Count

@ loop +22477.000 =
@ loop_func Afo2.83% +601.000 s
@ _init = +00.34 % +82.000 s
@ __do_global_dtors_aux = 400,18 % +45.000 =
@ main <= +00.02% +5,000 5
@ a = +00.02% +4.000 5
@ _init = «0.01% +1.000 s
@ _Mbtow = <0.01% +1,000 s
@ MagSendy @ <0.01% +1.000 s
@ _list_memalign 0
@ static_strcmp]
i@ hash 0
@ lookup 0

Pause/Resume
Profiling

Occasionally, too much data is the same as having no data at all. You can take control of
when to enable profiling during an application execution using the Pause/Resume
Profiling actions.

Cloning of the
view page

You can now create a second Execution Time View to see data side-by-side using the
action Duplicate View. The new view is disconnected from Profiler Sessions, but keeps
track of its own history.

f@ Execution Time &2 LUl o BT =R | MR T = =)
4! demoMemaoryProfiling #177 - Who calls 'sppend_str’
Mame Time - Count
= & append_str 1.774 ms 497
= append_int-=append_str 1.029 ms 250
= = convert_array-=append_str 0,746 msz 247
= do_work-=convert_array 0.746 ms 247
B Execution Time (2 X CI o T = ﬂg qf &= = = E|“'
Tk demaMemaryProfiling #177 - Who is called by 'append_str'
Marne Time Count

=

= append_str 1.774 ms
B append_str-=xmalloc 00.22% 3,928 us 3

B append_str-=xrealloc 1.014 ms 479

History The Execution Time View keeps track and maintains a record of where have been. You
Navigation can go back and forward right from the toolbar, or select a particular entry in the
navigation history. The navigation history size is customizable in the view Preferences.

(ﬁ* T 8l = ¥ T O] [g mainc 2 ™ [g xmalloc.c EN
o dermoMermaoryProfiling #177 - Call Graph of 'init_str'

demaotemoryProfiling #177 - Call Graph of ‘convert_array’
dermoMermaoryProfiling #177 - Who calls 'append_str!
demaotemoryProfiling #177 - Who calls xmalloc’
demoMernoryProfiling #177 - Who calls malloc!
demaotemoryProfiling #177 - Who is called by 'wmalloc’
dermoMermoryProfiling #177 - Function Table
profillerTest .x86 (Samping) #1280 - Function Table
profilterTest %86 (Samping) - shapshot of 180 #1581 - Function Table
Comparing: profilterTest .x86 {Samping) - snapshot of 180 (181 <-= prc

13 str.size=0;
14 str. len=0;
Grouping The Grouping feature helps for the organization of huge function tables for better

navigation and analysis. This is the easy way to see aggregated time results for each
software component (binary or file).

= = ﬁ
Sroup By Marne
® Binary
File

B libc.so.2 17.000 s
B libspeciallib.so 114.000 s
= B profilterTest 20911.000 =
@ a 2,000 s
@b 1.000 s
& loop 20240,000 5
@ loop_func 667.000 s
@ main 1.000 s

Session Import ~ Now, you can import from .gmon, .kev or .ptrace files, generated on the target side by
Profiler, using the new Import action right from the session view, or using the standard
Eclipse Import action.

[Import Application Profiler Data @

Import from Application Profiler trace file (*.ptrace)

Click Finish to perform the import,

Import From File: |${wnrk5pace_luc:pruﬁlterTesthugE.ptrau:e} | ’ Browse, .,]

Executable File: |${wnrkspace_luc:pruﬁlterTestfprDﬂIterTest} | ’ Browse, .,]

Libraries Search Path:

t{waorkspace_loc speciallib 86 /s0-profiling}

Edit...

I I:&
[l
a

Eemove

@ Mext =] [Finish l ’ Cancel

Properties View It is now easy to obtain additional information about a view element. Simply select an

Integration element, and the standard Eclipse Properties view will show element properties:
@ wmalloc 0,111 s 253
® append_str 00.70% 1.774 ms 497
E 1.014 ms
@ init_str <0.01% 2,232 us 3 v
=l Properties &2 | 5|2 =0
Property Yalue
= Info
MNarme yrealloc
Type Function
= Location
Address 0x2049224
Binary dernoiemoryProfiling
File C:/Develop,ApS0_exportfworkspace /demoie moryProfiling <malloc.c

Line 13

View Now, you can use the Execution Time View Preference Page to customize the number of
Customization columns you want to have in the view, their order and the format of the data they show.

(4 Preferences (Filtered) |: EIEI

| 5% | Execution Time Yiew

= QM Application Prof

S Thie Set Execution Time Yiew preferences

Mawigation history size: 10
[¥]Show 'from' in the Name calumn

[shaw 'percent’ in the Name calumn
[1Show Own Time as a Node

Percent decimal precision (digits): | 2

Time units: adaptive (*) b

[¥]Show percent bar in time calumns
[¥]Show percent text in time columns
Yizible Columns

Mame

Time

[sverage

(] own Time
Count

[] Location

] Max

] mMin

] Time Stamp
[] Percent

’ Restore Defaults] ’ Apply]

@ [O l ’ Cancel]

Copy To At any time, if you want to see the table or tree data in text format, use the platform

Clipboard standard copy method to obtain the text version of the visible data, which will be copied
to your clipboard. Paste it in e-mail and share with your manager your success in software
optimization.

Filtering

When grouping does not help, you can use filters to remove some rows from the table.
Component filtering lets you see only these records related to the component, or you can
use Data filtering to filter based on timing values.

[Filters

Execution Time Yiew Flters

Maximum number of elements in the list: | 100 |

Filter elements with time value less than (%) | 1.0 |

[lshow unresolved symbals
Components:

= [H] EaépruﬁlterTest 26 (Samping) #1820 [27/02/07 1:49 PM]:
7 libc.so,2
¥ profilter Test
o7 libspecialLib.so
[#F unknown

L) Applhy] [(04 l ’ Cancel

When filtering is applied, the "<filtered>" element remains in the view as a remainder of
filtered elements, and the total number of these elements is visible in the Count column.

i= Comparing: profilter Test .x86 (Sarmping) - snapshot of 180 (181) <-= profilterTest |

MNarme Time Count
& loop +23477.000 s
@ loop_func Arhoz.83% +691.000 s

@ <filtered: 00.63% 154.000 = 14

Search The new "Find..." action includes an easy to use Find bar that will pop up at the bottom of
the view. The view automatically expands and highlights nodes in the tree with given text
when a string is located.

B convert_array-=append_str <0.01% 15,966 us
= B comvert_array-=append_int 00,10% 0.236 ms
@ append_int (zelf) 00.02% 47.490 us

B append_int-=xmalloc 0.154 ms
B append_int-=append_str 00.02% 55.293 us

= B work-=do_work il 0.254 s —
@ do_waork (self) 01.17% 2.987 ms
B do_work->=convert_array 15, 200 0,251 s
= B wnrk-=dn wnrk AN.3N% N7A4 ms o
b | 3
¥ | xmalloc | ¥ & |aa <@
Annotated Editor annotations now have the same look and feel as table annotations; they have text
Editor and can be customized using preferences.
Improvements
[main.c [xmalloc.c log.ptrace m
14 ' A0
15) B
16
17 =0.01% int b(char ¥ str){
18 =0.01% int rez = fact(10):
19 return res;
20 }
il 00, 5010 void a(){
2z =0.01% b{"hello™);
23R loop(1000) ;
24 <=0,01% fact (5):
Z G %% fact (100)
26 4
27 B
int maini{int argc, char * arogv[]) |
29 int i = 0;
30 int n = 1;
R

	New IDE Application Profiler Enhancements
	Profiling Techniques
	UI Changes

