Memory Partitioning

(Design and Architecture Overview)

General Concepts

Partitioning is the means for dividing up resources for use amongst a collection of programs. A patrtition is the
entity which represents some fraction of a resource and the rules on how that resource can be used.

Resources include basic objects like processor cycles and program store but also higher level objects like
buffers, page tables, file descriptors, etc. There may also be different classes (or types) of a similar resource.
Program store, or memory is the resource of concern in this document.

A memory partition is considered an abstract entity with a specific set of attributes. By associating processes
with memory partitions, you are applying a set of resource constraints (partitioning rules) to the allocation of
memory by associated processes for the purpose of object creation. This applies regardless of whether the
allocations are the result of programmed memory allocations or memory allocations as the result of the flow of
execution (ie. stack space, shared libraries, etc).

When a process creates objects, the class of memory that the object requires may be different than for other
objects the process creates. The concept of memory classes is supported by the memory partitioning design
such that different classes of memory (memory with different attributes) can be independently partitioned. If a
particular process requires a particular class of memory, that process can be associated with a partition of that
class, independent of the memory class requirements of any other process.

When partitioning memory, each memory class is partitioned independently. That is, a memory partition
represents a single class of memory and therefore if a process creates objects that require different classes of
memory, it must necessarily be associated with multiple partitions. Go back and read this again until you
understand it!

A mechanism to “group” partitions is provided to allow a single, arbitrary name to represent a collection of
pseudo partitions. A pseudo partition represents a real partition by a different name. This capability allows a
process to associate with multiple partitions (like a scheduling partition and one or more memory partitions)
using a single partition name (see pseudo partitions below).

Of importance to understand as well, is that although it is convenient to consider that it is processes that are
associated with memory partitions, it is really the objects created by a process that are associated with a
memory partition. This concept is what allows the existence of persistent objects (ie. objects like named shared
memory) to exist beyond the lifetime of a process and still be governed by the constraints of the partition with
which they were associated. Of course when no such persistent objects exist, the association of a process with a
partition and the objects a process creates with a partition are analogous.

1 Aug 31, 2007



For simplicity, the use of process association is used throughout this document with the understanding that it is
the objects created by associated processes that is implied.

Memory partitions of a given memory class may nest. Newly created memory partitions can subdivide a parent
memory partition and form a hierarchy. This concept ensures that a process which creates a new partition, is
constrained by the attributes of the partition that it is currently associated with. This “container” model provides
security and is analogous to the operation of the adaptive partition scheduler.

Finally, as previously stated, partitions of different memory classes or types can be created and processes can
be independently associated with one or more of these partitions as required. The POSIX typed memory
interfaces can be used by processes to provide the basis for a simple class based memory allocation facility and
the memory partitioning implementation will support the enforcement of partitioning rules based on the attributes
specified on a per memory class basis, even if only one memory class, system memory, is utilized.

Memory Partition Attributes and Policies

As previously stated, a partition is an entity which represents the attributes and rules which govern the use of a
resource. This section describes the partition attributes and rules that permit the effective use of memory
partitioning by user programs.

All memory partitions have the following configurable attributes.

i. minimum size
the minimum size attribute specifies the amount of a particular class of memory that has been reserved
for exclusive use by objects which are associated with the partition.

ii. maximum size
the maximum size attribute specifies the amount of a particular class of memory that can never be
exceeded for use by objects which are associated with the partition.

Some concepts that emerge as a result of the aforementioned attributes are as follows

Reserved memory

« anon zero minimum value represents a reservation and not an allocation. That is, when a non zero
minimum value is successfully configured for a partition, the memory is reserved for exclusive use by
that partition in the allocator for that memory class. It is not preallocated

- allocations made against partitions with reservations will be accounted against unused reservations first
and against available discretionary memory second

Discretionary memory

- The difference between the maximum and minimum values for a partition represents the amount of
discretionary memory of that class available for the creation of objects associated with the partition. The
value can be zero.

« Access to discretionary memory is dependent upon system partition configuration and is never
guaranteed to be available

2 Aug 31, 2007



Memory Partition Types

Based upon the attributes and rules, memory partitions can be organized into four types or configurations.

1. Open
minimum = 0, maximum = inf, discretionary only
memory allocations made for objects associated with this partition type are subject to the availability of
discretionary memory. There is no limit (beyond the limit of physical memory available to the allocator for
that class) to the amount of memory that may be requested. Similarly, there is no guarantee that
allocations made for objects associated with this partition will ever succeed.
This type creates an environment similar to the case when there is no memory partitioning. If memory is
available, the allocation request will succeed (notwithstanding factors unrelated to availability), otherwise
it will fail

2. Guarantee
minimum = N, maximum = inf, reserved + discretionary
N bytes of the respective memory class is reserved and available for allocation to objects associated
with the partition. There is no limit (beyond the limit of physical memory available to the allocator of that
class) to the amount of memory that may be requested.
This type can be used when it is known a priori that the objects associated with this partition will require
a specific amount of memory but that any further memory requirements should be governed by the rules
for discretionary memory allocations

3. Restricted
minimum = 0, maximum = N, discretionary only
memory allocations made for objects associated with this partition type are subject to the availability of
discretionary memory and furthermore will not exceed the limit of N bytes.
This type can be used when it is not known what the memory requirements are for the objects
associated with this partition but that under no circumstances should the N bytes limit be exceeded

4. Sandbox
minimum = N, maximum = N, reserved only
N bytes, and only N bytes of the respective memory class is reserved and available for allocation to
objects associated with the partition.
This type can be used when it is precisely known what the memory requirements are for the objects
associated with this partition or for situations where a course subdivision of the available memory class
is desired. This can be used to hand out chunks of memory for further subdivision (using any of the
defined partition types) by others

A fifth configuration which is not formally defined as a type combines the guarantee and restricted types. This
configuration specifies a reserved amount but allows for a “not to exceed” buffer of discretionary allocations. This
configuration can be used to assist in “tuning” a sandbox or for accommodating transient memory allocations in a
guarantee partition.

3 Aug 31, 2007



Memory Classes

As previously stated, memory partitioning is performed on a per memory class basis. Memory classes are
necessarily system specific however at least one memory class is always always present and automatically
configured ... the sysram (system ram) class.

A memory class does not (necessarily) refer to a physical chunk of memory however it is most often the case
that alternate classes of memory reside in separate physical chunks. Regardless, memory partitioning does not
impose any particular attributes to memory classes so the suitability of a particular class of memory to a
particular use is not the domain of memory partitioning. However, by appropriately configuring memory classes,
the ability to partition, and hence manage them, is provided.

Memory classes are made available to the system via startup in the system page. They are made available for
partitioning when they are introduced into the /partition/mem name space. With the exception of system
ram, the POSIX typed memory interfaces are (currently) the means by which non sysram memory classes are
made available for partitioning and subsequent allocation.

The Name space

Partitioning in general will take over the /partition/ name space. Partitioning utilizes the POSIX name space to
provide access to features of the partitioning modules. Memory and scheduling partitioning will take over the
/partition/mem/ and /partition/sched/ name spaces respectively.

The reason for using the name space for access to the memory partitioning module is that it provides the
following

« rudimentary access control through POSIX permissions

- the ability to view partition topology using well known and understood utilities (like ‘Is’)

- use of existing POSIX API’s (open(), close())

All configured memory classes will be made available in the name space as /partition/mem/<memclass>.
The system ram memory class will always be present as /partition/mem/sysram. This memory class
is used to account all non-specified memory allocations, like those from the *alloc () family of calls.

Before a memory class can be partitioned, the memory class is added to the system by creating a new entry in
/partition/mem/ using the memory classes name as registered in the system page. If a name is
created under . /men, it is first checked to see if it is a defined memory class. If so, the class is added and
may then be partitioned. If it does not, the name is treated as a group partition name (see Pseudo
Partitions and Partition Groups).

Since partitioning takes place on a per memory class basis, when a partition is created, it is created in the
name space under the respective memory class. An example of this is the system partition which is created

4 Aug 31, 2007



by default as /partition/mem/sysram/sys. This partition is used to account all kernel memory allocations
and all allocations by user processes which have not otherwise associated with a different partition. That is to
say, that if additional partitions are not created, all allocations are accounted to the system partition. This is
equivalent to the situation when memory partitioning is not used however the ability to obtain system ram and
system partition metrics is provided.

If user processes will use their own partition(s) for sysram, then they should be created under the . /sysram
memory class.

A partition of a memory class (ie a real partition) will reside in the name space using the fully qualified path name
/partition/mem/<memclass>/<partition>/ and under the partition name will be visible the set of processes
which are associated with that partition.

For example,

ls /partition/mem/sysram/sys

would produce a listing of all processes which are associated with the system partition.

1/ 147468/ 172047/ 188435/ 233493/ 307223/ 6/ 90123/
12292/ 159758/ 188433/ 188436/ 237590/ 4104/ 7/ 90125/
139273/ 167952/ 188434/ 2/ 3/ 5/ 73738/

and

1ls /partition/mem/sysram/sys/1
would produce the following listing

partition/ as

All of the manipulations which could be performed on a process via the procfs path /proc/<pid>/can also be
performed using the path /partition/mem/<memclasss/<partitions/<pid>/.

When inspecting the name space /proc/<pid>/, an additional entry will be present which exposes the partition
name space for /proc/<pids>/. This is the means by which the partitions which are associated with a specific
process are exposed in the /proc/ name space and as we will see later in the document, allows the modification
of partition inheritance behaviours.

For example,
1ls /proc/1
would produce the following listing (similar to above)

partition/ as

5 Aug 31, 2007



and
ls /proc/l/partition
would produce the following listing

mem/sysram/sys

However this view, unlike the /partition/mem/sysram/sys/view, does not expose the contents of ./sys/ as this
would lead to name space recursion and confusion. Similarly, the /partition/mem/sysram/sys/<pid>/view does
not expose the contents of ./partition/ for the same reasons.

In summary,
/proc/<pid>/partition/ exposes all of the partitions associated with /proc/<pid>

/partition/mem/<memclass>/<partition>/ exposes all of the processes associated with ./<partition>

Memory Partition Confiqurations

Using the various partition types, memory partitions can be organized into various topologies or configurations
that will allow them to be useful. By default the memory partitioning module will create a system partition of the
sysram memory class. This partition is known as a root partition. The definition of a root partition is a partition
which does not have a parent partition.

Because a certain amount of system ram is required during startup and for the kernel itself, the size of the
system partition after startup determines what memory is available for partitioning. The system patrtition is
created as an Open partition type by default but can be configured as a Guarantee partition with the procnto -R
<size> option in the build file.

It is also possible to use the system partition as the root of a partition hierarchy although this is generally not
advisable since the system partition can be impacted by the the configuration of the hierarchy.

Partition topologies can either be flat, in which all partitions are root partitions, or hierarchical, in which at least
one root partition exists with 1 or more child partitions beneath it.

In a flat topology, the attributes specified for a partition are not based on the attributes of any other partition.
Partitions of any type can be created so long as the rules for creation are satisfied. For example, you could not
create 5 - 32 MB sandbox partitions of the same memory class with only 128 MB of physical memory of that

class.

In a hierarchical topology, the attributes of a parent partition affect the attributes of the child. The following rules
are used in a partition hierarchy

The rule of subdivision

6 Aug 31, 2007



« when a partition is created as the child of an existing partition, a non zero minimum configured in the
child will be accounted as an allocation to the parent partition. This means that if the parent partition has
any unallocated reserved memory, it will be used to satisfy some or all of the child reservation. This
reservation is accounted up the entire partition hierarchy until is fully accounted for in either a parent
partition or some combination of parent partitions and the allocator for the class.

- All allocations made against a partition which resides within a partition hierarchy, are also accounted
within the entire hierarchy above the respective partition.

Partition rules govern whether the allocation of memory will be allowed to proceed, not whether the memory will
be successfully allocated. There are many other reasons unrelated to availability why the allocator for a given
class of memory may be unable to satisfy an allocation request.

The rules governing the use of the aforementioned attributes are as follows

« the maximum size attribute is always >= the minimum size attribute
- the minimum/maximum size attributes have a range from 0 -> infinity and are represented as 64 bit

types
« minimum and maximum values can be modified subject to the aforementioned rules

Pseudo Partitions and Partition Groups

Up until now, the description of a partition has referred specifically to a real partition of a memory class.
Pseudo partitions and partition group names provide a means of grouping real partitions for the purpose of user
convenience.

A real partition has attributes and policies as described above and refers to partition of an actual resource.

A pseudo partition is simply a name space reference to a real partition. A partition group is simply a name space
reference to multiple pseudo partitions. Partition group names and pseudo patrtitions simplify process
associations by allowing a process to be associated with a single group name. This eliminates the user having to
associate a process with all of the partitions for each memory class it requires.

Partition groups and pseudo partitions is also the means by which partitions of different resources (like
scheduling and one or more memory partitions) referenced using a common partition name.

An example configuration follows

real partitions ...
/partition/mem/sysram/sys
/partition/mem/sysram/p0
/partition/mem/”class 1”/pl
/partition/mem/”class 2”/p3
/partition/mem/”class 3”/p0

pseudo partitions ...

7 Aug 31, 2007



/partition/mem/my_pseudo_p0/pl --> /proc/partition/mem/sysram/p0

/partition/mem/my_pseudo_p0/p2 --> /proc/partition/mem/”class 1”/pl
/partition/mem/my_pseudo_p0/p3 —--> /proc/partition/mem/”class 2”/p3
/partition/mem/my_pseudo_p0/pd --> /proc/partition/mem/”class 3”/p0

In this example, a partition group, my_pseudo_p0 has been created to collectively refer to the partitions of
4 different memory classes.

Processes can simply associate with pseudo partition /partition/mem/my_pseudo_p0 and they will
have access to the 4 memory classes sysram, “class 17, “class 2”, “class 3” and have their allocations
governed by the attributes and policies of the respective real partitions p0, p1, p3, pO.

Process Association with Memory Partitions

When a process is created, it must be associated with at least one partition and that partition must be of the
system memory class. This is required in order to satisfy allocations necessary to even create the process.
Association with partitions of other memory classes is only required if the process creates objects which require
those memory classes.

There will be 2 mechanisms to establish the partition associations of a child process.

1. Inheritance from the parent process

2. Explicitly specified using posix_spawn () and an appropriately initialized posix_spawnattr_t object
Inheritance
Partition inheritance is required in order to satisfy partition associations in the case where they can not be
explicitly specified. This is the case for fork () and spawn (). The API's simply provide no explicit control over
partition associations. In order to resolve this, there are 2 behaviours, a default and an alternate. The default
behaviour, as the name suggests, will take effect without doing anything extra. The alternative behaviour will be
available through posix_spawn () (see discussion below).

Default Behaviour

By default, all of the memory partitions associated with the parent (creating) process which do not have their
mempart_flags_NO_INHERIT flag set, will be inherited by the child (created) process.

Alternate Behaviour

By default, only the sysram memory class partition associated with the parent (creating) process will be
inherited by the by the child (created) process.

The mempart_flags_NO_INHERIT flag can be set on a per partition basis for each process using the
DCMD_ALL_SETFLAGS devctl().

8 Aug 31, 2007



Explicitly Specified Associations - using posix_spawn()

The posix_spawn () call will behave similar to fork ()/spawn () in terms of default behaviour however it
provides an additional level of control via the posix_spawn_file_actions_t and posix_spawnattr_t
objects. The combination of the new flag, POSTIX_SPAWN_SETMPART, and the
posix_spawn_file_actions_t and posix_spawnattr_t objects provides complete control over partition
association as described in the following sections.

In order to utilize the mempart_flags_NO_INHERIT flag for the default behaviour, an additional file actions
call, posix_spawn_file_actions_devctl (), will be defined which can be used to set or clear the
mempart_flags_NO_INHERIT flag of a processes associated partitions. To explicitly control the inherited
partition associations of the child process, the posix_spawn_file_actions_t object could be initialized as
follows

posix_spawn_file_actions_addopen(.., fd, “/proc/<pid>/partition/mem/<memclass>/<partition>", ..);
posix_spawn_file_actions_adddevctl (.., fd, DCMD_ALL_GETFLAGS, &flags, ..);
flags &= ~mempart_flags_NO_INHERIT; // to allow the partition to be inherited

or
flags |= mempart_flags_NO_INHERIT; // to prevent the partition from being inherited
posix_spawn_file_actions_adddevctl (.., fd, DCMD_ALL_SETFLAGS, &flags, ..);
posix_spawn_file_actions_addclose(.., fd);

This would be performed for each partition associated with the parent in order to modify the default inheritance
behaviour.

The mempart_flags_NO_INHERIT flag is useful in controlling partition inheritance but it does not provide a
means for associating a child process with partitions which the parent process is not associated with. In order to
provide a means of associating a child process with a specific set of partitions, regardless of whether the parent
process is associated with those partitions or not, the POSTX_SPAWN_SETMPART flag and
posix_spawnattr_t attributes object will be utilized

The posix_spawnattr_t structure has been extended to accept a variable length array of partition name
pointers. The names can be specified with a new posix_spawnattr_set_mpart () call. When calling
posix_spawn () with a pointer attrp to the posix_spawnattr_t object the following partition inheritance
behaviour will be obtained

- Ifthe POSIX_SPAWN_SETMPART flag is set in the spawn-flags attribute of the object referenced by attrp,
and the spawn-mpart attribute of the same object is non-zero, then the child’s memory partition
associations shall be as specified in the spawn-mpart attribute of the object referenced by attrp. There
will be no implicit inheritance. Note that any posix_spawn_file_actions_t related to memory
partitions will still be processed however because there is no inheritance, the results of those operations
will be ignored

This has the effect of allowing the calling process to explicitly specify which memory partitions the

9 Aug 31, 2007



child process should be associated with, including none. There will be no partition inheritance,
although a partition which the parent is associated with can be specified for use by the child

- Ifthe POSTIX_SPAWN_SETMPART flag is set in the spawn-flags attribute of the object referenced by attrp,
and the spawn-mpart attribute of the same object is zero, then the alternative default behaviour for
partition inheritance will be used (see above)

This has the effect of allowing the caller to use the alternative partition inheritance behaviour.
Because the POSIX_SPAWN_SETMPART flag must be explicitly specified, it will only take effect for

applications which are “partitioning aware”. The defined default behaviour will be used otherwise

- Ifthe POSIX_SPAWN_SETMPART flag is not set in the spawn-flags attribute of the object referenced by
attrp, then the default behaviour for partition inheritance will be used (see above)

This has the effect of allowing posix_spawn() to provide default partition inheritance behaviour
similar to fork() and spawn()

Shared Memory Allocations

Shared memory objects specifically are accounted to the partition in which they are created. This means that
even if a process is associated with a different partition than the one which the shared memory object is
associated with and that process ftruncate()’s the shared memory object to make it larger, the rules
governing the allocation required to accomplish the ftruncate () are determined by the partition the shared
memory object is associated with AND NOT the partition the ftruncate ()’ing process is associated with. This
requires that applications properly design their software so that shared memory objects are associated with the
appropriate partition. It is a different problem, unrelated to memory partitioning, which establishes which
processes may ftruncate () a shared memory object.

Memory Partition Metrics

Use of the path name space will provide the means to obtain memory partition metrics similar to other name
space objects. This will allow the use of existing utilities as well as the creation of custom applications to obtain
and display partition data.

The memory partition metrics will allow the user to suitably partition the available system memory and account
for usage. Some internal data structures which represent an overhead to the operating system will be accounted
for but will not otherwise be uniquely identifiable as being attributed to creation by a specific process.

Applications will be able to retrieve, as a minimum, the following information
- current configuration (attributes and policies)
- creation configuration (attributes and policies at the time the partition was created)
« current partition size

10 Aug 31, 2007



« highest partition size
Note that these metrics are only available from real partitions, not from pseudo (group name) partitions. This
does not prevent an external application however from collecting data from all real partitions (utilizing a group

partition name) and presenting the data in a suitable fashion.

Also note that similar information will be made available for each memory class as a whole.

Memory Partition Events

When an application attempts, either directly or indirectly, to allocate more memory than is permitted by the
partition that the process is associated with, the behaviour will be identical to the situation in which no memory
partitioning is being used and all of the available memory in a system has been allocated.

A suitably privileged process will be able to register for various types of partition events. These events may
include

- size change events (threshold cross and delta)

- configuration change events

« process association and disassociation events

« child partition creation and destruction events

Also note that similar information will be made available for the memory class as a whole.

Issues of Security

Security, or “trusted” is a significant portion of a memory partitioning solution and in some instances may be the
sole reason for its use. For the purpose of memory partitioning, the following context will be used

Configuration security
- the ability to prevent partition topology changes
- the ability to prevent illegal partition creation
- the ability to prevent partition destruction
- the ability the prevent partition configuration changes

Operational security
- the ability to ensure that guarantees are provided
- the ability to ensure that restrictions are enforced
- the ability to ensure that only authorized processes can be associated with partition

To these ends, the following mechanisms will be employed

POSIX file permissions

11 Aug 31, 2007



This mechanism will provide a rudimentary level of control based on the well understood user/group/world
permissions.

« read permission allow metrics to be obtained as well as to register for events

- write permission allow configuration changes (including topology changes) to be made

- execute permissions allow association

Terminal Partition Policy

A terminal partition policy allows the partition to be configured such that no child partitions can be created. Once
set TRUE, the policy can not be changed. This policy uniquely prevents the creation of child partitions although it
does not prevent the changing of partition attributes. This policy can be used to prevent a hierarchical explosion

of partitions while still allowing attribute modification (if appropriately privileged).

Configuration Lock Policy

The configuration lock policy allows all configuration attributes of a partition to be locked excluding the Terminal
Partition policy. Once set TRUE, the policy can not be changed. This mechanism prevents any changes to be
made to the partition including POSIX file permissions. It does however allow the creation of child partitions so
that a locked down parent partition could be independently sub partitioned by an separate (appropriately
privileged) organization.

Permanence Policy

The permanence policy prevents the destruction of a partition. Once set TRUE, the policy cannot be changed.
This mechanism prevents partition removal independent of POSIX file permissions

12 Aug 31, 2007



