
 

SchedCtl(), SchedCtl r()
Control the adaptive partitioning scheduler

Synopsis:
#include <sys/sched aps.h>

int SchedCtl( int cmd,
void *data,
int length);

int SchedCtl r( int cmd,
void *data,
int length);

Arguments:
cmd The control command that you want to execute; one of:

� SCHED APS QUERY PARMS

� SCHED APS SET PARMS

� SCHED APS CREATE PARTITION

� SCHED APS LOOKUP

� SCHED APS QUERY PARTITION

� SCHED APS JOIN PARTITION

� SCHED APS MODIFY PARTITION

� SCHED APS PARTITION STATS

� SCHED APS OVERALL STATS

� SCHED APS MARK CRITICAL

� SCHED APS CLEAR CRITICAL

� SCHED APS ATTACH EVENTS

� SCHED APS QUERY THREAD

� SCHED APS ADD SECURITY

� SCHED APS QUERY PROCESS

data A pointer to the specific data structure for the command.

1



 

SchedCtl(), SchedCtl r()

length The size of the structure that datapoints to.

For details about each command and its data, see the sections below.

Library:
libc

Use the -l c option to qcc to link against this library. This library is
usually included automatically.

Description:
The SchedCtl()and SchedCtlr() kernel calls control the adaptive
partitioning scheduler.

This scheduler is optional and is present only if you install the
Adaptive Partitioning Technology Development Kit and add
[module=aps] to your OS image’s buildfile. For more information,
see the Adaptive Partitioning TDK User’s Guide. These functions
were added in the QNX Neutrino Core OS 6.3.2.

These functions are identical except in the way they indicate errors.
See the Returns section for details.

You must initialize all of the fields—including reserved ones—in the
structures you pass as the dataargument, by calling (for example)
memset(). You can also use the APSINIT DATA()macro:

APS INIT DATA( &data );

☞

SCHED APS QUERY PARMS

This command fills in a sched aps info structure that describes
the overall parameters of the adaptive partitioning scheduler:

typedef struct {
Uint64t cycles per ms;
Uint64t windowsize cycles;
Uint64t windowsize2 cycles;
Uint64t windowsize3 cycles;

2



 

SchedCtl(), SchedCtl r()

Uint32t scheduling policy flags;
Uint32t sec flags;
Uint32t bankruptcy policy;
Uint16t num partitions;
Uint16t max partitions;
Uint64t reserved1;
Uint64t reserved2;

} sched aps info;

The members include:

cyclesper ms The number of machine cycles in a millisecond.
Use this value to convert the output of the
SCHED APS QUERY PARTITION command to the
time units of your choice.

The value of cyclesper ms:

� might not equal the value of the cyclesper sec
member of the system page divided by 1000

� isn’t necessarily in the same units as values
returned by ClockCycles()on all platforms

☞

windowsizecycles

The length, in CPU cycles, of the averaging
window used for scheduling. By default, this
corresponds to 100 ms.

If you change the tick size of the system at runtime, do so before
defining the adaptive partitioning scheduler’s window size. That’s
because Neutrino converts the window size from milliseconds to
clock ticks for internal use.

☞

windowsize2cycles

The length, in CPU cycles, of window 2, for
reporting only. Typically 10 times the window
size.

3



 

SchedCtl(), SchedCtl r()

windowsize3cycles

The length, in CPU cycles, of window 3, for
reporting only. Typically 100 times the window
size.

schedulingpolicy flags

The set of SCHED APS SCHEDPOL * flags that
describe the scheduling policy. For more
information, see “Scheduling policies,” below.

secflags The set of SCHED APS SEC * flags that describe
the security options. For more information, see
“Security,” below.

bankruptcypolicy

What to do if a partition exhausts its critical
budget; a combination of SCHED APS BNKR *
flags (see “Handling bankruptcy,” below).

num partitions The number of partitions defined.

max partitions The largest number of partitions that may be
created at any time.

Scheduling policies

These flags set options for the adaptive partitioning scheduling
algorithm. To set, pass a pointer to an ORed set of these flags with the
SCHED APS SET PARMS call to SchedCtl():

SCHED APS SCHEDPOL FREETIME BY RATIO

Free timeis when at least one partition isn’t running. Its time
becomes free to other partitions that may then run over their
budgets.

By default, the scheduler hands out free time to the partition
with the highest-priority running thread. That guarantees
realtime scheduling behavior (i.e. scheduling strictly by
priority) to partitions any time they aren’t being limited by some

4



 

SchedCtl(), SchedCtl r()

other partition’s right to its guaranteed minimum budget. But it
also means that one partition is allowed to grab all the free time.

If you set SCHED APS SCHEDPOL FREETIME BY RATIO, the
running partitions share the free time in proportion to the ratios
of their budgets. So, one partition can no longer grab all the free
time. However, when this flag is set, partitions will see strict
priority-scheduling between partitions only when they’re
consuming less than their CPU budgets.

SCHED APS SCHEDPOL BMP SAFETY

Strict priority scheduling between partitions, with some
combinations of partition budgets, and some combinations of
runmasks (i.e. bound multiprocessing) can require the adaptive
partitioning scheduler to not meet minimum CPU budgets.
When SCHED APS SCHEDPOL BMP SAFETY is set, the
scheduler uses a more restrictive algorithm that guarantees
minimum CPU budgets, but gives priority-based scheduling
between partitions only when when partitions are consuming
less than their budgets.

If this flag is set,
SCHED APS SCHEDPOL FREETIME BY RATIO is also
automatically set.

SCHED APS SCHEDPOL DEFAULT

Neither SCHED APS SCHEDPOL FREETIME BY RATIO nor
SCHED APS SCHEDPOL BMP SAFETY. Neutrino sets this at
startup.

Scheduling within a partition is always strictly by priority, no matter
which of these flags are set.

For more information about adaptive partitioning and BMP, see the
Adaptive Partitioning Scheduling Details chapter of the Adaptive
Partitioning TDK User’s Guide.

5



 

SchedCtl(), SchedCtl r()

Handling bankruptcy

Bankruptcy is when critical CPU time billed to a partition exceeds its
critical budget. Bankruptcy is always considered to be a design error
on the part of the application, but you can configure how the system
responds to it.

If the system isn’t declaring bankruptcy when you expect it, note that
bankruptcy can be declared only if critical time is billed to your
partition. Critical time is billed on those timeslices when the
following conditions are all met:

� The running partition has a critical budget greater than zero.

� The top thread in the partition is marked as running critical, or has
received the critical state from receiving a SIG INTR, a sigevent
marked as critical, or has just received a message from a critical
thread.

� The running partition must be out of percentage-CPU budget.

� There be at least one other partition that is competing for CPU
time.

Only then if the critical time, billed over the current averaging
window, exceeds a partition’s critical budget will the system declare
the partition bankrupt.

When the system detects that a partition has gone bankrupt, it always:

� causes that partition to be out-of-budget for the remainder of the
current scheduling window

� delivers any sigevent that you’ve specified as a notification of
bankruptcy with the SCHED APS ATTACH EVENTS command.
This occurs at most once per calling
SCHED APS ATTACH EVENTS.

In addition, you can configure the following responses:

6



 

SchedCtl(), SchedCtl r()

SCHED APS BNKR BASIC

Deliver bankruptcy-notification events and make the partition
out-of-budget for the rest of the scheduling window (nominally
100 ms). This is the default.

SCHED APS BNKR CANCEL BUDGET

Set the offending partition’s critical budget to zero, which
forces the partition to be scheduled by its percentage CPU
budget only. This also means that a second bankruptcy can’t
occur. This persists until a restart occurs, or you call
SCHED APS MODIFY PARTITION to set a new critical budget.

SCHED APS BNKR LOG

Not currently implemented.

SCHED APS BNKR REBOOT

Cause the system to crash with a brief message identifying the
offending partition. This is the most severe response, suggested
for use while testing a product, to make sure bankruptcies are
never ignored. You probably shouldn’t use this option in your
finished product.

SCHED APS BNKR RECOMMENDED

The combination SCHED APS BNKR CANCEL BUDGET |

SCHED APS BNKR LOG. We recommend this choice.

To set a choice of bankruptcy-handling options, OR the above
SCHED APS BNKR * flags and pass a pointer to it as the
bankruptcypolicypfield of the sched aps parms structure when
you call SCHED APS SET PARMS.

Returns:

EOK Success.

EACCES The calling thread doesn’t meet the security options set
(see SCHED APS ADD SECURITY). Usually this means
you must be root.

7



 

SchedCtl(), SchedCtl r()

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS SET PARMS

The command sets the parameters for the overall behavior of the
adaptive partitioning scheduler. The dataargument must be a pointer
to a sched aps parms structure:

typedef struct {
Int16t windowsize ms;
Int16t reserved1;
Uint32t *scheduling policy flagsp;
Uint32t *bankruptcy policyp;
Int32t reserved2;
Int64t reserved3;

} sched aps parms;

The members include:

windowsizems

The time over which the scheduler is to average CPU cycles and
balance the partitions to their percentage budgets as specified
by SCHED APS CREATE PARTITION If you don’t want to set
the window size, set this member to -1.

schedulingpolicy flagsp

A pointer to an ORed set of SCHED APS SCHEDPOL * flags
that specify the scheduling policy. For more information, see
“Scheduling policies,” above. If you don’t want to change the
scheduling policy, set this member to NULL.

bankruptcypolicyp

A pointer to an ORing of SCHED APS BNKR * flags, as
described under “Handling bankruptcy,” above. If you don’t
want to change these flags, set this member to NULL.

8



 

SchedCtl(), SchedCtl r()

Returns:

EOK Success.

EACCES SCHED APS SEC PARTITIONS LOCKED is set, or
SCHED APS SEC ROOT0 OVERALL is set and you
aren’t running as root in the System partition.

For more information, see “Security,” below.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS CREATE PARTITION

This command creates a new partition which is considered to be a
child of the partition that’s calling SchedCtl(). The system
automatically creates a partition called System (the value of
APS SYSTEM PARTITION NAME) with an ID of 0.

The dataargument for this command must be a pointer to a
sched aps create parms structure:

typedef struct {
/* input parms */
char *name;
Uint16t budget percent;
Int16t critical budget ms;
Uint32t reserved1;
Uint64t reserved2;

/* output parms */
Int16t id;

} sched aps create parms;

The input members include:

name The name of the new partition. If nameis NULL or points to
an empty string, SchedCtl()assigns a name, in the form Pa,

9



 

SchedCtl(), SchedCtl r()

Pb, Pc, and so on. The name must be no longer than
APS PARTITION NAME LENGTH, not including the trailing
null character, and can’t include any slashes (/).

budgetpercent

The percentage CPU budget for the new partition. Budgets
given to the new partition are subtracted from the parent
partition.

Before creating zero-budget partitions, read the cautions in “Setting
budgets for resource managers” in the System Considerations chapter
of the Adaptive Partitioning TDK User’s Guide.

☞

critical budgetms

The critical budget, in milliseconds, for the partition, or -1
or 0 if you don’t want the partition to have a critical budget.
Critical budgets don’t affect the parent, but are
automatically limited to be no bigger than the window size.

The output members include:

id The created partition’s ID number, in the range 0 to the
maximum number of partitions − 1 (see the maxpartitions
member of the data from a call to
SCHED APS QUERY PARMS. The System partition’s ID
number is APS SYSTEM PARTITION ID.

Returns:

EOK Success.

EACCES SCHED APS SEC PARTITIONS LOCKED is set, or any
of these security conditions are set and not satisfied:

� SCHED APS SEC ROOT MAKES PARTITIONS

� SCHED APS SEC SYS MAKES PARTITIONS

� SCHED APS SEC NONZERO BUDGETS

10



 

SchedCtl(), SchedCtl r()

� SCHED APS SEC ROOT MAKES CRITICAL

� SCHED APS SEC SYS MAKES CRITICAL

For more information, see “Security,” below.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EDQUOT The parent partition doesn’t have enough budget.

EEXIST Another partition is already using the given name.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure, the partition name is badly
formed, or the budget is out of range.

ENAMETOOLONG

The partition name is longer than
APS PARTITION NAME LENGTH characters.

ENOSPC The maximum number of partitions already exist.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS QUERY PARTITION

This command gets information about a given partition. The data
argument for this command must be a pointer to a
sched aps partition info structure:

typedef struct {
/* out parms */
Uint64t budget cycles;
Uint64t critical budget cycles;

char name[APS PARTITION NAME LENGTH+1];
Int16t parent id;
Uint16t budget percent;
Int32t notify pid;
Int32t notify tid;
Uint32t pinfo flags;
Int32t pid at last bankruptcy;
Int32t tid at last bankruptcy;
Int64t reserved1;
Int64t reserved2;

11



 

SchedCtl(), SchedCtl r()

/* input parm */
Int16t id;

} sched aps partition info;

The input members include:

id The number of the partition you want to query.

The output members include:

budgetcycles The budget, in cycles. To convert this value to
something useful, convert it with the cyclesper ms
value from a SCHED APS QUERY PARMS
command.

critical budgetcycles

The critical budget, in cycles.

name The name of the partition.

parent id The number of the partition that’s the parent of the
partition being queried. The System partition’s ID
number is APS SYSTEM PARTITION ID.

budgetpercent The partition’s budget, expressed as a percentage.

notify pid, notify tid

The process and thread IDs of the thread to be
given overload and bankruptcy notifications, or -1
if not set.

pinfo flags A set of flag that give extra information about the
partition:

� SCHED APS PINFO BANKRUPTCY NOTIFY ARMED

— see SCHED APS ATTACH EVENTS

� SCHED APS PINFO OVERLOAD NOTIFY ARMED

— see SCHED APS ATTACH EVENTS

12



 

SchedCtl(), SchedCtl r()

pid at last bankruptcy, tid at last bankruptcy

The process and thread IDs at the time of the last
bankruptcy, or -1 if there wasn’t a previous
bankruptcy.

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS LOOKUP

This command finds the partition ID for a given partition name.

The dataargument for this command must be a
sched aps lookup parms structure:

typedef struct {
/* input parms */
char *name;
Int16t reserved1;
/* output parms */
Int16t id;

} sched aps lookup parms;

The input members include:

name The name of the partition

The output members include:

id The ID number of the partition, if found.

13



 

SchedCtl(), SchedCtl r()

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The name wasn’t found.

SCHED APS JOIN PARTITION

This command makes the thread specified by the given process and
thread IDs becomes a member of the specified partition. This partition
also becomes the thread’s new home partition, i.e. where it returns
after partition inheritance.

The dataargument for this command must be a pointer to a
sched aps join parms structure:

typedef struct {
Int16t id;
Int16t reserved1;
Int32t pid;
Int32t tid;
Int32t reserved2;

} sched aps join parms;

The members include:

id The ID number of the partition that the thread is to join.

pid, tid The process and thread IDs of the thread that you want to
join the specified partition:

� If both pid and tid are zero, the calling thread joins the
specified partition.

� If tid is -1, the process with ID pid joins the partition.
This doesn’t change the partitions that the process’s
threads are in; it just sets the partition that the threads
run in when they’re handling a pulse.

14



 

SchedCtl(), SchedCtl r()

Returns:

EOK Success.

EACCES The following security options are set but not satisfied:

� SCHED APS SEC ROOT JOINS

� SCHED APS SEC SYS JOINS

� SCHED APS SEC PARENT JOINS

� SCHED APS SEC JOIN SELF ONLY

For more information, see “Security,” below.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The pid and tid are invalid.

SCHED APS MODIFY PARTITION

This command changes the parameters of an existing partition. If the
new budget’s percent value is different from the current, the
difference is either taken from, or returned to, the parent partition’s
budget. The critical time parameter affects only the chosen partition,
not its parent. To change just one of new budget or new critical time,
set the other to -1.

15



 

SchedCtl(), SchedCtl r()

� You can’t use this command to modify the System partition’s
budget. To increase the size of the System partition, reduce the
budget of one of its child partitions.

� Reducing the size of a partition may cause it not to run for the time
of an averaging window, as you may have caused it to become
temporarily over-budget. However, reducing the critical time
doesn’t trigger the declaration of bankruptcy.

☞

The dataargument for this command must be a pointer to a
sched aps modify parms structure:

typedef struct {
Int16t id;
Int16t new budget percent;
Int16t new critical budget ms;
Int16t reserved1;
Int64t reserved2;
Int64t reserved3;

} sched aps modify parms;

The members include:

id The ID number of the partition.

new budgetpercent

The new budget for the partition, expressed as a percentage, or
-1 if you don’t want to change it.

new critical budgetms

The new critical budget, in milliseconds, for the partition, or -1
if you don’t want to change it. If the critical budget is greater
than the window size, it’s considered to be infinite.

16



 

SchedCtl(), SchedCtl r()

Returns:

EOK Success.

EACCES SCHED APS SEC PARTITIONS LOCKED is set, or the
following security options are set and not satisfied:

� SCHED APS SEC PARENT MODIFIES

� SCHED APS SEC ROOT MAKES PARTITIONS

� SCHED APS SEC SYS MAKES PARTITIONS

� SCHED APS SEC NONZERO BUDGETS

� SCHED APS SEC ROOT MAKES CRITICAL

� SCHED APS SEC SYS MAKES CRITICAL

For more information, see “Security,” below.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure, or the partition ID is invalid.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS PARTITION STATS

This command returns instantaneous values of the CPU
time-accounting variables for a set of partitions. It can fill in data for
more than one partition. If the lengthargument to SchedCtl()
indicates that you’ve passed the function an array of
sched aps partition stats structures, SchedCtl()fills each
element with statistics for a different partition, starting with the
partition specified by the id field.

17



 

SchedCtl(), SchedCtl r()

To get an accurate picture for the the whole machine it’s important to
read data for all partitions in one call, since sequential calls to
SCHED APS PARTITION STATS may come from separate averaging
windows.

To determine the number of partitions, use the
SCHED APS OVERALL STATS command.

☞

The command overwrites the id field with the partition number for
which data is being returned. It stores -1 into the id field of unused
elements.

To convert times in cycles into milliseconds, divide them by the
cyclesper msobtained with an SCHED APS QUERY PARMS
command.

The dataargument for this command must be a pointer to a
sched aps partition stats structure, or an array of these
structures:

typedef struct {
/* out parms */
Uint64t run time cycles;
Uint64t critical time cycles;
Uint64t run time cycles w2;
Uint64t critical time cycles w2;
Uint64t run time cycles w3;
Uint64t critical time cycles w3;
Uint32t stats flags;
Uint32t reserved1;
Uint64t reserved2;
Uint64t reserved3;

/* in parm */
Int16t id;

} sched aps partition stats;

The members include:

run time cycles

The CPU execution time during the last scheduling
window.

18



 

SchedCtl(), SchedCtl r()

critical time cycles

The time spent running critical threads during the last
scheduling window.

run time cyclesw2

The CPU time spent during the last
windowsize2cycles. Window 2 is typically 10 times
the length of the averaging window.

critical time cyclesw2

The time spent running critical threads during the last
windowsize2cycles.

run time cyclesw3

The CPU time spent during the last
windowsize3cycles. Window 3 is typically 100 times
the length of the averaging window.

critical time cyclesw3

The time spent running critical threads during the last
windowsize3cycles.

statsflags A set of the following flags:

� SCHED APS PSTATS IS BANKRUPT NOW — the
critical time used is greater than the critical budget
at the time you used the
SCHED APS PARTITION STATS command.

� SCHED APS PSTATS WAS BANKRUPT — the
partition was declared bankrupt sometime since the
last restart.

id This is both an input and output field. As input, it’s the
ID number of the first partition you want data for. If
you’ve passed an array of
sched aps partition stats structures, the
command fills in the ID number for each partition that
it fills in statistics for.

19



 

SchedCtl(), SchedCtl r()

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block isn’t a multiple of
size(sched aps partition stats).

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS OVERALL STATS

This command returns instantaneous values of overall CPU-usage
variables and other dynamic scheduler states. The dataargument for
this command must be a pointer to a sched aps overall stats

structure:

typedef struct {
Uint64t idle cycles;
Uint64t idle cycles w2;
Uint64t idle cycles w3;
Int16t id at last bankruptcy;
Uint16t reserved1;
Int32t pid at last bankruptcy;
Int32t tid at last bankruptcy;
Uint32t reserved2;
Uint32t reserved3;
Uint64t reserved4;

} sched aps overall stats;

The members include:

idle cycles The time, in cycles, during the last scheduling
window where nothing (other than the idle thread)
ran. To convert this to the percent idle time,
calculate:

(100 � idle cycles) / windowsizecycles

idle cyclesw2 The time spent running idle during the last
windowsize2cycles. Window 2 is typically 10
times the length of the averaging window.

20



 

SchedCtl(), SchedCtl r()

idle cyclesw3 The time spent running idle during last
windowsize3cycles. Window 3 is typically 100
times the length of the averaging window.

id at last bankruptcy

The ID of last bankrupt partition, or -1 if no
bankruptcy has occurred.

pid at last bankruptcy, tid at last bankruptcy

The process and thread IDs at last the bankruptcy,
or -1 if no bankruptcy has occurred.

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS MARK CRITICAL

This command sets one thread in your process to run as a critical
thread whenever it runs. Use a thread ID of zero to set the calling
thread to be critical.

In general, it’s more useful to send a critical sigevent structure to a
thread to make it run as a critical thread.

☞

The dataargument for this command must be a pointer to a
sched aps mark crit parms structure:

typedef struct {
Int32t pid;
Int32t tid;
Int32t reserved;

} sched aps mark crit parms;

21



 

SchedCtl(), SchedCtl r()

The members include:

pid The process ID, or 0 for the calling process.

tid The thread ID, or 0 for the calling thread.

You can also set up sigevent structures that make their receiving
threads run as critical.

☞

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The specified thread wasn’t found.

SCHED APS CLEAR CRITICAL

This command clears the “always run as critical” state set by the
SCHED APS CLEAR CRITICAL command. Then the thread will run
as critical only when it inherits that state from another thread (on
receipt of a message).

The dataargument for this command must be a pointer to a
sched aps clear crit parms structure:

typedef struct {
Int32t pid;
Int32t tid;
Int32t reserved;

} sched aps clear crit parms;

The members include:

22



 

SchedCtl(), SchedCtl r()

pid The process ID, or 0 for the calling process.

tid The thread ID, or 0 for the calling thread.

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The specified thread wasn’t found.

SCHED APS QUERY THREAD

This command determines the partition for the given thread and
indicates whether or not the thread in your process is marked to run as
critical. Use a thread ID of zero to indicate the calling thread.

The dataargument for this command must be a pointer to a
sched aps query thread parms structure:

typedef struct {
Int32t pid;
Int32t tid;
/* out parms: */
Int16t id;
Int16t inherited id;
Uint32t crit state flags;
Int32t reserved1;
Int32t reserved2;

} sched aps query thread parms;

The input members include:

pid The ID of process that the thread belongs to, or 0 to indicate
the calling process.

23



 

SchedCtl(), SchedCtl r()

tid The thread ID, or 0 for the calling thread.

The output members include:

id The ID number of the partition that the thread
originally joined.

inherited id The ID number of the partition that the thread
currently belongs to. This might not be the same
as the id member, because the thread might have
inherited the partition from a calling process.

crit stateflags A combination of the following flags:

� APS QCRIT PERM CRITICAL — the thread
always runs as critical.

� APS QCRIT RUNNING CRITICAL — the
thread is currently running as critical.

� APS QCRIT BILL AS CRITICAL — the
thread’s execution time is being billed to the
partition’s critical budget.

If APS QCRIT PERM CRITICAL isn’t set, and
APS QCRIT RUNNING CRITICAL is set, it means
the thread has temporarily inherited the critical
state. If APS QCRIT RUNNING CRITICAL is set,
and APS QCRIT BILL AS CRITICAL isn’t set, it
means that the thread is running as critical, but
isn’t depleting its partition’s critical-time budget
(i.e. it’s running for free).

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

24



 

SchedCtl(), SchedCtl r()

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The specified thread wasn’t found.

SCHED APS ATTACH EVENTS

This command defines sigevent structures that the scheduler will
return to the calling thread when the scheduler detects that a given
partition has become bankrupt, or the whole system has become
overloaded.

Overload notification isn’t implemented in this release.☞

Calling SCHED APS ATTACH EVENTS arms the notification once.
After you receive the notification, you must call
SCHED APS ATTACH EVENTS again to receive a subsequent
notification. This is to ensure that the system doesn’t send you
notifications faster than you can handle them. The pinfo flagsfield of
the sched aps partition stats structure (see the
SCHED APS PARTITION STATS command) indicates if these events
are armed.

You can register only one pair of sigevent structures (bankruptcy
and overload) per partition, and the notifications must go to the same
thread. The thread notified is the calling thread. Attaching events a
second time overwrites the first. Passing NULL pointers means “no
changes in notification.” To turn off notification, use
SIGEVNONE INIT() to set the appropriate sigevent to
SIGEV NONE.

☞

If you want to configure additional actions for the system to perform
on bankruptcy, see “Handling bankruptcy,” below.

The dataargument for this command must be a pointer to a
sched aps events parm structure:

25



 

SchedCtl(), SchedCtl r()

typedef struct {
const struct sigevent *bankruptcy notification;
const struct sigevent *overload notification;
/* each partition gets a different set of sigevents */
Int16t id;
Int16t reserved1;
Int32t reserved2;
Int64t reserved3;

} sched aps events parm;

The members include:

bankruptcynotification

A pointer to the sigevent to send to the calling thread if the
partition becomes bankrupt, or NULL if you don’t want to
change the notification.

overloadnotification

Not implemented.

id The ID of the partition that you want to attach events to, or -1
for the partition of the calling thread. The command updates
this member to indicate the partition that it attached the events
to.

Returns:

EOK Success.

EACCES You don’t have the right to modify the partition, i.e the
following security modes are set and not satisfied:

� SCHED APS SEC PARENT MODIFIES

� SCHED APS SEC ROOT MAKES PARTITIONS

� SCHED APS SEC SYS MAKES PARTITIONS

For more information, see “Security,” below.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

26



 

SchedCtl(), SchedCtl r()

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The specified thread wasn’t found.

SCHED APS ADD SECURITY

This command sets security options. A bit that’s set turns the
corresponding security option on. Successive calls add to the existing
set of security options. Security options can only be cleared by a
restart.

You must be root running in the System partition to use this
command, even if all security options are off.

☞

The dataargument for this command must be a pointer to a
sched aps security parms structure:

typedef struct {
Uint32t sec flags;
Uint32t reserved1;
Uint32t reserved2;

} sched aps security parms;

The members include:

secflags A set of SCHED APS SEC * flags (see below), as both
input and output parameters. Set this member to 0 if you
want to get the current security flags.

Security

The adaptive partitioning scheduler lets you dynamically create and
modify the partitions in your system.

27



 

SchedCtl(), SchedCtl r()

We recommend that you set up your partition environment at boot
time, and then lock all parameters:

� in a program, by using the SCHED APS SEC LOCK PARTITIONS
flag

� from the command line, by using the aps modify command

☞

However you might need to modify a partition at runtime. In this
case, you can use the security options described below.

When Neutrino starts, it sets the security option to
APS SCHED SEC OFF. We recommend that you immediately set it to
SCHED APS SEC RECOMMENDED. In code, do this:

sched aps security parms p;

APS INIT DATA( &p );
p.sec flags = SCHED APS SEC RECOMMENDED;
SchedCtl( SCHED APS ADD SECURITY,&p, sizeof(p) );

These are the security options:

SCHED APS SEC RECOMMENDED

Only root from the System partition may create partitions or
change parameters. This arranges a 2-level hierarchy of
partitions: the System partition and its children. Only root,
running in the System partition, may join its own thread to
partitions. The percentage budgets must not be zero.

SCHED APS SEC FLEXIBLE

Only root in the System partition can change scheduling
parameters or change critical budgets. But root running in any
partition can create subpartitions, join threads into its own
subpartitions and modify subpartitions. This lets applications
create their own local subpartitions out of their own budgets.
The percentage budgets must not be zero.

28



 

SchedCtl(), SchedCtl r()

SCHED APS SEC BASIC

Only root in the System partition may change overall
scheduling parameters and set critical budgets.

Unless you’re testing the partitioning and want to change all
parameters without needing to restart, you should set at least
SCHED APS SEC BASIC.

In general, SCHED APS SEC RECOMMENDED is more secure than
SCHED APS SEC FLEXIBLE, which is more secure than
SCHED APS SEC BASIC. All three allow partitions to be created and
modified. After setting up partitions, use
SCHED APS SEC LOCK PARTITIONS to prevent further unauthorized
changes. For example:

sched aps security parms p;

APS INIT DATA( &p );
p.sec flags = SCHED APS SEC LOCK PARTITIONS;
SchedCtl( SCHED APS ADD SECURITY, &p, sizeof(p));

SCHED APS SEC RECOMMENDED, SCHED APS SEC FLEXIBLE,
and SCHED APS SEC BASIC are composed of the flags defined below
(but it’s usually more convenient for you to use the compound
options):

SCHED APS SEC ROOT0 OVERALL

You must be root running in the System partition in order to
change the overall scheduling parameters, such as the averaging
window size.

SCHED APS SEC ROOT MAKES PARTITIONS

You must be root in order to create or modify partitions.
Applies to the SCHED APS CREATE PARTITION,
SCHED APS MODIFY PARTITION, and
SCHED APS ATTACH EVENTS commands.

SCHED APS SEC SYS MAKES PARTITIONS

You must be running in the System partition in order to create
or modify partitions. This applies to same commands as

29



 

SchedCtl(), SchedCtl r()

SCHED APS SEC ROOT MAKES PARTITIONS. Attaching
events, with SCHED APS ATTACH EVENTS, is considered to be
modifying the partition.

SCHED APS SEC PARENT MODIFIES

Allows partitions to be modified
(SCHED APS MODIFY PARTITION), but you must be running
in the parent partition of the partition being modified. “Modify”
means to change a partition’s percentage or critical budget or
attach events with the SCHED APS ATTACH EVENTS
command.

SCHED APS SEC NONZERO BUDGETS

A partition may not be created with, or modified to have, a zero
budget. Unless you know that all your partitions need to run
only in response to client requests, i.e. receipt of messages, you
should set this option.

SCHED APS SEC ROOT MAKES CRITICAL

You have to be root in order to create a nonzero critical budget
or change an existing critical budget.

SCHED APS SEC SYS MAKES CRITICAL

You must be running in the System partition to create a nonzero
critical budget or change an existing critical budget.

SCHED APS SEC ROOT JOINS

You must be root in order to join a thread to a partition.

SCHED APS SEC SYS JOINS

You must be running in the System partition in order to join a
thread.

SCHED APS SEC PARENT JOINS

You must be running in the parent partition of the partition you
wish to join to.

30



 

SchedCtl(), SchedCtl r()

SCHED APS SEC JOIN SELF ONLY

The caller of the SCHED APS JOIN PARTITION command must
specify 0 for the pid and tid. In other words, a process may join
only itself to a partition.

SCHED APS SEC PARTITIONS LOCKED

Prevent further changes to any partition’s budget, or overall
scheduling parameters, such as the window size. Set this after
you’ve set up your partitions. Once you’ve locked the
partitions, you can still use the SCHED APS JOIN PARTITION
and SCHED APS ATTACH EVENTS commands.

Returns:

EOK Success.

EACCES The calling thread doesn’t meet the security options set
(see SCHED APS ADD SECURITY). Usually this means
you must be root.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

SCHED APS QUERY PROCESS

This command returns the partition of the given process. The partition
of a process is billed while one of the process’s threads handles a
pulse. The individual threads in a process may all be in different
partitions from the process.

The dataargument for this command must be a pointer to a
sched aps query process parms structure:

typedef struct {
Int32t pid;

31



 

SchedCtl(), SchedCtl r()

/* out parms: */
Int16t id; /* partition of process */
Int16t reserved1;
Int32t reserved2;
Int32t reserved3;
Int32t reserved4;

} sched aps query process parms;

The members include:

pid The process ID, or 0 for the calling process.

id The ID of the process’s partition.

Returns:

EOK Success.

EDOM A reserved field isn’t zero. You might not have used
APSINIT DATA()to initialize the data parameter.

EINVAL The size of the parameter block doesn’t match the size
of the expected structure.

ENOSYS The adaptive partitioning scheduler isn’t installed.

ESRCH The process wasn’t found.

Blocking states

This call doesn’t block.

Returns:
The only difference between these functions is the way they indicate
errors:

SchedCtl() EOK if the call succeeds. If an error occurs, it
returns -1 and sets errno.

32



 

SchedCtl(), SchedCtl r()

SchedGetr() EOK if the call succeeds. This function doesn’t set
errno. If an error occurs, the function returns the
negative of a error value.

For a list of error values, see the description of each command.

Examples:
sched aps partition info part info;

// You need to initialize the parameter block.
APS INIT DATA(&part info);

// Set the input members of the parameter block.
part info.id = 2;

// Invoke SchedCtl to query the partition.
ret = SchedCtl( SCHED APS QUERY PARTITION, &part info,

sizeof(part info) );
if (EOK!=ret) some kind of error handler();

// Use output field
printf( "The budget is %d per cent.\n",

part info.budget percent);

Classification:
QNX Neutrino

Safety

Cancellation point No

Interrupt handler No

Signal handler Yes

Thread Yes

33



 

SchedCtl(), SchedCtl r()

See also:
SchedGet(), SchedInfo(), SchedSet(), SchedYield(), sigevent

aps in the Utilities Reference

Adaptive Partitioning TDK User’s Guide

34


