! b

FCORS

Number of Users

Number of Repositories

Number of Fetch Requests
2~
o O
e
Number of Push Requests

_\

e

Protocol for Fetch/Push

EDT

Repository Size
R

Performance Cheat Sheet

DEFIRITION

The number of users is only an indirect factor for Gerrit tuning as
most Git operations are done completely offline.

The more users you have, the more repositories and push/fetch
requests you will probably encounter.

The maijority of load is typically caused by build systems (CI).

The biggest enterprise instance we have seen has 15k active users.

The number of repositories (Gerrit projects) determines how much
disk space you need.

We have seen instances with more than 10k repositories but would
not recommend more than 2500 per server.

Related gerrit.config Options

sshd.threads
sshd.batchThreads
sshd.commandStartThreads

This is probably the most important tuning factor.
To improve throughput, fetch requests should be handled in parallel, but

parallel cloning needs CPUs as well as memory. httpd. maxThreads
A Gerrit server optimized for heavy load (32 cores, 32 GB RAM) can handle container.heapLimit
about 1M fetch requests per day, processing up to 50 in parallel. database.poolLimit

database.poolMax|die

Related gerrit.config Options
receive.timeout
In most enterprise settings, push requests contribute less than one SRS, RRCRSUGRLAALL
h b f | i core.packedGitWindowSize
percent to the number of total operations. core.packedGitOpenFiles

Because of this, their number can be typically neglected. gc.interval

Ssh connections consume about 0.9 CPUs in avarage during a
fetch/push operation. Http connections consume about 0.5
CPUs, https adds additional encryption traffic and makes it
comparable to ssh. Ssh is recommended for Cl users as this
allows push based notifications (see Cl info box).

Repository size determines the amount of storage you need
on disk. In addition, it influences the needed memory during

a clone request as pack files have to be loaded and streamed.
The largest repository on disk should still fit in 1/4 of your
heap. Garbage collection across all projects will take longer,
the more repository data has to be processed. Gerrit can
handle at least 1TB of total repository data easily.

44

Performance Cheat Sheet
AARDWIRE SIZING

Nunber of Cores
IR1] 'SR For every CPU core you add, you can handle up to 2 parallel

fetch/push requests. Our experience tells 32 cores per 1M daily

fetch requests is pretty common. Scale this number up/down
(L 1 based on your load.

RAM

You should have at least <#Cores> GB heap allocated for
Gerrit, the more memory, the better.

Our experience tells 32 GB per 1M daily requests is pretty
common.

Storage
Storage needs are determined by the Git repository sizes. Fast
storage (SSDs or NAS) really pays off as git fetch, push and
gc are all |10 heavy.
Network
The higher the network bandwidth, the shorter it will take to fetch and
m push repositories.
Depending on the avarage Git repository size and number of parallel

requests, network connectivity can become the primary bottleneck.

I i !
|__| u E Most enterprises have Gigabit connections.
- AEEHEN,

Numher Uf SBI‘VEI‘S Whenever horizontal scaling is not cost efficient any more,

we recommend setting up another server.

If the number of repositories exceeds 2500, a new server should be

used as well or reviews will get painfully slow.

Use Gerrit's replication feature to synch repo content and permissions
/ to servers in different geographies if network is the limiting factor.

o
B
&
S

b b

Performance Cheat Sheet

TUMING RELATED QERRIT.CONFIA OPTIONS

[5]Small Instance (<I00k requests per day, 4 GB RAM, 4 Cares)
[M]Medium Instance (around 300k requests per day, 16 GB RAM, 16 Cores)
Large Instance (around IM requests per day, 32 GB RAM, 32 Cores)

sshd.threads:
[s]8
[M] 32
B4

database.poolLimit:

[s]s0

[M]1s0

[L] 250
receive.timeout:

(5] 4 min

|E 4 min

4 min
container.heapLimit:

[S]4g

[M]1Bg

[] 32
httpd.maxThreads:

[s]25

[M]50

100
sshd.batchThreads:

[5]2

[M]4

B
core.packedGitLimit:

H[

database.poolMaxldle:
[5]B
[M] 16
16

sshd.CommandStartThreads:

[5]2
[M]3
[L]s

gc.interval:

E 1 week
[M] 3 day
| day

core.packedGitWindowSize:

[S]8k

[M] 1Bk

16k
core.packedGitOpenFiles:

[5]1024

[M] 2048

4038

#threads to process ssh requests, limiting the number of possible parallel clones/pushes.
Ssh connections consume about 0.9 CPUs per parallel fetch/push operation.

Defaults to 1.5 *+ <#Cores>, we rather recommend 2 « <#Cores>

If you run into heap space issues, scale down this number again.

#DB connections for Gerrit.
As a fetch/push request or a review action can consume multiple connections, set at least to
<sshd.threads> + <httpd.maxThreads>

Timeout to process incoming changes and update refs and Gerrit changes.
Default of 2min is typically too small for huge repositories.

Java heap used for Gerrit. The more repository data Gerrit can cache in memory, the better. You
should have at least <#Cores> GB size heap size allocated for Gerrit. The largest repository on disk
should still fit in 1/4 of your heap. 32 GB per 1M daily requests is pretty common.

#threads to process http clone/push reguests and review related activities.
Http consume about 0.5 cores, https adds additional encryption traffic and makes it comparable to ssh.

#threads reserved to users in a Gerrit group with the BATCH capability. This allows to separate
Cl users causing heavy load from human users by placing their requests in different thread pools.
Interactive users will have <sshd.threads> - <sshd.batchThreads> available just for them.

This can improve clone/push performance for human users significantly.

Maximum cache size to store Git pack files in memory. The default (10 MB) is way too small if you
frequently clone large repositories and like to cache their data.
1/4 of your heap size is a common choice.

Maximum time before a DB connections gets released.
As DB pool size is typically increased from its default value, this parameter should be too.

#threads used to process incoming ssh connection requests.
Setting should only be adjusted for Cl systems that create a burst of connection requests in parallel.
Especially in AOSP build environments increasing this value helps reducing the avarage wait queue size.

Determines how often Gerrit garbage collection {JGit gc) is run across all repositories. Running JGit gc
frequently is crucial for good fetch/push performance as well as a smooth source code browsing
experience. JGit gc is more efficient than command line git garbage collection and causes no
problems with Gerrit running in parallel. Parameters to control JGit gc's resource consumption are in
~gerrit/.gitconfig. Don't forget to set gc.startTime for the initial garbage collection time.

Number of bytes of a pack file to load into memory in a single read operation.
16k is a common choice.

Maximum number of pack files to have open at once. If you increased packedGitLimit, you have to
adjust this value too. If you increase this to a larger setting you may need to also adjust the ulimit
on file descriptors for the host JVM, as Gerrit needs additional file descriptors available for network
sockets and other repository data manipulation.

Performance Cheat Sheet
GARBAGE COLLECTION (~GERRIT/ GITCONFQ)

[S]Small Instance (<ID0k requests per day, 4 GB RAM, 4 Cores)
[M] Medium Instance (around 300k requests per day, |6 GB RAM. I Cores)
Large Instance (around IM requests per day, 32 GB RAM, 32 Cores)

pack.threads:

|
%ﬁ #threads used for Gerrit (JGit) garbage collection. 1/4 + <#Cores> is a common choice.
[L]s

pack.WindowMemory:
@'Q Use this setting to control how much memory (Java heap) is used for Gerrit garbage collection (JGit gc).
[El‘lu 1/4 of the configured Java heap is a common choice.

QERRIT PERFORMANCE TUMING FAQQ

What are fetch/push requests and how many will | have per day?

A fetch request is peformed for git commands clone, fetch and pull.

It updates the local repository with changes that happened on the server since the last fetch.
fetch requests gitclone Fetch requests typically contribute more than 99 percent to the server load.
A push request is performed by git push and updates the remote server with the local changes.

git fetch

git pull Gerrit logs all ssh fetch and push requests in its ~gerrit/logs/sshd_log file including time stamp, session,
user, command, repository, processing time, queue time and exit code (in that order).
http request logging has to be explicitly turned on (httpd.requestLog=true) and will then show up in
~gerrit/logs/httpd_log

git-upload-pack

Fetch requests contain the term git-upload-pack, push requests the term git-receive-pack.
Basic Unix commands should be sufficient to analyze how many requests your server gets per day.
push rEq"ES‘S For instance, to count the number of ssh fetch requests, use

it push fgrep "git-upload-pack" sshd_log | wc -l
git-receive-pack

For more advanced analysis we recommend tools like Splunk, ELK or Graylog.

The Gerrit command show-connections gives you an idea how many parallel ssh requests are

waiting to be processed, it should not be more than 2 = <#Cores> in avarage.

How to deal with build users / heavy CI load?

Continuous Integration (Cl) systems like Jenkins, Cruise Control or Team
City have to frequently check for code changes to trigger their build jobs.
If an enterprise has hundreds of repositories and build jobs, Cl users easily cause

=y (<) r more than 90 percent of a Gerrit server's load.

1@ e 1)

R .

Le k) ; ;

:E‘ E‘: Resource :@ Noresource Requests from interactive, human users may starve because of server

"_E] starvation HT starvation overload. The first counter measurement is to assign all Cl users to a Gerrit group
i =

which has the BATCH capability set. Configure sshd.batchThreads approriately to
restrict those users to a subset of your total thread pool (and server resources).
Don"t fotget to update the BATCH group whenever a new Cl user is added.

Cl users with
BATCH group Gerrit also supports push based notifications which is way more resource
efficient than the typical poll based approach. Against common belief push based
Push based notification notifications are also issued for ordinary branch updates and not just Gerrit changes.

The Jenkins Gerrit Trigger Plugin makes use of this feature and should be used
as build job trigger whenever possible. Other Cl systems have similar plugins that
. @ make use of Gerrit's push-based, stream-events command.
L onatel ,@ sshd.streamThreads can be used to fine tune performance for push based
i @ notifications but typically does not have to be modified.

